数学分析简明教程答案16

合集下载

数学分析简明教程第二版下册课程设计 (2)

数学分析简明教程第二版下册课程设计 (2)

数学分析简明教程第二版下册课程设计课程目标本课程旨在为学生提供数学分析的基本理论和方法,培养学生逻辑思维和数学分析问题的能力。

具体目标包括:1.掌握数学分析基本概念;2.熟练掌握和运用数学分析基本方法;3.培养逻辑思维和分析问题的能力;4.发展学生的数学创新精神。

教学内容本课程包括以下教学内容:1.多元函数微积分学:包括梯度、散度、旋度、曲线积分、面积积分、体积积分等;2.常微分方程:包括一阶和二阶常微分方程的初值问题、常系数和非齐次线性方程、拉普拉斯变换等;3.偏微分方程:包括一阶和二阶的常微分方程、泊松方程、热传导方程、波动方程、傅里叶变换等;4.线性代数:包括向量空间、线性方程组、矩阵和行列式、特征值和特征向量、线性变换等。

教学方法本课程采用理论教学与问题解决相结合的教学方法,强调理论知识的实用性和问题解决能力的培养。

具体教学方法包括:1.理论课教学:讲授数学分析基本概念和方法;2.实例演示:通过具体例子演示和解析,帮助学生理解和掌握数学分析的基本方法;3.课程设计:布置数学分析问题的练习和课程设计,培养学生逻辑思维和分析问题的能力;4.课程报告:组织学生进行课程报告,展示数学分析的应用和发展前景。

评价方式本课程评价方式包括学习成绩和课程设计成果两部分。

1.学习成绩:包括课堂表现、作业和考试成绩;2.课程设计成果:包括课程设计报告、课本注释和发言等。

评价方式具体细节和依据将在课程开始前详细说明。

参考文献1.《高等数学》(第七版,上册),北京:高等教育出版社,2019;2.《高等数学》(第七版,下册),北京:高等教育出版社,2020;3.Spiegel, Murray R. & Liu, John. (2019). Vector Analysis andan Introduction to Tensor Analysis. Singapore: World ScientificPublishing.结束语本课程要求学生掌握数学分析的基本理论和方法,培养学生逻辑思维和分析问题的能力。

解析几何简明教程答案

解析几何简明教程答案

第一章 空间直角坐标,平面和直线1.在给定坐标系中画出下列各点:()()()()341510421421------,,,,,,,,,,,。

2.自点M ()321,,-和N ()c b a ,,分别引各坐标平面和坐标轴的垂线,求各垂足的坐标。

解:点M ()321,,-在平面XOY ,XOZ ,YOZ 上的垂足分别为:()()()320301021,,,,,,,,--在X ,Y ,Z 轴上的垂足分别为:()()()300020001,,,,,,,,-点N ()c b a ,,在平面XOY ,XOZ ,YOZ 上的垂足分别为:()()()c b ,c a ,,b a ,,0,00,, 在X ,Y ,Z 轴上的垂足分别为:()()(),c ,,,b,,,a ,0000003. 给定点M ()3,2,1-和N ()c b a ,,,求它们分别对于坐标平面、坐标轴和原点的对称点的坐标。

解:4.求点M (4,-3,5)到原点、各坐标轴和各坐标平面的距离。

解:点M 到原点的距离:255)3(4222=+-+=OM点M 在XOY ,XOZ ,YOZ 上的垂足分别为A (4,-3,0),B (4,0,5),C (O ,-3,5),则距离为:52500=++=MA ,30)3(02=+-+=MB ,40042=++=MC ,点M 在X ,Y ,Z 轴上的垂足分别为)0,0,4(A ',B (0,-3,0),C (0,0,5)则距离为:345)3(22=+-='A M ,1454B 22=+='M ,543C 22=+='M5.求点(1,2,-2)和(-1,0,-2)之间的距离。

解:所求距离为:3121)(1d 222=+++=6.求下列方向余弦:(1,2,-2),(2,0,0),(0,2,-2),(-1,-2,-5)。

解:(1,2,-2)的方向余弦为:)2,2,1(31-,即:(323231-,,)(2,0,0)的方向余弦为:)00,2(21,,即:(001,,)(0,2,-2)的方向余弦为:)220(221-,,,即:()22220-,, (-1,-2,-5)的方向余弦为:)521(301---,,,即:()63015303030---,, 7.求从点(1,2,-2)到点(-1,0,-1)的方向的方向数和方向余弦。

数学分析课本(华师大三版)-习题及答案16+17

数学分析课本(华师大三版)-习题及答案16+17
46.讨论函数
1 ⎧ 2 2 ( x , y ) ≠ 0,0) ⎪( x + y ) sin 2 f ( x, y) = ⎨ x + y2 ⎪ 0 ( x , y ) = (0,0) ⎩
在 ( 0,0) 处的可微性与偏导数的连续性. 47.设函数 u = f ( x , y ) 满足拉普拉斯方程
12.求下列函数的全微分. (1) z = x y
2 3
(2) z =
xy x−y ⎛ x+ y⎞ ⎟ ⎟ ⎝ 1 − xy ⎠
(3) z = arcsin 13.求 z = xy sin 14.求 z =
y x 1 x + y2
2
(4) z = arctan⎜ ⎜ 在点 (0,1) 的全微分.
y ,当 x = 2 ,y = 1,Δx = 01 . ,Δy = −0.2 时的全增量 Δz 与全 x du ; dt
2 2 2
(3) u = ln( x +
y 2 + z 2 ) 从点 A ( 1 , 0 , 1 ) 到点 B ( 3 , − 2 , 2 ) 的方向.
2 2
27. 求函数 z = x + y 在点 p ( 1 , 2 ) 处的最大方向导数. 28. 求下列函数的梯度 (1) z =
4 + x 2 + y 2 在点 ( 2 , 1 ) ;
(2) z = x y − xy ,其中 x = u cos v,y = u sin v ,求
3
∂ 2z 17.设 z = yf ( x − y ) ,求 2 . ∂y
2 2
18.求由下列方程确定的函数 y ( x ) 的导数. (1) x + 2 xy − y = a (3) xy − ln y = a

简明高等数学教程教材答案

简明高等数学教程教材答案

简明高等数学教程教材答案第一章:函数与极限1. 函数在数学中,函数是一种映射关系,将一个集合的元素映射到另一个集合。

函数通常用f(x)或者y来表示,其中x是自变量,y是因变量。

2. 极限极限是描述函数在自变量趋近某个值时的性质。

记作lim(x->a)f(x)=L,表示当x趋近于a时,f(x)趋近于L。

极限有一些基本的运算规则,如极限的和差、常数乘以极限等。

3. 连续性函数在某个点上连续表示它在该点的函数值与极限值相等。

一个函数在某个区间上连续,则该函数在该区间内的每个点都连续。

4. 导数与微分导数是函数在某一点的变化率,表示函数在该点的切线斜率。

微分是指函数在某点附近的变化量与自变量变化量的比值。

第二章:微分学1. 函数的导数函数的导数表示函数在某一点上的变化率,记作f'(x)或者dy/dx。

导数具有一系列的性质,如和差的导数、数乘的导数、乘法法则、除法法则等。

2. 高阶导数一个函数的高阶导数表示它的导数的导数。

记作f''(x)或者d^2y/dx^2。

高阶导数可以帮助我们研究函数的曲线特性。

3. 微分中值定理微分中值定理是微分学的重要定理之一,它描述了函数在某个区间内必然存在一个点,使得该点的导数等于该区间内的平均斜率。

4. 泰勒展开泰勒展开是将函数在某一点附近用无穷个项的有限和来表示的方法。

泰勒展开可以用来近似计算函数的值。

第三章:积分学1. 定积分定积分是Riemann和的极限形式,表示函数在某个区间上的累积效应。

定积分可以用来计算曲线下面的面积或者描述某个变化量的累积。

2. 不定积分不定积分是定积分的逆运算,表示函数的原函数。

不定积分的结果通常用∫f(x)dx表示。

3. 定积分的应用定积分在科学与工程中有广泛的应用,如计算物体的体积与质量、求解曲线长度与弧长、计算功与能量等。

4. 牛顿-莱布尼兹公式牛顿-莱布尼兹公式是定积分与不定积分之间的基本联系,它指出了一个函数的不定积分与定积分之间的关系。

数学分析简明教程答案(尹小玲 邓东皋)第一二章

数学分析简明教程答案(尹小玲 邓东皋)第一二章

5.在半径为r得瑟球内嵌入一内接圆柱,试将圆柱的体积表示为其高的函数,并求此函数 的定义域。
h2 解:设其高为h, 那么圆柱的底面半径为R r ; 于是圆柱体积 4 2 V R h
2
hr 2

4
h3
由于圆柱为球的内接圆柱,故有h (0, 2r ).
-2-
6.某公交车路线全长为20 Km, 票价规定如下:乘坐5 Km以下(包含5 Km)者收费1元;超过 5 Km但在15 Km以下(包含15Km)者收费2元;其余收费2元5角。试将票价表示成路线的 函数,并作出函数的图像。 解:设y为票价,x为路程,则有 1 y ( x) 2 2.5 它的函数图像如下: x (0,5] x (5,15] . x (15, 20]
画图板作图
7.一脉冲发生器产生一个三角波,若记它随时间t的变化规律为f (t ), 且三个角分别对应关 系f (0) 0, f (10) 20, f (20) 0, 求f (t )(0 t 20), 并作出函数的图形。 解:由题意可知所求函数为: 2t f (t ) 40 2t 其函数图像为:
2 2 2 2
(2). x1 x2 xn x1 x2 xn ; 证明:使用数学归纳法; i.对于x, y , 总有 x y xy, 于是有 x 2 x y y x 2 2 xy y 2 ; 整理后可得 x y x y ,即当n 2时所证成立。 ii.假设当n k时所证不等式也成立,即 x1 x2 xk x1 x2 xk . iii.当n k 1时,取y x1 x2 xk , 于是有: x1 x2 xk xk 1 y xk 1 y xk 1 x1 x2 xk xk 1 x1 x2 xk xk 1 即当n k 1时所证不等式也成立。 那么由数学归纳法可知题证成立。

数值分析简明教程第二版课后习题答案(供参考)

数值分析简明教程第二版课后习题答案(供参考)

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数学分析简明教程答案(尹小玲 邓东皋)

数学分析简明教程答案(尹小玲 邓东皋)

第九章 再论实数系§1 实数连续性的等价描述2211.{}({},{})1(1).1; sup 1,inf 0;(2)[2(2)]; sup ,inf ;1(3),1,(1,2,); sup ,inf 2;1(4)[1(1)]; n n n n n n n n n n k k n n n n x x x x x x nx n x x x k x k x x k n x n ++∞-∞=-===+-=+∞=-∞==+==+∞=+=+- 求数列的上下确界若无上下确界则称,是的上下确界: sup 3,inf 0;(5) sup 2,inf 1;12(6)cos ; sup 1,inf .132n n n n n n n n x x x x x n n x x x n π=====-===-+2.(),(1)sup{()}inf (); (2)inf{()}sup ().(1)sup{()},.,();.0,()..,();.x Dx Dx Dx Dx Df x D f x f x f x f x A f x i x D f x A ii x D f x A i x D f x A ii εεε∈∈∈∈∈-=--=-=-∀∈-≤∀>∃∈->-∀∈≥-∀>设在上定义求证:证明:设即有对有 对使得 于是有对有 对0,().inf (),inf (),sup{()}inf ()x Dx Dx Dx Dx D f x A A f x A f x f x f x ε∈∈∈∈∃∈<-+-==--=-使得 那么即因此有成立。

(2)inf{()},.,();.0,()..,();.0,().sup (),sup (),x Dx Dx DB f x i x D f x B ii x D f x B i x D f x B ii x D f x B B f x A f x εεεε∈∈∈=-∀∈-≥∀>∃∈-<+∀∈≤-∀>∃∈>---==-设即有对有 对使得 于是有对有 对使得 那么即因此有inf{()}sup ()x Dx Df x f x ∈∈-=- 成立。

数值分析简明教程第二版课后习题答案(供参考)

数值分析简明教程第二版课后习题答案(供参考)

数值分析简明教程第⼆版课后习题答案(供参考)0.1算法1、(p.11,题1)⽤⼆分法求⽅程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】由⼆分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取⾃然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即⾄少需2、(p.11,题2)证明⽅程210)(-+=x e x f x在区间[0,1]内有唯⼀个实根;使⽤⼆分法求这⼀实根,要求误差不超过21021-?。

【解】由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-?+=e f ,082110)1(1>+=-?+=e e f ,即0)1()0(⼜010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯⼀实根.由⼆分法的误差估计式211*1021212||-++?=≤=-≤-εk k k a b x x ,得到1002≥k .两端取⾃然对数得6438.63219.322ln 10ln 2=?≈≥k ,因此取7=k ,即⾄少需⼆分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有⼏位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-?=<=-K x e ,所以7.21=x 有两位有效数字;因为12102105.000828.0||-?=<=-K x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-?=<=-K x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数学分析简明教程答案(尹小玲邓东皋)第四章

数学分析简明教程答案(尹小玲邓东皋)第四章

x0
x

lim
x0
3x02x 3x2 x0 x
x3

3x02 ;
f '(0 0) lim f (0 x) f (x) lim x3 0 0,
x0
x
x0 x
f '(0 0) lim f (0 x) f (x) lim x3 0 0,
第四章 微商与微分
第一节 微商的概念及其计算
1.求抛物线y x2在A(1,1)点和B(2, 4)点的切线方程和法线方程。
解:函数y x2的导函数为y ' 2x,则它在A(1,1), B(2, 4)的切线斜率分别为
y '(1) 2, y '(2) 4;
于是由点斜式可以求得在这两点的切线方程分别为y 2x 1, y 4x 4.
由于法线斜率与切线斜率的乘积为 1, 故可以求得在这两点的法线斜率分别为
k1


1 2
,
k2

1; 4
那么由点斜式可以求得在这两点的法线方程分别为y 1 x 3 , y 1 x 9 . 22 42
2.若S vt 1 gt2,求 2
(1)在t 1,t 1 t之间的平均速度(设t 1, 0.1, 0.01); (2)在t 1的瞬时速度。 解:(1)可以求得
x

lim f (3 x) f (3) lim a(3 x) b 32 lim 3a a x b 9 6,
x0
x
x0
x
x0
x
那么必有
解得:a 6,b 9.
3a b 9 0 a 6

《数值分析简明教程》(第二版)王能超课后习题答案

《数值分析简明教程》(第二版)王能超课后习题答案
其中 (ϕ 0 , ϕ 0 ) = 5 , (ϕ 0 , ϕ1 ) = (ϕ1 , ϕ 0 ) = 5327 , (ϕ1 , ϕ1 ) = 7277699 , ( f , ϕ 0 ) = 271.4 ,
532 a= = 0.9726 547 b = 285 = 0.05 2 ( f , ϕ1 ) = 369321.5 ,解之得 5696 ,∴ y = 0.9726 + 0.05 x .
yn = yn −1 + hf ( xn −1 , yn −1 ) = yn −1 + h ⋅ ( axn −1 + b)
故 yn −1 = yn −2 + h ⋅ ( axn − 2 + b)
LL y1 = y0 + h ⋅ ( ax0 + b)
将上组式子左右累加,得
yn = y0 + ah( x0 + L + xn −2 + xn −1 ) + nhb = ah(0 + h + 2h L + ( n − 2) h + (n − 1) h) + nhb
第一章 题 12 给定节点 x0 = −1 , x1 = 1 , x2 = 3 , x3 = 4 ,试分别对下列函数导出拉格朗日插 值余项: (1) (1) (2) (2) 解 (1) f
(4)
f ( x) = 4 x3 − 3 x + 2 f ( x) = x 4 − 2 x3 ( x) = 0 ,
1.5
5 ≈ × 9
8 8 5 8 + × + × 2 2 3 9 4 + ( 0 + 1) 9 3 4+− + 1 4+ + 1 5 5 = 3.141068 .

数学分析简明教程答案(尹小玲 邓东皋)第11章

数学分析简明教程答案(尹小玲 邓东皋)第11章

x x x 2 0 , 而 lim x 1 , 无 穷 积 分 2 x 1 x 2 1 x sin x x 1 x x 发散,由比较判别法知 dx 0 x 2 1 0 1 x 2 sin 2 x dx 发散.
( 5 ) x 0 , 有
2
xn (6)因为 lim 1 ,所以, x 1 x n
第十一章 广义积分
§11.1 1. 求下列无穷积分的值: (1) 无穷限广义积分




2

1 dx ; x 1
2
(2)
2

1 dx ; x(1 x 2 )
xe ax dx (a 0) ; e
ax
2
(3) (4) . (5)
0
0
sin bxdx (a 0) ;

(2) lim x
2
(4) x 0 ,有
1 1 0 ,且 1 x sin x x 1
A dx dx lim lim ln(1 A) , 1 x A 0 1 x A






0
dx dx 发散,由比较判别法知 发散. 0 1 x 1 x sin x
y x
所以,
2 2 (1 2 x x) 2 ln [arctan( 2 x 1) arctan( 2 x 1)] C , 2 4 1 x 2

A
0
2 (1 2 A A) 2 x ln [arctan( 2 A 1) arctan( 2 A 1)] dx 2 2 4 2 1 x 1 A 2 2 ( ) 2 2 2 2 ( A ) ,

数学分析课本(华师大三版)-习题及答案第六章

数学分析课本(华师大三版)-习题及答案第六章

第六章 微分中值定理与其应用一、填空题1.若0,0>>b a 均为常数,则=⎪⎪⎭⎫ ⎝⎛+→x x x x b a 302lim ________. 2.若21sin cos 1lim 0=-+→x x b x a x ,则=a ______,=b ______. 3.曲线x e y=在0=x 点处的曲率半径=R _________. 4.设2442-+=xx y ,则曲线在拐点处的切线方程为___________. 5.=-+→x ex xx 10)1(lim ___________. 6.设)4)(1()(2--=x x x x f ,则0)(='x f 有_________个根,它们分别位于________区间;7.函数x x x f ln )(=在[]2,1上满足拉格朗日定理条件的__________=ξ;8.函数3)(x x f =与21)(x x g +=在区间[]2,0上满足柯西定理条件的_____=ξ; 9.函数x y sin =在[]2,0上满足拉格朗日中值定理条件的____=ξ;10.函数2)(xe xf x=的单调减区间是__________; 11.函数x x y 33-=的极大值点是______,极大值是_______.12.设x xe x f =)(,则函数)()(x f n 在=x _______处取得极小值_________.13.已知bx ax x x f ++=23)(,在1=x 处取得极小值2-,则=a _______,=b _____.14.曲线22)3(-=x k y 在拐点处的法线通过原点,则=k ________.15.设)2,1()1()( =-⨯=n x n x f n ,n M 是)(x f 在[]1,0上的最大值,则=∞→n n M lim ___________.16.设)(x f 在0x 可导,则0)(0='x f 是)(x f 在点0x 处取得极值的______条件;17.函数x bx x a x f ++=2ln )(在1=x 与2=x 取得极值,则______,==b a ;18. 函数3223)(x x x f -=的极小值是_________; 19.函数xx x f ln )(=的单调增区间为__________; 20. 函数x x x f cos 2)(+=在⎥⎦⎤⎢⎣⎡2,0π上的最大值为______,最小值为_____; 21. 设点)2,1(是曲线b a x y +-=3)(的拐点,则___________,==b a ;22. 曲线x e y =的下凹区间为_______,曲线的拐点为________;23. 曲线323x x y -=的上凹区间为________;24. 曲线)1ln(2x y +=的拐点为__________;25.曲线x y ln =在点______处曲率半径最小.26.曲线)1ln(x e x y +=的渐近线为__________.二.选择填空1.曲线2)5(35+-=x y 的特点是< >.A.有极值点5=x ,但无拐点B.有拐点)2,5(,但无极值点C.5=x 是极值点,)2,5(是拐点D.既无极值点,又无拐点2.奇函数)(x f 在闭区间[]1,1-上可导,且M x f ≤)(',则< >. A.M x f ≥)( B.M x f >)( C.M x f ≤)( D.M x f <)(3.已知方程)0(122>=+y y y x 确定y 为x 的函数,则< >.A.)(x y 有极小值,但无极大值B.)(x y 有极大值,但无极小值C.)(x y 即有极大值又有极小值D.无极值4.若)(x f 在区间),[+∞a 上二阶可导,且0)(>=A x f ,,0)('<a f 0)(<''x f )(a x >,则方程0)(=x f 在()+∞,a 内< >A.没有实根B.有两个实根C.有无穷多个实根D.有且仅有一个实根 5.已知)(x f 在0=x 处某邻域内连续,2cos 1)(lim0=-→xx f x ,则在0=x 处)(x f < >.A.不可导B.可导且2)0('=fC.取得极大值D.取得极小值6.设函数)(x f 在区间[)+∞,1内二阶可导,且满足条件0)1()1(='=f f ,1>x 时0)(<''x f ,则xx f x g )()(=在[)+∞,1内< > A .必存在一点ε,使0)(=εfB .必存在一点ε,使0)(='εfC .单调减少 D. 单调增加7.设)(x f 有二阶连续导数,且0)0(='f ,1)(lim 0=''→xx f x ,则< > A .)0(f 是)(x f 的极大值 B.)0(f 是)(x f 的极小值C .())0(,0f 是曲线)(x f y=的拐点 D .)0(f 不是)(x f 的极值,())0(,0f 也不是曲线)(x f y =的拐点8.若)(x f 和)(x g 在0x x =处都取得极小值,则函数)()()(x g x f x F +=在0x x =处< >A .必取得极小值 B.必取得极大值C.不可能取得极值D.是否取得极值不确定9.设)(x y y =由方程03223=+-by y ax x 确定,且1)1(=y ,1=x 是驻点,则< >A.3==b aB.25,23==b aC.21,23==b a D.3,2-=-=b a 10.曲线22)3()1(--=x x y 的拐点的个数为< >A.0B.1C.2D.311.)(),(x g x f 是大于0的可导函数,且0)(')()()('<-x g x f x g x f ,则当b x a <<时有< >A .)()()()(x g b f b g x f > B.)()()()(x g a f a g x f >C.)()()()(b g b f x g x f >D.)()()()(a g a f x g x f >12.曲线()()211arctan 212+-++=x x x x e y x 的渐近线有< > A .1条 B.2条 C.3条 D.4条13.q x x x f ++=2)(3的O 点的个数为< >A .1 B.2 C.3 D.个数与q 有关14.曲线⎪⎪⎩⎪⎪⎨⎧+==111t b t x 则曲线< > A .只有垂直渐近线 B.只有水平渐近线C .无渐近线 D.有一条水平渐近线和一条垂直渐近线15.设)(x f y =为0sin =-'+''x ey y 的解,且0)(0='x f ,则)(x f 有< > A .0x 的某个邻域内单调增加B .0x 的某个邻域内单调减少C .0x 处取得极小值D .0x 处取得极大值16. 罗尔定理中的三个条件;)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =是)(x f 在),(b a 内至少存在一点ξ,使得0)(='ξf 成立的< >.)(A 必要条件 )(B 充分条件 )(C 充要条件 )(D 既非充分也非必要17. 下列函数在],1[e 上满足拉格朗日中值定理条件的是< >.)(A );ln(ln x )(B x ln ; )(C xln 1; )(D )2ln(x -; 18. 若)(x f 在开区间),(b a 内可导,且21,x x 是),(b a 内任意两点,则至少存在一点ξ使得下式成立< >.)(A )()()()(2112ξf x x x f x f '-=-),(b a ∈ξ;19. 设)(x f y =是),(b a 内的可导函数,x x x ∆+,是),(b a 内的任意两点,则< > .)(B 在x x x ∆+,之间恰有一个ξ,使得x f y ∆'=∆)(ξ)(C 在x x x ∆+,之间至少存在一点ξ,使得x f y ∆'=∆)(ξ)(D 对于x 与x x ∆+之间的任一点ξ,均有x f y ∆'=∆)(ξ20.若)(x f 在开区间),(b a 内可导,且对),(b a 内任意两点21,x x 恒有21212)()()(x x x f x f -≤-,则必有< >.)(C x x f =)()(D c x f =)( <常数>21. 已知函数)4)(3)(2)(1()(----=x x x x x f ,则方程)(x f '0=有< >.)(A 分别位于区间)4,3(),3,2(),2,1(内的三个根;)(B 四个根,它们分别为4,3,2,14321====x x x x ;)(C 四个根,分别位于);4,3(),3,2(),2,1(),1,0()(D 分别位于区间)4,1(),3,1(),2,1(内的三个根;22. 若)(x f 为可导函数,ξ为开区间),(b a 内一定点,而且有0)()(,0)(≥'->x f x f ξξ,则在闭区间],[b a 上必总有< >.23. 若032<-b a ,则方程0)(23=+++=c bx ax x x f < >. )(A 无实根 )(B 有唯一实根 )(C 有三个实根 )(D 有重实根24. 若)(x f 在区间],[+∞a 上二次可微,且,0)(,0)(<'>=a f A a f 0)(≤''a f <a x >>,则方程0)(=x f 在],[+∞a 上< >.)(A 没有实根 )(B 有重实根 )(C 有无穷多实根 )(D 有且仅有一个实根25. 设)()(lim 0x g x f x x →为未定型,则)()(lim 0x g x f x x ''→存在是)()(lim 0x g x f x x →也存在的< >. )(A 必要条件 )(B 充分条件 )(C 充要条件 )(D 既非充分也非必要条件26. 指出曲线23x x y -=的渐近线< >. )(A 没有水平渐近线,也没有斜渐近线;)(B 3=x 为垂直渐近线,无水平渐近线;)(C 既有垂直渐近线,又有水平渐近线;)(D 只有水平渐近线.27 曲线)2)(1(1arctan 212+-++=x x x x e y x 的渐近线有< >. )(A 1条 ; )(B 2条 ; )(C 3条 ; )(D 4条 ;28. 函数x x a x f 2cos 21cos )(-=在3π=x 取得极值,则=a 〔 〕. )(A 0 ; )(B 21 ; )(C 1 ; )(D2 . 29. 下列曲线集邮水平渐近线,又有垂直渐近线的是〔 〕.)(A xx x x f +=32sin )( ; )(B 13)(2-+=x x x f ; )(C )3ln()(xe xf -= ; )(D 2)(x xe x f -=. 30. x x x -→111lim =〔 〕.)(A 1 ; )(B 1-e ; )(C e ; )(D ∞ .三、计算题1. 试讨论下列函数在指定区间内是否存在一点ξ使得f ′<ξ>=0:〔1〕f<x>=⎪⎩⎪⎨⎧=≤<0;x 0,,π1x ,0x 1xsin〔2〕f<x>=|x|, —|≤x ≤|.2. 求下列不定式极根: <1>x sin 1e lim x 0-→x ; <2> x cos 2sinx -1lim 6x x →; <3> 1-cosx x -x)1n(1lim 0+→x ; <4> sinx-x x -tgx lim 0→x ; <5> 5sec 6-tgx lim 2+→x x x ; <6> )11x 1(lim 0--→x x e ; <7> sinx 0)tgx (lim +→x ; <8> x -111lim x x →; <9> x 12)1(lim x x ++∞→; <10> x x x ln sin lim 0+→; <11> )sin 1x 1(lim 220xx -→; <12> 210)x tgx (lim x x →.3.求下列不定式极限: <1>2sin 1)1cos(ln lim 1x x x π--→; <2>x 2arctgx)ln (πlim x -+∞→; <3> x x x sin 0lim +→ <4> x tg x x tgx 24)(lim → <5> xx x x x 1)1ln(lim 2)1(0-++→ <6> )1(lim 0xctgx x -→; <7> x e x xx -+→10)1(lim ; <8> x x ln 1)arctgx 2(lim -+∞→π.4. 求下列函数在提定点处带拉格朗日型余项的泰勒公式:<1> f<x>=x 3+4x 2+5,在x=1处; <2> f<x>=,11x+在x=0处; <3> f<x>=cosx 的马克林公式.5. 求下列函数带皮亚诺型余项的马克劳林公式:〔1〕f<x>=arctgx 到含x 5的项;〔2〕f<x>=tgx 到含x 5的项.6.求下列极限: <1>⎥⎦⎤⎢⎣⎡+-+-∞→→)11ln(lim )2(;)1(sin lim 230x x x x x x x e x x x ; <3>ctgx)x1(x 1lim 0x -→. 7. 估计下列近似公式的绝对误差: <1>21||,6sin 3≤-≈x x x x 当; <2>,82112x x x -+≈+当x ∈[0,1]. 8. 计算: <1>数e 准确到10-9;<2>lg11准确到10-5.1. 确定下列函数的单调区间:<1> f<x>=3x-x 3; <2> f<x>=2x 2-lnx; <3> f<x>=22x x -; <4> f<x>=x x 12-. 9. 求下列函数的极值.<1> f<x>=2x 3-x 4; <2> f<x>=212x x +; <3>f<x>=x nx)(|2; <4> f<x>=arctgx-21ln<1+x 2>. 10. 求下列函数在给定区间上的最大值与最小值:<1> y=x 5-5x 4+5x 3+1,[-1,2];<2> y=2tgx-tg 2x, [0,2π]; <3> y=x lnx, <0,+∞>.11. 把长为1的线段截为两段, 问怎样截法能使以这两段线为边所组成的矩形的面积为最大?12. 一个无盖的圆柱形容器, 当给定体积为V 时, 要使容器的表面积为最小, 问底的半径与容器的高的比例应该怎样?13. 设用某仪器进行测量时,读得n 次实验数据为a 1,a 2,…, a n .问以怎样的数值x 表达所要测量的真值,才能使它与这n 个数之差的平方和为最小?14. 求下列函数的极值:<1> f<x>=|x<x 2-1>|; <2> f<x>=1)1(242+-+x x x x ;<3> f<x>=<x-1>2<x+1>3. 15. 设f<x>=alnx+bx 2+x 在x 1=1,x 2=2处都取得极值;试定出a 与b 的值;并问这时f 在x 1与x 2是取得极大值还是极小值?16. 求正数a,使它与其倒数之和为最小.17. 要把货物从运河边上A 城运往与运河相距为BC=a 千米的B 城<见图7-1>.轮船运费的单价是α元/千米.火车运费的单价是β元/千米<β>α>,试求运河边上的一点M,修建铁路MB,使总运费最省.18. 确定下列函数的凸性区间与拐点:<1> y=2x 3-3x 2-36x+25; <2> y=x+x 1; <3> y=x 2+x1; <4> y=ln<x 2+1>; 19. 问a 和b 为何值时,点<1,3>为曲线y=ax 3+bx 3的拐点?四、证明题1. 证明:〔1〕方程x 3—3x+c=0〔这里C 为常数〕在区间[0,1]内不可能有两个不同的实根;〔2〕方程x n +px+q=0<n 为自然数,p,q 为实数>当n 为偶数时至多有两个实根;当n 为奇数时至多有三个实根.2. 证明:〔1〕若函数f 在[a,b]上可导,且f '<x>≥m,则f<b>≥f<a>+m<b-a>;<2>若函数f 在[a,b]上可导,且|f '<x>|≤M,则|f<b>-f<a>|≤M<b-a>;〔3〕对任意实数x 1,x 2,都有|sinx 1-sinx 2|≤|x 1-x 2|.3. 应用拉格朗日中值定理证明下列不等式:〔1〕aa b a b n b a b -<<-1,其中0<a<b; 〔2〕21h h +<arctgh<h,其中h>0. 4. 设函数f 在[a,b]上可导.证明:存在ξ∈〔a,b 〕,使得2ξ[f<b>-f<a>]=<b 2-a 2>f '<ξ>.5. 设函数在点a 具有连续的二阶导数.证明:)('')(2)()(20lim a f ha f h a f h a f h --++→. 6. 试讨论函数f<x>=x 2,g<x>=x 3在闭区间[-1,1]上能否应用柯西中值定理得到相应的结论,为什么?7. 设0<α<β<2π,试证明存在θ∈<a,b>,使得 ctg aa =--cos cos sin sin ββθ. 8. 设h>0,函数f 在[a-h,a+h]上可导.证明:〔1〕)(f')(f'hh)f(a h)f(a h a h a θθ--+=--+,θ∈〔0,1〕; 〔2〕)('f )('f h h)f(a f(a)h)f(a h a h a θθ--+=-+-+,θ∈〔0,1〕. 9. 以S<x>记由〔a,f<a>〕,<b,f<b>>,<x,f<x>>三点组成的三角形面积,试对S<x>应用罗尔中值定理证明拉格朗日中值定理.10. 若函数f, g 和h 在[a,b]上连续,在〔a,b 〕内可导,证明存在实数ξ∈<a,b>,使得)(h' )(g' )(f'h(b) g(b) f(b)h(a)g(a) f(a)ξξ ξ=0.再从这个结果导出拉格朗日中值定理和柯西中值定理.11. 设f 为[a,b]上二阶可导函数,且f<a>=f<b>=0,并存在一点c ∈〔a,b 〕使得f<c>>0.证明至少存在一点ξ∈<a,b>,使得f ''<ξ><0.12. 证明达布定理:若f 在[a,b]上可导,且f '<a>≠f '<b>,k 为介于f '<a>与f '<b>之间的任一实数,则至少存在一点ξ∈<a,b>,使得f '<ξ>=k.13. 设函数f 在〔a,b 〕内可导,且f '单调.证明f '在〔a,b 〕内连续.14. 证明:设f 为n 阶可导函数,若方程f 〔x 〕=0有n+1个相异实根,则方程f <n><x>=0至少有一个实根.15. 设p<x>为多项式,α为p<x>=0的r 重实根.证明:α必定是p '<x>=0的r-1重实根.16. 证明:〔1〕设f 在〔a,+∞〕上可导,若f(x)lim +∞→x 和(x)f'lim +∞→x 都存在,则(x)f'lim +∞→x =0;<2>设f 在<a,+∞>上n 阶可导.若f(x)lim +∞→x 和(x)f lim k+∞→x 都存在,则 (x)f lim k +∞→x =0,<k=1,2,…,n>.17. 设函数f 在点a 的某个邻域内具有连续的二阶导数,试应用罗比塔法则证明:18. 对函数f 在区间[0,x]上应用拉格朗日中值定理有f<x>-f<0>=f '<θx>x,θ∈<0,1>. 试证对下列函数都有21lim 0=→θx ; <1> f<x>=ln<1+x>; <2> f<x>=e x .19. 设f<0>=0,f '在原点的某邻域内连续,且f '<0>=0.证明:1lim f(x)0=+→x x .20. 证明定理6.5中0g(x)lim 0,f(x)lim x x ==+∞→+∞→情形时的罗比塔法则:若<i> 0)(lim ,0fx lim ==+∞→+∞→x x x <ii> 存在M 0>0,使得f 与g 在<M0,+∞>内可导,且g '<x>≠0; <iii> A (x )g'(x )f'lim (x )g'(x )f'lim x x ==+∞→+∞→<A 为实数,也可为±∞或∞>,则 21. 证明:2x 3e x f(x)-=为有界函数.22. 应用函数的单调性证明下列不等式. <1> tgx>x-)3π(0,x ,3x 3∈; <2> )2π(0,x x,sinx π2x ∈<<; <3> 0x ,x )2(1x x x )n(1|2πx 22>+-<+<- 23. 设⎪⎩⎪⎨⎧=≠=0x 0,0, x ,x 1sin x f(x )24. <1> 证明:x=0是函数f 的极小值点;<2>说明在f 的极小值点x=0处是否满足极值的第一充分条件或第二充分条件.24. 证明:设f<x>在<a,b>内可导,f<x>在x=b 连续,则当f '<x>≥0<a<x<b>时,对一切x ∈<a,b>有f<x>≤f<b>,当f '<x>≤0<a<x<b>时,对一切x ∈<a,b>有f<x>≥f<b>.25. 证明:若函数f 在点x 0处有f '+<x 0><0<>0>,f '_<x 0>>0<<0>,则x 0为f 的极大<小>值点.26. 证明:若函数f,g 在区间[a,b]上可导,且f '<x>>g '<x>, f<a>=g<a>,则在(]b a ,内有f<x>>g<x>.27. 证明:,sinx x x tgx >⎪⎭⎫ ⎝⎛∈2π0,x . 28. 证明:<1> 若f 为凸函数,λ为非负实数,则λf 为凸函数;<2> 若f 、g 均为凸函数,则f+g 为凸函数;<3>若f 为区间I 上凸函数,g 为J ⊃f<I>上凸的递增函数,则gof 为I 上凸函数.29. 设f 为区间I 上严格凸函数.证明:若X 0∈I 为f 的极小值点,同x 0为f 在I 上唯一的极小值点.30. 应用凸函数概念证明如下不等式:<1>对任意实数a,b,有)e (e 21e b a 2ba +≤+; <2>对任何非负实数a,b, 有 2arctg ⎪⎭⎫ ⎝⎛+2b a ≥arctga+arctgb. 31. 证明:若f.g 均为区间I 上凸函数,则F<x>=max{f<x>,g<x>}也是I 上凸函数.32. 证明:<1>f 为区间I 上凸函数的充要条件是对I 上任意三点x 1<x 2<x 3,恒有)f(xx 1)f(xx 1)f(xx 1Δ332211=≥0. <2>f 为严格凸函数的充要条件是对任意x 1<x 2<x 3,△>0.33. 应用詹禁不等式证明:<1> 设a i >0<i=1,2,…n>,有n a a a a a a a 1a 1a 1nn 21n n 21n21+++≤≤+++ . <2>设a i ,b i >0<I=1,2,…,n>,有81)b (p 1)a (b a m 1i q i n1i p n 1i i i ∑∑∑===≤, 其中P>0,q>0,q1p 1+=1. 五、考研复习题1. 证明:若f<x>在有限开区间<a,b>内可导,且f(x)lim a x +→f(x)lim b x -→=,则至少存在一点ξ∈a,b>,使f '<ξ>=0.2. 证明:若x>0,则<1>)(211x x x x θ+=-+,其中21)(41≤≤x θ; <2>21)(lim ,41)(lim 0==+∞→→x x x x θθ. 3. 设函数f 在[a,b]上连续,在<a,b>内可导,且ab>0.证明存在ξ∈<a,b>,使得)(f )(f f(b)f(a)b a b a 1ξξξ'-=-. 4. 设f 在[a,b]上三阶可导,证明存在ξ∈<a,b>,使得)(f a)(b 121(b)]f (a)f a)[(b 21f(a)f(b)3ξ'''--'+'-+=. 5. 对f<x>=ln<1+x>应用拉格朗日中值定理,证明:对x>0有11)1ln(10<-+<xx . 6. 证明:若函数f 在区间[a,b]上恒有f ''<x>>0,则对<a,b>内任意两点x 1,x 2,都有⎪⎭⎫ ⎝⎛+≥+2x x f 2)f(x )f(x 2121, 其中等号仅在x 1=x 2时才成立.7. 证明:第6题中对<a,b>内任意n 个点x 1,x 2…,x n 也成立⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡≥∑∑--n x f )f(x n 1n 1k k n1k k , 其中等号也仅在x 1=x 2=…=x n 时才成立.8. 应用第7题的结果证明:对任意n 个正数x 1,x 2,…,x n 恒成立n n 21x x x nxn x2x1⋯≥+⋯++, 即算术平均值不小于几何平均值.9. 设a 1,a 2,…,a n 为n 个正实数,且证明:〔i 〕n n 21x a a a (x)limf =∞→〔ii 〕{}x n 21x a a ,a max f(x)lim =∞→ 10. 求下列极限:〔1〕x)ln(1121x )x (1lim -→--;〔2〕2x 0x x x )ln(1x e lim +-→;〔3〕sinx 1sinx lim 20x x →.11. 证明:若函数f 在点a 二阶可导,且f ''<a>≠0,则对拉格朗日公式f<a+h>-f<a>=f '<a+θh>h,0<θ<1 中的θ有21θlim 0h =→ 12. 设h>0,函数f 在U<a,h>内具有n+2阶连续导数,且f <n+2><a>≠0,f 在U<a,h>内的泰勒公式为f<a+h>=f<a>+f '<a>h+…++n (n)h n!(a)f 1)1()!1()(++++n n h n h a f θ,0<θ<1. 证明:2n 1θlim 0h +=→. 13. 设函数f 在[a,b]上二阶可导,0(b)f (a)f ='='.证明存在一点ξ∈<a,b>,使得14. 设a,b>0,证明方程x 3+ax+b=0不存在正根.15.设k>0,试问k 为何值时,方程arctgx-kx=0存在正根.16. 证明:对任一多项式p<x>来说,一定存在点x 1与x 2,使p<x>在<x 1,+∞>与<-∞,x 2>上分别为严格单调.17. 证明:当x ∈[0,1]时有不等式121-p ≤X p +<1+x>p ≤1<其中实数p>1>.18. 讨论函数 f<x>=⎪⎩⎪⎨⎧=≠+0,x 0,0,x ,x 1sin x 2x 2 <1>在x=0点是否可导?<2>在x=0的任何邻域内函数是否单调?19. 设函数f 在[0,a]上具有二阶导数,且|f ''<x>|≤M,f 在<0,a>内取得最大值.证明:|f '<0>|+|f '<a>|≤Ma.20. 设f 在[)+∞,0上可微,且0≤f '<x>≤f<x>,f<0>=0.证明:在[)+∞,0上f<x>≡0.21. 设f<x>满足f ''<x>+f '<x>g<x>-f<x>=0,其中g<x>为任一函数.证明:若f<x 0>=f<x 1>=0<x 0<x 1>,则f 在[x 0,x 1]上恒等于0.22. 证明:f 为I 上凸函数的充要条件是对任何x 1,x 2∈I,函数ϕ<λ>=f<λx 1+<1-λ>x 2>为[0,1]上的凸函数.。

数学分析简明教程答案(尹小玲 邓东皋)

数学分析简明教程答案(尹小玲 邓东皋)
n n n

un vn un vn .
n 1 n 1 n 1



D
4.设级数 un 各项是正的, 把级数的项经过组合而得到的新级数 U n ,即
n 1 n 1


U n 1 ukn 1 ukn 2 ukn1 , n 0,1, 2, , 其中k0 0, k0 k1 k2 kn kn 1 . 若级数 U n收敛,证明原来的级数也收敛。
(2)
n 1

1 4n 2 1

1 1 1 2 n 1 2n 1 2n 1

1 1 1 1 1 1 1 1 lim 1 2 n 3 3 5 5 7 2n 1 2n 1 1 1 1 lim 1 . 2 n 2n 1 2
n
于是可得 Sn 由于 r 1,因此有
r
n 1

n
r cos x r 2 . 1 r 2 2r cos x
2.讨论下列级数的敛散性: (1) n ; n 1 2n 1

lim
n 1 0, 故原级数发散。 n 2n 1 2 由于级数 lim cos
第十章 数项级数
§1 级数问题的提出
1.证明:若微分方程xy '' y ' xy 0有多项式解 y a0 a1 x a2 x 2 an x n ; 则必有ai 0, i 1, 2, , n. 证明:若y a0 a1 x a2 x 2 an x n 微分方程的一个解, 那么 y ' a1 2a2 x 3a3 x 2 nan x n 1 y '' 2a2 6a3 x n(n 1)an x n 2 ; 于是可得 xy '' 2a2 x 6a3 x 2 n(n 1)an x n 1 xy a0 x a1 x 2 a2 x 3 an x n 1. 因此可知 xy '' y ' xy a1 (4a2 a0 ) x (9a3 a1 ) x 2 (n 2 an an 2 ) x n 1 an x n 0 那么由多项式相等可知有 a1 0 2 n an an 2 0 a 0 n 递推可知有ai 0, i 1, 2, , n成立。 n 2.

数学分析简明教程答案13

数学分析简明教程答案13

第十三章 幂级数§13.1 幂级数的收敛半径与收敛域1.求下列各幂级数的收敛域:(1)∑∞=1!)2(n nn x ;(2)∑∞=+++111)1ln(n n x n n ; (3)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+11n nn x n n ;(4)∑∞=122n n nx ;(5)∑∞=-+1))1(3(n nn n x n ; (6)()()∑∞=+-+1123n n nn x n ; (7)()()n n x n n ∑∞=+1!!12!!2;(8)∑∞=-⎪⎭⎫ ⎝⎛+1211n n n x n ;(9)()n n nn x nn∑∞=-11;(10)∑∞=+175n nn nx ; (11)()()nn x n n ∑∞=12!2!;(12)n n x n ∑∞=⎪⎭⎫ ⎝⎛+++11211 ; (13)∑∞nnx;(14)()()∑∞=---112!122n n n x ; (15)()10,12<<∑∞=a x a n n n ;(16)∑∞=1n p nnx .解(1)由012lim !2)1(2lim 1=+=⎪⎪⎭⎫⎝⎛+∞→+∞→n n n n n n n ,故收敛半径+∞=R ,收敛域为)(∞+∞-,.(2)由 121)2ln()2ln(lim 1)1ln(2)2ln(lim =++⋅++=⎪⎭⎫⎝⎛++++∞→∞→n n n n n n n n n n ,故收敛半径1R =. 在1=x ,级数为∑∞=++11)1ln(n n n ,发散;在1-=x ,级数为∑∞=+++-111)1ln()1(n n n n ,由交错级数的Leibniz 判别法,知其收敛,因而收敛域为)[1,1-.(3)e n n n nn n nn n =⎪⎭⎫ ⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+∞→∞→11lim 1lim ,所以收敛半径e R 1=.由于()∞→≠→⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛±⎪⎭⎫ ⎝⎛+n e e n nn 01111, 故在e x 1±=级数发散,因此收敛域为)1,1(ee -.(4)由121lim 21limlim 2===∞→∞→∞→n n n n n n n n a ,知收敛半径1=R . 在1=x ,级数为∑∞=±12)1(2n nn绝对收敛,故收敛域为]1,1[-. (5)由()413limlim =-+=∞→∞→nnn n n n na ,故收敛半径41=R . 在41=x ,级数()[]∑∞=-+1413n n nn n ,将其奇偶项分开,拆成两个部分,分别为∑∞=121k k 和()∑∞=--1122121k k k ,前一项级数发散,后一项级数收敛,因此级数()[]∑∞=-+1413n n nn n 发散;同样,41-=x 时,级数为()[]()∑∞=--+11413n nn nn n ,也可拆成两部分,前一部分为∑∞=121k k ,另一部分()()∑∞=-----112122121k k k k ,前者发散,后者绝对收敛,因此级数()[]()∑∞=--+11413n nn nn n 发散,所以收敛区域是)41,41(-. (6)()()()332132231lim 23123lim 11=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--++=⎪⎪⎭⎫⎝⎛-++-+∞→++∞→n nn n nn n n n n n n ,所以级数的收敛半径是31=R . 当311=+x 时,级数为()∑∑∞=∞=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+=-+1132113123n n n n n n n n n 发散;当311-=+x 时,级数为()()∑∑∞=∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛--+1132113123n n n n n n n n n n 收敛. 因此,收敛域为31131≤+≤-x 即⎥⎦⎤⎢⎣⎡--32,43. (7) ()()()()()13212lim !!12!!2!!32!!12lim =++=⎭⎬⎫⎩⎨⎧+++∞→∞→n n n n n n n n ,所以收敛半径1=R .当1=x 时,级数为()()∑∞=+1!!12!!2n n n ,由于12132lim 12232lim <=+=⎪⎭⎫ ⎝⎛-++∞→∞→n n n n n n n ,故由Raabe 判别法,知级数发散;当1-=x 时,级数为()()()n n n n 1!!12!!21-+∑∞=(实际上,由其绝对收敛立知其收敛),这是交错级数,由于()()()()()()!!12!!2!!12!!23222!!32!!22+<+++=++n n n n n n n n ,故()()⎭⎬⎫⎩⎨⎧+!!12!!2n n 单调下降,且由n n n 2112254320<+< (用数学归纳法证之)及夹迫性知()()0!!12!!2lim =+∞→n n n ,由Leibniz 判别法,知()()()n n n n 1!!12!!21-+∑∞=收敛,所以收敛域为)1,1[-. (8)111lim 11lim 2--∞→-∞→=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+e n n nn n n n ,所以收敛半径e R =.由于()()∞→≠→±⎪⎭⎫ ⎝⎛+-n e e n n n 0112,故级数在e x ±=发散,因而收敛域为),(e e -.(9)()()11111lim11=-++-++∞→nnn n n nn n n ,所以1=R .在1=x ,级数为()∑∞=-11n nn nn,由Leibniz 判别法,知其收敛;在1-=x ,级数为∑∞=11n nnn发散,故收敛域]1,1(-.(10)71751751lim 11=⎪⎭⎫⎝⎛++++∞→n n n n n ,所以7=R .在71±=x ,由于()()∞→→+±n n n n1757,即级数()∑∞=+±1757n nn n一般项()n n n757+±当n ∞→时不趋于0,因此级数发散,故收敛域()7,7-.(11)()[]()[]()()()()()4112121lim !2!!12!1lim 222=+++=⎥⎦⎤⎢⎣⎡++∞→∞→n n n n n n n n n ,因此4=R . 在4±=x ,级数为21(!)(4)(2)!n n n n ∞=±∑,因为级数一般项的绝对值为 1!)!12(!)!2()4()!2()!(2>-=±n n n n n 对一切n 成立,所以0)4()!2()!(lim2≠±∞→nn n n ,即级数21(!)(4)(2)!n n n n ∞=±∑发散,因此收敛域为)4,4(-.(12) 因为1)1211()11211(lim =⎪⎭⎫ ⎝⎛++++++∞→n n n ,所以1=R .而在1±=x ,由于()011211lim ≠∞=±⎪⎭⎫ ⎝⎛+++∞→nn n ,故级数在1±=x 均发散,因而收敛区间为)1,1(-.(13)因为11lim=+∞→nn n ,所以1=R .又在1±=x ,显然级数()∑∞=±11n nn 均发散,故收敛域为)1,1(-.(14)由于()()()()()()101222lim !122!122lim 21212<=+-=⎥⎦⎤⎢⎣⎡--+-∞→--∞→n n x n x n x n n n n ,故()∞∞-∈∀,x ,()()∑∞=---112!122n n n x 均绝对收敛,因而收敛半径+∞=R ,收敛域()∞∞-,.(15)因为0lim lim 2==∞→∞→n n n n n a a (10<<a ),所以+∞=R ,收敛域为()+∞∞-,.(16)()1111lim 111lim =⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+∞→∞→p n ppn n n n ,所以1=R . 在1±=x ,级数变为()∑∞=±11n pn n ,故当1>p 时都收敛;10≤<p 时,()∑∞=-11n pn n 收敛,而∑∞=11n p n 发散,0≤p 时一般项不趋于0,均发散.因此,当1>p 时,收敛域]1,1[-; 10≤<p 时,收敛域为)1,1[-;而当0≤p 时, 收敛域为)1,1(-.2.设幂级数nn nx a∑∞=1的收敛半径为R , n n n x b ∑∞=1的收敛半径为Q ,讨论下列级数的收敛半径:(1)∑∞=12n n nx a;(2)()∑∞=+1n n n nx b a;(3)()∑∞=1n nnn xb a .解(1)由题设R a a nn n 1lim 1=+∞→,所以()221211lim x R x a x a n n n n n =++∞→,故当112<x R ,即R x <时,级数nn n x a 21∑∞=绝对收敛,而当112>x R ,即R x >时,级数nn n x a 21∑∞=发散,因此级数nn n x a 21∑∞=的收敛半径为R . (2)收敛半径必{}Q R ,m in ≥,而不定,需给出n a ,n b 的具体表达式才可确定,可以举出例子.(3)RQ b a b a nn n n n 1lim11=++∞→,所以收敛半径为RQ ,只有当Q R ,中一个为0,另一个为∞+时,不能确定,需看具体n a ,n b 来确定,可以是[)+∞,0中任一数.3.设()0,,2,1101>=≤∑∞=x n M x ak kk ,求证:当10x x <<时,有(1)n n nx a∑∞=0收敛;(2)M x an n n≤∑∞=0.证明(1)nn n x a ∑∞=0=n n n n x x x a ⎪⎪⎭⎫ ⎝⎛∑∞=111,而由于10x x <<,故数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛nx x 1单调递减趋于0,级数n n n x a11∑∞=的部分和数列M x a n nn ≤∑∞=0有界,由Dirichlet 判别法,级数nn n x a ∑∞=0收敛.(2) 设n n nx a∑∞=0的部分和为)(x s n ,则由Abel 变换,有 knk k k nk k k n x x x a x a x s ⎪⎪⎭⎫ ⎝⎛==∑∑==1111)(∑∑∑=-==+⎪⎪⎭⎫ ⎝⎛+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=n k kk nn k k i i i k k x a x x x a x x x x 1111111111M x x M x x x x x x M nn k k k <=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛≤∑-=+1111111, 所以,M x s x s x an n n n n n n≤=∞→∞→∞=∑)(lim )(lim 0.§13.2 幂级数的性质1.设nn n x a x f ∑∞==)(当r x <时收敛,那么当101+∞=∑+n n n r n a 收敛时有11)(+∞=∑⎰+=n n n rr n a dx x f , 不论nn n xa ∑∞=0当r x =时是否收敛.证明 由于幂级数11+∞=∑+n n n r n a 的收敛半径至少不小于r ,且该幂级数在r x =收敛,因而该幂级数在[]r ,0一致收敛(Abel 第二定理),因此该幂级数的和函数)(x s 在r x =连续,即()101lim +∞=→∑+=-n n n rx r n a x s .又r x <<∀0,由于n n n x a ∑∞=0当r x <时收敛,故可逐项积分,即)(1100x s r n a dx x a dx x a n n n n xnn x n nn =+==+∞=∞=∞=∑∑⎰⎰∑,即)(lim )(0x s dt t f rx x -→=⎰,令-→r x 取极限即有1001)(lim )(+∞=→∑⎰+==-n n n rx r r n a x s dx x f .2.利用上题证明()∑⎰∞=-=-121011ln n ndx x x . 证明 ()()1,11)1ln(111<-=--=-∑∑∞=∞=-x x nx nx n nn n n ,故()∑∞=--=-1111ln n n x n x x ,1<x ,而级数∑∑∞=∞=-=+-⋅-12111)1(11n n n n n 是收敛的,利用上题结论,就有()∑⎰∞=-=-121011ln n n dx xx .3. 用逐项微分或逐项积分求下列级数的和:(1)∑∞=1n nnx ;(2)∑∞=1n nnx;(3)()∑∞=+11n nxn n ;(4)()()∑∞=---121121n n n x n n ; (5)∑∞=+122!1n nnx n n ; (6)()()nn n x n n ∑∞=+-13!11;(7)∑∞=-+11414n n n x ;(8)()∑∞=+-0112n n n x ;(9)∑∞=-112n n x n;(10)()∑∞=++1122!12n n x n n .解(1)因为1,1111<=-∑∞=-x x x n n ,所以当1<x 时,⎰∑⎰-=∞=-x n x n dt t dt t 000111,即()x n x n n --=∑∞=1ln 1,且当1-=x 时,级数()∑∞=-11n nn 收敛,由Abel 第二定理,有()11,1ln 1<≤---=∑∞=x x n x n n. (2)设∑∞==1)(n nnx x s ,则1,)(11<=∑∞=-x nx x x s n n ,逐项积分,有1,1)(1101<-===∑∑⎰⎰∞=∞=-x x x x dt t n dt t t s n n n x n x,所以,()2111)(x x x x x s -='⎪⎭⎫ ⎝⎛-=,即()1,1)(2<-=x x x x s . (3)设()∑∞=+=11)(n nx n n x s ,1<x ,则有 ()()1,11)(221111<-===+=∑∑∑⎰⎰∞=∞=+∞=x x x nx x nxdt t n n dt t s n nn n n xnx,所以,322)1(2)1()(x x x x x s -='⎪⎪⎭⎫⎝⎛-=,1<x . (4)设()()∑∞=--=12121)(n n nx n n x s ,1≤x ,则 ()()∑∞=----='11211221)(n n n x n x s ,11≤<-x , ()()()211212211212121)(xx x x s n n n n n +=-=-=''∑∑∞=-∞=--,1<x , 所以,()x dt tx s xarctan 21121)(02=+='⎰,11≤<-x , )1ln(41arctan 21arctan 21)(20x x x tdt x s x+-==⎰,1≤x . (5) 设 1)(2!12!2!1)(211212-+=+=+=∑∑∑∞=∞=∞=xnn n n n n n n ne x x n x n n x n n x s σ,+∞<x . 由于()211101222!1122!)(2!)(xn n n n n x n n n e xx n x x n n dt t t x n n x =⎪⎭⎫⎝⎛-==⇒=∑∑⎰∑∞=-∞=∞=σσ,所以, 222412)(x x e x e x x +=σ,故 112141)(22-⎪⎭⎫⎝⎛++=xe x x x s .(6)设()()∑∞=+-=13!11)(n n n x n n x s ,+∞<x ,则[]()∑∞=-='13!)(n nx n n x xs ,所以,[]()()[]()13)(!)(12220+--='⇒-=-='--∞∑⎰x x xe x xs e x x x n n dx t ts t x x n x,()11)(3-++=-x e x x x xs ,则()xe ex x s x x11)(2-++=--(在0=x 理解为极限值).(7)令∑∞=-+=11414)(n n n x x s , 则1,14)(1142<+=∑∞=+x n x x s x n n ,所以, []()44141421)(xx xxx s x n nn n-==='∑∑∞=∞=, 故x x x x x s x -+-+=arctan 2111ln 41)(2,因此2222arctan 11ln 41)(xxx x x x x s -+-+=(在0=x 理解为极限值).(8)22122lim 12lim1=-=-∞→+∞→n n n nn n ,收敛半径21=R ,在21±=x ,有 ()()⎪⎭⎫ ⎝⎛-±=⎪⎭⎫ ⎝⎛±-∑∑∞=∞=+nn n n nn 2121211201, 由于()02121lim ≠⎪⎭⎫⎝⎛-±∞→nnn ,故级数发散.可得 ()()∑∑∑∞=∞=∞=+-=-=012212)(n n n nn nn x x x x s()()x x x x 2111112112--=---=,21<x . (9)设1,)(112<=∑∞=-x x nx s n n ,则有x x x dx dt t s u nx dt t s n n xu n nx-==⎪⎭⎫⎝⎛⇒=∑⎰⎰∑⎰∞=∞=1)(1)(10010,所以,20)1(11)(1x x x dt t s x x -='⎪⎭⎫⎝⎛-=⎰, 即20)1()(x x dt t s x-=⎰,所以32)1(1)1()(x xx x x s -+='⎪⎪⎭⎫ ⎝⎛-=,1<x . (10)设()+∞<+=∑∞+x x n n x s n ,!12)(122,则有(逐项积分),()1!1)(1!12)(2121001120-==⎪⎭⎫ ⎝⎛⇒+=+∞=∞=+∑⎰⎰∑⎰x n n x t n n xe x x n dt du u u s t x n n dt t t s所以,()()x e x x du uu s e x du u u s x x x x x -+=-+=⎰⎰2230202)(,112)(1, ()11624)(224-+++=x e x x x xx s , 则()x e x x x x x s x -+++=2235624)(.4.求下列级数的和: (1)∑∞=-1212n nn ; (2)()∑∞=+1121n n n . 解 (1)考虑级数())(1212x s xn n n=-∑∞=,1<x .由于()∑∞=--=122212)(n n x n x x s ,逐项积分,()2112112021)(xxx x x dt t t s n n n n x-===∑∑⎰∞==∞=-,所以, ()()()2222222211)(11)(xx x x s x x x x s -+=⇒-+=,1<x . 故有()3222112212121=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=-∑∑∞=∞=s n n n nn n . (2)设()∑∞=++=112121)(n n x nn x s ,则级数在1≤x 绝对收敛,所以, ∑∞=='121)(n n x n x s ,2112122)(x xx x s n n -==''∑∞=-,1<x . 因此,)1ln(12)(202x dt t t x s x--=-='⎰,xxx x x dx x x s x +-++--=--=⎰11ln 2)1ln()1ln()(202,1≤x .())(lim )1(12111x s s nn x n -→∞===+∑[]2ln 22)1ln()1(2)1ln()1(lim 1-=++-+--=-→x x x x x x .5.证明:(1) ∑∞=04)!4(n n n x 满足方程y y =)4(;(2) ∑∞=02)!(n nn x 满足方程0=-'+''y y y x . 解(1)对级数∑∞=04)!4(n n n x ,由0)!4(1)]!1(4[1lim =⎪⎪⎭⎫⎝⎛+∞→n n n ,故收敛半径+∞=R ,收敛域为()+∞∞-,,而采取用逐项求导得,∑∑∑∞=∞=-∞==-=⎪⎪⎭⎫⎝⎛041)1(4)4(04)!4()]!1(4[)!4(n nn n n n n x n x n x ,即∑∞=04)!4(n n n x 满足方程y y =)4(. (2)级数∑∞=02)!(n n n x 收敛域为()+∞∞-,,设∑∞==02)!(n nn x y ,通过逐项求导得, ()()∑∑∞=-∞=='⎥⎦⎤⎢⎣⎡='12102!!n n n n n nxn x y , ()()()∑∑∞=-∞=-="⎪⎪⎭⎫ ⎝⎛=''22202!1!n n n n n x n n n x y , 所以,()()()∑∑∑∞=∞=-∞=--+-=-'+''02121222!!!)1(n nn n n n n x n nx n x n n x y y y x()()[]()()[]()0!!11!11020212=-+++++=∑∑∑∞=∞=∞=n nn n n nn x n x n n x n n ,即∑∞=02)!(n nn x 满足方程0=-'+''y y y x . 6.设)(x f 是幂级数∑∞=0n n nx a在()R R ,-上的和函数,若)(x f 为奇函数,则级数中仅出现奇次幂的项;若)(x f 为偶函数,则级数中仅出现偶次幂的项.证明 由于∑∞==)(n n nx ax f ,()R R x ,-∈.()R R x ,-∈∀,由)(x f 是奇函数,即)()(x f x f -=-,得0]1)1[()(0=+-⇒-=-∑∑∑∞=∞=∞=n n n nn nn n nnx a x a x a,故{}N n ⋃∈∀0,有0]1)1[(=+-n na ,故当n 为偶数时002=⇒=n n a a ,即级数中偶次幂系数均为0,因此级数中仅出现奇次幂的项.同样,若)(x f 为偶函数,即)()(x f x f =-,得0]1)1[(0=--∑∞=n n n nx a ,故n ∀,有0]1)1[(=--n n a ,当n 为奇数时,有002=⇒=-n n a a ,即级数中奇次幂的系数均为0,因此级数中仅出现偶次幂的项.7.设∑∞=+=12)1ln()(n nn n x x f .求证:(1))(x f 在]1,1[-连续,)(x f '在)1,1(-内连续; (2))(x f 在点1-=x 可导; (3)+∞='-→)(lim 1x f x ;(4))(x f 在点1=x 不可导;证明(1)由于1,)1ln(1)1ln(22≤+≤+x n n n n x n ,而级数∑∞=+12)1ln(1n n n 收敛,由M判别法,知级数∑∞=+12)1ln(n nn n x 在]1,1[-一致收敛,而级数的每一项为幂函数在]1,1[-连续,故和函数∑∞=+=12)1ln()(n nn n x x f 在]1,1[-连续.又级数∑∑∞=-∞=+='⎥⎦⎤⎢⎣⎡+1112)1ln()1ln(n n n n n n x n n x 的收敛半径为1=R ,因此在)1,1(-内,其和函数)(x f '连续.(2)幂级数∑∞=-+11)1ln(n n n n x 在1-=x 成为∑∞=-+-11)1ln()1(n n n n ,由Leibniz 判别法,知级数收敛,由Abel 第二定理,幂级数在]0,1[-一致收敛,因而其和函数)(x f '在1-=x 右连续,因此)(lim 1x f x '+-→存在,且)(lim )1(1x f f x '=-'+-→.(3)+∞=+='∑∞=→-11)1ln(1)(lim n x n n x f . (4)因为∑∞=→→+--=----1211)1ln()1()1(lim 1)1()(lim n n x x n n x x x f x f ()+∞=+=++++=∑∑∞=∞=--→-1122111ln 1)1ln(1lim n n n n x n n n n x x , 故)(x f 在点1=x 不可导.§13.3函数的幂级数展式1.利用基本初等函数的展式,将下列函数展开为Maclaurin 级数,并说明收敛区间. (1)0,1≠-a xa ; (2)()211x +;(3)()311x +;(4)x 2cos ; (5)x 3sin ; (6)xx 31-;(7)()xex -+1;(8)()21ln x x ++;(9)22311x x +-; (10)x arcsin ;(11)()21ln xx ++;(12)21ln arctan x x x +-;(13)⎰xdt tt0sin ; (14)dt t x⎰2cos .解(1)nn a x a ax ax a ∑∞=⎪⎭⎫⎝⎛=-=-111111 (1<a x ) ∑∞=+=11n n n x a(a x <).(2)()()22111-+=+x x()()()()()∑∑∞=∞=+-=+----+=0111!12321n n nn nx n x n n ,1<x .(3)()()()()()∑∞=-+----+=+=+133!13431111n n x n n x x()()()∑∞=++-=22121n n x n n ,1<x .(4)∑∞=-+=+=022)2()!2()1(212122cos 1cos n n n x n x x ∑∞=--+=1212)!2(2)1(1n nn n x n ,+∞<x . (5)()()()()()!123141!1214343sin sin 3sin 1201203+--+-=-=+∞=+∞=∑∑k x k x x x x k kk k kk ()()()∑∞=++--=0122!1231143k k kk k x ,+∞<x .(6)()213131--=-x x xx()⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+=∑∞=13!12123211n n x n n x (13<x )()⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=∑∞=123!!!121n n n x n n x ,31<x . (7)()()()∑∞=--+=+0!111n n xx n x ex (+∞<-x ) ()()∑∞=-+=0!11n n n x n x (+∞<x )()()∑∑∞=+∞=-+-=10!1!1n n nn nnx n x n (+∞<x )()()∑∞=--⎥⎦⎤⎢⎣⎡--+=111!1!111n nn x n n ,+∞<x . (8)()()()212211ln -+='++x xx()∑∞=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+=12!21223211n n x n n (12<x )()()∑∞=--+=12!2!!1211n n n n x n n ,1<x ,所以,()()()()()∑⎰∞=++--+='++1120212!2!!1211ln n n nn xx n n n x dx xx ,1≤x , 即()()()()∑∞=++--+=++112212!2!!1211ln n n nn x n n n x xx . (9)xx x x x x ---=--=+-11212)21)(1(123112∑∑∞=∞=-=0)2(2n nn nxx (12<x 且1<x )()∑∞=+-=112n n n x ,21<x . (10)()()∑∞=-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+=+='122!2122321111arcsin n nx n n x x (12<-x )()∑∞=-+=12!2!!121n n nx n n ,1<x ,所以,()()∑∞=++-+=11212!2!!12arcsin n n nx n n n x x ,1<x . 在1±=x ,由于()()()()()123132!12!!1212!2!!12lim 1>=⎪⎪⎭⎫ ⎝⎛-++++-+∞→n n n n n n n n n n , 用Raabe 判别法知右端级数收敛,因而收敛区间为]1,1[-.(11)()()()x x xx xx ---=--=++1ln 1ln 11ln 1ln 332()()()()x nnx n n n nn -----=∑∑∞=-∞=-1113111∑∑∞=∞=-=13111n nn n x nx n ,11<≤-x . (12)dx x xdx x dxxx x x x x ⎰⎰+-+=+-02022111ln arctan ()()⎰∑⎰∑∞=∞=---=xn nx n x x dx x x 0202()()220120121121+∞=+∞=∑∑+--+-=n n n n n n x n x n x()()()()∑∞=+++-=01211221n n n x n n ,1≤x .(13)()()()()⎰∑⎰∑⎰∞=∞=++-=--=x k k kx k k kxdt t k dt t k t dt t t 02000120!121!1211sin ()()()∑∞=+++-=012!12121k k kx k k ,+∞<x .(14)()()()()()⎰∑⎰∑⎰∞=∞=-=-=x k k kx k kk xdt t k dt t k dt t004002202!21!21cos()()()∑∞=++-=01414!21k k kx k k ,+∞<x .2.利用幂级数相乘求下列函数的Maclaurin 展开式: (1)()xx ++11ln ; (2)()2arctan x ; (3)()x -1ln 2.解(1)()()()()∑∑∞=∞=---=++=++011111ln 11ln n nn nn x xnn x x x x ()()()∑∑∑∑∞=∞=-∞==---⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡--=1111111111n n k n n n k k n k n k k x k x x k ,1<x .(2)()()20022022111arctan ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰∑⎰∞=x n nn x dt t dt t x ()()()()121200121121+--+∞==+--+-=∑∑k n kn k n n k k x k n x k()()()()∑∑∞=+=+-+-=0120121211n n nk nx k n k ()()∑∑∞=+=++-=012012111n n nk nx k n ,1≤x . (3)()()()∑∑∑∑∞==-+∞=∞=--+=⎪⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡--=-111212112111ln n nk k n k n n n n n k n x k x n x x n x()()∑∑∑∑∞=+=∞=+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=11111111211n n n k n n n k x k n x k n k ,11≤≤-x . 3.将下列函数在指定点0x 展开为Taylor 级数:(1))(,10a b x xa ≠=-; (2)1,221ln 02-=++x xx ; (3)2,ln 0=x x ; (4)1,0=x e x.解(1)()()()ba bx b a b x b a x a ----=---=-11111()()∑∑∞=-∞=--=⎪⎭⎫⎝⎛---=0101n n nn nb a b x b a b x b a ,b a b x -<-. (2)()[]2211ln 221ln++-=++x xx ()()[]()()∑∑∞∞=-+-=+--=nn n n n n x nx n21211111,02≤≤-x .(3)()()∑∞=-⎪⎭⎫⎝⎛--+=⎪⎭⎫⎝⎛-++=-+=112212ln 221ln 2ln 22ln ln n nn x n x x x (1221≤-<-x ) ()()∑∞=---+=112212ln n n nn x n ,40≤<x .(4)()()()∑∑∞=∞=--+-=-===001111!1!1n nn n x x xx n e x n e eeee ,+∞<<∞-x . 4.展开 ⎪⎪⎭⎫⎝⎛-x e dx d x 1为x 的幂级数,并推出()∑∞=+=1!11n n n . 解 ∑∑∑∞=-∞=-∞=-==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-22110!1!11!111n n n n n n x x n n x n dx d x n x dx d x e dx d ()∑∞==+=11!1n n x n n,+∞<x , 所以,()()1111!11211=+-=⎪⎪⎭⎫ ⎝⎛-=+==∞=∑x x x x n x x e x e dx d n n . 5.试将()x x f ln =展开成11+-x x 的幂级数. 解 令11+-=x x t ,则 ttx -+=11,因而有()()()()()()∑∑∞=-∞=-----=--+=-+==1101111ln 1ln 11ln ln n n n n nn t nt n t t t tx x f()∑∑∞=-∞=-⎪⎭⎫⎝⎛+--=+-=112111112211n n n n n x x n t n,0>x .6.函数()x f 在区间),(b a 内的各阶导数一致有界,即0>∃M ,对一切()b a x ,∈,有() ,2,1,)(=≤n M x f n ,证明:对()b a ,内任意点x 与0x ,有()()()()∑∞=-=000!n n n x x n x f x f . 证明 由Taylor 公式,()b a x ,∈∀,()b a x ,0∈,有()()()()()()()()()x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+=00)(200000!!2 , 其中()()()()()()∞→→-+≤-+=+++n x x n Mx x n f x R n n n n 0!1!1101)1(ξ,()b a x ,∈∀,其中ξ在x 与0x 之间.故()x f 在区间()b a ,可以展成()0x x -的幂级数,即()b a x ,∈∀,()b a x ,0∈,()()()∑∞=-=000)(!n n n x x n x fx f .。

数值分析简明教程课后习题答案

数值分析简明教程课后习题答案



【解】(1)令时等式精确成立,可列出如下方程组:
解得:,即:,可以验证,对公式亦成立,而对不成立,故公式(1)具有3次代数精度。
(2)令时等式精确成立,可列出如下方程组:
解得:,即:,可以验证,对公式亦成立,而对不成立,故公式(2)具有3次代数精度。
(3)令时等式精确成立,可解得:
即: ,可以验证,对公式亦成立,而对不成立,故公式(3)具有2次代数精度。
由三点公式(51)、(52)和(53)可知,,则
2、(p.96,习题25)设已给出的数据表,
x
1.0
1.1
1.2
f(x)
0.2500
0.2268
0.2066
试用三点公式计算的值,并估计误差。
【解】已知,用三点公式计算微商:

用余项表达式计算误差
3、(p.96,习题26)设,分别取步长,用中点公式(52)计算的值,令中间数据保留小数点后第6位。

(2),而,实际误差为:。
由,可知,则余项表达式
1.4 曲线拟合
1、(p.57,习题35)用最小二乘法解下列超定方程组:
【解】构造残差xx函数如下:

分别就Q对x和y求偏导数,并令其为零:
:,
:,
解方程组(1)和(2),得
2、(p.57,习题37)用最小二乘法求形如 的多项式,使之与下列数据相拟合。
,,取;
,,取;
【解】(1);
(2)。
2、(p.124,题2)取,用xx方法求解初值问题,。
【解】xx格式:;化简后,,计算结果见下表。
n
0
1
2
3
xn
0.0
0.2

数学分析简明教程答案

数学分析简明教程答案

第十章 数项级数§1 级数问题的提出1.证明:若微分方程0=+'+''xy y y x 有多项式解n n x a x a x a a y ++++= 2210,则必有),,2,1(0n i a i ==.证明 由多项式解nn x a x a x a a y ++++= 2210得1232132-++++='n n x na x a x a a y , 22432)1(1262--++++=''n n x a n n x a x a a y .从而 134232)1(1262--++++=''n n x a n n x a x a x a y x , 且 111232210+---++++++=n n n n n n x a x a x a x a x a x a xy .将上述结果代入微分方程0=+'+''xy y y x ,得342231201)16()9()4(x a a x a a x a a a ++++++0)(11122=++++++---n n n n n n n x a x a x a n a .比较系数得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+=+=+=--.0,0,0,09,04,012231201n n n n a a a n a a a a a a由此解得0210=====n a a a a ,因而),,2,1,0(0n i a i ==.2.试确定系数 ,,,,10n a a a ,使n n nx a∑∞=0满足勒让德方程0)1(2)1(2=++'-''-y l l y x y x .解 设nn nx ay ∑∞==,则11-∞=∑='n n n xna y ,22)1(-∞=∑-=''n n nx an n y ,故∑∑∑∞=∞=-∞=----=--=''-2222222)1()1()1()1()1(n n n n n n n n n x a n n xa n n xa n n x y x ,∑∑∞=∞=--=-='-111222n n n n n n x na xna x y x ,∑∑∞=∞=+=+=+0)1()1()1(n n n n nn x a l l x a l l y l l .将上述结果代入勒让德方程0)1(2)1(2=++'-''-y l l y x y x ,得y l l y x y x )1(2)1(02++'-''-=∑∑∑∑∞=∞=∞=∞=-++----=01222)1(2)1()1(n n n n nn n nn n n n x a l l x na x a n n xa n n∑∑∑∑∞=∞=∞=∞=+++---++=0122)1(2)1()1)(2(n n n n nn n nn n nn x a l l x na x a n n x a n n .比较系数,得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++++-=+++--=++-=++-=++++-.,0)1)(2()1)((,0)1()))(1((,012)3)(2(,06)2)(1(,02)1(211423120n n n n a n n a n l n l na n a n l n l a a l l a a l l a a l l 由此解得⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧++++-+-+--=⨯⨯⨯++--=⨯+--=⨯+--=-++++-+--=⨯⨯++-=⨯+--=+-=+,)!12()2()4)(2)(1()32)(12()1(,2345)4)(2)(1)(3(45)4)(3(,23)2)(1(,)!2()12()3)(1()42)(22()1(,234)3)(1()2(34)3)(2(,2)1(112135130202402a k k l l l l k l k l a a l l l l a l l a a l l a a k k l l l l k l k l a a l l l l a l l a a l l a k k k k从而可以得到⎥⎦⎤⎢⎣⎡-+++-+--+=∑∞=1200)!2()12()1()42)(22()1(k k k x k k l l l k l k l a a y⎥⎦⎤⎢⎣⎡+++-+-+--++∑∞=+11211)!12()2()2)(1()32)(12()1(k k k x k k l l l k l k l a x a .其中10,a a 取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和: (1)∑∞=+-1)15)(45(1n n n ; (2)∑∞=-12141n n;(3)∑∞=---1112)1(n n n ; (4)∑∞=-1212n nn ; (5)1,sin 1<∑∞=r nx rn n;(6)1,cos 1<∑∞=r nx rn n.解(1)由于⎪⎭⎫⎝⎛+--=+-15145151)15)(45(1n n n n ,故)15)(45(11161611+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=1514511116161151n n )(51151151∞→→⎪⎭⎫ ⎝⎛+-=n n , 所以级数的和51=S . (2)由于⎪⎭⎫⎝⎛+--=-121121211412n n n ,故)(21121121121121513131121∞→→⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+--++-+-=n n n n S n .所以级数的和21=S . (3)322111212)1(11111=⎪⎭⎫ ⎝⎛--=⎪⎭⎫⎝⎛-=--∞=∞=--∑∑n n n n n .(4)12221222121111-=⎪⎭⎫ ⎝⎛-=-∑∑∑∑∞=∞=∞=∞=n nn nn n n n nn n ,因此欲求原级数的和,只需计算级数∑∞=122n n n 即可.对级数∑∞=122n n n ,设其部分和n n n S 2226242232++++= ,则 14322222226242221++-++++=n n n nn S , 故1432222222222212121+-+++++=-=n n n n n n S S S 1432222121212121+-⎪⎭⎫ ⎝⎛+++++=n n n112222112112121+---⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=n n n . 从而221lim =∞→n n S ,即4lim =∞→n n S ,因此原级数31412221211=-=-=-∑∑∞=∞=n n n n n n . (5)由于级数的部分和kx rS nk kn sin 1∑==,故[]x k x k r x kx rxS r nk k nk k n )1sin()1sin(cos sin 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1sin()1sin(1111-++=∑∑=+=+kx rrkx r n k kn k k sin sin 1212∑∑-=+=+=)sin ()sin )1sin((21nx r S r x r x n r S n n n n -+-++=+,从中解得xr r xn r nx r x r S n n n cos 21)1sin(sin sin 212-++-+=++.又由于当∞→n 时,0)1sin(,0sin 1122→≤+→≤++++n n n n r x n r r nx r ,故xr r xr S n n cos 21sin lim 2-+=∞→, 因此xr r xr nx r n n cos 21sin sin 21-+=∑∞=.(6)级数的部分和kx rS nk kn cos 1∑==,从而[]x k x k r x kx rxS r nk k nk k n )1cos()1cos(cos cos 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1cos()1cos(1111-++=∑∑=+=+kx rrkx r n k kn k k cos cos 1212∑∑-=+=+=)cos 1()cos )1cos((21nx r S r x r x n r S n n n n -++-++=+,从中解得x r r r x r x r r r x n r nx r x r S n n n n n cos 21cos cos 21)1cos(cos cos lim lim 222212-+-=-+-+-+=++∞→∞→. 因此x r r r x r nx r n ncos 21cos cos 221-+-=∑∞=. 2.讨论下列级数的敛散性: (1)∑∞=-112n n n; (2)∑∞=⎪⎭⎫ ⎝⎛+13121n nn; (3)∑∞=+112cosn n π;(4)∑∞=+-1)13)(23(1n n n ; (5)∑∞=+++1)1()1(1n n n n n .解(1)由于通项)(02112∞→≠→-n n n ,故原级数发散. (2)由于∑∑∞=∞=⎪⎭⎫ ⎝⎛=112121n nn n ,∑∑∞=∞=⎪⎭⎫⎝⎛=113131n nn n 均收敛,故原级数收敛.(3)由于通项)(010cos 12cos ∞→≠=→+n n π,故原级数发散.(4)由于⎪⎭⎫⎝⎛+--=+-13123131)13)(23(1n n n n ,从而部分和)13)(23(1741411+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=131231714141131n n)(31131131∞→→⎪⎭⎫ ⎝⎛+-=n n , 因而原级数收敛.(5)由于⎪⎪⎭⎫⎝⎛+-=+-+=+++11111)1()1(1n n n n nn n n n n ,从而∞→n 时, 111111131212111→+-=+-++-+-=n n n S n ,故原级数收敛.3.证明定理10.2.定理10.2 若级数∑∞=1n n u ,∑∞=1n nv收敛,则级数)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.证明 设∑∑==='=nk k nnk kn v S uS 11,,则由已知条件知,存在有限数s s ',,使得 s v S s u S nk k n nn nk k n n n '=='==∑∑=∞→∞→=∞→∞→11lim lim ,lim lim , 设级数)(1n n nv u±∑∞=的部分和数列为n μ,则)()(111∞→'±→'±=±=±=∑∑∑===n s s S S v u v u nn nk k nk k nk k k n μ, 所以)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u .4.设级数∑∞=1n nu各项是正的,把级数的项经过组合而得到新级数∑∞=1n nU,即,2,1,0,1211=+++=++++n u u u U n n n k k k n ,其中 <<<<<<=+12100,0n n k k k k k k ,若∑∞=1n nU收敛,证明原来的级数也收敛.证明 设∑∑====nk k n nk kn U uS 11,σ,则n nk k n U U U U +++==∑= 211σ)()(21112121k k k k u u u u u u +++++++=++ n n n n k k k k S u u u =+++++++--)(2111 .由于∑∞=1n nU收敛,故}{n σ有界,即{n k S }有界,即存在0>M ,使得N n ∈∀,都有M S n k ≤.又由于∑∞=1n nu是正项级数,故M S S n k n ≤≤,而且{n S }单调上升,由单调有界原理可知,原级数∑∞=1n nu收敛.§3 正项级数1.判别下列级数的收敛性: (1)∑∞=+121n nn ;(2)∑∞=--1122)12(1n n n ; (3)∑∞=--112n n nn ; (4)∑∞=12sinn nπ;(5))1(111>+∑∞=a a n n; (6)∑∞=11n nnn;(7)nn n ∑∞=⎪⎭⎫⎝⎛+1121;(8)[]∑∞=+1)1ln(1n nn ;(9)∑∞=-+12)1(2n nn; (10)∑∞=13sin2n nn π;(11)∑∞=-+15sin ))1(3(n nn n π;(12)∑∞=11!2sin n nn ; (13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n ; (14)∑∞=11cos n n ; (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n ; (16)∑∞=+12)1ln(n n n ; (17)∑∞=11arcsin 1sin n n n ; (18)∑∞=12arctan n nn π;(19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n ; (20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛+122111n n .解(1)∑∞=+121n nn .由于111lim2=+∞→nnn n ,而∑∞=11n n 发散,所以级数∑∞=+121n nn 发散.(2)∑∞=--1122)12(1n n n .对任意正整数n ,都成立关系式nn n n 2121222212)12(1≤≤---, 而级数∑∞=1222n n 收敛,由比较判别法知,原级数收敛. (3)∑∞=--112n n n n .由于02112lim ≠=--∞→n n n n ,所以级数∑∞=--112n n nn 发散.(4)∑∞=12sin n nπ.由于ππ=∞→n n n 212sinlim,而∑∞=121n n 收敛,故∑∞=12sin n nπ收敛. (5)∑∞=+111n n a .由于1>a ,故n nn a a a ⎪⎭⎫ ⎝⎛=<+1111,而∑∞=⎪⎭⎫⎝⎛11n na 收敛,由比较判别法知,级数∑∞=+111n na收敛. (6)∑∞=11n n n n .由于11lim 11lim ==∞→∞→n n n n n nn n ,而∑∞=11n n 发散,故∑∞=11n n nn 发散.(7)nn n ∑∞=⎪⎭⎫ ⎝⎛+1121.由于10121lim 121lim <=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n ,故级数nn n ∑∞=⎪⎭⎫⎝⎛+1121收敛.(8)[]∑∞=+1)1ln(1n nn .由于10)1ln(1lim )1ln(1lim <=+=⎪⎪⎭⎫ ⎝⎛+∞→∞→n n n n nn ,故原级数收敛.(9)∑∞=-+12)1(2n nn. 方法1因为∑∑∑∞=∞=-∞=-+=-+11112)1(212)1(2n n n n n n nn ,而∑∞=-1121n n 和∑∞=-12)1(n n n 均收敛,故∑∞=-+12)1(2n nn收敛. 方法2 由于n n n 232)1(2≤-+对一切n 都成立,而∑∞=123n n 收敛,故∑∞=-+12)1(2n nn 收敛.(10)∑∞=13sin2n nnπ.由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn n n n nn n n 3123sin2lim 323sin2lim,而∑∞=⎪⎭⎫ ⎝⎛132n n收敛,故原级数收敛.(11)∑∞=-+15sin))1(3(n nnn π.由于4)1(3≤-+n,因此,若∑∞=15sin 4n nn π收敛,则原级数收敛.考虑级数∑∞=15sin4n nnπ,由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn nn n n nn n 5145sin4lim 545sin4lim,且∑∞=⎪⎭⎫ ⎝⎛154n n收敛,故∑∞=15sin4n nn π收敛,因而原级数收敛.(12)∑∞=11!2sin n nn .由于!1!2sin n n n ≤,而∑∞=1!1n n 收敛,因而原级数收敛.(13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n .由于21121sin 2lim 11cos 1lim22==⎪⎭⎫ ⎝⎛-∞→∞→n n n n n n n ,而∑∞=11n n发散,因而原级数发散.(14)∑∞=11cos n n .由于011cos lim ≠=∞→n n ,由级数收敛的必要条件知,原级数发散. (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n .由于1111ln lim 111ln 1lim 23=⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+∞→∞→nn n n n n n ,而∑∞=1231n n 收敛,故原级数收敛.(16)∑∞=+12)1ln(n n n .由于0)1ln(lim 1)1ln(1lim 232=+=+∞→∞→n n n n n n n ,而级数∑∞=1231n n 收敛,故原级数收敛.(17)∑∞=11arcsin 1sin n n n .由于111arcsin 1sin lim2=∞→n n n n ,而级数∑∞=121n n收敛,故原级数收敛.(18)∑∞=12arctan n nn π.由于极限ππ=∞→n n n n n 22arctanlim,而对于级数∑∞=12n nn ,根据1212lim <=∞→nn n n ,故由根式判别法知,级数∑∞=12n nn 收敛,因而原级数收敛. (19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n .对通项进行分子有理化可得 )1(21)1(2111211111111111+>+=+>++=++=-+n n n nn n n n n n n , 由于∑∞=+1)1(21n n 发散,故原级数发散.(20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+122111n n .由于422212111n n n +=-⎪⎭⎫⎝⎛+,而级数∑∑∞=∞=14121,2n n n n 均收敛,因而原级数收敛.2.判别下列级数的敛散性:(1)∑∞=1!n nn n ;(2)∑∞=12ln n nnn ; (3)∑∞=12!n n nn n ;(4)∑∞=13!n n nnn ;(5)∑∞=1!n n nne n ;(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n ;(7)212312nn n n ∑∞=⎪⎭⎫ ⎝⎛-+; (8)∑∞=++1212)3(n n nn n n ;(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn; (10)+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313. 解(1)∑∞=1!n n n n .由于11lim !)!1()1(lim 1>=⎪⎭⎫⎝⎛+=++∞→+∞→e n n n n n n n n n n n ,所以∑∞=1!n n n n 发散. (2)∑∞=12ln n nnn .由于 121ln 1ln 1lim 21lim ln )1ln(21lim 2ln 2)1ln()1(lim 1<=⎪⎪⎪⎪⎭⎫ ⎝⎛++⋅+=⎪⎭⎫ ⎝⎛++=++∞→∞→∞→+∞→n n n n n n n nn n n n n n n n n n n , 根据达朗贝尔判别法知,原级数收敛.(3)∑∞=12!n n n n n .由于121lim 22!)1(2)!1(lim 11<=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n n n n n n ,故∑∞=12!n n n n n 收敛. (4)∑∞=13!n n n n n .由于131lim 33!)1(3)!1(lim 11>=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n nn n n n ,故∑∞=13!n n n n n 发散. (5)∑∞=1!n n nne n .这个级数不能用达朗贝尔判别法和柯西判别法判别,也不能用拉阿比判别法判别,但由斯特林公式可知)10(2!12<<⎪⎭⎫⎝⎛=θπθnn e e n n n ,因而πππθθn e n ne e e n n ne n n n n n nn n222!1212>=⎪⎭⎫⎝⎛=,通项的极限不为0,由级数收敛的必要条件知原级数∑∞=1!n n nne n 发散.(6)∑∞=⎪⎭⎫ ⎝⎛+121n n n n n .因为101)(lim 1lim 22<=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n n n n n n ,故∑∞=⎪⎭⎫ ⎝⎛+121n n n n n 收敛. (7)∑∞=⎪⎭⎫⎝⎛-+122312n n n n .由于1322312lim2312lim 2<=-+=⎪⎭⎫⎝⎛-+∞→∞→n n n n n n n n ,由柯西判别法知,原级数收敛.(8)∑∞=++1212)3(n n nn n n .由于)(031)3()3(222212∞→→+=+++n nn n n n n n n n n n n,因此,如果级数∑∞=+122)3(n n n n n n 收敛,则原级数也收敛.考虑级数∑∞=+122)3(n n nn n n ,由于1313lim)3(lim 222<=+=+∞→∞→nn nn n n n nn n n ,故它收敛,因而原级数也收敛.(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn.当0=x 时,级数显然收敛;当0>x 时,由于⎪⎩⎪⎨⎧>=<<=+=+++++++∞→++∞→.1,0,1,21,10,1lim )1()1)(1()1()1)(1(lim 12121x x x x x x x x x x x x x x n n n n n n n 因而∑∞=+++12)1()1)(1(n nnx x x x 收敛,因此原级数对一切0≥x 收敛. (10) +⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313.级数的一般项)23(741)12(753-⋅⋅+⋅⋅=n n u n ,由于1321332lim )23(741)12(753)13(741)32(753lim lim1<=++=-⋅⋅+⋅⋅+⋅⋅+⋅⋅=∞→∞→+∞→n n n n n n u u n n nn n , 因而原级数收敛.3.判别级数的敛散性:(1)∑∞=1ln 1n nn;(2)∑∞=1ln )(ln 1n nn ; (3)∑∞=1ln 21n n;(4)∑∞=1ln 31n n;(5)∑∞=131n n;(6)∑∞=13n nn;(7)∑∞=1ln n p n n(p 是任意实数); (8)∑∞=2ln 1n pnn (p 是任意实数). 解(1)∑∞=1ln 1n nn.当9≥n 时2ln >n ,故当9≥n 时2ln 11n n n <,而∑∞=121n n收敛,由比较判别法知,原级数收敛.(2)∑∞=1ln )(ln 1n n n .由于)ln(ln ln 1)(ln 1n n n n =,且)()ln(ln ∞→+∞→n n ,故存在N ,当N n >时2)ln(ln >n ,从而2)ln(ln n n n >,即当N n >时,2ln )(ln n n n>,而级数∑∞=121n n收敛,故原级数收敛.(3)∑∞=1ln 21n n.方法1 由于n n n u u n n n n n n n n n nn 112lim 12lim 12121lim 1lim 11ln 11ln )1ln(ln 1-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→+∞→+∞→, 该极限为型极限,由L 'hospital 法则得 12ln 11112ln 2lim112lim22111ln 11ln <=-⎪⎭⎫ ⎝⎛-+⋅⋅=-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→nn nn n n n n , 由Raabe 判别法知,原级数发散.方法2 由于n enn=<ln ln 2,所以n n 121ln >,而级数∑∞=11n n发散,由比较判别法知,原级数∑∞=1ln 21n n发散.(4)∑∞=1ln 31n n.由于13ln 13lim 1lim )11ln(1>=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-+∞→+∞→n n n n n n u u n ,由Raabe 判别法知,原级数收敛.一般地,对)0(11ln >∑∞=a an n,当e a ≤<0时,对一切N n ∈,n e a n n =<ln ln 成立,所以n a n11ln ≥,从而∑∞=1ln 1n n a 发散;当e a >时,由于1ln 1lim 1>=⎪⎪⎭⎫ ⎝⎛-+∞→a u u n n n n ,由Raabe 判别法知,级数∑∞=1ln 1n na收敛.(5)∑∞=131n n.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 2ln >n n ,即n n ln 23ln >,从而23n n>,故2131n n <,而∑∞=121n n 收敛,故∑∞=131n n 收敛. (6)∑∞=13n nn.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 3ln >n n ,即n n ln 33ln >,从而33n n>,故213n n n <,而∑∞=121n n 收敛,故∑∞=13n n n 收敛.(7)∑∞=1ln n p n n (p 是任意实数).由于当3>n 时,p p n nn ln 1<,所以若∑∞=11n p n 发散,则原级数必发散,而1≤p 时∑∞=11n p n 发散,因而1≤p 时,原级数∑∞=1ln n p nn发散.当1>p 时,由于21211111)1(11)1(1ln 11ln 11ln ln p x p x x p tdt p dt t t dt t t p p x p x p xp-+---=-=⋅=--+--⎰⎰⎰, 因而211)1(1ln ln limp dx x x dt t t p xp x -==⎰⎰∞+∞→,利用柯西积分判别法知,原级数收敛. (8)∑∞=2ln 1n p n n (p 是任意实数).当1>p 时,由于p p n n n 1ln 1<且∑∞=21n p n收敛,故原级数收敛;当1=p 时,由于)2ln(ln )ln(ln ln ln 1ln 122-==⎰⎰x t d t dt t t x x,因而+∞==⎰⎰∞+∞→dx xx dt t t x x 22ln 1ln 1lim ,由柯西积分判别法知,原级数发散;当1<p 时,由于n n n n p ln 1ln 1>,而∑∞=2ln 1n n n 就是前面1=p 时的级数,已证得它发散,因而原级数发散.4.利用Taylor 公式估算无穷小量的阶,从而判别下列级数的收敛性:(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e ;(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π; (3)∑∞=+--+111ln)1(n p n n n n ; (4)∑∞=++-+142)(n b n n a n .解(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e .令xx x f ⎪⎭⎫⎝⎛+=11)(,则⎪⎭⎫ ⎝⎛+=x x x f 11ln )(ln ,从而⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+⎪⎭⎫ ⎝⎛+='1111ln 1111111ln )()(2x x x x x x x x f x f x , 因此⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=-⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-∞→∞→∞→1111ln 11lim 11111ln 11lim111lim 2200n n n n nn n n nn e n n nn nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+=∞→1113121111lim 3322n n n n n n n nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→332213121)1(111lim n n n n n n n nn 22113121)1(11lim 2e e n n n n n n nn =⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→ . 该极限为有限数,因而nn e ⎪⎭⎫⎝⎛+-11与n 1是同阶无穷小量,由于∑∞=11n p n当1>p 时收敛,1≤p 时发散,因而原级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e 当1>p 时收敛,1≤p 时发散.(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π.由于 ⎪⎭⎫ ⎝⎛+===n n n nππππ22tan 1ln 21sec ln 21sec ln cos 1ln⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=n n nπππ2222tan 2)(tan tan 21 , 故21cos 1ln lim 22ππ=⎥⎦⎤⎢⎣⎡∞→nn n ,这是一个有限数,从而n πcos 1ln 与21n 是同阶无穷小量,因此原级数∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π与∑∞=121n p n的收敛性一致,所以当12>p 即21>p 时,原级数收敛,而当12≤p 即21≤p 时,原级数发散.(3)∑∞=+--+111ln)1(n p n n n n .由于0)1(>-+pn n ,011ln <+-n n ,故原级数是负项级数,又由于⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛++=+---+121ln 1111ln)1()1(n n n n n n n pp ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛++=111211n n n n p,故11ln)1(+--+n n n n p与121+p n 是同阶无穷小量,因而当112>+p ,即0>p 时,原级数收敛,0≤p 时,原级数发散.(4)∑∞=++-+142)(n b n n a n .因为42242)(bn n a n b n n a n b n n a n ++++++-+=++-+))(()12(2422b n n a n b n n a n ba n a ++++++++-+-=,因而当21=a 时,上式与231n 是同阶无穷小量,故原级数收敛;当21≠a 时,上式与211n 是同阶无穷小量,故原级数发散.5.讨论下列级数的收敛性:(1)∑∞=2)(ln 1n pn n ; (2)∑∞=⋅⋅2ln ln ln 1n n n n ; (3))0(ln ln )(ln 121>∑∞=+σσn nn n ;(4)∑∞=2)ln (ln )(ln 1n qpn n n . 解(1)∑∞=2)(ln 1n p n n .令函数px x x f )(ln 1)(=,则该函数在),2[+∞非负、连续且单调下降.当1=p 时,由于+∞=-==∞→∞→∞→⎰⎰))2ln(ln )(ln(ln lim ln ln 1lim ln 1lim 22x t d t dt t t x x x xx ,因而原级数发散.当1≠p 时,由于⎰⎰⎰-∞→∞→∞→==x px xp x xx t d t dt t t dt t f 222ln )(ln lim )(ln 1lim )(lim()p p x x p--∞→--=11)2(ln )(ln 11lim⎪⎩⎪⎨⎧>-<∞+=-.1,1)2(ln ,1,1p p p p因而由柯西积分判别法知,当1<p 时级数发散,当1>p 时级数收敛.综上可知,级数∑∞=2)(ln 1n pn n 在1>p 时收敛,在1≤p 时发散.(2)∑∞=⋅⋅2ln ln ln 1n nn n .根据级数通项nu ,可令函数x x x x f ln ln ln 1)(⋅⋅=,则)2(),(≥=n n f u n 且)(x f 在),2[+∞非负、连续且单调下降,由于⎰⎰⎰∞→∞→∞→==x x xx x x t d tt d t t dt t f 222ln ln ln ln 1lim ln ln ln ln 1lim )(lim[]+∞=-=∞→2ln ln ln ln ln ln lim x x .由柯西积分判别法知,原级数发散.(3))0(ln ln )(ln 121>∑∞=+σσn nn n .由于+∞=∞→n n ln ln lim ,故当n 充分大时,1ln ln >n ,因而σσ++≤11)(ln 1ln ln )(ln 1n n n n n ,由(1)知∑∞=+21)(ln 1n n n σ收敛,从而原级数收敛.(4)∑∞=2)ln (ln )(ln 1n qpn n n . 当1=p 时,由于⎰⎰∞+∞+=22)ln(ln )ln (ln 1)ln (ln ln 1x d x dx x x x q q,故1>q 时级数收敛,1≤q 时级数发散.当1>p 时,令)0(21>+=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln 1)ln (ln )(ln 11σσ+==, 由于+∞=∞→qn n n )ln (ln )(ln lim σ,故存在0>N ,任意N n >时,1)ln (ln )(ln >qn n σ,从而σ+<1)(ln 1n n u n ,而由(1)知∑∞=+11)(ln 1n n n σ收敛,从而原级数收敛. 当1<p 时,令)0(21>-=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln )ln (ln )(ln 11σσ-==, 由于+∞→q n n )ln (ln )(ln σ,从而当n 充分大时,1)ln (ln )(ln >qn n σ,从而σ-≥1)(ln 1n n u n ,而由(1)知∑∞=-11)(ln 1n n n σ发散,因此原级数发散. 综上可知,原级数∑∞=2))(ln(ln )(ln 1n qp n n n 的收敛情况是:当1>p 或1,1>=q p 时收敛,当1<p 或1,1≤=q p 时发散.6.利用拉阿比判别法研究下列级数的收敛性.(1)∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n (p 是实数);(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .解(1)级数∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n 的通项pn n n u ⎥⎦⎤⎢⎣⎡-=!)!2(!)!12(,因而根据二项展开式得⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛++⋅-=⎪⎪⎭⎫⎝⎛-∞→+∞→1!)!12(!)!22(!)!2(!)!12(lim 1lim 1p n n n n n n n n n u u n []pp p n p n n n n n n n n )12()22()12(lim 11222lim +-++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛++=∞→∞→()()[]1)2()2(22)2()2()12(lim11+++-++⋅++=--∞→ p p p p p pn n p n n p n n n []2)12()12()2(lim 1pn n p n p p p n =+-++=-∞→ . (上式也可以在第二个等式处将1222++n n 化为1211++n 直接使用二项展开式),所以当12>p 即2>p 时,原级数收敛,当12<p即2<p 时,原级数发散. 当2=p 时,Raabe 判别法失效,此时,由于对一切n ,222221)12(1111211n n n n n nn n u u nn n θμλ++=⎥⎦⎤⎢⎣⎡++-++=⎪⎭⎫ ⎝⎛++=+令, 即1,1==μλ而且1≤n θ,因而根据高斯判别法知,原级数发散.(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .根据原级数的通项知ββαααααα)1()()1()!1(1!)1()1(1++++⋅-++=+n n n nn n u u n n βββαα⎪⎭⎫⎝⎛+++=+++=n n n nn n n 111)()1)(1(, 因而αααββ+--⎪⎭⎫⎝⎛++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+++=⎪⎪⎭⎫ ⎝⎛-∞→∞→+∞→n n n n n n n n n u u n n n n nn 11)1(lim 1111lim 1lim 1βαααβ+-=+--⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++=∞→1111)1(lim nn n n n n ,所以当11>+-βα,即βα<时级数收敛;当11<+-βα,即βα>时级数发散.当βα=时,Raabe 判别法失效,此时由于⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-++++=⎪⎭⎫ ⎝⎛+++=+221112)1(11111n n n n n n n n u u n n αααααα⎪⎭⎫⎝⎛⋅++++-++++++-++=2211)(2)1()1()()1(1n n n n n n n n n n n ααααααααα 22)1(1)(2)1()1(111n n n n n n n n n θμλαααα++=⎥⎦⎤⎢⎣⎡⋅++++-+++=令 , 即1,1==μλ而且显然n θ有界,因而根据高斯判别法可知,原级数发散.7.已知两正项级数∑∞=1n nu和∑∞=1n nv发散,问),max (1∑∞=n n nv u,∑∞=1),min(n n n v u 两级数的收敛性如何?答 级数),max (1∑∞=n n nv u一定发散.事实上,0),m ax (≥≥n n n u v u ,而∑∞=1n n u 发散,故),max (1∑∞=n n nv u发散.∑∞=1),min(n n n v u 可能收敛,也可能发散.例如∑∑∞=∞=---+112)1(1,2)1(1n nn n 均发散,但由于0),min(=n n v u 对一切n 都成立,故∑∞=1),min(n n nv u收敛.8.若正项级数∑∞=1n n a 收敛,证明:02lim21=+++∞→nna a a nn .证明 设正项级数∑∞=1n na的部分和n n a a a S +++= 21,则下述两式成立:121121)2()1(--++-+-=+++n n a a n a n S S S , (*)n n na na na nS +++= 21, (**)用(**)减去(*)得n n n na a a S S S nS +++=+++-- 211212)(,两端同时除以n 可得nna a a n S S S nS nn n +++=+++-- 211212)(,即nna a a n S S S S n S n nn n n +++=++++--- 211212)1(,由于正项级数∑∞=1n na收敛,因而n n S ∞→lim 存在,假设s S n n =∞→lim ,根据收敛数列的算术平均数构成的新数列收敛,且与原数列极限相等可知,s nS S S nn =+++∞→ 21lim,因此0)1(lim 2lim12121=-=⎪⎭⎫⎝⎛++++--=+++-∞→∞→s s n S S S S n S n n na a a n n n n n n ,从而结论成立.9.设⎪⎪⎩⎪⎪⎨⎧===≠=,,2,1,1,,2,1,,12222 k k a k k n n a k n求证:(1)∑∞=1n na收敛;(2) 0lim ≠∞→n n na .证明(1)由于∑∞=121n n 收敛,故∑∑∞≠=∞≠==22,12,11k n n k n n n na 收敛,而∑∑∞=∞==12112k k kk a 收敛,从而∑∑∞≠=∞=+22,11kn n nk k aa收敛,即∑∞=1n na收敛.(2)考虑n na 的一个子列}{22k a k ,则11lim lim 2222==∞→∞→kka k n k n ,即0lim ≠∞→n n na . 10. 设0>n a ,且l a a nn n =+∞→1lim,求证l a n n n =∞→lim .反之是否成立?证明 令10=a ,构造数列⎭⎬⎫⎩⎨⎧=-1}{n n n a a u ,则}{n u 的前n 项的几何平均数可构成一个新数列,由于新数列收敛且与数列}{n u 极限相同,故11111lim lim lim++∞→+∞→+∞→===n n n n n n nn n u u u u a a ln n n n n n n n n n n n n a a a a a a a a a a ∞→+++∞→+-+∞→==⋅⋅=lim 1lim lim 1111011211 , 因而结论成立.反之不真,反例如级数∑∞=-+12)1(2n nn,由于21232)1(22121→≤-+=≤=nn n n n n n a , 故21lim =∞→n n n a ,而 613221,231223************=⋅==⋅=++--m m m m m m m m a a a a , 从而21lim1≠+∞→nn n a a ,因此反之结论不一定成立.11.利用级数收敛的必要条件证明:(1)0)!(lim 2=∞→n n n n ;(2))1(0)!2(lim!>=∞→a a n n n .证明(1)0)!(lim 2=∞→n n n n .考虑级数∑∞=12)!(n nn n ,由于 )(011111∞→→⎪⎭⎫⎝⎛++=+n n n u u nn n , 故级数∑∞=12)!(n n n n 收敛,因而0)!(lim 2=∞→n n nn . (2))1(0)!2(lim !>=∞→a a n n n .考虑级数∑∞=1!)!2(n n an ,由于)(0)12)(22(!1∞→→++=+n a n n u u nn n n , 所以级数∑∞=1!)!2(n n a n 收敛,因而)1(0)!2(lim !>=∞→a a n n n . 12.设0≥n a ,且数列}{n na 有界,证明级数∑∞=12n na收敛.证明 由数列}{n na 有界知,存在0>M ,对N n ∈∀,都有M na n ≤,从而nMa n ≤,进一步可得222n M a n≤,又由于∑∞=121n n收敛,因而由比较判别法知,级数∑∞=12n n a 收敛.13.设正项级数∑∞=1n na收敛,证明∑∞=+11n n n a a 也收敛.证明 由于对任意n ,1+n n a a )(211++≤n n a a 均成立,而级数∑∞=1n n a 和级数∑∞=+11n n a 均收敛,从而级数)(11∑∞=++n n na a也收敛,由比较判别法知,级数∑∞=+11n n n a a 收敛.14.设l a n n =∞→lim ,求证:(1)当1>l 时,∑∞=11n a nn 收敛; (2)当1<l 时,∑∞=11n a nn发散. 问1=l 时会有什么结论?证明(1)当1>l 时,令021>-=l ε,则由l a n n =∞→lim 知,存在N ,N n >∀时,有12121>+=--=->l l l l a n ε,从而当N n >时,2111+<l a n n n ,而∑∞=+1211n l n 收敛,故原级数收敛.(2)当1<l 时,令021>-=lε,则由l a n n =∞→lim 知,存在M ,M n >∀时,有12121<+=-+=+<l l l l a n ε,从而当M n >时2111+>l a n n n ,而∑∞=+1211n l n 发散,故原级数发散.当1=l 时,考虑级数∑∞=2)(ln 1n pn n ,由于nnp pn n n ln ln ln 1)(ln +=,令nnp a n ln ln ln 1+=,则1lim =∞→n n a ,此即为本题1=l 的情形,但由第5题(1)知,该级数在1>p 时收敛,1≤p 时发散,从而当1=l 时,级数∑∞=11n a nn 可能收敛也可能发散.§4 一般项级数1.讨论下列级数的收敛性:(1)∑∞=+-1100)1(n nn n;(2)∑∞=12sin ln n n n n π; (3)∑∞=++++-1131211)1(n nnn ;(4)∑∞=-+-2)1()1(n nnn ; (5))1(sin 21+∑∞=n n π;(6)∑∞=--12)1(3)1(n n n n ;(7))0()1(1>-∑∞=p n n pn; (8)2sin 311πn n n∑∞=; (9)∑∞=-12cos )1(n nnn; (10)∑∞=-12sin )1(n nn n;(11))0(sin)1(1≠-∑∞=x nxn n ; (12)∑∞=+-12)1()1(n n n n; (13)++--+++--++--1111131131121121n n ; (14))0(1)1(11>+-∑∞=+a a an n nn ;(15)∑∞=⎪⎭⎫ ⎝⎛+11sin n n n n ; (16)∑∞=⋅12sin sin n n n n .解(1)∑∞=+-1100)1(n nn n.令100)(+=x x x f ,则2)100(2100)(+-='x x x x f ,显然当100>x 时0)(≤'x f ,即)(x f 单调下降并趋向于0.由于级数前有限项的值不影响该级数的敛散性,因而由Leibniz 判别法知原交错级数收敛.(2)∑∞=12sin ln n n nn π.由于⎩⎨⎧∈-=-∈==+++,,12,)1(,,2,02sin 1Z k k n Z k k n n k π 舍去偶数项,原级数∑∑∞=+∞=---=11112)12ln()1(2sin ln k k n k k n n n π变成交错级数.令x xx f ln )(=,则2ln 1)(xxx f -=',显然当3≥x 时0)(<'x f ,即)(x f 单调下降并趋向于0.因而从第3项开始,数列⎭⎬⎫⎩⎨⎧n n ln 单调下降并趋向于0,故n 取奇数时该数列也是单调下降并趋向于0的,由Leibniz 判别法知,原交错级数收敛.(3)∑∞=++++-1131211)1(n nnn .由于数列的前n 项的算术平均数构成的新数列极限与原数列极限相等,故根据数列⎭⎬⎫⎩⎨⎧n 1单调递减趋向于0知,数列⎭⎬⎫⎩⎨⎧++++n n 131211 单调递减趋向于0,又因为原级数是一个交错级数,由Leibniz 判别法知原交错级数收敛.(4)∑∞=-+-2)1()1(n nn n .由于⎪⎪⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+---=-+⋅-=-+-2311)1(1)1(1)1()1(11)1()1()1(nO n n n O n n nn n nn n n nnn ,而级数∑∞=-2)1(n nn及∑∞=2231n n收敛,但级数∑∞=21n n发散,因而原级数发散. (5))1(sin 21+∑∞=n n π.由于)1(sin )1())1(sin()1sin(222n n n n n n n -+-=-++=+ππππnn n ++-=1sin)1(2π,又由于⎭⎬⎫⎩⎨⎧++n n 1sin 2π单调下降趋于0,故由Leibniz 判别法知原级数收敛. (6)∑∞=--12)1(3)1(n n n n .由于∑∑∞=∞=-=-112)1(313)1(n nn nn n 收敛,故原级数绝对收敛,因而自身收敛.(7))0()1(1>-∑∞=p n n p n .由于pn 1单调递减趋向于0,根据Leibniz 判别法知原级数收敛.进一步可知:当10≤<p 时级数条件收敛,当1>p 时级数绝对收敛.(8)2sin 311πn n n ∑∞=.由于n n n 312sin31≤π,而∑∞=131n n 收敛,故原级数收敛且绝对收敛.(9)∑∞=-12cos )1(n nnn.由于 n k nk 2cos 1sin 24cos 1sin 22cos 1sin 22cos 1sin 21+++=∑=))12sin()12(sin()3sin 5(sin )1sin 3(sin --+++-+-=n n 1sin )12sin(-+=n ,故1sin 11sin 21sin )12sin(2cos 1≤-+=∑=n k nk ,即∑∞=12cos n n 的部分和数列有界,而数列⎭⎬⎫⎩⎨⎧n 1单调趋于0,由Dirichlet 判别法知级数∑∞=12cos n n n 收敛,即∑∞=-12cos )1(n n n n 收敛,从而原级。

数学分析简明教程第二版第二篇课后答案.doc

数学分析简明教程第二版第二篇课后答案.doc

第二章函数§1 函数概念1.证明下列不等式:(1) y x y x -≥-;(2) n n xx x x x x +++≤+++ΛΛ2121;(3))(2121n n x x x x x x x x +++-≥++++ΛΛ.证明(1)由y y x y y x x +-≤+-=)(,得到y x y x -≤-,在该式中用x 与y 互换,得到x y x y -≤-,即y x y x --≥-,由此即得,y x y x -≥-.(2)当2,1=n 时,不等式分别为212111,x x x x x x +≤+≤,显然成立.假设当k n =时,不等式成立,即k k xx x x x x +++≤+++ΛΛ2121,则当1+=k n 时,有121121121121121)()(+++++++++=++++≤++++≤++++=++++k k k k k k k k k k x x x x x x x x x x x x x x x x x x x x ΛΛΛΛΛ有数学归纳法原理,原不等式成立.(3)nn n x x x x x x x x x x x x +++-≥++++=++++ΛΛΛ212121)()(21n x x x x +++-≥Λ.2.求证bba ab a ba +++≤+++111.证明由不等式b a b a +≤+,两边加上)(b a b a ++后分别提取公因式得,)1()()1(b a b a b a b a +++≤+++,即bb a a b a b b a a b a b a b a b a +++≤+++++=+++≤+++111111.3.求证.求证22),max (b a b a b a -++=;22),min(ba ba b a --+=.证明 若b a ≥,则由于b a b a -=-,故有,故有22),max (b a b a a b a -++==,22),min(b a b a b b a --+==,若b a <,则由于)(b a b a --=-,故亦有,故亦有22),max (b a b a b b a -++==,22),min(b a b a a b a --+==,因此两等式均成立.因此两等式均成立.4.已知三角形的两条边分别为a 和b ,它们之间的夹角为θ,试求此三角形的面积)(θs ,并求其定义域.,并求其定义域.解 θθsin 21)(ab s =,定义域为开区间),0(π.5.在半径为r 的球内嵌入一内接圆柱,试将圆柱的体积表为其高的函数,并求此函数的定义域.的定义域.解 设内接圆柱高为x ,则地面半径为422x r r -=',因而体积,因而体积)4(222x r x x r V -='=ππ,定义域为开区间)2,0(r .6.某公共汽车路线全长为km 20,票价规定如下:乘坐km 5以下(包括km 5)者收费1元;超过km 5但在km 15以下(包括km 15)者收费2元;元;其余收费其余收费2元5角. 试将票价表为路程的函数,并作出函数的图形.为路程的函数,并作出函数的图形.解 设路程为x ,票价为y ,则,则⎪⎩⎪⎨⎧≤<≤<≤<=.2015,5.2,155,2,50,1x x x y函数图形见右图.函数图形见右图.7.一脉冲发生器产生一个三角波.若记它随时间t 的变化规律为)(t f ,且三个角分别有对应关系0)0(=f ,20)10(=f ,0)20(=f ,求)200()(≤≤t t f ,并作出函数的图形.形.解 ⎩⎨⎧≤<-≤≤=.2010,240,100,2)(t t t t t f函数图形如右图所示.函数图形如右图所示.8.判别下列函数的奇偶性:.判别下列函数的奇偶性: (1)12)(24-+=x x x f ;(2)x x x f sin )(+=; (3)22)(xex x f -=;(4))1lg()(2x x x f ++=.解(1)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,且有)(121)(2)()(2424x f x x x x x f =-+=--+-=-,即得12)(24-+=x xx f 是偶函数.是偶函数.(2)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,且有)()sin (sin )sin()()(x f x x x x x x x f -=+-=--=-+-=-,因此,x x x f sin )(+=是奇函数.是奇函数.(3)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,且有)()()(222)(2x f ex ex x f x x ==-=----,即22)(xex x f -=是偶函数.是偶函数.(4)定义域为),(∞+-∞,由于),(∞+-∞∈∀x ,有),(∞+-∞∈-x ,且有,且有,)()1lg(11lg)1lg())(1lg()(2222x f x x x x x x x x x f -=++-=++=++-=-++-=-因此,)1lg()(2x x x f ++=是奇函数.是奇函数.9.判别下列函数是否是周期函数,若是,试求其周期:.判别下列函数是否是周期函数,若是,试求其周期: (1)2cos )(x x f =; (2)3sin22cos)(x x x f +=;(3)x x f 4cos )(π=;(4)x x f tan )(=.解(1)不是.若为周期函数,设周期为T ,则R x ∈∀,有)()(x f T x f =+,即22cos )cos(x T x =+,移项并使用三角公式化简得,0)2sin()2sin(222=+++T Tx T Tx x ,由R x ∈的任意性知道这是不可能的,故2cos )(x x f =不是周期函数.不是周期函数.(2)是.周期为ππ4212=和ππ6312=的最小公倍数π12.(3)是.周期是842=ππ.(4)定义域是使0tan ≥x 的一切x 的取值,即},2{)(Z k k x k x f D ∈+<≤=πππ,由于)(f D x ∈∀,必有)(f D x ∈+π,且)(tan )tan()(x f x x x f ==+=+ππ,因此x x f tan )(=是周期函数,周期为π.10.证明21)(x xx f +=在),(∞+-∞有界.有界. 证明 实际上,),(∞+-∞∈∀x ,都有,都有21112111)(2222=++⋅≤+=+=x x x xx xx f , 由定义,21)(x xx f +=在),(∞+-∞有界.有界. 11.用肯定语气叙述函数无界,并证明21)(xx f =在)1,0(无界.无界.解 叙述:若X x M M ∈∃>∀,0,使得M x f M >)(,则称函数)(x f 在X 无界.无界.0>∀M ,要使M xx f >=21)(,只须Mx 1<,取)1,0(11∈+=M x M ,则有M M xx f MM >+==11)(2,所以21)(xx f =在)1,0(无界.无界.12.试证两个偶函数的乘积是偶函数,试证两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,两个奇函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个一个奇函数和一个偶函数的乘积是奇函数.偶函数的乘积是奇函数.证明 设)(,)(x g x f 是定义于X 偶函数,)(,)(x x h ϕ是定义于X 奇函数.则由于以下事实下事实)()()()(x g x f x g x f =--,)()()]()][([)()(x x h x x h x x h ϕϕϕ=--=--, )()()]()[()()(x h x f x h x f x h x f -=-=--,知两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.积是奇函数.13.设)(x f 为定义在),(∞+-∞内的任何函数,证明)(x f 可分解成奇函数和偶函数之和.之和.证明 由于)(x f 的定义域为),(∞+-∞,故)(,),(x f x -∞+-∞∈∀有意义.有意义. 令2)()()(x f x f x g -+=,2)()()(x f x f x h --=,则)(x g 是偶函数,)(x h 是奇函数,且有)()()(x h x g x f +=.14.用肯定语气叙述:在),(∞+-∞上 (1) )(x f 不是奇函数;不是奇函数; (2) )(x f 不是单调上升函数;不是单调上升函数; (3) )(x f 无零点;无零点; (4) )(x f 无上界.无上界.解 (1)),(0∞+-∞∈∃x ,使得)()(00x f x f -≠-,则)(x f 在),(∞+-∞不是奇函数;函数;(2)),(,21∞+-∞∈∃x x ,虽然21x x <,但)()(21x f x f >,则)(x f 在),(∞+-∞不是单调上升函数;不是单调上升函数;(3)),(∞+-∞∈∀x ,均有0)(≠x f ,则)(x f 在),(∞+-∞无零点;无零点; (4)),(,),(∞+-∞∈∃∞+-∞∈∀b x b ,使得b x f b >)(,则)(x f 在),(∞+-∞无上界.上界.§2 复合函数与反函数1.设xx x f +-=11)(,求证x x f f =))((.证明 ()x f 定义域为1-≠x 的一切实数,因此1-≠∀x ,有,有()()()()x x x x x xx xx x x xf x f x f f =+-++++-+=+-++--=+-=11111111111111.2.求下列函数的反函数及其定义域:.求下列函数的反函数及其定义域:(1) +∞<<⎪⎭⎫ ⎝⎛+=x x x y 1,121;(2) ()+∞<<∞--=-x ee y xx,21;(3) ⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=.x x x x x y x4,2,41,,1,2解(1)变形为0122=+-yx x ,解得12-+=y y x ,由于()+∞∈∀=⋅⋅≥⎪⎭⎫ ⎝⎛+=,1,11221121x x x x x y成立,因此函数⎪⎭⎫ ⎝⎛+=x x y 121,+∞<<x 1的反函数为()∞+∈-+=,1,12x x x y .(2)变形得,0122=--xxye e,解出1244222++=++=y y y y e x,即()1ln 2++=y yx ,因此原来函数的反函数为()∞+∞-∈++=,,)1ln(2x x x y.(3)当1<<∞-x 时,1,<<∞-=y y x ,当41≤≤x 时,161,≤≤=y y x ,而当+∞<<x 4时,16,log 2>=y y x .所以反函数为.所以反函数为⎪⎩⎪⎨⎧+∞<<≤≤<<∞-=.x x x x x x y 16,log ,161,,1,2定义域为()+∞∞-,.3.设()x f ,()x g 为实轴上的单调函数,求证))((x g f 也是实轴上的单调函数.也是实轴上的单调函数.证明 设()x f ,()x g 为实轴上的单调增函数,即()2,1,,=+∞∞-∈∀i x i ,且,21x x <有()()()()2121,x g x g x f x f ≤≤,因此))(())((21x g f x g f ≤,即))((x g f 也是单调增函数.数.同理可证:当()x f ,()x g 为实轴上的单调减函数时,))((x g f 也是单调增函数;当()xf 为增函数,而()xg 为减函数或()x f 为减函数,而()x g 为增函数时,))((x g f 均为减函数.因此,()x f ,()x g 为实轴上的单调函数时,))((x g f 也是实轴上的单调函数.也是实轴上的单调函数.4.设.设()⎩⎨⎧>≤--=.0,,0,1x x x x x f ()⎩⎨⎧>-≤=.0,,0,2x x x x x g ,求复合函数))((x g f ,))((x f g .解 有复合函数的定义,立即可得有复合函数的定义,立即可得⎩⎨⎧>-≤--=,0,1,0,1))((2x x x x x g f()⎪⎩⎪⎨⎧>-≤≤----<<∞-+-=.0,,01,1,1,1))((22x x x x x x x f g5.设21)(xx x f +=,求))((x f f f n 4434421οΛοο次.解 2222221111)(1)())((xxxx xxx f x f x f f +=+++=+=ο,归纳法假设,归纳法假设21))((kxxx f f f k +=4434421οΛοο次, 则有则有222)1(111)1()))((())((kx x kx xkx xf x f f f f x f f f k k +++=+==+4434421οΛοο4434421οΛοο次次2)1(1xk x ++=,依归纳法原理,知21))((nxx x f f f n +=4434421οΛοο次.6.设x x x f --+=11)(,试求))((x f f f n 4434421οΛοο次.解 ⎪⎩⎪⎨⎧>≤≤--<-=1,2,11,2,1,2)(x x x x x f , ⎪⎪⎪⎩⎪⎪⎨⎧>≤≤--<-=21,2,2121,4,21,2))((x x x x x f f ο ,归纳法假设归纳法假设 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-=----111121,2,2121,2,21,2))((k k k k kk x x x x x f f f 4434421οΛοο次 ,则当1+=k n 时,有时,有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-==++,21,2,2121,2,21,2)))((())((1)1(k k k k k k k x x x x x f f f f x f f f 4434421οΛοο4434421οΛοο次次所以,所以,⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤-<-=----.次111121,2,2121,2,21,2))((n n n nn n x x x x x f f f 4434421οΛοο 7.设xx f -=11)(,求))((x f f ,)))(((x f f f ,))(1(x f f .解 xx f -=11)(定义域1≠x 的一切实数,)(11))((x f x f f -=要求1)(≠x f 且1≠x ,因此,因此xxxx f x f f -=--=-=11111)(11))((,0≠x 且1≠x ; ))((11)))(((x f f x f f f -=要求1))((≠x f f 且0≠x ,1≠x ,因此,因此x xx x f f xf f f =--=-=111))((11)))(((,21≠x ,0≠x 且1≠x ; )(111))(1(x f x f f -=要求1≠x 且1)(1≠x f ,因此,因此x x x f x f f 1)1(11)(111))(1(=--=-=,0≠x 且1≠x .§3 初等函数1.对下列函数分别讨论函数的定义域和值域,奇偶性,周期性,有界性,并作出函数的图形:的图形:(1) x y =;(2) ][x x y -=;(3) x y tan =; (4) )2(x x y -=;(5) x y 2sin =;(6) x x y cos sin +=.解(1)定义域),(∞+-∞=D ,值域),0[)(∞+=X f ,是偶函数,无界非周期函数; (2)定义域),(∞+-∞=D ,值域)1,0[)(=X f ,既非奇函数也非偶函数,是周期为1的有界周期函数;的有界周期函数;(1)题图)题图 (2)题图)题图(3)定义域),(∞+-∞=D ,值域),()(∞+-∞=X f ,是偶函数,无界非周期函数; (4)定义域]2,0[=D ,值域]1,0[)(=X f ,既非奇函数也非偶函数,是有界非周期函数;函数;(3)题图)题图 (4)题图)题图(5)定义域),(∞+-∞=D ,值域]1,0[)(=X f ,是偶函数,是周期为π的有界周期函数;函数;(6)定义域),(∞+-∞=D ,是偶函数.,是偶函数.由于x x x x x y 2sin 1cos sin 2cos sin 222+=++=,所以212≤≤y ,并注意到0≥y ,得到函数的值域]2,1[)(=X f ,因而是有界函数.因为,因而是有界函数.因为)(cos sin sin cos )2cos()2sin()2(x y x x x x x x x y =+=-+=+++=+πππ,所以函数x x y cos sin +=是周期为2π的周期函数.的周期函数.2.若已知函数)(x f y =的图形,作函数的图形,作函数)(1x f y =,)(2x f y -=,)(3x f y --=的图形,并说明321,,y y y 的图形与y 的图形的关系.的图形的关系.解 由于⎩⎨⎧<-≥==0)(,)(,0)(,)()(1x f x f x f x f x f y ,故其图形是将函数)(x f y =的图形在x轴上方部分的不动,在x 轴下方的部分绕x 轴旋转ο180后即得;后即得;)(2x f y -=的图形是将函数)(x f y =的图形绕y 轴旋转ο180后得到的;后得到的; )(3x f y --=的图形是将函数)(x f y =的图形在坐标平面内绕坐标原点旋转ο180后得到的.得到的.3.若已知函数)(x f ,)(x g 的图形,试作函数的图形,试作函数 ])()()()([21x g x f x g x f y -±+= 的图形,并说明y 的图形与)(x f 、)(x g 图形的关系.图形的关系.解 由于由于 )}(),(max{)()(,)(,)()(,)(])()()()([21x g x f x g x f x g x g x f x f x g x f x g x f =⎩⎨⎧<≥=-++, )}(),(min{)()(,)(,)()(,)(])()()()([21x g x f x g x f x f x g x f x g x g x f x g x f =⎩⎨⎧<≥=--+, 因而极易由函数)(x f ,)(x g 的图形作出两函数])()()()([21x g x f x g x f y -±+=的图形,也知其关系.形,也知其关系.4. 作出下列函数的图形:作出下列函数的图形:(1) x x y sin =;(2) x y 1sin =. 解 图形如下.图形如下.(1)题图)题图 (2)题图)题图5.符号函数.符号函数 ⎪⎩⎪⎨⎧<-=>==,0,1,0,0,0,1sgn x x x x y 试分别作出x sgn ,)2sgn(x ,)2sgn(-x 的图形.的图形.解x sgn)2sgn(x)2sgn(-x6.作出下列函数的图形:.作出下列函数的图形:(1) x y cos sgn =;(2) ⎥⎦⎤⎢⎣⎡-=22][x x y . 解(1)(2)。

数学分析简明教程答案

数学分析简明教程答案

第十章 数项级数§1 级数问题的提出1.证明:若微分方程0=+'+''xy y y x 有多项式解n n x a x a x a a y ++++= 2210,则必有),,2,1(0n i a i ==.证明 由多项式解nn x a x a x a a y ++++= 2210得1232132-++++='n n x na x a x a a y , 22432)1(1262--++++=''n n x a n n x a x a a y .从而 134232)1(1262--++++=''n n x a n n x a x a x a y x , 且 111232210+---++++++=n n n n n n x a x a x a x a x a x a xy .将上述结果代入微分方程0=+'+''xy y y x ,得342231201)16()9()4(x a a x a a x a a a ++++++0)(11122=++++++---n n n n n n n x a x a x a n a .比较系数得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===+=+=+=--.0,0,0,09,04,012231201n n n n a a a n a a a a a a由此解得0210=====n a a a a ,因而),,2,1,0(0n i a i ==.2.试确定系数 ,,,,10n a a a ,使n n nx a∑∞=0满足勒让德方程0)1(2)1(2=++'-''-y l l y x y x .解 设nn nx ay ∑∞==,则11-∞=∑='n n n xna y ,22)1(-∞=∑-=''n n nx an n y ,故∑∑∑∞=∞=-∞=----=--=''-2222222)1()1()1()1()1(n n n n n n n n n x a n n xa n n xa n n x y x ,∑∑∞=∞=--=-='-111222n n n n n n x na xna x y x ,∑∑∞=∞=+=+=+0)1()1()1(n n n n nn x a l l x a l l y l l .将上述结果代入勒让德方程0)1(2)1(2=++'-''-y l l y x y x ,得y l l y x y x )1(2)1(02++'-''-=∑∑∑∑∞=∞=∞=∞=-++----=01222)1(2)1()1(n n n n nn n nn n n n x a l l x na x a n n xa n n∑∑∑∑∞=∞=∞=∞=+++---++=0122)1(2)1()1)(2(n n n n nn n nn n nn x a l l x na x a n n x a n n .比较系数,得递推公式如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++++-=+++--=++-=++-=++++-.,0)1)(2()1)((,0)1()))(1((,012)3)(2(,06)2)(1(,02)1(211423120n n n n a n n a n l n l na n a n l n l a a l l a a l l a a l l 由此解得⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧++++-+-+--=⨯⨯⨯++--=⨯+--=⨯+--=-++++-+--=⨯⨯++-=⨯+--=+-=+,)!12()2()4)(2)(1()32)(12()1(,2345)4)(2)(1)(3(45)4)(3(,23)2)(1(,)!2()12()3)(1()42)(22()1(,234)3)(1()2(34)3)(2(,2)1(112135130202402a k k l l l l k l k l a a l l l l a l l a a l l a a k k l l l l k l k l a a l l l l a l l a a l l a k k k k从而可以得到⎥⎦⎤⎢⎣⎡-+++-+--+=∑∞=1200)!2()12()1()42)(22()1(k k k x k k l l l k l k l a a y⎥⎦⎤⎢⎣⎡+++-+-+--++∑∞=+11211)!12()2()2)(1()32)(12()1(k k k x k k l l l k l k l a x a .其中10,a a 取任何常数.§2 数项级数的收敛性及其基本性质1.求下列级数的和: (1)∑∞=+-1)15)(45(1n n n ; (2)∑∞=-12141n n;(3)∑∞=---1112)1(n n n ; (4)∑∞=-1212n nn ; (5)1,sin 1<∑∞=r nx rn n;(6)1,cos 1<∑∞=r nx rn n.解(1)由于⎪⎭⎫⎝⎛+--=+-15145151)15)(45(1n n n n ,故)15)(45(11161611+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=1514511116161151n n )(51151151∞→→⎪⎭⎫ ⎝⎛+-=n n , 所以级数的和51=S . (2)由于⎪⎭⎫⎝⎛+--=-121121211412n n n ,故)(21121121121121513131121∞→→⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+--++-+-=n n n n S n .所以级数的和21=S . (3)322111212)1(11111=⎪⎭⎫ ⎝⎛--=⎪⎭⎫⎝⎛-=--∞=∞=--∑∑n n n n n .(4)12221222121111-=⎪⎭⎫ ⎝⎛-=-∑∑∑∑∞=∞=∞=∞=n nn nn n n n nn n ,因此欲求原级数的和,只需计算级数∑∞=122n n n 即可.对级数∑∞=122n n n ,设其部分和n n n S 2226242232++++= ,则 14322222226242221++-++++=n n n nn S , 故1432222222222212121+-+++++=-=n n n n n n S S S 1432222121212121+-⎪⎭⎫ ⎝⎛+++++=n n n112222112112121+---⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=n n n . 从而221lim =∞→n n S ,即4lim =∞→n n S ,因此原级数31412221211=-=-=-∑∑∞=∞=n n n n n n . (5)由于级数的部分和kx rS nk kn sin 1∑==,故[]x k x k r x kx rxS r nk k nk k n )1sin()1sin(cos sin 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1sin()1sin(1111-++=∑∑=+=+kx rrkx r n k kn k k sin sin 1212∑∑-=+=+=)sin ()sin )1sin((21nx r S r x r x n r S n n n n -+-++=+,从中解得xr r xn r nx r x r S n n n cos 21)1sin(sin sin 212-++-+=++.又由于当∞→n 时,0)1sin(,0sin 1122→≤+→≤++++n n n n r x n r r nx r ,故xr r xr S n n cos 21sin lim 2-+=∞→, 因此xr r xr nx r n n cos 21sin sin 21-+=∑∞=.(6)级数的部分和kx rS nk kn cos 1∑==,从而[]x k x k r x kx rxS r nk k nk k n )1cos()1cos(cos cos 2cos 21111-++==∑∑=+=+x k r x k rnk k nk k )1cos()1cos(1111-++=∑∑=+=+kx rrkx r n k kn k k cos cos 1212∑∑-=+=+=)cos 1()cos )1cos((21nx r S r x r x n r S n n n n -++-++=+,从中解得x r r r x r x r r r x n r nx r x r S n n n n n cos 21cos cos 21)1cos(cos cos lim lim 222212-+-=-+-+-+=++∞→∞→. 因此x r r r x r nx r n ncos 21cos cos 221-+-=∑∞=. 2.讨论下列级数的敛散性: (1)∑∞=-112n n n; (2)∑∞=⎪⎭⎫ ⎝⎛+13121n nn; (3)∑∞=+112cosn n π;(4)∑∞=+-1)13)(23(1n n n ; (5)∑∞=+++1)1()1(1n n n n n .解(1)由于通项)(02112∞→≠→-n n n ,故原级数发散. (2)由于∑∑∞=∞=⎪⎭⎫ ⎝⎛=112121n nn n ,∑∑∞=∞=⎪⎭⎫⎝⎛=113131n nn n 均收敛,故原级数收敛.(3)由于通项)(010cos 12cos ∞→≠=→+n n π,故原级数发散.(4)由于⎪⎭⎫⎝⎛+--=+-13123131)13)(23(1n n n n ,从而部分和)13)(23(1741411+-++⨯+⨯=n n S n ⎪⎭⎫ ⎝⎛+--++-+-=131231714141131n n)(31131131∞→→⎪⎭⎫ ⎝⎛+-=n n , 因而原级数收敛.(5)由于⎪⎪⎭⎫⎝⎛+-=+-+=+++11111)1()1(1n n n n nn n n n n ,从而∞→n 时, 111111131212111→+-=+-++-+-=n n n S n ,故原级数收敛.3.证明定理10.2.定理10.2 若级数∑∞=1n n u ,∑∞=1n nv收敛,则级数)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.证明 设∑∑==='=nk k nnk kn v S uS 11,,则由已知条件知,存在有限数s s ',,使得 s v S s u S nk k n nn nk k n n n '=='==∑∑=∞→∞→=∞→∞→11lim lim ,lim lim , 设级数)(1n n nv u±∑∞=的部分和数列为n μ,则)()(111∞→'±→'±=±=±=∑∑∑===n s s S S v u v u nn nk k nk k nk k k n μ, 所以)(1n n nv u±∑∞=也收敛,且∑∑∑∞=∞=∞=±=±111)(n n n n n n n v u v u .4.设级数∑∞=1n nu各项是正的,把级数的项经过组合而得到新级数∑∞=1n nU,即,2,1,0,1211=+++=++++n u u u U n n n k k k n ,其中 <<<<<<=+12100,0n n k k k k k k ,若∑∞=1n nU收敛,证明原来的级数也收敛.证明 设∑∑====nk k n nk kn U uS 11,σ,则n nk k n U U U U +++==∑= 211σ)()(21112121k k k k u u u u u u +++++++=++ n n n n k k k k S u u u =+++++++--)(2111 .由于∑∞=1n nU收敛,故}{n σ有界,即{n k S }有界,即存在0>M ,使得N n ∈∀,都有M S n k ≤.又由于∑∞=1n nu是正项级数,故M S S n k n ≤≤,而且{n S }单调上升,由单调有界原理可知,原级数∑∞=1n nu收敛.§3 正项级数1.判别下列级数的收敛性: (1)∑∞=+121n nn ;(2)∑∞=--1122)12(1n n n ; (3)∑∞=--112n n nn ; (4)∑∞=12sinn nπ;(5))1(111>+∑∞=a a n n; (6)∑∞=11n nnn;(7)nn n ∑∞=⎪⎭⎫⎝⎛+1121;(8)[]∑∞=+1)1ln(1n nn ;(9)∑∞=-+12)1(2n nn; (10)∑∞=13sin2n nn π;(11)∑∞=-+15sin ))1(3(n nn n π;(12)∑∞=11!2sin n nn ; (13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n ; (14)∑∞=11cos n n ; (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n ; (16)∑∞=+12)1ln(n n n ; (17)∑∞=11arcsin 1sin n n n ; (18)∑∞=12arctan n nn π;(19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n ; (20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛+122111n n .解(1)∑∞=+121n nn .由于111lim2=+∞→nnn n ,而∑∞=11n n 发散,所以级数∑∞=+121n nn 发散.(2)∑∞=--1122)12(1n n n .对任意正整数n ,都成立关系式nn n n 2121222212)12(1≤≤---, 而级数∑∞=1222n n 收敛,由比较判别法知,原级数收敛. (3)∑∞=--112n n n n .由于02112lim ≠=--∞→n n n n ,所以级数∑∞=--112n n nn 发散.(4)∑∞=12sin n nπ.由于ππ=∞→n n n 212sinlim,而∑∞=121n n 收敛,故∑∞=12sin n nπ收敛. (5)∑∞=+111n n a .由于1>a ,故n nn a a a ⎪⎭⎫ ⎝⎛=<+1111,而∑∞=⎪⎭⎫⎝⎛11n na 收敛,由比较判别法知,级数∑∞=+111n na收敛. (6)∑∞=11n n n n .由于11lim 11lim ==∞→∞→n n n n n nn n ,而∑∞=11n n 发散,故∑∞=11n n nn 发散.(7)nn n ∑∞=⎪⎭⎫ ⎝⎛+1121.由于10121lim 121lim <=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n ,故级数nn n ∑∞=⎪⎭⎫⎝⎛+1121收敛.(8)[]∑∞=+1)1ln(1n nn .由于10)1ln(1lim )1ln(1lim <=+=⎪⎪⎭⎫ ⎝⎛+∞→∞→n n n n nn ,故原级数收敛.(9)∑∞=-+12)1(2n nn. 方法1因为∑∑∑∞=∞=-∞=-+=-+11112)1(212)1(2n n n n n n nn ,而∑∞=-1121n n 和∑∞=-12)1(n n n 均收敛,故∑∞=-+12)1(2n nn收敛. 方法2 由于n n n 232)1(2≤-+对一切n 都成立,而∑∞=123n n 收敛,故∑∞=-+12)1(2n nn 收敛.(10)∑∞=13sin2n nnπ.由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn n n n nn n n 3123sin2lim 323sin2lim,而∑∞=⎪⎭⎫ ⎝⎛132n n收敛,故原级数收敛.(11)∑∞=-+15sin))1(3(n nnn π.由于4)1(3≤-+n,因此,若∑∞=15sin 4n nn π收敛,则原级数收敛.考虑级数∑∞=15sin4n nnπ,由于πππ=⋅=⎪⎭⎫ ⎝⎛∞→∞→nn nn n n nn n 5145sin4lim 545sin4lim,且∑∞=⎪⎭⎫ ⎝⎛154n n收敛,故∑∞=15sin4n nn π收敛,因而原级数收敛.(12)∑∞=11!2sin n nn .由于!1!2sin n n n ≤,而∑∞=1!1n n 收敛,因而原级数收敛.(13)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n n .由于21121sin 2lim 11cos 1lim22==⎪⎭⎫ ⎝⎛-∞→∞→n n n n n n n ,而∑∞=11n n发散,因而原级数发散.(14)∑∞=11cos n n .由于011cos lim ≠=∞→n n ,由级数收敛的必要条件知,原级数发散. (15)∑∞=⎪⎪⎭⎫ ⎝⎛+111ln 1n n n .由于1111ln lim 111ln 1lim 23=⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+∞→∞→nn n n n n n ,而∑∞=1231n n 收敛,故原级数收敛.(16)∑∞=+12)1ln(n n n .由于0)1ln(lim 1)1ln(1lim 232=+=+∞→∞→n n n n n n n ,而级数∑∞=1231n n 收敛,故原级数收敛.(17)∑∞=11arcsin 1sin n n n .由于111arcsin 1sin lim2=∞→n n n n ,而级数∑∞=121n n收敛,故原级数收敛.(18)∑∞=12arctan n nn π.由于极限ππ=∞→n n n n n 22arctanlim,而对于级数∑∞=12n nn ,根据1212lim <=∞→nn n n ,故由根式判别法知,级数∑∞=12n nn 收敛,因而原级数收敛. (19)∑∞=⎪⎪⎭⎫ ⎝⎛-+1111n n .对通项进行分子有理化可得 )1(21)1(2111211111111111+>+=+>++=++=-+n n n nn n n n n n n , 由于∑∞=+1)1(21n n 发散,故原级数发散.(20)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+122111n n .由于422212111n n n +=-⎪⎭⎫⎝⎛+,而级数∑∑∞=∞=14121,2n n n n 均收敛,因而原级数收敛.2.判别下列级数的敛散性:(1)∑∞=1!n nn n ;(2)∑∞=12ln n nnn ; (3)∑∞=12!n n nn n ;(4)∑∞=13!n n nnn ;(5)∑∞=1!n n nne n ;(6)∑∞=⎪⎭⎫ ⎝⎛+121n nn n n ;(7)212312nn n n ∑∞=⎪⎭⎫ ⎝⎛-+; (8)∑∞=++1212)3(n n nn n n ;(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn; (10)+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313. 解(1)∑∞=1!n n n n .由于11lim !)!1()1(lim 1>=⎪⎭⎫⎝⎛+=++∞→+∞→e n n n n n n n n n n n ,所以∑∞=1!n n n n 发散. (2)∑∞=12ln n nnn .由于 121ln 1ln 1lim 21lim ln )1ln(21lim 2ln 2)1ln()1(lim 1<=⎪⎪⎪⎪⎭⎫ ⎝⎛++⋅+=⎪⎭⎫ ⎝⎛++=++∞→∞→∞→+∞→n n n n n n n nn n n n n n n n n n n , 根据达朗贝尔判别法知,原级数收敛.(3)∑∞=12!n n n n n .由于121lim 22!)1(2)!1(lim 11<=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n n n n n n ,故∑∞=12!n n n n n 收敛. (4)∑∞=13!n n n n n .由于131lim 33!)1(3)!1(lim 11>=⎪⎭⎫⎝⎛+=++∞→++∞→e n n n n n n n n nn n n n ,故∑∞=13!n n n n n 发散. (5)∑∞=1!n n nne n .这个级数不能用达朗贝尔判别法和柯西判别法判别,也不能用拉阿比判别法判别,但由斯特林公式可知)10(2!12<<⎪⎭⎫⎝⎛=θπθnn e e n n n ,因而πππθθn e n ne e e n n ne n n n n n nn n222!1212>=⎪⎭⎫⎝⎛=,通项的极限不为0,由级数收敛的必要条件知原级数∑∞=1!n n nne n 发散.(6)∑∞=⎪⎭⎫ ⎝⎛+121n n n n n .因为101)(lim 1lim 22<=+=⎪⎭⎫ ⎝⎛+∞→∞→n n n n n n n n n n n ,故∑∞=⎪⎭⎫ ⎝⎛+121n n n n n 收敛. (7)∑∞=⎪⎭⎫⎝⎛-+122312n n n n .由于1322312lim2312lim 2<=-+=⎪⎭⎫⎝⎛-+∞→∞→n n n n n n n n ,由柯西判别法知,原级数收敛.(8)∑∞=++1212)3(n n nn n n .由于)(031)3()3(222212∞→→+=+++n nn n n n n n n n n n n,因此,如果级数∑∞=+122)3(n n n n n n 收敛,则原级数也收敛.考虑级数∑∞=+122)3(n n nn n n ,由于1313lim)3(lim 222<=+=+∞→∞→nn nn n n n nn n n ,故它收敛,因而原级数也收敛.(9))0()1()1)(1(12≥+++∑∞=x x x x x n nn.当0=x 时,级数显然收敛;当0>x 时,由于⎪⎩⎪⎨⎧>=<<=+=+++++++∞→++∞→.1,0,1,21,10,1lim )1()1)(1()1()1)(1(lim 12121x x x x x x x x x x x x x x n n n n n n n 因而∑∞=+++12)1()1)(1(n nnx x x x 收敛,因此原级数对一切0≥x 收敛. (10) +⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+107419753741753415313.级数的一般项)23(741)12(753-⋅⋅+⋅⋅=n n u n ,由于1321332lim )23(741)12(753)13(741)32(753lim lim1<=++=-⋅⋅+⋅⋅+⋅⋅+⋅⋅=∞→∞→+∞→n n n n n n u u n n nn n , 因而原级数收敛.3.判别级数的敛散性:(1)∑∞=1ln 1n nn;(2)∑∞=1ln )(ln 1n nn ; (3)∑∞=1ln 21n n;(4)∑∞=1ln 31n n;(5)∑∞=131n n;(6)∑∞=13n nn;(7)∑∞=1ln n p n n(p 是任意实数); (8)∑∞=2ln 1n pnn (p 是任意实数). 解(1)∑∞=1ln 1n nn.当9≥n 时2ln >n ,故当9≥n 时2ln 11n n n <,而∑∞=121n n收敛,由比较判别法知,原级数收敛.(2)∑∞=1ln )(ln 1n n n .由于)ln(ln ln 1)(ln 1n n n n =,且)()ln(ln ∞→+∞→n n ,故存在N ,当N n >时2)ln(ln >n ,从而2)ln(ln n n n >,即当N n >时,2ln )(ln n n n>,而级数∑∞=121n n收敛,故原级数收敛.(3)∑∞=1ln 21n n.方法1 由于n n n u u n n n n n n n n n nn 112lim 12lim 12121lim 1lim 11ln 11ln )1ln(ln 1-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→+∞→+∞→, 该极限为型极限,由L 'hospital 法则得 12ln 11112ln 2lim112lim22111ln 11ln <=-⎪⎭⎫ ⎝⎛-+⋅⋅=-⎪⎭⎫ ⎝⎛+∞→⎪⎭⎫ ⎝⎛+∞→nn nn n n n n , 由Raabe 判别法知,原级数发散.方法2 由于n enn=<ln ln 2,所以n n 121ln >,而级数∑∞=11n n发散,由比较判别法知,原级数∑∞=1ln 21n n发散.(4)∑∞=1ln 31n n.由于13ln 13lim 1lim )11ln(1>=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-+∞→+∞→n n n n n n u u n ,由Raabe 判别法知,原级数收敛.一般地,对)0(11ln >∑∞=a an n,当e a ≤<0时,对一切N n ∈,n e a n n =<ln ln 成立,所以n a n11ln ≥,从而∑∞=1ln 1n n a 发散;当e a >时,由于1ln 1lim 1>=⎪⎪⎭⎫ ⎝⎛-+∞→a u u n n n n ,由Raabe 判别法知,级数∑∞=1ln 1n na收敛.(5)∑∞=131n n.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 2ln >n n ,即n n ln 23ln >,从而23n n>,故2131n n <,而∑∞=121n n 收敛,故∑∞=131n n 收敛. (6)∑∞=13n nn.由于+∞=∞→n n n ln lim,所以存在0>N ,当N n >时,有3ln 3ln >n n ,即n n ln 33ln >,从而33n n>,故213n n n <,而∑∞=121n n 收敛,故∑∞=13n n n 收敛.(7)∑∞=1ln n p n n (p 是任意实数).由于当3>n 时,p p n nn ln 1<,所以若∑∞=11n p n 发散,则原级数必发散,而1≤p 时∑∞=11n p n 发散,因而1≤p 时,原级数∑∞=1ln n p nn发散.当1>p 时,由于21211111)1(11)1(1ln 11ln 11ln ln p x p x x p tdt p dt t t dt t t p p x p x p xp-+---=-=⋅=--+--⎰⎰⎰, 因而211)1(1ln ln limp dx x x dt t t p xp x -==⎰⎰∞+∞→,利用柯西积分判别法知,原级数收敛. (8)∑∞=2ln 1n p n n (p 是任意实数).当1>p 时,由于p p n n n 1ln 1<且∑∞=21n p n收敛,故原级数收敛;当1=p 时,由于)2ln(ln )ln(ln ln ln 1ln 122-==⎰⎰x t d t dt t t x x,因而+∞==⎰⎰∞+∞→dx xx dt t t x x 22ln 1ln 1lim ,由柯西积分判别法知,原级数发散;当1<p 时,由于n n n n p ln 1ln 1>,而∑∞=2ln 1n n n 就是前面1=p 时的级数,已证得它发散,因而原级数发散.4.利用Taylor 公式估算无穷小量的阶,从而判别下列级数的收敛性:(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e ;(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π; (3)∑∞=+--+111ln)1(n p n n n n ; (4)∑∞=++-+142)(n b n n a n .解(1)∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e .令xx x f ⎪⎭⎫⎝⎛+=11)(,则⎪⎭⎫ ⎝⎛+=x x x f 11ln )(ln ,从而⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+⎪⎭⎫ ⎝⎛+='1111ln 1111111ln )()(2x x x x x x x x f x f x , 因此⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=-⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-∞→∞→∞→1111ln 11lim 11111ln 11lim111lim 2200n n n n nn n n nn e n n nn nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+-⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+=∞→1113121111lim 3322n n n n n n n nn ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→332213121)1(111lim n n n n n n n nn 22113121)1(11lim 2e e n n n n n n nn =⋅=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-+⎪⎭⎫ ⎝⎛+=∞→ . 该极限为有限数,因而nn e ⎪⎭⎫⎝⎛+-11与n 1是同阶无穷小量,由于∑∞=11n p n当1>p 时收敛,1≤p 时发散,因而原级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n pn n e 当1>p 时收敛,1≤p 时发散.(2)∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π.由于 ⎪⎭⎫ ⎝⎛+===n n n nππππ22tan 1ln 21sec ln 21sec ln cos 1ln⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=n n nπππ2222tan 2)(tan tan 21 , 故21cos 1ln lim 22ππ=⎥⎦⎤⎢⎣⎡∞→nn n ,这是一个有限数,从而n πcos 1ln 与21n 是同阶无穷小量,因此原级数∑∞=⎥⎦⎤⎢⎣⎡3cos 1ln n pn π与∑∞=121n p n的收敛性一致,所以当12>p 即21>p 时,原级数收敛,而当12≤p 即21≤p 时,原级数发散.(3)∑∞=+--+111ln)1(n p n n n n .由于0)1(>-+pn n ,011ln <+-n n ,故原级数是负项级数,又由于⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛++=+---+121ln 1111ln)1()1(n n n n n n n pp ⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛++=111211n n n n p,故11ln)1(+--+n n n n p与121+p n 是同阶无穷小量,因而当112>+p ,即0>p 时,原级数收敛,0≤p 时,原级数发散.(4)∑∞=++-+142)(n b n n a n .因为42242)(bn n a n b n n a n b n n a n ++++++-+=++-+))(()12(2422b n n a n b n n a n ba n a ++++++++-+-=,因而当21=a 时,上式与231n 是同阶无穷小量,故原级数收敛;当21≠a 时,上式与211n 是同阶无穷小量,故原级数发散.5.讨论下列级数的收敛性:(1)∑∞=2)(ln 1n pn n ; (2)∑∞=⋅⋅2ln ln ln 1n n n n ; (3))0(ln ln )(ln 121>∑∞=+σσn nn n ;(4)∑∞=2)ln (ln )(ln 1n qpn n n . 解(1)∑∞=2)(ln 1n p n n .令函数px x x f )(ln 1)(=,则该函数在),2[+∞非负、连续且单调下降.当1=p 时,由于+∞=-==∞→∞→∞→⎰⎰))2ln(ln )(ln(ln lim ln ln 1lim ln 1lim 22x t d t dt t t x x x xx ,因而原级数发散.当1≠p 时,由于⎰⎰⎰-∞→∞→∞→==x px xp x xx t d t dt t t dt t f 222ln )(ln lim )(ln 1lim )(lim()p p x x p--∞→--=11)2(ln )(ln 11lim⎪⎩⎪⎨⎧>-<∞+=-.1,1)2(ln ,1,1p p p p因而由柯西积分判别法知,当1<p 时级数发散,当1>p 时级数收敛.综上可知,级数∑∞=2)(ln 1n pn n 在1>p 时收敛,在1≤p 时发散.(2)∑∞=⋅⋅2ln ln ln 1n nn n .根据级数通项nu ,可令函数x x x x f ln ln ln 1)(⋅⋅=,则)2(),(≥=n n f u n 且)(x f 在),2[+∞非负、连续且单调下降,由于⎰⎰⎰∞→∞→∞→==x x xx x x t d tt d t t dt t f 222ln ln ln ln 1lim ln ln ln ln 1lim )(lim[]+∞=-=∞→2ln ln ln ln ln ln lim x x .由柯西积分判别法知,原级数发散.(3))0(ln ln )(ln 121>∑∞=+σσn nn n .由于+∞=∞→n n ln ln lim ,故当n 充分大时,1ln ln >n ,因而σσ++≤11)(ln 1ln ln )(ln 1n n n n n ,由(1)知∑∞=+21)(ln 1n n n σ收敛,从而原级数收敛.(4)∑∞=2)ln (ln )(ln 1n qpn n n . 当1=p 时,由于⎰⎰∞+∞+=22)ln(ln )ln (ln 1)ln (ln ln 1x d x dx x x x q q,故1>q 时级数收敛,1≤q 时级数发散.当1>p 时,令)0(21>+=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln 1)ln (ln )(ln 11σσ+==, 由于+∞=∞→qn n n )ln (ln )(ln lim σ,故存在0>N ,任意N n >时,1)ln (ln )(ln >qn n σ,从而σ+<1)(ln 1n n u n ,而由(1)知∑∞=+11)(ln 1n n n σ收敛,从而原级数收敛. 当1<p 时,令)0(21>-=σσp ,则qq p n n n n n n n n u )ln (ln )(ln )(ln )ln (ln )(ln 11σσ-==, 由于+∞→q n n )ln (ln )(ln σ,从而当n 充分大时,1)ln (ln )(ln >qn n σ,从而σ-≥1)(ln 1n n u n ,而由(1)知∑∞=-11)(ln 1n n n σ发散,因此原级数发散. 综上可知,原级数∑∞=2))(ln(ln )(ln 1n qp n n n 的收敛情况是:当1>p 或1,1>=q p 时收敛,当1<p 或1,1≤=q p 时发散.6.利用拉阿比判别法研究下列级数的收敛性.(1)∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n (p 是实数);(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .解(1)级数∑∞=⎥⎦⎤⎢⎣⎡-1!)!2(!)!12(n pn n 的通项pn n n u ⎥⎦⎤⎢⎣⎡-=!)!2(!)!12(,因而根据二项展开式得⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛++⋅-=⎪⎪⎭⎫⎝⎛-∞→+∞→1!)!12(!)!22(!)!2(!)!12(lim 1lim 1p n n n n n n n n n u u n []pp p n p n n n n n n n n )12()22()12(lim 11222lim +-++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛++=∞→∞→()()[]1)2()2(22)2()2()12(lim11+++-++⋅++=--∞→ p p p p p pn n p n n p n n n []2)12()12()2(lim 1pn n p n p p p n =+-++=-∞→ . (上式也可以在第二个等式处将1222++n n 化为1211++n 直接使用二项展开式),所以当12>p 即2>p 时,原级数收敛,当12<p即2<p 时,原级数发散. 当2=p 时,Raabe 判别法失效,此时,由于对一切n ,222221)12(1111211n n n n n nn n u u nn n θμλ++=⎥⎦⎤⎢⎣⎡++-++=⎪⎭⎫ ⎝⎛++=+令, 即1,1==μλ而且1≤n θ,因而根据高斯判别法知,原级数发散.(2))0,0(1!)1()1(1>>-++∑∞=βααααβn n n n .根据原级数的通项知ββαααααα)1()()1()!1(1!)1()1(1++++⋅-++=+n n n nn n u u n n βββαα⎪⎭⎫⎝⎛+++=+++=n n n nn n n 111)()1)(1(, 因而αααββ+--⎪⎭⎫⎝⎛++=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+++=⎪⎪⎭⎫ ⎝⎛-∞→∞→+∞→n n n n n n n n n u u n n n n nn 11)1(lim 1111lim 1lim 1βαααβ+-=+--⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++=∞→1111)1(lim nn n n n n ,所以当11>+-βα,即βα<时级数收敛;当11<+-βα,即βα>时级数发散.当βα=时,Raabe 判别法失效,此时由于⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-++++=⎪⎭⎫ ⎝⎛+++=+221112)1(11111n n n n n n n n u u n n αααααα⎪⎭⎫⎝⎛⋅++++-++++++-++=2211)(2)1()1()()1(1n n n n n n n n n n n ααααααααα 22)1(1)(2)1()1(111n n n n n n n n n θμλαααα++=⎥⎦⎤⎢⎣⎡⋅++++-+++=令 , 即1,1==μλ而且显然n θ有界,因而根据高斯判别法可知,原级数发散.7.已知两正项级数∑∞=1n nu和∑∞=1n nv发散,问),max (1∑∞=n n nv u,∑∞=1),min(n n n v u 两级数的收敛性如何?答 级数),max (1∑∞=n n nv u一定发散.事实上,0),m ax (≥≥n n n u v u ,而∑∞=1n n u 发散,故),max (1∑∞=n n nv u发散.∑∞=1),min(n n n v u 可能收敛,也可能发散.例如∑∑∞=∞=---+112)1(1,2)1(1n nn n 均发散,但由于0),min(=n n v u 对一切n 都成立,故∑∞=1),min(n n nv u收敛.8.若正项级数∑∞=1n n a 收敛,证明:02lim21=+++∞→nna a a nn .证明 设正项级数∑∞=1n na的部分和n n a a a S +++= 21,则下述两式成立:121121)2()1(--++-+-=+++n n a a n a n S S S , (*)n n na na na nS +++= 21, (**)用(**)减去(*)得n n n na a a S S S nS +++=+++-- 211212)(,两端同时除以n 可得nna a a n S S S nS nn n +++=+++-- 211212)(,即nna a a n S S S S n S n nn n n +++=++++--- 211212)1(,由于正项级数∑∞=1n na收敛,因而n n S ∞→lim 存在,假设s S n n =∞→lim ,根据收敛数列的算术平均数构成的新数列收敛,且与原数列极限相等可知,s nS S S nn =+++∞→ 21lim,因此0)1(lim 2lim12121=-=⎪⎭⎫⎝⎛++++--=+++-∞→∞→s s n S S S S n S n n na a a n n n n n n ,从而结论成立.9.设⎪⎪⎩⎪⎪⎨⎧===≠=,,2,1,1,,2,1,,12222 k k a k k n n a k n求证:(1)∑∞=1n na收敛;(2) 0lim ≠∞→n n na .证明(1)由于∑∞=121n n 收敛,故∑∑∞≠=∞≠==22,12,11k n n k n n n na 收敛,而∑∑∞=∞==12112k k kk a 收敛,从而∑∑∞≠=∞=+22,11kn n nk k aa收敛,即∑∞=1n na收敛.(2)考虑n na 的一个子列}{22k a k ,则11lim lim 2222==∞→∞→kka k n k n ,即0lim ≠∞→n n na . 10. 设0>n a ,且l a a nn n =+∞→1lim,求证l a n n n =∞→lim .反之是否成立?证明 令10=a ,构造数列⎭⎬⎫⎩⎨⎧=-1}{n n n a a u ,则}{n u 的前n 项的几何平均数可构成一个新数列,由于新数列收敛且与数列}{n u 极限相同,故11111lim lim lim++∞→+∞→+∞→===n n n n n n nn n u u u u a a ln n n n n n n n n n n n n a a a a a a a a a a ∞→+++∞→+-+∞→==⋅⋅=lim 1lim lim 1111011211 , 因而结论成立.反之不真,反例如级数∑∞=-+12)1(2n nn,由于21232)1(22121→≤-+=≤=nn n n n n n a , 故21lim =∞→n n n a ,而 613221,231223************=⋅==⋅=++--m m m m m m m m a a a a , 从而21lim1≠+∞→nn n a a ,因此反之结论不一定成立.11.利用级数收敛的必要条件证明:(1)0)!(lim 2=∞→n n n n ;(2))1(0)!2(lim!>=∞→a a n n n .证明(1)0)!(lim 2=∞→n n n n .考虑级数∑∞=12)!(n nn n ,由于 )(011111∞→→⎪⎭⎫⎝⎛++=+n n n u u nn n , 故级数∑∞=12)!(n n n n 收敛,因而0)!(lim 2=∞→n n nn . (2))1(0)!2(lim !>=∞→a a n n n .考虑级数∑∞=1!)!2(n n an ,由于)(0)12)(22(!1∞→→++=+n a n n u u nn n n , 所以级数∑∞=1!)!2(n n a n 收敛,因而)1(0)!2(lim !>=∞→a a n n n . 12.设0≥n a ,且数列}{n na 有界,证明级数∑∞=12n na收敛.证明 由数列}{n na 有界知,存在0>M ,对N n ∈∀,都有M na n ≤,从而nMa n ≤,进一步可得222n M a n≤,又由于∑∞=121n n收敛,因而由比较判别法知,级数∑∞=12n n a 收敛.13.设正项级数∑∞=1n na收敛,证明∑∞=+11n n n a a 也收敛.证明 由于对任意n ,1+n n a a )(211++≤n n a a 均成立,而级数∑∞=1n n a 和级数∑∞=+11n n a 均收敛,从而级数)(11∑∞=++n n na a也收敛,由比较判别法知,级数∑∞=+11n n n a a 收敛.14.设l a n n =∞→lim ,求证:(1)当1>l 时,∑∞=11n a nn 收敛; (2)当1<l 时,∑∞=11n a nn发散. 问1=l 时会有什么结论?证明(1)当1>l 时,令021>-=l ε,则由l a n n =∞→lim 知,存在N ,N n >∀时,有12121>+=--=->l l l l a n ε,从而当N n >时,2111+<l a n n n ,而∑∞=+1211n l n 收敛,故原级数收敛.(2)当1<l 时,令021>-=lε,则由l a n n =∞→lim 知,存在M ,M n >∀时,有12121<+=-+=+<l l l l a n ε,从而当M n >时2111+>l a n n n ,而∑∞=+1211n l n 发散,故原级数发散.当1=l 时,考虑级数∑∞=2)(ln 1n pn n ,由于nnp pn n n ln ln ln 1)(ln +=,令nnp a n ln ln ln 1+=,则1lim =∞→n n a ,此即为本题1=l 的情形,但由第5题(1)知,该级数在1>p 时收敛,1≤p 时发散,从而当1=l 时,级数∑∞=11n a nn 可能收敛也可能发散.§4 一般项级数1.讨论下列级数的收敛性:(1)∑∞=+-1100)1(n nn n;(2)∑∞=12sin ln n n n n π; (3)∑∞=++++-1131211)1(n nnn ;(4)∑∞=-+-2)1()1(n nnn ; (5))1(sin 21+∑∞=n n π;(6)∑∞=--12)1(3)1(n n n n ;(7))0()1(1>-∑∞=p n n pn; (8)2sin 311πn n n∑∞=; (9)∑∞=-12cos )1(n nnn; (10)∑∞=-12sin )1(n nn n;(11))0(sin)1(1≠-∑∞=x nxn n ; (12)∑∞=+-12)1()1(n n n n; (13)++--+++--++--1111131131121121n n ; (14))0(1)1(11>+-∑∞=+a a an n nn ;(15)∑∞=⎪⎭⎫ ⎝⎛+11sin n n n n ; (16)∑∞=⋅12sin sin n n n n .解(1)∑∞=+-1100)1(n nn n.令100)(+=x x x f ,则2)100(2100)(+-='x x x x f ,显然当100>x 时0)(≤'x f ,即)(x f 单调下降并趋向于0.由于级数前有限项的值不影响该级数的敛散性,因而由Leibniz 判别法知原交错级数收敛.(2)∑∞=12sin ln n n nn π.由于⎩⎨⎧∈-=-∈==+++,,12,)1(,,2,02sin 1Z k k n Z k k n n k π 舍去偶数项,原级数∑∑∞=+∞=---=11112)12ln()1(2sin ln k k n k k n n n π变成交错级数.令x xx f ln )(=,则2ln 1)(xxx f -=',显然当3≥x 时0)(<'x f ,即)(x f 单调下降并趋向于0.因而从第3项开始,数列⎭⎬⎫⎩⎨⎧n n ln 单调下降并趋向于0,故n 取奇数时该数列也是单调下降并趋向于0的,由Leibniz 判别法知,原交错级数收敛.(3)∑∞=++++-1131211)1(n nnn .由于数列的前n 项的算术平均数构成的新数列极限与原数列极限相等,故根据数列⎭⎬⎫⎩⎨⎧n 1单调递减趋向于0知,数列⎭⎬⎫⎩⎨⎧++++n n 131211 单调递减趋向于0,又因为原级数是一个交错级数,由Leibniz 判别法知原交错级数收敛.(4)∑∞=-+-2)1()1(n nn n .由于⎪⎪⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+---=-+⋅-=-+-2311)1(1)1(1)1()1(11)1()1()1(nO n n n O n n nn n nn n n nnn ,而级数∑∞=-2)1(n nn及∑∞=2231n n收敛,但级数∑∞=21n n发散,因而原级数发散. (5))1(sin 21+∑∞=n n π.由于)1(sin )1())1(sin()1sin(222n n n n n n n -+-=-++=+ππππnn n ++-=1sin)1(2π,又由于⎭⎬⎫⎩⎨⎧++n n 1sin 2π单调下降趋于0,故由Leibniz 判别法知原级数收敛. (6)∑∞=--12)1(3)1(n n n n .由于∑∑∞=∞=-=-112)1(313)1(n nn nn n 收敛,故原级数绝对收敛,因而自身收敛.(7))0()1(1>-∑∞=p n n p n .由于pn 1单调递减趋向于0,根据Leibniz 判别法知原级数收敛.进一步可知:当10≤<p 时级数条件收敛,当1>p 时级数绝对收敛.(8)2sin 311πn n n ∑∞=.由于n n n 312sin31≤π,而∑∞=131n n 收敛,故原级数收敛且绝对收敛.(9)∑∞=-12cos )1(n nnn.由于 n k nk 2cos 1sin 24cos 1sin 22cos 1sin 22cos 1sin 21+++=∑=))12sin()12(sin()3sin 5(sin )1sin 3(sin --+++-+-=n n 1sin )12sin(-+=n ,故1sin 11sin 21sin )12sin(2cos 1≤-+=∑=n k nk ,即∑∞=12cos n n 的部分和数列有界,而数列⎭⎬⎫⎩⎨⎧n 1单调趋于0,由Dirichlet 判别法知级数∑∞=12cos n n n 收敛,即∑∞=-12cos )1(n n n n 收敛,从而原级。

数值分析简明教程课后习题答案

数值分析简明教程课后习题答案

比较详细的数值分析课后习题答案0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。

【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。

【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。

数学分析课本(华师大三版)-习题及答案第十六章

数学分析课本(华师大三版)-习题及答案第十六章

第十六章 多元函数的极限与连续一、证明题1. 证明: 当且仅当存在各点互不相同的点列{p n }⊂E,p ≠p 0. ∞→n lim P n =P 0时P 0是E 的聚点. 2. 证明:闭域必是闭集,举例证明反之不真.3. 证明:点列{p n (x n ,y n )}收敛于p 0(x 0,y 0)的充要条件是∞→n lim x n =x 0和∞→n lim y n =y 0. 4. 证明: 开集与闭集具有对偶性——若E 为开集,则E c 为闭集;若E 为闭集,则E c 为开集.5. 证明:(1) 若F 1,F 2为闭集,则F 1∪f 2与F 1∩F 2都为闭集;(2) 若E 1,E 2为开集,则E 1∪E 2与E 1∩E 2都为开集;(3) 若F 为闭集,E 为开集,则F\F 为闭集,E\F 为开集.6. 试把闭区域套定理推广为闭集套定理,并证明之.7. 证明定理16.4(有限覆盖定理):8. 证明: 若1°y)f(x,lim (0,0)y)(x,→存在且等于A;2°当y 在b 的某邻域内时,存在有(y)y)f(x,lim a x ϕ=→,则A y)f(x,lim lim a x b y =→→.9. 试应用ε-δ定义证明: 0y x y x lim 222(0,0)y)(x,=+→. 10. 叙述并证明: 二元函数极限存在的唯一性定理,局部有界性定理与局部保号性定理.11. 叙述并证明二元连续函数的局部保号性.12.设f(x,y)=()()⎪⎩⎪⎨⎧=+>≠++0y x 0,0p 0y x ,y x x 2222p 22试讨论它在(0,0)点的连续性.13. 设f(x,y)定义于闭矩形域S=[a,b]×[c,d],若f 对y 在[c,d]上处处连续.对x 在[a,b]上(且关于y)为一致连续,证明f 在S 上处处连续.14. 证明:若D ⊂R 2是有界闭域,f 为D 上连续函数,则f(D)不仅有界(定理16.8)而且是闭区间.15. 若一元函数ϕ(x)在[a,b]上连续,令f(x,y)=ϕ(x),(x,y)∈D=[a,b]×(-∞,+∞),试讨论f 在D 上是否连续?是否一致连续?16. 设(x,y)=x y11-,(x,y)∈D=[)[)1,01,0⨯,证明f 在D 上不一致连续.17. 设f 在R 2上分别对每一自变量x 和y 是连续的,并且每当固定x 时f 对y 是单调的,证明f 是R 2上的二元连续函数.二、计算题1.判断下列平面点集,哪些是开集、闭集、有界集或区域?并分别指出它们的聚点与界点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章 偏导数与全微分§1 偏导数与全微分的概念1.求下列函数的偏导数: (1))ln(222y x x u +=; (2))cos()(xy y x u +=; (3)xy u arctan =; (4)yx xy u +=; (5))sin(xy xyeu =;(6)xyy x u +=.解(1)])[ln(22)ln(22222222222y x x y x x y x x x y x x x u +++=+++=∂∂;22222222yx y x y x y x x u +=+=∂∂. (2))sin()()cos())sin()(()cos(xy y x y xy y xy y x xy xu+-=-++=∂∂;由x ,y 的对称性,)sin()()cos(xy y x x xy yu+-=∂∂. (3)2222)()(11y x y x y x y xu +-=-+=∂∂; 2221)(11y x x x xy y u +=+=∂∂. (4)y y x u 1+=∂∂, 2yx x y u -=∂∂. (5))sin()sin()sin())cos(1()cos(xy xy xy e xy xy y y xy xye ye xu+=+=∂∂,根据x ,y 的对称性,)sin())cos(1(xy e xy xy x yu+=∂∂. (6)y y yx xux y ln 1+=∂∂-; 1ln -+=∂∂x y xy x x y u .2.设⎪⎩⎪⎨⎧=+≠++=.0,0,0,1sin ),(222222y x y x y x y y x f考察函数在)0,0(点的偏导数.解 000lim )0,0()0,(lim )0,0(lim000=∆-=∆-∆=∆∆→∆→∆→∆x xf x f x f x x x x ,即0)0,0(=x f ,而20200)(1sinlim 01sinlim )0,0(),0(lim)0,0(limy y yy yf y f yf y y y y y ∆=∆-∆∆=∆-∆=∆∆→∆→∆→∆→∆不存在,)0,0(y f 不存在.3.证明函数22y x u +=在)0,0(点连续但偏导数不存在. 证明 显然22y x u +=在)0,0(点连续,但x x xx x u x x x x ∆∆=∆-∆=∆∆→∆→∆→∆0200lim0)(lim )0,0(lim 不存在,由对称性yu y y ∆∆→∆)0,0(lim不存在,因而22y x u +=在)0,0(点的两个偏导数均不存在.4.求下列函数的全微分:(1)222z y x u ++=;(2)y e xeu x zy ++=-.解(1))(21222222222z y x d z y x z y x d du ++++=++=)(1222zdz ydy xdx zy x ++++=dz zy x z dy zy x y dx zy x x 222222222++++++++=.(2)dy dx e ydz zdy xe dx e y e xed du x z y z y x zy +-++=++=--)()(dz xye dy xze dx e e z y z y x z y +++-=-)1()(.5.求下列函数在给定点的全微分: (1)22yx x u +=在点)0,1(和)1,0(;(2))ln(2y x u +=在点)1,0(和)1,1(; (3)zyxu =在点)1,1,1(; (4)yxy x u arcsin)1(-+=在点)1,0(. 解(1))()(21)1(22322222222y x d y x xy x dx y x xd y x dx du ++-+=+++=)()(32222ydy xdx y x xyx dx ++-+=22222)(yx y x xydy dx y ++-=,所以,在点)0,1(,0=du ,在点)1,0(,dx du =.(2)dy yx y dx y x ydy dx y x du 22221)2(1+++=++=,在点)1,0(,dy dx du 2+=;在点)1,1(,dy dx du +=21. (3)11)(1-=∂∂z y x yz x u ,112)(--=∂∂z yx z y x y u ,y x y x z z uz ln )(112-=∂∂,所以, dz y xyx z dy y x z y x dx y x yz du z z z ln )(1)()(11211211--=--,故在)1,1,1(有,dy dx du -=.(4)函数的定义域为}00:),{(x y or y x y x ≤≤≤≤.当0≠x 时,有22111)1(arcsiny xdyydx y xy x y dy yxdx du ---++= dy xxy y y y x y x dx x xy y y )2sgn )1((arcsin)2sgn )1(1(22--++--+=,而当0=x 时,由于)arcsin 11(lim ),0(),(lim 00yx yx y x y x y f y x f x x -+=-++→→不存在,所以在),0(y ,),0(y f x 不存在,虽然00lim ),0(),0(lim),0(00=∆=∆-∆+=→∆→∆y yy f y y f y f y y y ,但在点),0(y ,du 不存在,因而yxy x u arcsin)1(-+=在点)1,0(不可微. 6. 考虑函数),(y x f 在)0,0(点的可微性,其中⎪⎩⎪⎨⎧=+≠++=.0,0,0,1sin ),(222222y x y x y x xy y x f解 因为000lim )0,0()0,(lim )0,0(lim 000=∆-=∆-∆=∆∆→∆→∆→∆xx f x f x f x x x x ,所以0)0,0(=x f ,由对称性,0)0,0(=y f .若函数),(y x f 在)0,0(可微,则按可微的定义,应有221sin])0,0()0,0([)0,0(),(yx y x y f x f f y x f y x ∆+∆∆∆=∆+∆--∆∆, 是比22y x ∆+∆=ρ更高阶的无穷小,为此考察极限22220022001sinlim1sinlimyx y x y x y x y x y x y x ∆+∆∆+∆∆∆=∆+∆∆∆→∆→∆→∆→∆ρ, 由于2222222222)(211sin yx y x y x y x y x y x y x ∆+∆∆+∆≤∆+∆∆∆≤∆+∆∆+∆∆∆, 所以,01sinlim22220=∆+∆∆+∆∆∆→∆→∆yx y x y x y x ,故),(y x f 在)0,0(可微. 7.证明函数⎪⎩⎪⎨⎧=+≠++=0,0,0,),(2222222y x y x y x y x y x f在)0,0(点连续且偏导数存在,但在此点不可微.证明 因为x y x xy x y x y x 2122222≤+⋅=+,所以)0,0(0),(lim 00f y x f y x ==→→,即),(y x f 在点)0,0(点连续,又0)0,0()0,(lim )0,0(lim 00=∆-∆=∆∆→∆→∆x f x f x f x x x ,0)0,0(),0(lim)0,0(lim0=∆-∆=∆∆→∆→∆yf y f yf oy y y ,所以,0)0,0()0,0(==y x f f .若函数),(y x f 在)0,0(可微,则应有222)()(])0,0()0,0([)0,0(),(y x yx y f x f f y x f y x ∆+∆∆∆=∆+∆--∆∆ 是比22y x ∆+∆=ρ更高阶的无穷小量,为此考察极限32220022200)(lim 1lim y x yx y x y x y x y x ∆+∆∆∆=∆+∆∆∆→∆→∆→∆→∆ρ,令x y ∆=∆,当),(y x ∆∆沿直线x y ∆=∆趋于)0,0(时,xx y x y x x xy x ∆∆=∆+∆∆∆→∆∆=∆→∆032220lim)(lim不存在,即222)()(y x yx ∆+∆∆∆不是比ρ更高阶的无穷小量,因此),(y x f 在)0,0(不可微.8.证明函数⎪⎩⎪⎨⎧=+≠+++=0,0,0,1sin )(),(22222222y x y x y x y x y x f的偏导数存在,但偏导数在)0,0(点不连续,且在)0,0(点的任何邻域中无界,而f 在原点)0,0(可微.证明 ⎪⎩⎪⎨⎧=+≠+++-+=,0,0,0,)1cos 11(sin 2),(2222222222y x y x y x y x y x x y x f x⎪⎩⎪⎨⎧=+≠+++-+=,0,0,0,)1cos 11(sin 2),(2222222222y x y x y x y x y x y y x f y而),(lim 0y x f x y x →→不存在,),(lim 00y x f y y x →→也不存在,因而),(),,(y x f y x f y x 在)0,0(点均不连续. n M ∃>∀>∀,0,0δ,使δπ<n 21且M n >π22,但),()0,21(δπP n P n O ∈,),()21,0(δπP n P n O ∈'时,而由于M n n f P f x n x >==ππ22)0,21()(, M n n f P f x n y >=='ππ22)21,0()(,所以,),(y x f x ,),(y x f y 在)0,0(点的任何邻域中均无界.但由于ρ])0,0()0,0([)0,0(),(y f x f f y x f y x ∆+∆--∆∆))0,0(),((0)()(1sin)()(2222→∆∆→∆+∆∆+∆=y x y x y x , 所以,),(y x f 在)0,0(可微,且在)0,0(的微分0)0,0(=df .9.设⎪⎩⎪⎨⎧=+≠++=.0,0,0,2),(2222224y x y x y x xy y x f证明x f∂∂和yf ∂∂在)0,0(点连续. 证明 ⎪⎩⎪⎨⎧=+≠++=∂∂,0,0,0,)(222222224y x y x y x xy x f 因为y y x yy x xy ≤+≤+22322242,所以)0,0(0lim 00x y x f x f==∂∂→→,即),(y x f x 在)0,0(连续,由对称性,yf∂∂亦在)0,0(点连续. 10.设⎪⎩⎪⎨⎧=+≠++-=+.0,0,0,1),(222222)(22y x y x y x e y x f y x x证明),(y x f 在点)0,0(可微,并求)0,0(df .证明 1)(lim 1lim)0,0(3330303-=∆∆+∆-=∆-=→∆∆→∆x x o x x e f x x x x ,00lim )0,0(0==→∆y y f ,ρ])0,0()0,0([)0,0(),(y f x f f y x f y x ∆+∆--∆∆2322)(2222)()()(1112222y x e y x x x y x ey x x y x x ∆+∆-∆+∆∆+=⎪⎪⎭⎫ ⎝⎛∆+∆+∆-=∆=∆∆∆+∆∆ρ232222222222)()(()(21y x y x x y x x ∆+∆∆+∆∆+∆+∆∆-=ο ))0,0(),((0))(()(212122221222→∆∆→∆+∆∆+∆+∆∆-=y x y x x y x x ο,所以,),(y x f 在)0,0(可微,且dx x df -=∆-=)0,0(.11.设⎪⎩⎪⎨⎧=+≠++=.0,0,0,),(2222223y x y x y x x y x f(1))(,)(t y y t x x ==是通过原点的任意可微曲线(即0,0)0()0(22≠=+t y x 时,)(,)(,0)()(22t y t x t y t x ≠+可微).求证))(),((t y t x f 可微;(2)),(y x f 在)0,0(不可微.证明(1)设⎪⎩⎪⎨⎧=≠+==,0,0,0,)()()())(),(()(223t t t y t x t x t y t x f t ϕ,所以0,)]()([)]()()(2)()(3)()()[()(222222≠+'-'+'='t t y t x t y t y t x t x t y t x t x t x t ϕ, 而在0=t ,由于))()(()(lim)0()(lim)0(22300t y t x t t x t t t t +=-='→→ϕϕϕ,若,0)0(≠'x 则 2232230)]0([)]0([1)]0([))(())((1))((lim )0(y x x tt y t t x t t x t '+''=+='→ϕ,若,0)0(='x 则由于t t x t y t x t t x )())()(()(233≤+,而0)0()(lim 0='=→x t t x t , 所以,0))()(()(lim2230=+→t y t x t t x t ,即0)0(='ϕ.故))(),((t y t x f 可微. (2)1)0,0()0,(lim )0,0(0=∆-∆=→∆xf x f f x x ;0)0,0(),0(lim)0,0(0=∆-∆=→∆yf y f f y y ,若函数),(y x f 在)0,0(可微,则按可微的定义,应有 ))0,0()0,0(()0,0(),(y f x f f y x f y x ∆+∆--∆∆222223y x y x x y x x ∆+∆∆∆-=∆-∆+∆∆=,是比22y x ∆+∆=ρ更高阶的无穷小,为此考察极限232220022200)(lim )(1lim y x y x y x y x y x y x ∆+∆∆∆-=∆+∆∆∆-→∆→∆→∆→∆ρ,设x y ∆=∆,则有xx x x y x y x x x xy x ∆∆-=∆∆-=∆+∆∆∆-→∆→∆∆=∆→∆023230232220lim221)2(lim)(lim, 该极限不存在,因而)(1lim22200y x y x y x ∆+∆∆∆-→∆→∆ρ不是比ρ更高阶的无穷小量,因此),(y x f 在)0,0(不可微.12.设y x ,很小,利用全微分推出下列各式的近似公式:(1)nm y x )1()1(++; (2)xyyx ++1arctan. 解(1)nm x y x m y x f )1()1(),(1++=-,1)1()1(),(-++=n m y y x n y x f ,因而,m f x =)0,0(,n f y =)0,0(,)(1)()0,0()0,0()0,0()1()1(22y x ny mx y f x f f y x y x n m ++++=+++=++ορο,因此,当y x ,很小时,ny mx y x nm++≈++1)1()1(.(2)222222)()1(1)1(1)1(11),(y x xy y xy y xyy x y x f x +++-=+-+++=,由对称性, 222)()1(1),(y x xy x y x f y +++-=, 所以,)0,0(1)0,0(y x f f ==,而00arctan )0,0(==f ,故)(1arctanρο++=++y x xyyx ,因此,当y x ,很小时,y x xyyx +≈++1arctan.13.设),(y x f u =在矩形:d y c b x a <<<<,内可微,且全微分du 恒为零,问),(y x f 在该矩形内是否应取常数值?证明你的结论.解 ),(y x f 在该矩形内应取常数值.证明如下:由于),(y x f u =在矩形内可微,故),(),(),(d c b a y x ⨯∈∀,因为0),(),(≡+=dy y x f dx y x f du y x ,所以,0),(≡y x f x ,0),(≡y x f y ,故取定∈),(000y x P 该矩形,有)],(),([)],(),([),(),(000000y x f y x f y x f y x f y x f y x f -+-=- ))((,())(),((002000010y y y y y x f x x y x x x f y x --++--+=θθ)10,10(021<<<<=θθ,所以,C y x f y x f ≡=),(),(00,即),(y x f 取常数值),(00y x f C =.14.设xf∂∂在),(00y x 存在,y f ∂∂在),(00y x 连续,求证),(y x f 在),(00y x 可微.证明 ),(),(0000y x f y y x x f -∆+∆+),(),(),(),(00000000y x f y x x f y x x f y y x x f -∆++∆+-∆+∆+=,由于yf∂∂在),(00y x 连续,因而在),(000y x P 存在,由一元函数的Lagrange 中值定理,知10:<<∃θθ,使得y y y x x f y x x f y y x x f y ∆∆+∆+=∆+-∆+∆+),(),(),(000000θ,由于y f∂∂在),(00y x 连续,故),(),(lim 000000y x f y y x x f y y y x =∆+∆+→∆→∆θ,所以βθ+=∆+∆+),(),(0000y x f y y x x f y y ,其中0lim 0=→∆→∆βy x .而对),(),(0000y x f y x x f -∆+,设),,()(0y x f x =Φ则)()(),(),(000000x x x y x f y x x f Φ-∆+Φ=-∆+,由于),()(000y x f x x =Φ',故)(x Φ在0x 可导,因而可微,即)()(),(),(000000x x x y x f y x x f Φ-∆+Φ=-∆+αα+∆=+∆Φ'=x y x f x x x ),()(000,其中)0()(→∆∆=x x o α,所以,αβ+∆+∆+∆=-∆+∆+y x y x f y y x f y x f y y x x f x y ),(),(),(),(00000000,其中)0(0→→+≤+∆ρραβραβy ,所以),(y x f 在),(00y x 可微.15. 求下列函数的所有二阶偏导数: (1)22lny x u +=; (2)xy xy u +=; (3))cos()sin(y x y y x x u +++=;(4)xye u =; 解 )ln(2122y x u +=,2222221y x x y x x x u +=+=∂∂,由对称性,22y x y y u +=∂∂, 2222222)(y x x y x u +-=∂∂, )(2222y x xy y x u +-=∂∂∂, 由对称性,2222)(2y x xyx y u +-=∂∂∂, 2222222)(y x y x y u +-=∂∂. (2)2xy y x u -=∂∂,x x x u 1+=∂∂, 3222xyx u =∂∂,2211x y x u -=∂∂∂,2211x x y u -=∂∂∂,022=∂∂y u . (3))sin()cos()sin(y x y y x x y x xu+-+++=∂∂, )sin()cos()cos(y x y y x y x x yu+-+++=∂∂, )cos()sin()cos(222y x y y x x y x x u+-+-+=∂∂, )cos()sin()sin()cos(2y x y y x y x x y x yx u+-+-+-+=∂∂∂, )cos()sin()sin()cos(2y x y y x y x x y x xy u+-+-+-+=∂∂∂, )cos()sin(2)sin(22y x y y x y x x yu+-+-+-=∂∂. (4)xyye x u =∂∂,xy xe y u =∂∂,xy e y xu 222=∂∂,xy xy xye e y x u +=∂∂∂2,xy xy xye e x y u +=∂∂∂2, xy e x yu222=∂∂. 16.求下列函数指定阶的偏导数:(1)x y y x u sin sin 33+=,求 336yx u∂∂∂;(2)xyyx u -+=1arctan,求所有三阶偏导数; (3))sin(22y x u +=,求3333,yux u ∂∂∂∂; (4)zy x xyzeu ++=,求r q r r q p zy x u∂∂∂∂++;(5))(y x y x y x u ≠-+=,求n m n m yx u∂∂∂+; (6))ln(by ax u +=,求n m n m yx u∂∂∂+.解(1)x y y x xu cos sin 332+=∂∂,x y y x x u sin sin 6322-=∂∂,x y y xu cos sin 6333-=∂∂,x y y y x u cos 3cos 6234-=∂∂∂, x y y yx ucos 6sin 6235--=∂∂∂,x y y x u cos 6cos 6332--=∂∂∂. (2) 222222211)()1(1)1(1111x y x xy y xy y xy y x xu+=++-+=-+⎪⎪⎭⎫⎝⎛-++=∂∂; 211y y u +=∂∂,2222)1(2x xx u +-=∂∂,2222)1(2y y y u +-=∂∂,022=∂∂∂=∂∂∂x y u y x u , 32233)1()13(2x x x u +-=∂∂,32233)1()13(2y y y u +-=∂∂,02323=∂∂∂=∂∂∂y x u y x u . (3))cos(222y x x xu +=∂∂,)sin(4)cos(22222222y x x y x x u +-+=∂∂, )cos(8)sin(122232233y x x y x x xu +-+-=∂∂, 由对称性,)cos(8)sin(122232233y x y y x y yu+-+-=∂∂.(4)z y x z y x z y x yze x xyze yze xu+++++++=+=∂∂)1(,z y x z y x z y x yze x yze x yze xu+++++++=++=∂∂)2()1(22, 由归纳法不难知道,zy x pp yze p x xu +++=∂∂)(. zy x z y x z y x pp ze y p x yze p x ze p x yx u +++++++++=+++=∂∂∂)1)(()()(1, 不难用归纳法知道, z y x q p q p ze q y p x yx u+++++=∂∂∂))((.zy x z y x qp q p ze q y p x e q y p x zy x u +++++++++++=∂∂∂∂))(())((1 z y x e z q y p x +++++=)1)()((,同样用归纳法不难知道,z y x r q p r q p e r z q y p x zy x u+++++++=∂∂∂∂))()((.(5)12)(!)1(2)(2+--=∂∂⇒--=∂∂m m m m y x y m x u y x y x u (使用数学归纳法), 21)(!)1(2++-+-=∂∂∂m mm m y x my x m y x u , 322)()2)(1(!)1(2++-++-=∂∂∂m mm m y x my x m m y x u , 433)()3)(2)(1(!)1(2++-+++-=∂∂∂m mm m y x my x m m m y x u , 用归纳法,不难计算,1)()!1()1(2+++-+-+-=∂∂∂n m mn m n m y x my nx n m y x u . (6))0()(1≠+=+=∂∂a ya b x by ax a x u , )0()()!1()1()()!1()1()()!1()1(111≠+--=+--=+--=∂∂---b x ba yb a m by ax a m y a b x m x u x mm mm mm m m m m mnm m n m m nm n m x b a y b n m m m a m yx u +-++--++--=∂∂∂)()1)(1()1()!1()1(1 nm nm n m by ax b a n m +-++-+-=)()!1()1(1.17.验证下列函数满足02222=∂∂+∂∂yux u . (1))ln(22y x u +=; (2)22y x u -=; (3)y e u x cos =; (4)xyu arctan=. 证明(1)由15(1),知 2222222)()(2y x x y x u +-=∂∂,2222222)()(2y x y x y u +-=∂∂,所以02222=∂∂+∂∂y u x u . (2)x x u 2=∂∂,222=∂∂x u ,y y u 2-=∂∂,222-=∂∂y u 所以02222=∂∂+∂∂y ux u . (3)y e x u xcos =∂∂,y e x u x cos 22=∂∂,y e y u x sin -=∂∂,y e y u x cos 22-=∂∂,所以,02222=∂∂+∂∂yux u . (4)2222)()(11y x yx y xy xu+-=-+=∂∂,22222)(2y x xy x u +=∂∂, 2221)(11y x xx xy yu +=+=∂∂,22222)(2y x xy y u +-=∂∂,所以,02222=∂∂+∂∂yux u .18.设函数))((y x u ψϕ+=,证明222xuy u y x u x u ∂∂∂∂=∂∂∂∂∂. 证明).())(()),((y y x yu y x x u ψψϕψϕ'+'=∂∂+'=∂∂ )())(()),((222y y x y x u y x xu ψψϕψϕ'+''=∂∂∂+''=∂∂; )())(())((2y y x y x yx ux u ψψϕψϕ'+''+'=∂∂∂∂∂;))(()())((22y x y y x xuy u ψϕϕψϕ+'''+'=∂∂∂∂; 即222xu y u y x u x u ∂∂∂∂=∂∂∂∂∂. 19.设y x f f ,在点),(00y x 的某邻域内存在且在点),(00y x 点可微,则有),(),(0000y x f y x f yx xy =.证明 像定理16.4的证明过程中一样计算,知),(00y x f xy 与),(00y x f yx 是函数yx y x f y x x f y y x f y y x x f y x W ∆∆+∆+-∆+-∆+∆+=∆∆),(),(),(),(00000000 的两个累次极限.我们利用y x f f '',在),(00y x 处的可微性,下面证明yx W∆∆可改写成 xyx y y x f y x W yx ∆∆-∆∆++''=∆∆θεθεε32100),(, (*)和yxy x y x f y x W xy ∆∆-∆∆++''=∆∆1615400),(θεθεε, (**)二者对充分小的y x ∆∆,同时成立,且当0,0→∆→∆y x 时,)6,,1(0 =→i i ε,1,01<<θθ.于是令0→∆=∆y x 可得,),(),(0000y x f y x f xy yx''=''. (#) 可见,问题归结为证明(*),(**)成立.为此取y x ∆∆,充分小,引入辅助函数),(),()(00y x f y x x f y -∆+=ϕ,式yx W∆∆可改写为 )(1)]()([1000y y xy y y y x y x W y ∆+'∆=-∆+∆∆=∆∆θϕϕϕ )],(),([10000y y x f y y x x f xy y ∆+-∆+∆+∆=θθ,(101<<θ), 由于y f 在),(00y x 处可微,故y y x f x y x f y x f y y x x f yy yx y y ∆+∆+=∆+∆+θθ),(),(),(),(00000000y x ∆+∆+θεε21,其中0,21→εε(当0,→∆∆y x 时),y y y x f y x f y y x f yy y y ∆+∆+=∆+θεθθ3000000),(),(),(,其中03→ε(当0→∆y 时),因此得)},(),({10000y y x f y y x x f xy x W y y ∆+-∆+∆+∆=∆∆θθ y x y y x f x y x f y x f xyy yx y ∆+∆+∆+∆+∆=θεεθ21000000),(),(),({1}),(),(30000y y y x f y x f yy y ∆-∆--θεθxyx y y x f yx ∆∆-∆∆++=θεθεε32100),(, 这正是(*)式.同样,令),,(),()(00y x f y y x f x -∆+=ψ则)(1)]()([11000x x yx x x y x y x W ∆+'∆=-∆+∆∆=∆∆θψψψ )},(),({1010010y x x f y y x x f yx x ∆+-∆+∆+∆=θθ,(101<<θ), 因x f 在),(00y x 处可微,故y y x f x y x f y x f y y x x f xy xx x x ∆+∆+=∆+∆+),(),(),(),(0010000010θθy x ∆+∆+514εθε,其中0,54→εε(当0,→∆∆y x 时),x x y x f y x f y x x f xx x x ∆+∆+=∆+1610000010),(),(),(θεθθ,所以)},(),({1010010y x x f y y x x f yy x W x x ∆+-∆+∆+∆=∆∆θθ y x y y x f x y x f y x f yxy xx x ∆+∆+∆+∆+∆=5140010000),(),(),({1εθεθ }),(),(1610000x x y x f y x f xx x ∆-∆--θεθyx y x y x f xy ∆∆-+∆∆+=1651400),(θεεθε, 这正是(**)式.§2 复合函数与隐函数微分法1.求下列函数的所有二阶偏导数: (1)),(by ax f u =; (2)),(y x y x f u -+=; (3)),(22y x xy f u =; (4)),(zyy x f u =;(5))(222z y x f u ++=; (6)),,(yx xy y x f u +=.解(1)),(),(11by ax af a by ax f xu=⋅=∂∂,),(),(22by ax bf b by ax f y u =⋅=∂∂; ),(11222by ax f a x u =∂∂,),(122by ax abf y x u =∂∂∂,),(212by ax abf x y u =∂∂∂,),(22222by ax f b yu=∂∂. (2)),(),(21y x y x f y x y x f xu-++-+=∂∂, ),(),(21y x y x f y x y x f yu-+--+=∂∂; ),(),(),(),(2221121122y x y x f y x y x f y x y x f y x y x f x u-++-++-++-+=∂∂ ),(),(2),(221211y x y x f y x y x f y x y x f -++-++-+=,),(),(),(),(222112112y x y x f y x y x f y x y x f y x y x f yx u-+--++-+--+=∂∂∂ ),(),(2211y x y x f y x y x f -+--+=,),(),(),(),(222112112y x y x f y x y x f y x y x f y x y x f xy u-+--+--++-+=∂∂∂ ),(),(2211y x y x f y x y x f -+--+=,),(),(),(),(2221121122y x y x f y x y x f y x y x f y x y x f yu-++-+--+--+=∂∂ ),(),(2),(221211y x y x f y x y x f y x y x f -++-+--+=.(3)),(2),(2222212y x xy xyf y x xy f y xu+=∂∂, ),(),(22222221y x xy f x y x xy xyf yu+=∂∂; ),(2)],(2),([222221222112222y x xy yf y x xy xyf y x xy f y y xu ++=∂∂ )],(2),([2222222212y x xy xyf y x xy f y xy ++),(2),(4),(4),(2222222222212322114y x xy yf y x xy f y x y x xy f xy y x xy f y +++=,)],(),(2[),(222122*********y x xy f x y x xy xyf y y x xy yf yx u++=∂∂∂ )],(),(2[2),(2222222221222y x xy f x y x xy xyf xy y x xy xf +++),(2),(5),(22222322122222113y x xy yf x y x xy f y x y x xy f xy ++=),(2),(2222221y x xy xf y x xy yf ++,)],(2),([2),(22212221122212y x xy xyf y x xy f y xy y x xy yf xy u++=∂∂∂ )],(2),([),(22222222122222y x xy xyf y x xy f y x y x xy xf +++ ),(2),(5),(22222322122222113y x xy yf x y x xy f y x y x xy f xy ++= ),(2),(2222221y x xy xf y x xy yf ++,)],(),(2[2),(222122221122122y x xy f x y x xy xyf xy y x xy xf yu++=∂∂ )],(),(2[2222222212y x xy f x y x xy xyf x ++),(2),(),(4),(42212222422123221122y x xy xf y x xy f x y x xy yf x y x xy f y x +++=. (4)),(11z y y x f y x u =∂∂,),(1),(212z y y x f z z y y x f y x y u +-=∂∂,),(22z y y x f zy z u -=∂∂; ),(111222z y y x f yx u =∂∂, )],(1),([1),(112112122z yy x f z z y y x f y x y z y y x f yy x u +-+-=∂∂∂ ),(1),(),(11211312z yy x f yz z y y x f y x z y y x f y +-+-=, ),(1),()(11221222z yy x f zz y y x f z y y z x u -=-=∂∂∂, ),(11),(1),(121112122z yy x f y z z y y x f yy x z y y x f y x y u ⋅+⋅--=∂∂∂ ),(1),(),(11211312z yy x f yz z y y x f yx z y y x f y +--=, )],(1),([),(21211221322z yy x f z z y y x f yx y x z y y x f y x y u +--=∂∂)],(1),([122212zy y x f z z y y x f y x z +-+ ),(1),(2),(),(2222122114213z yy x f zz y y x f z y x z y y x f y x z y y x f y x +-+=,)(),(1),()1()(),(2222221222zy z yy x f z z y y x f z z y z y y x f y x z y u -⋅+-+-⋅-=∂∂∂ ),(),(1),(22322122zyy x f z y z y y x f z z y y x f yz x --=, ),(1),(11222122z y y x f zz y y x f y z y x z u -=⋅-=∂∂∂, )],(1),([),(1222122222zyy x f z z y y x f y x z y z y y x f z y z u +---=∂∂∂ ),(),(),(122312222zyy x f z y z y y x f yz x z y y x f z -+-=, ),(),(2)(),(),(222422322222322z y y x f zy z y y x f y z z y z y y x f z y z y y x f z y z u +=-⋅-=∂∂. (5))(2222z y x f x xu ++'=∂∂,)(2222z y x f y y u ++'=∂∂,)(2222z y x f z z u++'=∂∂;)(4)(2222222222z y x f x z y x f xu ++''+++'=∂∂, )(422222z y x f xy xy u y x u ++''=∂∂∂=∂∂∂,)(422222z y x f xz x z u z x u ++''=∂∂∂=∂∂∂, )(4)(2222222222z y x f y z y x f yu++''+++'=∂∂, )(422222z y x f yz yz uz y u ++''=∂∂∂=∂∂∂, )(4)(2222222222z y x f z z y x f zu ++''+++'=∂∂. (6)),,(1),,(),,(321yxxy y x f y y x xy y x yf y x xy y x f x u +++++=∂∂,),,(),,(),,(3221y xxy y x f yx y x xy y x xf y x xy y x f y u +-+++=∂∂, ),,(1),,9),,(13121122y xxy y x f y y x xy y x yf y x xy y x f xu +++++=∂∂ )],,(1),,(),,([232221yxxy y x f y y x xy y x yf y x xy y x f y ++++++)],,(1),,(),,([1333231yxxy y x f y y x xy y x yf y x xy y x f y ++++++ ),,(2),,(2),,(131211yxxy y x f y y x xy y x yf y x xy y x f +++++= ),,(1),,(2),,(33223222yxxy y x f y y x xy y x f y x xy y x f y ++++++,),,(),,(),,(132121122y xxy y x f yx y x xy y x xf y x xy y x f x y u y x u +-+++=∂∂∂=∂∂∂ ),,(),,([),,(22212y xxy y x xf y x xy y x f y y x xy y x f ++++++),,([1),,()1()],,(3132232y xxy y x f y y x xy y x f yy x xy y x f y x +++-++-)],,(),,(33232y xxy y x f yx y x xy y x xf +-++),,(),,(1),,(11322y x xy y x f y x xy y x f yy x xy y x f +++-+= ),,(),,()(13212y xxy y x f y x y y x xy y x f y x +-++++),,(),,(33322y xxy y x f yx y x xy y x xyf +-++,),,(),,(),,(132121122y xxy y x f y x y x xy y x xf y x xy y x f y u +-+++=∂∂ )],,(),,(),,([2322221y xxy y x f yx y x xy y x xf y x xy y x f x +-++++),,(),,([),,(23231233y x xy y x xf y x xy y x f y x y x xy y x f y x +++-++)],,(332y xxy y x f y x +-),,(2),,(),,(2121133y xxy y x xf y x xy y x f y x xy y x f yx +++++=),,(2),,(),,(22322222132y x xy y x f y x y x xy y x f x y x xy y x f y x +-+++-),,(3344y xxy y x f yx ++.(在以上各题中,都假设f 对各自变量的二阶混合偏导数与求导次序无关). 2.设)(22y x f yz -=,其中f 是可微函数,验证211yzy z y x z x =∂∂+∂∂. 证明 )()(22)()(2222222222y x f y x f xy x y x f y x f y x z --'-=⋅-'--=∂∂, )(1)2)(()(2222222y x f y y x f y x f y y z -+--'--=∂∂ )(1)()(222222222y x f y x f y x f y -+--'=, 所以,)(1)()(2)()(211222222222222y x yf y x f y x f y y x f y x yf y z y x z x -+++'++--=∂∂+∂∂ 2222)(1y zy x f y y =-=.3.设)(1crt g r v -=,c 为常数,函数g 二阶可导,222z y x r ++=.证明 2222222221tvc z v y v x v ∂∂=∂∂+∂∂+∂∂.证明 )(1crt g r t v -'=∂∂,)(122c r t g r t v -''=∂∂,)221)((1)(2212222222z y x xc c r t g r c r t g z y x x r x v ++--'+-++-=∂∂)()(23crt g cr x c r t g r x -'---=,)(2)(34262322c r t g cr r xr x r c r t g r r x r x r x v -'⋅⋅---⋅⋅+-=∂∂ )()()()(23cr xc r t g cr x cr x c r t g rx -⋅-''--⋅-'-)()(3)(3322422522c rt g rc x c r t g cr r x c r t g r r x -''+-'-+--=, 由函数v 关于z y x ,,的对称性知,)()(3)(332242252222c rt g rc y c r t g cr r y c r t g r r y y v -''+-'-+--=∂∂, )()(3)(332242252222c rt g rc z c r t g cr r z c r t g r r z z v -''+-'-+--=∂∂, 所以,)(3)(352222222222c rt g rr z y x z v y v x v --++=∂∂+∂∂+∂∂ )()(3)(3322242222c r t g cr z y x c r t g cr r z y x -''+++-'-+++ 22221)(1tvc c r t g r c ∂∂=-''=.4.若函数),,(z y x f 对任意的正实数t 满足关系),,(),,(z y x f t tz ty tx f n =,则称),,(z y x f 为n 次齐次函数.设),,(z y x f 可微,试证明),(y x f 为n 次齐次函数的充要条件是),,(z y x nf zf z y f y x f x=∂∂+∂∂+∂∂. 证明 必要性.由于),(y x f 为n 次齐次函数,因此),,(),,(z y x f t tz ty tx f n=,两边对t 求导,有),,(),,(),,(),,(1321z y x f nt tz ty tx zf tz ty tx yf tz ty tx xf n -=++,令ζηξ===tz ty tx ,,,则有),,(),,(),,(),,(),,(11321ζηξζηξζηξζζηξηζηξξf tnt t t t f ntf tf tf tn n n --==++, 再把ζηξ,,用z y x ,,替代,就有),,(z y x nf zfz y f y x f x=∂∂+∂∂+∂∂. 充分性.设),,(z y x f 满足),,(z y x nf zf z y f y x f x=∂∂+∂∂+∂∂,任意固定定义域中一点),,(z y x ,考察下面的t 的函数nt tz ty tx f t F ),,()(=,)0(>t .它在0>t 时有定义且是可微的,对t 求导,得),,()},,(),,(),,({1)(1tz ty tx f t ntz ty tx zf tz ty tx yf tz ty tx xf t t F n z y x n +-++=')},,(),,(),,(),,({11tz ty tx nf tz ty tx tzf tz ty tx tyf tz ty tx txf t z y x n -++=+ 0=,从而当0>t 时,c t F =)((与t 无关的常数).在函数)(t F 的等式中令1=t ,得),,()1(z y x f F c ==,于是,),,(),,()(z y x f t tz ty tx f t F n==,即),,(),,(z y x f t tz ty tx f n=,从而),,(z y x f 为n 次齐次函数.5. 验证下列各式: (1))(22y x u +=ϕ,则0=∂∂-∂∂y u x x u y; (2))(22y x y u -=ϕ,则yxuy u x x u y=∂∂+∂∂; (3))()(y x y y x x u +++=ψϕ,则0222222=∂∂+∂∂∂-∂∂y uy x u xu ;(4))()(x y x y x u ψϕ+=,则022222222=∂∂+∂∂∂+∂∂yu y y x u xy x u x .解(1))(22)(2222y x x x y x xu+'=⋅+'=∂∂ϕϕ,)(222y x y y u +'=∂∂ϕ,所以, 0)(2)(22222=+'-+'=∂∂-∂∂y x xy y x xy yux x u yϕϕ. (2))(222y x xy xu-'=∂∂ϕ,)(2)(22222y x y y x y u -'--=∂∂ϕϕ,所以, yxuy x xy y x x y x xy y u x x u y=-'--+-'=∂∂+∂∂)(2)()(222222222ϕϕϕ. (3))()()(y x y y x x y x xu+'++'++=∂∂ψϕϕ,)()()(y x y y x y x x yu+'++++'=∂∂ψψϕ, )()()(222y x y y x x y x xu+''++''++'=∂∂ψϕϕ, )()()()(2y x y y x y x x y x yx u +''++'++''++'=∂∂∂ψψϕϕ, )()(2)(22y x y y x y x x yu+''++'++''=∂∂ψψϕ, 所以,))()()(2(222222y x y y x x y x y uy x u xu +''++''++'=∂∂+∂∂∂-∂∂ψϕϕ ))()()()((2y x y y x y x x y x +'++'++''++'-ψψϕϕ )()(2)((y x y y x y x x +''++'++''+ψψϕ0=.(4))()()())(())(()(222x y xy x y x y x y x y x y x y x y x x y x uψϕϕψϕϕ'-'-=-'+-'+=∂∂,)(1)(xy x x y y u ϕϕ'+'=∂∂, )()(2)()()(423322222x y xy x y x y x y x y x y x y x y x y x uψψϕϕϕ''+'+''+'+'-=∂∂)()(2)(42332xyx y x y x y x y x y ψψϕ''+'+''=,)()(1)(3222x y xy x y x x y x y y x u ψψϕ''-'-''-=∂∂∂, )(1)(1222x y x x y x y u ψϕ''+''=∂∂, 所以,)()(2)(22222222222x y x y x y x y x y x y y u y y x u xy x u x ψψϕ''+'+''=∂∂+∂∂∂+∂∂ 0)()()(2)(2)(2222222=''+''+''-'-''-x y xy x y x y x y x y x y x y x y x y ψϕψψϕ.6.设),(y x f u =可微,在坐标变换θθsin ,cos r y r x ==,下,证明22222)()()(1)(y ux u u r r u ∂∂+∂∂=∂∂+∂∂θ, 22222222211yux u u r r u r r u ∂∂+∂∂=∂∂+∂∂+∂∂θ. 证明θθsin cos yfx f r u ∂∂+∂∂=∂∂, yf r r x f r y f r x f u ∂∂+∂∂-=∂∂+-⋅∂∂=∂∂θθθθθcos sin )cos ()sin (, 所以,222222)cos sin (1)sin cos ()(1)(y f r r x f ry f x f u r r u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂θθθθθ θθθθcos sin 2sin )(cos )(2222y fx f y f x f ∂∂⋅∂∂+∂∂+∂∂= θθθθ2222cos )(cos sin 2sin )(yfy f x f x f ∂∂+∂∂⋅∂∂-∂∂+ 2222)()()()(yux u y f x f ∂∂+∂∂=∂∂+∂∂=.θθθθθθsin )sin cos (cos )sin cos (22222222yfx y f y x f x f r u ∂∂+∂∂∂+∂∂∂+∂∂=∂∂ θθθθ2222222sin cos sin 2cos yf y x f x f ∂∂+∂∂∂+∂∂=, )cos ()sin ](cos )sin ([22222θθθθθr x f r r y x f r x f u -∂∂+-∂∂∂+-∂∂=∂∂)sin (cos ]cos )sin ([222θθθθr y fr r y f r x y f -∂∂+∂∂+-∂∂∂+θθθθ2222222222cos cos sin 2sin r yf r y x f r x f ∂∂+∂∂∂-∂∂= θθsin cos r yfr x f ∂∂-∂∂-, 因此,2222211θ∂∂+∂∂+∂∂ur r u r ru θθθθθθsin 1cos 1sin cos sin 2cos 2222222y f r x f r y f y x f x f ∂∂+∂∂+∂∂+∂∂∂+∂∂=θθθθθθsin 1cos 1cos cos sin 2sin 2222222y f r x f r yf y x f x f ∂∂-∂∂-∂∂+∂∂∂-∂∂+22222222yux u y f x f ∂∂+∂∂=∂∂+∂∂=. 7.设),(y x f z =可微,在坐标旋转变换θθθθcos sin ,sin cos v u y v u x +=-=下(其中旋转角θ是常数),证明:2222)()()()(vzu z y z x z ∂∂+∂∂=∂∂+∂∂. 这时称22)()(yzx z ∂∂+∂∂是一个形式不变量. 证明θθsin cos y f x f u z ∂∂+∂∂=∂∂,θθcos sin yfx f v z ∂∂+∂∂-=∂∂,所以,2222)cos sin ()sin cos ()()(θθθθyf x f y f x f x zu z ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂ .2222)()()()(yux u y f x f ∂∂+∂∂=∂∂+∂∂=. 8.设函数),(y x f u =满足Laplace 方程02222=∂∂+∂∂yux u , 证明在下列变换下形式保持不变,即仍有02222=∂∂+∂∂tus u .(1)2222,ts ty ts sx +=+=; (2)t e y t e x s ssin ,cos ==;(3)),(t s x ϕ=,),(t s y ψ=满足t s ∂∂=∂∂ψϕ,st ∂∂-=∂∂ψϕ.这组方程称为Cauchy-Riemann 方程.解(1)22222222)(2)(t s sty u t s s t x u s u +-∂∂++-∂∂=∂∂,22222222)()(2t s t s y u t s st x u t u +-∂∂++-∂∂=∂∂, 32222222222222222222222)()3(2)(])(2)([t s t s s x u t s s t t s st y x u s t s t x u s u +-∂∂++-+-⋅∂∂∂++-∂∂=∂∂ 3222222222222222222)()3(2)(2])(2)([t s t s t y u t s st t s st y u s t s t x y u +-∂∂++-+-∂∂++-∂∂∂+ 222222242222242222222)(4)()(4)()(t s t s y u t s s t st y x u s t s t x u +∂∂++-∂∂∂-+-∂∂= 2222232222)()3(2)()3(2t s t s t y u t s t s s x u +-∂∂++-∂∂+, 322222222222222222222)()3(2)(2])()(2[t s s t s x u t s st t s t s y x u t s st x u t u +-∂∂++-+-∂∂∂++-∂∂=∂∂ 222222222222222222222)()3(2)(])()(2[t s s t t y u t s t s t s t s y u t s st x y u +-∂∂++-+-∂∂++-∂∂∂+。

相关文档
最新文档