人教版九年级数学第二十四章《圆》单元知识点总结

合集下载

人教版九年级数学上册课件第24章知识梳理

人教版九年级数学上册课件第24章知识梳理

.
圆锥的侧 面展开图
侧面积公式:
.
展开图
侧面展开图为扇形. 展开扇形的弧长等于底面圆的周长. 展开扇形的半径等于母线长
38
知识点五:圆的有关计算
巩固练习
1.如图,正六边形内接于⊙O中,已知外接圆的半径为
4,则阴影部分的面积为
.
(结果保留π)
2.如图,在边长为4的圆内接正方形ABCD中,AC是对
角线,P为边CD的中点,延长AP交圆于点E,连接
3
重点难点
重点:垂径定理、圆周角定理及推论;切线的性质和判定; 有关圆的计算. 难点:综合利用知识解决相关的问题.
4
知识点一:垂径定理及其推理
知识回顾
C
垂径定理:垂直于弦的直径平分弦,并
且平分弦所对的两条弧.
O
∵ ① CD是直径 ② CD⊥AB
A
③AM=BM, ∴ ④AC=BC,
⑤AD=BD.
B D
40
知识点五:圆的有关计算
巩固练习
5.已知扇形的圆心角为45°,面积S扇形=2π,则这个扇形的半 径是( ).A.4 B. 2 2 C.4π D. 2 2 π 6.若扇形的半径为10cm,弧长是4πcm,则此扇形的面积为 .
41
知识点五:圆的有关计算
巩固练习
7.如图,现有一张圆心角为108°,半径为4cm的扇形纸片,小红剪去圆 心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为1cm
知识点一:垂径定理及其推理
知识回顾
垂径定理的几个基本图形:
C
O
A
A
E
B
D
A
O
D
B
C
D
B

人教版九年级数学第二十四章《圆》单元知识点总结

人教版九年级数学第二十四章《圆》单元知识点总结

人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

九年级人教版24章圆知识点

九年级人教版24章圆知识点

第二十四章圆1圆:在一个平面内,线段OA绕它固定的一个端点O ,另一个端点A所叫做圆。

其固定的端点O叫做,线段OA叫做。

圆既是图形,又是图形,任何一条都是圆的对称轴。

2.圆弧和弦:连接圆上的线段叫做。

经过圆心的弦叫做。

弦的取值范围:;圆上的部分叫做,简称。

大于半圆的弧称为,小于半圆的弧称为。

以A、B为端点的劣弧记作,读作;等圆:能够的两个圆叫做;同圆或等圆的相等;等弧:在中,能够的弧叫做。

3.垂径定理:垂直于弦的直径,并且;几何语言:如图垂径定理的推论:平分弦()的直径,并且平分两条弧。

几何语言:如图4.圆心角和圆周角:顶点在上的角叫做圆心角。

顶点在,并且两边都与圆的角叫做圆周角。

圆心角定理:在,相等的圆心角相等,也相等。

几何语言:如图推论:①在,如果相等,那么它们,。

几何语言:如图②在,如果相等,那么它们,。

几何语言:如图圆周角定理:一条弧所对的等于它所对的的一半。

∠几何语言如图:∵∴∠=∠=12推论:①同弧或等弧所对的相等。

如图:∵∴∠=∠②半圆()所对的圆周角是,90°的圆周角所对的弦是直径。

几何语言:如图几何语言:如图5.圆内接多边形:如果一个多边形的都在同一个圆上,这个多边形叫做;这个圆叫做这个。

圆内接四边形的一个性质:圆内接四边形的。

几何语言:6.点和圆的位置关系:设圆O的半径为r,点P到圆心的距离OP=d,则有①圆内:点P在圆<=>②圆上:点P在圆<=>③圆外:点P在圆<=>圆的确定:①和;②不在的三个点确定一个圆。

7.反证法:假设命题的不成立,由此经过推理得出矛盾,由矛盾断定所作,从而得到原命题成立,这种方法叫做反证法。

8.三角形外接圆,内切圆经过三角形的三个可以作一个圆,这个圆叫做三角形的,其圆心叫做三角形的。

三角形的外心到三角形的的距离相等。

与三角形各边都的圆叫做这个三角形的,其圆心叫做三角形的。

三角形的内心到三角形的的距离相等。

九年级上册数学第24章《圆》知识点梳理完整版

九年级上册数学第24章《圆》知识点梳理完整版

【学习目标】九年级数学上册第24 章《圆》知识点梳理1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段 OA 绕着它的一个端点 O 旋转一周,另一个端点 A 所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心1 2n是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2) 轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. ②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3. 两圆的性质(1) 两个圆是一个轴对称图形,对称轴是两圆连心线.(2) 相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4. 与圆有关的角(1) 圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1. 判定一个点 P 是否在⊙O 上设⊙O 的半径为 ,OP= ,则有点 P 在⊙O 外;点 P 在⊙O 上; 点 P 在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2. 判定几个点A 、A 、 A 在同一个圆上的方法 当时, 在⊙O 上.3. 直线和圆的位置关系设⊙O 半径为 R ,点 O 到直线 的距离为 .(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1) 和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2) 和没有公共点,且的每一个点都在内部内含(3) 和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4) 和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O 表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的 2倍,通常用G 表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径). (3)三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外三角形三边中垂线的(1)OA=OB=OC ;(2)外心不一接圆的圆心) 交点定在三角形内部内心(三角形内三角形三条角平分线(1)到三角形三边距离相等;切圆的圆心) 的交点(2)OA、OB、OC 分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为 R 的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为 R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R ,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积 S、扇形半径 R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】13 (1 + 1)2 + (0 - 3)2 OE 2 - EF 2 3 3 类型一、圆的基础知识1.如图所示,△ABC 的三个顶点的坐标分别为 A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .【答案】 ;【解析】由已知得 BC∥x 轴,则 BC 中垂线为 x =-2 + 4 = 12那么,△ABC 外接圆圆心在直线 x=1 上,设外接圆圆心 P(1,a),则由 PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为 P(1,0) 则 r = PA = = 【总结升华】 三角形的外心是三边中垂线的交点,由 B 、C 的坐标知:圆心 P (设△ABC 的外心为 P )必在直线x=1 上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到 P (1,0);连接 PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径 AB 和弦 CD 相交于点 E ,已知 AE =1cm ,EB =5cm ,∠DEB=60°, 求 CD 的长.【答案与解析】作 OF⊥CD 于 F ,连接 OD .∵ AE =1,EB =5,∴ AB =6. ∵ OA =AB = 3 ,∴ OE =OA-AE =3-1=2.2在 Rt△OEF 中,∵ ∠DEB=60°,∴ ∠EOF=30°, ∴ EF = 1OE = 1 ,∴ OF = = .2在 Rt△DFO 中,OF = ,OD =OA =3,13OD 2 - OF 2∵ OF⊥CD,∴ DF =CF ,∴ CD =2DF = 2 cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作 OF⊥CD 于 F ,构造 Rt△OEF,求半径和 OF 的长;连接 OD ,构造 Rt△OFD,求 CD 的长.举一反三:【变式】如图,AB 、AC 都是圆 O 的弦,OM⊥AB,ON⊥AC,垂足分别为 M 、N ,如果 MN =3,那么 BC = .C【答案】由 OM⊥AB,ON⊥AC,得 M 、N 分别为 AB 、AC 的中点(垂径定理),则 MN 是△ABC 的中位线,BC=2MN=6.3.如图,以原点 O 为圆心的圆交 x 轴于点 A 、B 两点,交 y 轴的正半轴于点 C ,D 为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD = .yCDAOBx(第 3 题)【答案】65°.【解析】连结 OD ,则∠DOB = 40°,设圆交 y 轴负半轴于 E ,得∠DOE= 130°,∠OCD =65°. 【总结升华】根据同弧所对圆周角与圆心角的关系可求. 举一反三:【变式】(2015•黑龙江)如图,⊙O 的半径是 2,AB 是⊙O 的弦,点 P 是弦 AB 上的动点,且 1≤OP ≤2,则弦 AB 所对的圆周角的度数是()A .60°B .120°C .60°或 120°D .30°或 150°【答案】C.【解析】作 OD ⊥AB ,如图,N O AMB∴ DF = = 32 - ( 3)2 = 6 (cm).6∵点P 是弦AB 上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB= ∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB 所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系4.如图,在矩形 ABCD 中,点O 在对角线 AC 上,以OA 的长为半径的圆 O 与AD、AC 分别交于点 E、F,且∠ACB= ∠DCE.请判断直线 CE 与⊙O 的位置关系,并证明你的结论.【答案与解析】直线 CE 与⊙O相切理由:连接 OE∵OE=OA∴∠OEA=∠OAE∵四边形 ABCD 是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线 CE 与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P 为正比例函数图象上的一个动点,的半径为3,设点P 的坐标为(x、y).(1)求与直线相切时点P 的坐标.(2)请直接写出与直线相交、相离时 x 的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,( ,).当与直线相切时,点的坐标为(5,7.5)或( ,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.(2015•丽水)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 分别与BC,AC 交于点D,E,过点D 作⊙O 的切线DF,交AC 于点F.(1)求证:DF⊥AC;(2)若⊙O 的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF 是⊙O 的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O 的半径为4,∴S 扇形AOE=4π,S△AOE=8 ,∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图, AB 所在圆的圆心为 O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留 π).【答案与解析】连接 OB ,过点 O 作 OE⊥AB,垂足为 E ,交 AB 于点 F ,如图(2). 由垂径定理,可知 E 是 AB 中点,F 是 AB 的中点,∴ AE= 1AB = 2 2,EF =2.设半径为 R 米,则 OE =(R-2)m .在 Rt△AOE 中,由勾股定理,得 R 2 = (R - 2)2 + (2 3)2 . 解得 R =4.∴ OE =2,OE = 1AO ,∴ ∠AOE=60°,∴ ∠AOB=120°.2∴ AB 的长为120 ⨯ 4π = 8π(m). 180 3 ∴ 帆布的面积为 8π⨯ 60 = 160π(m 2).3【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以 AB 为底面的圆柱的侧面积.根据题意,应先求出 AB 所对的圆心角度数以及所在圆的半径,才能求 AB 的长.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所 示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽 AB=16cm ,水最深的地方的高度为 4cm ,求这个圆形截面 的半径.【答案】①作法略.如图所示.3②如图所示,过 O 作OC⊥AB于D,交于 C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为 10cm.圆的基本概念和性质【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径. 以点 O 为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为 O,半径为 r 的圆是平面内到定点 O 的距离等于定长 r 的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD.证明:连结OC、OD2.弧∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号) ∴直径AB 是⊙O 中最长的弦.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.(2014 秋•邳州市校级月考)如图所示,BD,CE 是△ABC 的高,求证:E,B,C,D 四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC 的中点F,连接DF,EF.∵BD,CE 是△ABC 的高,∴△BCD 和△BCE 都是直角三角形.∴DF,EF 分别为Rt△BCD 和Rt△BCE 斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D 四点在以F 点为圆心,BC 为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:【变式】下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1 个B.2 个C.3 个D.4 个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选 C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√ ②× ③× ④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】(2014•长宁区一模)下列说法中,结论错误的是()A .直径相等的两个圆是等圆B .长度相等的两条弧是等弧C .圆中最长的弦是直径D .一条弦把圆分成两条弧,这两条弧可能是等弧【答案】B.提示:A 、直径相等的两个圆是等圆,正确,不符合题意;B 、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C 、圆中最长的弦是直径,正确,不符合题意;D 、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选:B .3.直角三角形的三个顶点在⊙O 上,则圆心 O 在 .......................【答案】斜边的中点.【解析】根据圆的定义知圆心 O 到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等. 4.判断正误:有 AB 、C D , AB 的长度为 3cm, C D 的长度为 3cm ,则 AB 与C D 是等弧.【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此, 只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣 弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O 中的优弧 AmB ,中的劣弧C D ,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以 O 为圆心的同心圆中,大圆的弦 AB 交小圆于 C,D.求证:AC=BD.【答案与解析】证明:过 O 点作OM⊥AB于M,交大圆与 E、F 两点.如图,则EF 所在的直线是两圆的对称轴,所以 AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.垂径定理【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(2)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;OD 2 + AD 2 42 + 32 (4) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB 是⊙O 的弦,半径 OC⊥AB 于点 D ,且 AB =6 cm ,OD =4 cm ,则 DC 的长为( )A .5 cmB .2.5 cmC .2 cmD .1 cm【思路点拨】欲求 CD 的长,只要求出⊙O 的半径 r 即可,可以连结 OA ,在 Rt△AOD 中,由勾股定理求出 OA.【答案】D ;【解析】连 OA ,由垂径定理知 AD = 1AB = 3cm , 2所以在 Rt△AOD 中, AO = = = 5 (cm ).所以 DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。

人教版九年级上第二十四章 圆 知识归纳

人教版九年级上第二十四章 圆  知识归纳

第二十四章 圆 知识归纳24.1 圆定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

圆心:(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O 表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d 表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。

半径一般用字母r 表示。

圆的直径和半径都有无数条。

圆是轴对称图形,每条直径所在的直线是圆的对称轴。

在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r 或r=二分之d 。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C 表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。

直径所对的圆周角是直角。

90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积.用字母S 表示。

S=πr 2一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

周长计算公式 1.、已知直径:C=πd 2、已知半径:C=2πr 3、已知周长:d=cπ4、圆周长的一半:21周长(曲线) 5、半圆的长:21周长+直径 面积计算公式: 1、已知半径:S=πr 22、已知直径:S=π(2d )2 3、已知周长:S=π(π2c )224.2 点、直线、圆和圆的位置关系1. 点和圆的位置关系 (d为点到圆心的距离,r为半径)①点在圆内点到圆心的距离小于半径②点在圆上点到圆心的距离等于半径③点在圆外点到圆心的距离大于半径2. 过三点的圆不在同一直线上的三个点确定一个圆。

第二十四章圆(完整知识点)人教版九年级数学上册

第二十四章圆(完整知识点)人教版九年级数学上册

第二十四章 圆一、圆的有关概念及表示方法 (一)圆的定义1、描述性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。

其固定的端点O 叫做圆心,线段OA 叫做半径。

2、集合性定义:圆可以看成是所有到定点(圆心)的距离等于定长(半径)的点的集合。

(二)圆的表示方法:以点O 为圆心的圆,记作⨀O ,读作“圆O ”。

(三)圆具有的特性1、圆上各点到定点(圆心O )的距离都等于定长(半径r )。

2、到定点的距离等于定长的点都在同一个圆上。

注:(1)确定一个圆需要两个因素:圆心确定圆的位置,半径确定圆的大小。

(2)同一个圆中的所有半径都相等,所以圆上任意两点和圆心[三点不共线(直径)]构成的三角形都是等腰三角形。

(四)圆的有关概念1、弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。

以AC 为端点的弦,记作:弦AC 。

注:圆中有无数条弦,其中直径是最长的弦,但弦不一定是直径。

2、弧2.1圆上任意两点间的部分叫做圆弧、简称弧。

以A 、B 为端点的弧记作⨀AB ,读作“圆弧AB ”或“弧AB ”。

2.2圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

大于半圆的弧叫做优弧,如图中的⨀ABC 。

小于半圆的弧叫做劣弧,如图中的⨀AC。

注:(1)在一个圆中,任意一条弦都对着两条弧,任意一条弧只对着一条弦。

(2)弧包括优弧、劣弧、半圆;半圆既不是劣弧,也不是优弧。

3、同圆或等圆:能够重合的两个圆叫做等圆。

同圆或等圆的半径相等。

4、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

等弧是全等的,不仅仅是弧的长度相等。

5、同心圆:圆心相同,半径不相等的圆叫做同心圆。

二、圆的有关性质 (一)垂直于弦的直径1、圆的轴对称性:圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。

名称 文字语言 符号语言 图示垂径 定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧。

人教版九年级上册数学第24章 圆 直线和圆的位置关系——相交、相切、相离

人教版九年级上册数学第24章 圆   直线和圆的位置关系——相交、相切、相离

完成教材P101T2
知2-讲
归纳
知2-讲
如果画图后直线和圆的位置关系不明显,一般不 选用公共点个数来判断直线和圆的位置关系.应采 用比较圆心到直线的距离与半径大小的方法来确定 它们之间的位置关系;在没有给出d与r的具体数值 的情况下,可先利用图形条件及性质求出d与r的值, 再通过比较大小确定其位置关系.
知2-练
1在平面直角坐标系中,以点(-3,4)为圆心,4为半 径的圆( )A A.与x轴相交,与y轴相切 B.与x轴相离,与y轴相交 C.与x轴相切,与y轴相离 D.与x轴相切,与y轴相交
知识点 1 直线和圆的位置关系与圆的
公共点个数间的关系
知1-讲
直线和圆的位置关系与圆的公共点个数间的关系: 直线和圆相交两个公共点d<r 直线和圆相切一个公共点d=r 直线和圆相离没有公共点d>r
知1-讲
已知直线l经过⊙O上的A,B两点,则直线l与⊙O
的位置关系是( B )
A.相切
B.相交
C.相离 D.无法确定
知识点 2 直线与圆的位置关系的性质
知3-导
O
O
O
l
A
l
l AB
直线和圆没有公共点时,叫做直线和圆相离.
直线和圆有唯一公共点时,叫做直线和圆相切.
这条直线叫做圆的切线,这个点叫做切点.
直线和圆有两个公共点时,叫做直线和圆相交.
这条直线叫做圆的割线,公共点叫直线和圆的交点.
总结
1. 直线和圆相离→d>r; 2. 直线和圆相切→d=r; 3. 直线和圆相交→d<r.
第二十四章圆
24.2点和圆、直线和圆的位置关系
第2课时直线和圆的位置关系—— 相交、相切、相离
1 课堂讲解 直线和圆的位置关系与圆的公

九年级数学上册同步精品课堂(人教版)第24章 圆(单元总结)(原卷版)

九年级数学上册同步精品课堂(人教版)第24章 圆(单元总结)(原卷版)

第二十四章圆单元总结【思维导图】【知识要点】知识点一圆的有关性质圆的概念:在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点所形成的图形叫圆.这个固定的端点叫做圆心,线段叫做半径.以点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以为端点的弧记作,读作弧AB.在同圆或等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)【基本性质】(重点)⏹垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1)过圆心,作垂线,连半径,造,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.⏹圆心角、弧、弦、弦心距之间的关系圆心角概念:顶点在圆心的角叫做圆心角.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等⏹圆周角定理(考点)圆周角概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.推论2:半圆(或直径)所对的圆周角是直角,的圆周角所对的弦是直径.(在同圆中,半弧所对的圆心角等于全弧所对的圆周角)⏹圆内接四边形圆内接四边形概念:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形。

初中数学人教九年级上册第二十四章 圆 圆周角定理PPT

初中数学人教九年级上册第二十四章 圆 圆周角定理PPT

(2)∵BA=BC,∴∠A=∠C. 由圆周角定理得∠A=∠E, ∴∠C=∠E,∴DC=DE.
27
28
知识点三:圆周角定理的推论
合作探究
先独立完成导学案互动探究1、3, 再同桌相互交流,最后小组交流;
1.如图,在⊙O中,弦AB=3cm,点C在 ⊙O上,∠ACB=30°.求⊙O直径. 2.如图,AB是⊙O的直径,BD是⊙O的弦 ,延长BD到点C,使AC=AB,BD与CD的 大小有什么关系?为什么?
B A
O A
O B
知识点三:圆周角定理的推论
学以致用
1、如图,AB是半圆的直径,点D是AC的中
点,∠ABC=50°,则∠DAB等于( ) C
A.55°B.60°C.65°D.70°
B
A
O
2.如图,⊙O的半径为1,AB是⊙O的一条
弦,且AB= 3,则弦AB所对的圆周角的度 A
数为( )D A.30º B.60º C.30º或150 º D.60º或120º
如果AB=CD,那么∠E和∠F是什么关系? O1 D
反过来呢?
C
A
F
结合⑴、⑵你能得到什么结论?
O2
B
21
知识点三:圆周角定理的推论
归纳总结
圆周角定理推理1
同弧或等弧所对的圆周角相等; 在同圆或等圆中,相等的圆周角所对的弧相等.
∵ AB=CD ∴∠E=∠F
在⊙O中∵∠E=∠F ∴AB=CD
E
A
F
O D
对的弧也相等;②两条弦相等,弦所对的弧也相等;③弦
心距弦心距所对的弦相等;④两个圆周角相等,圆周角所
对的弧相等;⑤弧相等弧所对的弦相等;
C
⑥弧相等弧所对的圆周角也相等。

人教版九年级数学上册知识点总结:第二十四章圆

人教版九年级数学上册知识点总结:第二十四章圆

人教版九年级数学上册知识点总结第二十四章圆24.1.1 圆知识点一圆的定义圆的定义:第一种:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。

固定的端点O叫作圆心,线段OA叫作半径。

第二种:圆心为O,半径为r的圆是所有到定点O的距离等于定长r的点的集合。

比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。

知识点二圆的相关概念(1)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。

(2)弧:圆上任意两点间的部分叫做圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

(3)等圆:等够重合的两个圆叫做等圆。

(4)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。

24.1.2 垂直于弦的直径知识点一 圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴。

知识点二 垂径定理(1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

如图所示,直径为MD ,AB 是弦, 且CD ⊥AB ,垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧如上图所示,直径MD 与非直径弦AB 相交于点C ,CD ⊥ABAC=BC AM=BMAD=BD注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。

24.1.3 弧、弦、圆心角知识点 弦、弧、圆心角的关系(1) 弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

(2) 在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。

C M A B D o AC=BC AM=BM⌒ ⌒⌒ ⌒ ⌒ 垂足为C ⌒(3)注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,两个圆心角相同,但此时弧、弦不一定相等。

九年级数学上册(人教版)第二十四章《圆》课件

九年级数学上册(人教版)第二十四章《圆》课件
(1)在同圆或等圆中,如果圆心角相等,那么它所 对的弧相等,所对的弦相等. (2)在圆中,如果弧相等,那么它所对的圆心角相 等,所对的弦相等. (3)在一个圆中,如果弦相等,那么它所对的弧相 等,所对的圆心角相等.
O A 2023/1/4
︵ ︵ D ∵ ∠COD =∠AOB ∴ AB = CD C ∴AB=CD
.r
O
S = nπr2
360
2023/1/4

S
=
1
2
lr
4.圆柱的展开图:
A
D
h Br C
S侧 =2πr h S全=2πr h+2 π r2
2023/1/4
5.圆锥的展开图:
a h
r S侧 =πr a S全=πr a+ π r2
2023/1/4
a 侧面
底面
常见的基本图形及结论:
AC
A
2023/1/4
构成等腰解疑难; 灵活应用才方便。
2023/1/4
典型例题:
1.如图, ⊙O的直径AB=12,以OA为直径的 ⊙O1交大圆的弦AC于D,过D点作小圆的 切线交OC于点E,交AB于F.
C
DE A O1 O F B
(1)说明D是AC的中点.
(2)猜想DF与OC的位 置关系,并说明理由. (3)若DF=4,求OF的长.
. (3)弦心距
O
2023/1/4
二. 圆的基本性质 1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.

2023/1/4
2.同圆或等圆中圆心角、弧、弦之间的关系:

2019年秋季人教版九年级数学上册第24章 圆知识点总结与练习 含答案

2019年秋季人教版九年级数学上册第24章  圆知识点总结与练习  含答案

圆1.圆的定义(1)在一个平面内,线段OA 绕它的一个端点O 旋转一周, 另一个端点A 随之旋转所形成的图形叫做圆。

固定的端点O 叫做圆心,线段OA 叫做半径,如右图所示。

(2)圆可以看作是平面内到定点的距离等于定长的点的集 合,定点为圆心,定长为圆的半径。

说明:圆的位置由圆心确定,圆的大小由半径确定,半 径相等的两个圆为等圆。

2.圆的有关概念(1)弦:连结圆上任意两点的线段。

(如右图中 的CD )。

(2)直径:经过圆心的弦(如右图中的AB )。

直径等于半径的2倍。

(3)弧:圆上任意两点间的部分叫做圆弧。

其中大于半圆的弧叫做优弧(4)圆心角:如右图中∠COD 就是圆心角。

3.与圆相关的角(1)与圆相关的角的定义①圆心角:顶点在圆心的角叫做圆心角②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。

③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。

(2)与圆相关的角的性质①圆心角的度数等于它所对的弦的度数;②一条弧所对的圆周角等于它所对的圆心角的一半; ③同弧或等弧所对的圆周角相等; ④半圆(或直径)所对的圆周角相等; ⑤弦切角等于它所夹的弧所对的圆周角;⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

4.圆心角、弧、弦、弦心距之间的关系。

(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。

(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等【例1】 下面四个命题中正确的一个是( )A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧圆的认识A OB CD A【答案】C1.点与圆的位置关系如果圆的半径为r ,某一点到圆心的距离为d ,那么: (1)点在圆外 (2)点在圆上 (3)点在圆内 2.直线和圆的位置关系设r 为圆的半径,d 为圆心到直线的距离(1)直线和圆相离,直线与圆没有交点; (2)直线和圆相切,直线与圆有唯一交点; (3)直线和圆相交,直线与圆有两个交点。

人教版九年级数学上册第二十四章圆全章总复习及知识梳理

人教版九年级数学上册第二十四章圆全章总复习及知识梳理

第二十四章 圆
旋转对称、中心 对称、轴对称
对称性
垂径定理及其推论(注意推论中“不是直径 的弦”的条件) 基本性质 弧、弦、圆心角 关系定理及其推 论 前提条件:在 同圆或等圆中
圆周角定理及其推论
第二十四章 圆
正多边形与圆
等分圆周
有关计算
第二十四章 圆
位置关系 切线的性质 直线与圆的 位置关系 切线的判定 切线的作用
且OM=3, 则⊙O的半径为( C ).
A.10 B. 8 C. 5 D.2
第二十四章 圆
分析
第二十四章 圆
相关题2 如图24-Z-4, 已知AB是⊙O的直径, 且AB=12.
弦CD⊥AB于点M, 且M是半径OB的中点, 则弦CD的长是
6 3 结果保留根号). ______(
第二十四章 圆
解析
【要点指导】一条弧所对的圆周角等于它所对的圆
心角的一半, 在解有关圆的问题时常常借助这个定理
进行角度转化.
第二十四章 圆
例 1 如图24-Z-1, 某珠宝店有一圆形货柜, 为了
增加珠宝的光彩, 在其圆形边缘上的点A处安装了
一台小灯, 它所发出的光线形成的最大张角是65°.
为了使整个货柜里的珠宝都能被灯光照射到, 最少 需在圆形边缘上安装这样的小灯( A.3台 B. 4台 C.5台
A
).
D.6台
第二十四章 圆
分析 ∵∠A=65°,
∴该圆周角所对的弧所对的圆心角是130°.
∵360°÷130°≈2.8, ∴至少要安装3台这样的小灯. 故选A.
第二十四章 圆
相关题1
如图24-Z-2, B, C是⊙A上的两点, AB的垂直平分
线与⊙A交于E, F两点,与线段AC交于点D.若∠BFC=20°, 则

九年级数学上册第二十四章圆易错知识点总结(带答案)

九年级数学上册第二十四章圆易错知识点总结(带答案)

九年级数学上册第二十四章圆易错知识点总结单选题1、连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分∠CHEC.整个图形不是中心对称图形D.△CEH是等边三角形答案:D分析:根据正八边形和圆的性质进行解答即可.解:A.∵根据正八边形的性质,四边形ABCH与四边形EFGH能够完全重合,即四边形ABCH与四边形EFGH 全等∴四边形ABCH与四边形EFGH的周长相等,故选项正确,不符合题意;B.连接DH,如图1,∵正八边形是轴对称图形,直线HD是对称轴,∴HD平分∠CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.∵八边形ABCDEFGH是正八边形,∴B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,∠DOE=360°=45°8∵OE=OH∠DOE=22.5°∴∠OEH=∠OHE=12∴∠CHE=2∠OHE=45°∴∠HCE=∠HEC=1(180°-∠CHE)=67.5°2∴△CEH不是等边三角形,故选项错误,符合题意.故选:D.小提示:本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.2、如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O为圆心,OA,OB长分别为半径,圆心角∠O=120°形成的扇面,若OA=3m,OB=1.5m,则阴影部分的面积为()A.4.25πm2B.3.25πm2C.3πm2D.2.25πm2答案:D分析:根据S阴影=S扇形AOD-S扇形BOC求解即可.解:S阴影=S扇形AOD-S扇形BOC=120π⋅OA2360−120π⋅OB2360=120π(OA2−OB2)360=π(32−1.52)3=2.25π(m2)故选:D.小提示:本题考查扇形面积,不规则图形面积,熟练掌握扇形面积公式是解题的关键.3、如图,线段AB是⊙O的直径,弦CD⊥AB,BC=OD=2,DC的长等于()A.2B.4C.√3D.2√3答案:D分析:如图,令AB、CD的交点为E,由垂径定理得CE=DE,证明Rt△BCE≌Rt△ODE(HL),则BE=OE,OE=12OB=12OD=1,在Rt△ODE中,由勾股定理得DE=√OD2−OE2,求出DE的值,根据CD=2DE计算求解CD的值即可.解:如图,令AB、CD的交点为E,∵CD⊥AB,AB是⊙O的直径,∴CE=DE,在Rt△BCE和Rt△ODE中,∵{BC=ODCE=DE,∴Rt△BCE≌Rt△ODE(HL),∴BE=OE,∴OE=12OB=12OD=1,在Rt△ODE中,由勾股定理得DE=√OD2−OE2=√3,∴CD=2DE=2√3,故选D.小提示:本题考查了垂径定理,全等三角形的判定与性质,勾股定理等知识.解题的关键在于由垂径定理得到CE=DE.4、如图,圆锥底面圆半径为7cm,高为24cm,则它侧面展开图的面积是()A.175π3cm2B.175π2cm2C.175πcm2D.350πcm2答案:C分析:先利用勾股定理计算出AC=25cm,由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则可根据扇形的面积公式计算出圆锥的侧面积.解:在Rt△AOC中,AC=√72+242=25cm,∴它侧面展开图的面积是12×2π×7×25=175πcm2.故选:C小提示:本题考查了圆锥的计算,理解圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长是解题的关键.5、如图,正方形ABCD内接于⊙O,点E为BC⌢上一点,连接BE,若∠CBE=15°,BE=5,则正方形ABCD的边长为()A.7B.5√2C.√10D.2√5答案:B分析:连接DB、OC、OE,根据圆内接正多边形性质,可证△OBE是等边三角形,从而可得BO=CO=OE=5,由此即可解题.解:连接DB、OC、OE,,∵正方形ABCD内接于⊙O,∴∠BOC=90°,∠DBC=45°,D,O,B三点共线,又∵∠CBE=15°,∴∠DBE=∠DBC+∠CBE=45°+15°=60°,又∵BO=CO=OE,∴△OBE是等边三角形,又∵BE=5,∴BO=CO=OE=5,∴BC=√2OB=5√2,选项B符合题意.故选B小提示:本题考查了正多边形和圆、等边三角形判断与性质,掌握圆内接正多边形性质,正确添加辅助线,得出△OBE是等边三角形是解题的关键.6、已知⊙O的半径为3,平面内有一点到圆心O的距离为5,则此点可能是()A.P点B.Q点C.M点D.N点答案:D分析:根据点到圆心O的距离大于半径,可判定出点在圆外,即可得到答案.∵平面内有一点到圆心O的距离为5,5>3.∴该点在圆外,∴点N符合要求.故选:D.小提示:本题考查了点与圆的位置关系,根据点到圆心距离与半径的大小关系可作出判断.7、如图,四边形ABCD内接于⊙O,∠C=100°,那么∠A是()A.60°B.50°C.80°D.100°答案:C分析:根据圆内接四边形的对角互补计算即可.解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠C=100°,∴∠A=180°﹣∠C=180°﹣100°=80°,故选:C.小提示:本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.8、刘徽在《九章算术注》中首创“割圆术”,利用圆的内接正多边形来确定圆周率,开创了中国数学发展史上圆周率研究的新纪元.某同学在学习“割圆术”的过程中,作了一个如图所示的圆内接正十二边形.若⊙O的半径为1,则这个圆内接正十二边形的面积为()A .1B .3C .πD .2π答案:B分析:如图,过A 作AC ⊥OB 于C ,得到圆的内接正十二边形的圆心角为360°12=30°,根据三角形的面积公式即可得到结论.如图,过A 作AC ⊥OB 于C ,∵圆的内接正十二边形的圆心角为360°12=30°,∵OA =1,∴AC =12OA =12, ∴S △OAB =12×1×12=14,∴这个圆的内接正十二边形的面积为12×14=3, 故选:B .小提示:本题考查了正多边形与圆,三角形的面积的计算,解直角三角形,正确的作出辅助线是解题的关键.9、阅读理解:如图1,在平面内选一定点O ,引一条有方向的射线Ox ,再选定一个单位长度,那么平面上任一点M 的位置可由∠MOx 的度数θ与OM 的长度m 确定,有序数对(θ,m)称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为4,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,8)B.(45°,8)C.(60°,4√2)D.(45°,2√2)答案:A分析:设正六边形的中心为D,连接AD,判断出△AOD是等边三角形,根据等边三角形的性质可得OD=OA,∠AOD=60°,再求出OC,然后根据“极坐标”的定义写出即可.解:如图,设正六边形的中心为D,连接AD,∵∠ADO=360°÷6=60°,OD=AD,∴△AOD是等边三角形,∴OD=OA=4,∠AOD=60°,∴OC=2OD=2×4=8,∴正六边形的顶点C的极坐标应记为(60°,8).故选A.小提示:本题考查了正多边形和圆,坐标确定位置,主要利用了正六边形的性质,读懂题目信息,理解“极坐标”的定义是解题的关键.10、如图,四边形ABCD 为矩形,AB =3,BC =4.点P 是线段BC 上一动点,点M 为线段AP 上一点.∠ADM =∠BAP ,则BM 的最小值为( )A .52B .125C .√13−32D .√13−2 答案:D分析:证明∠AMD =90°,得出点M 在O 点为圆心,以AO 为半径的圆上,从而计算出答案.设AD 的中点为O ,以O 点为圆心,AO 为半径画圆∵四边形ABCD 为矩形∴∠BAP +∠MAD =90°∵∠ADM =∠BAP∴∠MAD +∠ADM =90°∴∠AMD=90°∴点M在O点为圆心,以AO为半径的圆上连接OB交圆O与点N∵点B为圆O外一点∴当直线BM过圆心O时,BM最短∵BO2=AB2+AO2,AO=1AD=22∴BO2=9+4=13∴BO=√13∵BN=BO−AO=√13−2故选:D.小提示:本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.填空题11、如图,已知AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD.若∠C=40°,则∠B的度数是_________°.答案:25分析:先由切线的性质可得∠OAC=90°,再根据三角形的内角和定理可求出∠AOD=50°,最后根据“同弧所对的圆周角等于圆心角的一半”即可求出∠B的度数.解:∵AC是⊙O的切线,∴∠OAC=90°∵∠C=40°,∴∠AOD=50°,∴∠B=1∠AOD=25°2所以答案是:25.小提示:本题考查了切线的性质和圆周角定理,掌握圆周角定理是解题的关键.12、如图,已知点G是正六边形ABCDEF对角线FB上的一点,满足BG=3FG,联结FC,如果△EFG的面积为1,那么△FBC的面积等于_______.答案:4分析:解:如图,连接CE,由BG=3FG得BF=4FG,由六边形ABCDEF是正六边形证明EF∥BC,从而得△FBC的面积为△EFG的面积的4倍即可求解.解:如图,连接CE,∵BG=3FG,∴BF=4FG,∵六边形ABCDEF是正六边形,=120°,∴AB=AF=EF=BC,∠ABC=∠BAF=∠AFE=(6−2)×180°6∴∠ABF=∠AFB=180°−120°=30°,2∴∠CBF=∠EFB=120°−30°=90°,∴∠CBF+∠EFB=90°+90°=180°,∴EF∥BC,∴四边形BCEF是平行四边形,∴BF∥EC,∵△EFG的面积为1,BF=4FG,∴△FBC的面积为1×4=4,故答案为4.小提示:本题主要考查了正多边形的性质及平行四边形的判定及性质,作出辅助线构造平行四边形是解题的关键.13、如图,⊙O的直径AB=26,弦CD⊥AB,垂足为E,OE:BE=5:8,则CD的长为______.答案:24分析:连接OC,由题意得OE=5,BE=8,再由垂径定理得CE=DE,∠OEC=90°,然后由勾股定理求出CE=12,即可求解.解:连接OC,如图所示:∵直径AB=26,∴OC=OB=13,∵OE:BE=5:8,∴OE=5,BE=8,∵弦CD⊥AB,∴CE=DE,∠OEC=90°,∴CE=√OC2−OE2=√132−52=12,∴CD=2CE=24,所以答案是:24.小提示:本题考查的是垂径定理、勾股定理等知识,熟练掌握垂径定理,由勾股定理求出CE的长是解题的关键.14、如图,在正五边形ABCDE中,连结AC,以点A为圆心,AB为半径画圆弧交AC于点F,连接DF.则∠FDC的度数是 _____.答案:36分析:根据正五边形的性质可求出每个内角的度数为108°,根据等腰三角形的性质可求出∠EAC=∠DCA=72°,进而可得四边形AEDF是平行四边形,求出∠DFC的度数,再根据三角形的内角和定理求出答案即可.解:∵正五边形ABCDE,∴∠ABC=∠EAB=(5−2)×180°=108°,AB=BC=CD=DE=AE,5∴∠ACB=∠BAC=180°−108°=36°,2∴∠EAC=∠DCA=108°﹣36°=72°,∴∠DEA+∠EAC=108°+72°=180°,∴DE∥AC,又∵DE=AE=AF,∴四边形AEDF是平行四边形,∴AE∥DF,∴∠DFC=∠EAC=72°=∠DCA,∴∠FDC=180°﹣72°﹣72°=36°,所以答案是:36°.小提示:本题考查正多边形与圆,掌握正五边形的性质以及三角形的内角和定理是正确解答的前提.15、如图,已知半圆直径AB=2,点C、D三等分半圆弧,那么△CBD的面积为________.答案:√34分析:连接OC,OD,过点O作OE⊥CD,垂足为点E,点C、D三等分半圆弧,可知△COD是等边三角形,从而可以证得CD∥AB,所以△COD和△CBD的面积相等,利用30°所对的直角三角形的性质和勾股定理,即可求得面积.解:连接OC,OD,过点O作OE⊥CD,垂足为点E,如图,∵点C、D三等分半圆弧,∴∠COD=∠BOD=60°,∵OC=OD,∴△COD是等边三角形,∴∠CDO=60°,∴∠CDO=∠BOD,∴CD∥AB,∴S△CBD=S△COD,∵OE⊥CD,∴∠COE=12∠COD=30°,∴CE=12OC=12×12AB=12×12×2=12,在Rt△COE中,OE=√OC2−CE2=√(12×2)2−(12)2=√32,∴S△CBD=S△COD=12CD⋅OE=12×2CE×OE=12×2×12×√32=√34.所以答案是:√34.小提示:本题主要考查了弧与圆心角的关系、等边三角形的判定与性质、平行线的判定、30°所对的直角三角形的性质和勾股定理.解答题16、如图,A,B是半圆O上的两点,CD是⊙O的直径,∠AOD=80°,B是AD的中点.(1)在CD上求作一点P,使得AP+PB最短;(2)若CD=4,求AP+PB的最小值.答案:(1)作图见解析(2)2√3分析:(1)作出B关于CD的对称点B′,连接AB′,交CD于P点,P就是所求的点;(2)延长AO交圆与E,连接OB′,B′E,可以根据圆周角定理求得∠AOB′的度数,根据等腰三角形的性质求得∠A的度数,然后在直角△AEB′中,解直角三角形即可求解.(1)解:作BB′⊥CD,交圆于B′,然后连接AB′,交CD于P点,P就是所求的点;此时:PA+PB=PA+PB′=AB′.(2)延长AO交圆于E,连接OB′,B′E.∵BB′⊥CD,∴BD⌢=B′D⌢,∵∠AOD=80°,B是AD⌢的中点,∴∠DOB′=1∠AOD=40°.2∴∠AOB′=∠AOD+∠DOB′=120°,又∵OA=OB′,∴∠A=1(180°−∠AOB′)=30°.2∵AE是圆的直径,∴∠AB′E=90°,而CD=AE=4,∴直角△AEB′中,B′E=1AE=2,2∴AB′=√AE2−B′E2=2√3,∴PA+PB=AB′=2√3.小提示:本题考查了垂径定理,等腰三角形的性质,以及圆周角的性质定理,正确求得∠AOB′的度数是关键.17、如图,两个圆都以点O为圆心,大圆的弦AB交小圆于C,D两点.求证:AC=BD.答案:见解析分析:过点O作OP⊥AB,由等腰三角形的性质可知AP=BP,再由垂径定理可知CP=DP,故可得出结论.证明:如图所示,过点O作OP⊥AB,垂足为点P,由垂径定理可得PA=PB,PC=PD,PA-PC=PB-PD,∴AC=BD.小提示:本题考查的是垂径定理,根据题意作出辅助线,利用垂径定理求解是解答此题的关键.18、如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F,(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.答案:(1)36√3−12π;(2)ℎ=4√2.分析:(1)利用等腰三角形的性质得到AD⊥BC,BD=CD,则可计算出BD=6√3,然后利用扇形的面积公式,利用由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC−S扇形EAF进行计算;(2)设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=120⋅π⋅6180,解得r=2,然后利用勾股定理计算这个圆锥的高h.∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD=√3AD=6√3,∴BC=2BD=12√3,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC−S扇形EAF =12×6×12√3−120⋅π⋅62360=36√3−12π.(2)设圆锥的底面圆的半径为r,根据题意得2πr=120⋅π⋅6180,解得r=2,这个圆锥的高h=√62−22=4√2.小提示:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰三角形的性质和扇形的面积公式.。

人教版九年级上册数学第二十四章《圆》易错点与解题技巧

人教版九年级上册数学第二十四章《圆》易错点与解题技巧

人教版九年级上册数学第二十四章《圆》易错点与解题技巧一、圆的定义1.易错提示:●圆是圆周,是曲线,而不是指圆面。

2.技巧:(1)圆心和半径是构成圆的两个重要元素,圆心确定圆的位置,半径确定圆的大小。

(2)圆上各点到圆心的距离都等于半径;在平面内,到圆心距离等于半径的点都在同一个圆上。

二、弦与直径易错提示:●弦与直径的关系:直径是过圆心的弦,凡是直径都是弦,但弦不一定是直径,因此,在提到“弦”时,如果没有特殊说明,不要忘记直径这种特殊的弦。

(直径是圆中最长的弦)三、弧和半圆1.易错提示:●半圆是弧,但弧不一定是半圆。

2.技巧:(1)优弧和半圆通常用三个字母表示,劣弧通常用两个字母表示。

(2)知道弧的两个端点,不能判断它是优弧还是劣弧,需分情况讨论。

(3)由弦及其所对的弧组成的图形叫做弓形。

同一条弦分别与所对的优弧、劣弧组成两个不同的弓形。

四、等圆、等弧易错提示:●等弧只能出现在同圆或等圆之中,等弧的长度相等,但长度相等的弧不一定是等弧。

五、圆的对称性1.易错提示:●不能说“圆的对称轴是直径”,因为直径是线段,对称轴是直线。

(圆是轴对称图形,任何一条直径所在直线都是圆的对称轴。

)2.技巧:圆有无数条对称轴;圆是旋转对称图形,它关于圆心有任意角的旋转对称性。

六、垂径定理及其推论技巧:一条直线如果具有:(1)经过圆心;(2)垂直于弦;(3)平分弦(被平分的弦不是直径);(4)平分弦所对的优弧;(5)平分弦所对的劣弧。

这五条中的任意两条,则必然具备其余的三条,简称“知二推三”。

典例:如图,在⊙O中,OC弦AB于点C,AB=4,OC=1,则OB的长是。

解析:由已知,AB=4,OC=1,结合垂径定理得:BC=12AB=2在Rt△OBC中,OB2=OC2+BC2=12+22=52则OB= 5七、圆心角及圆心角定理1.易错提示:●运用圆心角定理时,应注意其成立的条件是“在同圆或等圆中”。

●由弦相等推出弧相等时,这里的弧要求同是优弧或同是劣弧,一般选劣弧。

第二十四章 圆复习【复习课件】九年级数学上册单元复习(人教版)

第二十四章 圆复习【复习课件】九年级数学上册单元复习(人教版)
【注意】(1)三角形的外心是三角形三条边的垂直平分线 的交点.(2)一个三角形的外接圆是唯一的.
知识梳理 考点2 与圆有关的概念 11.三角形的内切圆 内心:三角形的内切圆的圆心叫做这个这个三角形的内心. 【 注 意 】(1) 三 角 形 的 内 心 是 三 角 形 三 条 角 平 分 线 的 交 点.(2)一个三角形的内切圆是唯一的.
知识梳理 考点8 与切线相关的定理 (1)判定定理:经过圆的半径的外端且垂直于这条半径 的直线是圆的切线. (2)性质定理:圆的切线垂直于经过切点的半径. (3)切线长定理:经过圆外一点所画的圆的两条 切线,它们的切线长相等.这一点和圆心的连线 平分这两条切线的夹角.
课堂检测
1.如图,AB 是⊙O 的直径,点 C 在⊙O 上,过点 C 的直线
4.圆锥的侧面积 (1)圆锥的侧面展开图是一个 扇形 . (2)如果圆锥母线长为l,底面圆的半径为r,那么这
个扇形的半径为 l ,扇形的弧长为 2 r . (3)圆锥的侧面积为 lr .
(4)圆锥的全面积为 lr r2 .
知识梳理
考点9 与圆有关的计算
5.圆内接正多边形的计算
360
(1)正n边形的中心角为 n
半径决定大小;(2) 不在同一条直线上的
·
三个点确定一个圆.
知识梳理 考点2 与圆有关的概念 9.外接圆、内接正多边形:将一个圆n(n≥3)等分,依次连接 各等分点所得到的多边形叫作这个圆的内接正多边形,这个 圆是这个正多边形的外接圆. 10.三角形的外接圆 外心:三角形的外接圆的圆心叫做这个这个三角形的外心.
知识梳理
考点9 与圆有关的计算
1.弧长公式 n R
半径为R的圆中,n°圆心角所对的弧长l=__1_8_0__. 2.扇形面积公式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学第二十四章《圆》单元知识点总结
1.弦
弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.
弦心距:圆心到弦的距离叫做弦心距.
2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”
或“弧AB”.
①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;
②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.
3.同心圆与等圆
圆心相同,半径不等的两个圆叫做同心圆.
圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.
4.等弧
在同圆或等圆中,能够完全重合的弧叫做等弧.
5、弧、弦、圆心角的关系(1)圆心角定义
如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.
(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相
等.
推论:
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.
6、圆周角
(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.
(2).圆周角定理:
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
(3).圆周角定理的推论:
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
要点诠释:
(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.
(2)圆周角定理成立的前提条件是在同圆或等圆中.
7.圆内接四边形:
(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.
(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).
8.弦、弧、圆心角、弦心距的关系:
在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

9、垂径定理
(1)垂径定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
(2).推论
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
要点诠释:
(1)垂径定理是由两个条件推出两个结论,即
(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.
(3)、垂径定理的拓展
根据圆的对称性及垂径定理还有如下结论:
①平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.
10、点和圆的位置关系
(1)点和圆的三种位置关系:
由于平面上圆的存在,就把平面上的点分成了三个集合,即圆内的点,圆上的点和圆外的点,这三类点各具有相同的性质和判定方法;设⊙O的半径为r,点P到圆心的距离为d,则有
11、直线和圆的位置关系
(1)直线和圆的三种位置关系:
①相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.
②相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯
一的公共点叫做切点.
③相离:直线和圆没有公共点时,叫做直线和圆相离.
(2)直线与圆的位置关系的判定和性质.
由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.
图(1)中直线与圆心的距离小于半径;
图(2)中直线与圆心的距离等于半径;
图(3)中直线与圆心的距离大于半径.
如果⊙O的半径为r,圆心O到直线的距离为d,
那么
12、切线的判定定理、性质定理和切线长定理
(1)切线的判定定理:
经过半径的外端并且垂直于这条半径的直线是圆的切线.
(2)切线的判定方法:
①定义:直线和圆有唯一公共点时,这条直线就是圆的切线;
②定理:和圆心的距离等于半径的直线是圆的切线;
③判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中
强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一
不可).
13、切线的性质定理:圆的切线垂直于过切点的半径.
切线的性质:
(1)切线和圆只有一个公共点;
(2)切线和圆心的距离等于圆的半径;
(3)切线垂直于过切点的半径;
(4)经过圆心垂直于切线的直线必过切点;
(5)经过切点垂直于切线的直线必过圆心.
14.切线长:
经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.
(切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段.
15、切线长定理:
从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.
(切线长定理包含两个结论:线段相等和角相等.)
16.三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆.
外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心. 三角形的外心到三角形三个顶点的距离相等.
(不在同一直线上的三个点确定一个圆.)
17、三角形的内切圆:
与三角形各边都相切的圆叫做三角形的内切圆.
三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.
要点诠释:
(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;
(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).
(3) 三角形的外心与内心的区别:
名称确定方法图形性质
外心(三角形外接圆的圆心) 三角形三边中垂
线的交点
(1) 到三角形三个顶点
的距离相等,即
OA=OB=OC;(2)外心不一
定在三角形内部
内心(三角形内切圆的圆心) 三角形三条角平
分线的交点
(1)到三角形三边距离相
等;(2)OA、OB、OC分别
平分∠BAC、∠ABC、∠
ACB; (3)内心在三角形
内部.
18、圆和圆的位置关系
(1)圆与圆的五种位置关系的定义
两圆外离:两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.
两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.
两圆相交:两个圆有两个公共点时,叫做这两圆相交.
两圆内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.
两圆内含:两个圆没有公共点,且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.
(2)两圆的位置与两圆的半径、圆心距间的数量关系:
设⊙O
1的半径为r
1
,⊙O
2
半径为r
2
,两圆心O
1
O
2
的距离为d,则:
两圆外离d>r
1+r
2
两圆外切d=r
1
+r
2
两圆相交r
1-r
2
<d<r
1
+r
2
(r
1
≥r
2
) 两圆内切d=r
1
-r
2
(r
1
>r
2
)
两圆内含d<r
1-r
2
(r
1
>r
2
)
2
360l S rl ππ=扇n =19、正多边形和圆
(1)正多边形:各边相等,各角也相等的多边形是正多边形。

2、正多边形的外接圆:一个正多边形的各个顶点都在圆上,我们就说这个圆是这个正多边形的外接圆。

把一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做这个正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距。

(2)、
20、弧长公式
半径为R 的圆中
360°的圆心角所对的弧长(圆的周长)公式:
n °的圆心角所对的圆的弧长公式:
(弧是圆的一部分)
21、扇形面积公式 (1)扇形的定义
由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. (2)扇形面积公式 半径为R 的圆中
360°的圆心角所对的扇形面积(圆面积)公式:
n °的圆心角所对的扇形面积公式:
22、圆锥的侧面积和全面

连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.
圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则 圆锥的侧面积,
圆锥的全面积.。

相关文档
最新文档