操作系统的存储管理方式

合集下载

操作系统中的内存管理与文件系统原理

操作系统中的内存管理与文件系统原理

操作系统中的内存管理与文件系统原理操作系统是计算机系统中的关键组成部分,它负责管理计算机的资源,并提供给应用程序一个方便的运行环境。

其中,内存管理和文件系统原理是操作系统中的重要内容之一。

本文将就这两个方面进行探讨。

一、内存管理内存管理是操作系统中的核心任务之一,主要包括内存的分配、回收和保护。

下面将深入探讨内存管理的原理与实现。

1. 内存分配在操作系统中,内存分配主要分为静态分配和动态分配两种方式。

静态分配是指在程序加载时就确定了内存的分配情况,而动态分配则是动态地根据程序的运行需要进行内存的分配。

静态分配的优点是简单高效,但缺点是浪费内存资源。

动态分配虽然能够更高效地利用内存,但需要考虑内存碎片等问题。

常见的动态分配算法有首次适应算法、最佳适应算法和最坏适应算法等。

2. 内存回收内存回收是指在进程结束或释放内存时,将已经使用的内存空间释放给系统的过程。

在操作系统中,常见的内存回收机制有引用计数和垃圾回收等。

引用计数是一种简单且常用的内存回收机制,通过跟踪对象的引用数量来进行内存的回收。

当引用数量减为0时,表示该对象不再被使用,可以将其回收。

垃圾回收则是一种更复杂的内存回收机制,它通过扫描程序的堆内存,找出不再被使用的对象,并回收其占用的内存空间。

常见的垃圾回收算法有标记-清除算法、标记-整理算法和复制算法等。

3. 内存保护内存保护是指操作系统对内存空间的保护机制,以防止进程之间的干扰和非法访问。

在实现内存保护时,操作系统通常采用分段和分页的方式。

分段是将进程的地址空间划分为若干个段,每个段具有不同的权限,如只读、可写等。

这样可以有效地限制进程对内存空间的访问权限。

分页则是将进程的地址空间划分为固定大小的页,每个页都有相应的访问权限。

通过页表来映射进程的虚拟地址和物理地址,以实现内存的保护和地址转换。

二、文件系统原理文件系统是操作系统中用于管理文件和目录的机制。

文件系统的设计和实现涉及文件的组织、存储和管理等方面。

计算机操作系统存储管理

计算机操作系统存储管理

计算机操作系统存储管理计算机操作系统存储管理是指操作系统在运行过程中管理和控制计算机的存储资源的一种机制。

它负责分配和回收内存,以及保护和管理进程的内存访问权限。

存储管理是操作系统中的一个重要子系统,对系统的性能和稳定性具有重要影响。

本文将介绍计算机操作系统存储管理的基本原理、常见的存储管理技术以及其在实际应用中的作用。

一、存储管理的基本原理在计算机系统中,存储器扮演着重要的角色,它用于存储程序、数据和系统状态。

计算机操作系统存储管理的基本原理是将物理内存划分为多个逻辑区域,每个区域被分配给不同的程序或进程使用。

操作系统维护一个内存分配表,记录每个逻辑区域的使用情况,并根据请求进行内存分配与回收。

当进程创建时,操作系统将为其分配一定大小的内存,当进程终止时,操作系统会回收这些内存资源。

同时,存储管理还负责处理内存碎片问题,通过内存的动态分配与合并来最大化利用内存资源。

二、常见的存储管理技术1. 基于固定分区的存储管理技术基于固定分区的存储管理技术是最早的一种存储管理方法。

它将物理内存划分为若干固定大小的分区,每个分区只能分配给一个进程使用。

该方法简单直观,但由于分区的固定大小,会产生很多内存碎片,不利于内存的高效利用。

2. 基于可变分区的存储管理技术为了解决内存碎片问题,出现了基于可变分区的存储管理技术。

这种技术允许每个进程动态地申请和释放内存空间,分区的大小可以根据进程的需要进行调整。

它相对于固定分区的方法更加灵活,能够提高内存利用率,但也存在内存碎片问题。

3. 页式存储管理技术页式存储管理技术将物理内存和逻辑内存划分为固定大小的页块,进程的地址空间也被划分为相同大小的页。

通过将逻辑地址转换为物理地址,实现了逻辑内存与物理内存的映射。

该技术可以很好地解决内存碎片问题,并且方便创建和销毁进程,但需要额外的地址转换开销。

4. 段式存储管理技术段式存储管理技术将进程的逻辑地址空间划分为若干段,每个段具有不同的长度和属性。

操作系统的虚拟存储管理与页式存储技术

操作系统的虚拟存储管理与页式存储技术

操作系统的虚拟存储管理与页式存储技术操作系统是计算机系统中非常重要的一个组件,它负责管理计算机硬件和软件资源,协调各个应用程序的执行,以及提供用户与计算机之间的接口。

虚拟存储管理是操作系统中的一个核心功能,它通过将主存(内存)和辅存(磁盘)结合起来,在有限的主存空间中管理多个应用程序的运行和数据存储。

页式存储技术是一种常用的虚拟存储管理技术,下面将详细介绍虚拟存储管理以及页式存储技术的原理和实现方式。

一、虚拟存储管理的概念和原理虚拟存储管理是一种用于管理计算机主存和辅存的技术,它将辅存中的数据自动地转移到主存中,并且能够在程序运行时动态地分配和回收主存空间。

通过虚拟存储管理,即使计算机的主存空间有限,也可以实现更多应用程序的并发执行和大规模数据的存储与处理。

虚拟存储管理的主要原理是将辅存中的数据划分为若干个固定大小的存储块,称为页面(Page)。

同样,主存也被划分为与辅存页面大小相同的存储块,称为页框(Page Frame)。

每个页面和页框都有唯一的标识符,用于管理和映射页面到页框的关系。

当一个应用程序需要访问或执行某个页面时,操作系统将其从辅存中读入一个空闲的页框,并将其映射到相应的页面标识符。

如果主存中没有空闲的页框,则需要使用一定的页面置换算法将某个页面替换出去,以腾出页框给新的页面使用。

虚拟存储管理能够有效地利用计算机的主存资源,并且能够在不同的应用程序之间进行数据保护和隔离。

通过页面和页框的映射关系,操作系统可以实现虚拟地址空间的划分和隔离,每个应用程序都认为自己独占了整个计算机的内存空间,而不需要关心其他应用程序的存在。

二、页式存储技术的实现方式页式存储技术是一种基于虚拟存储管理的实现方式,它将主存和辅存划分为固定大小的页面,并且使用页表来管理页面和页框的映射关系。

下面将详细介绍页式存储技术的实现方式。

1. 页面和页框的划分页式存储技术将辅存和主存划分为固定大小的页面和页框,通常大小为2的幂次方,例如2KB、4KB或者16KB等。

操作系统原理第5章 存储管理

操作系统原理第5章 存储管理

• ⑶最佳适应算法
• 最佳适应算法的空闲链是按空闲区从小到大顺序排 列。为进程选择分区时总是寻找其大小最接近进程 所要求的存储区域。所谓“最佳”是指每次为进程 分配内存时,总是把能满足要求、又是最小的空闲 分区分配给进程,避免“大材小用”。
• 因为每次分配后所切割下来的剩余部分总是最小的, 这样将加速碎片的形成。
• ①如果被回收空闲分区没有空闲伙伴分区,那么保留该分区为一 个独立的空闲分区,否则执行②;
• ②合并回收分区及其伙伴分区,从而得到一个尺寸(2I+1)更大的 回收空闲分区,转移到①;
一个伙伴系统内存分配与回收的例子
• 伙伴系统克服了固定分区和动态分区存储管理技术的缺陷。但是伙伴 系统存在一个问题,即内存空间需要不断地进行分裂和合并,频繁的 伙伴分区合并操作会浪费很多时间。
• ③内存分配原则,以页帧为单位来分配内存,将进程若干个逻辑上连续的 页面装入若干个离散的页帧中,由页表提供进程的页号到存储空间帧号的 映射。
5.2.4伙伴系统
• 其实现原理如下: • 一个伙伴系统内存的用户可用空间为2U。进程申请存储空间时,
系统总是为其分配大小为2I的一个空闲分区。其中S≤I≤U,2S是系 统允许的最小分区尺寸。在实际操作系统中,最小分区尺寸一般 为212。 • 如果进程申请的存储空间大小为K,且2I-1<K≤2I,则将整个2I大小的 分区分配给该进程;否则,该分区被分割成两个大小相等的伙伴 分区,大小为2I-1;再判断K是否满足条件:2I-2<K≤2I-1,若满足条件, 则将两个伙伴中的任何一个分配给该进程。否则,将其中一个伙 伴又分成两个大小相等的伙伴分区;此过程一直继续进行,直到 产生的分区满足条件I-J≥S并2I-J-1<K≤2I-J,将2I-J大小的分区分配给该 进程;当I-J-1<S时,系统不再分割成两个大小相等的伙伴分区,将 2S大小的分区分配给该进程。 • 当进程执行完毕,释放一个尺寸为2I的分区时,系统用下面的算法 回收该分区。

计算机操作系统第四章-存储器管理

计算机操作系统第四章-存储器管理

第四章存储器管理第0节存储管理概述一、存储器的层次结构1、在现代计算机系统中,存储器是信息处理的来源与归宿,占据重要位置。

但是,在现有技术条件下,任何一种存储装置,都无法从速度、容量、是否需要电源维持等多方面,同时满足用户的需求。

实际上它们组成了一个速度由快到慢,容量由小到大的存储装置层次。

2、各种存储器•寄存器、高速缓存Cache:少量的、非常快速、昂贵、需要电源维持、CPU可直接访问;•内存RAM:若干(千)兆字节、中等速度、中等价格、需要电源维持、CPU可直接访问;•磁盘高速缓存:存在于主存中;•磁盘:数千兆或数万兆字节、低速、价廉、不需要电源维持、CPU 不可直接访问;由操作系统协调这些存储器的使用。

二、存储管理的目的1、尽可能地方便用户;提高主存储器的使用效率,使主存储器在成本、速度和规模之间获得较好的权衡。

(注意cpu和主存储器,这两类资源管理的区别)2、存储管理的主要功能:•地址重定位•主存空间的分配与回收•主存空间的保护和共享•主存空间的扩充三、逻辑地址与物理地址1、逻辑地址(相对地址,虚地址):用户源程序经过编译/汇编、链接后,程序内每条指令、每个数据等信息,都会生成自己的地址。

●一个用户程序的所有逻辑地址组成这个程序的逻辑地址空间(也称地址空间)。

这个空间是以0为基址、线性或多维编址的。

2、物理地址(绝对地址,实地址):是一个实际内存单元(字节)的地址。

●计算机内所有内存单元的物理地址组成系统的物理地址空间,它是从0开始的、是一维的;●将用户程序被装进内存,一个程序所占有的所有内存单元的物理地址组成该程序的物理地址空间(也称存储空间)。

四、地址映射(变换、重定位)当程序被装进内存时,通常每个信息的逻辑地址和它的物理地址是不一致的,需要把逻辑地址转换为对应的物理地址----地址映射;地址映射分静态和动态两种方式。

1、静态地址重定位是程序装入时集中一次进行的地址变换计算。

物理地址= 重定位的首地址+ 逻辑地址•优点:简单,不需要硬件支持;•缺点:一个作业必须占据连续的存储空间;装入内存的作业一般不再移动;不能实现虚拟存储。

操作系统复习存储器管理

操作系统复习存储器管理

第一章 存储器管理4.1 存储器的层次结构—存储器应容量大,便宜,速度跟上处理器4.1.1 多级存储器结构通常有三层,细分为六层,如图4-1, 越往上,速度越快,容量越小,价格越贵; 寄存器和主存又称可执行存储器,进程可直接用指令访问,辅存只能用I/O 访问;4.1.2 主存储器与寄存器1.主存储器---内存,保存进程运行时的程序和数据;CPU与外围设备交换的信息一般也依托于主存储器地址空间;为缓和访存速度远低于CPU 执行指令的速度,在计算机系统中引入了寄存器和高速缓存;2.寄存器---与CPU 协调工作,用于加速存储器的访问速度,如用寄存器存放操作数,或用地址寄存器加快地址转换速度等;4.1.3 高速缓存和磁盘缓存1.高速缓存---根据程序执行的局部性原理将主存中一些经常访问的信息程序、数据、指令等存放在高速缓存中,减少访问主存储器的次数,可大幅度提高程序执行速度;2.磁盘缓存---将频繁使用的一部分磁盘数据和信息,暂时存放在磁盘缓存中,可减少访问磁盘的次数;它依托于固定磁盘,提供对主存储器存储空间的扩充,即利用主存中的存储空间,来暂存从磁盘中读/写入的信息;4.2 程序的装入和链接多道程序运行,需先创建进程;而创建进程第一步是将程序和数据装入内存;将源程序变为可在内存中执行的程序,通常都要经过以下几个步骤:编译---若干个目标模块;链接---链接目标模块和库函数,形成装入模块;装入---图 4-2 对用户程序的处理步骤寄存器高速缓存主存磁盘缓存磁盘可移动存储介质CPU 寄存器主存辅存第一步第二步第三步内存4.2.1 程序的装入——无需连接的单目标模块装入理解装入方式1. 绝对装入方式Absolute Loading Mode ---只适用单道程序环境如果知道程序的内存位置,编译将产生绝对地址的目标代码,按照绝对地址将程序和数据装入内存;由于程序的逻辑地址与实际内存地址完全相同,故不须对程序和数据的地址进行修改;绝对地址:可在编译时给出或由程序员直接赋予;若由程序员直接给出,不利于程序或数据修改,因此,通常是在程序中采用符号地址,然后在编译或汇编时转换为绝对地址;2. 可重定位装入方式Relocation Loading Mode ---适于多道程序环境多道程序环境下,编译程序不能预知目标模块在内存的位置;目标模块的起始地址是0,其它地址也都是相对于0计算的;此时应采用可重定位装入方式,根据内存情况,将模块装入到内存的适当位置,如图4-3 作业装入内存时的情况 ;3.动态运行时装入方式Dynamic Run-time Loading ---适于多道程序环境可重定位装入方式并不允许程序运行时在内存中移动位置;但是,在运行过程中它在内存中的位置可能经常要改变,此时就应采用动态运行时装入方式;动态运行时的装入程序,在把装入模块装入内存后,并不立即把装入模块中的相对地址转换为绝对地址,而是把这种地址转换推迟到程序真正执行时才进行;因此,装入内存后的所有地址都仍是相对地址;问题:程序装入内存后修改地址的时机是什么4.3 连续分配方式4.3.3 动态分区分配——根据进程需要动态分配内存1. 分区分配中的数据结构1 空闲分区表—用若干表目记录每个空闲分区的分区序号、分区始址及分区的大小等数据项;2 空闲分区链--为实现对空闲分区的分配和链接,在每分区起始部分,设置前向指针,尾部则设置一后向指针;为检索方便,在分区前、后向指针中,重复设置状态位和分区大小表目;当分0内存空间区被分配后,把状态位由“0”改为“1”时,前、后向指针失去意义;图 4-5 空闲链结构2. 分区分配算法P1231首次适应算法first-fit —空闲分区链以地址递增次序链接 每次按分区链的次序从头查找,找到符合要求的第一个分区;2 循环首次适应算法—FF 算法的变种从上次找到的空闲分区位置开始循环查找,找到后,修改起始查找指针; 3 最佳适应算法—空闲分区按容量从小到大排序 把能满足要求的、最小的空闲分区分配给作业 4 最坏适应算法——空闲分区按容量从大到小排序 挑选最大的空闲区分给作业使用;5) 快速适应算法—根据容量大小设立多个空闲分区链表3. 分区分配操作1.分配内存请求分区u.size; 空闲分区m.size; m.size-u.size ≤size,说明多余部分太小, 不再切割,将整个分区分配给请求者;否则从该分区中划分一块请求大小的内存空间,余下部分仍留在空闲分区链;如图4-6 内存分配流程;2.回收内存1 回收区与插入点的前一空闲分区F1相邻:合并,修改F1大小;2 回收区与后一空闲分区F2相邻:合并,修改首地址和大小;3 回收区同时与前、后两个分区邻接:合并,修改F1大小,取消F2;4 回收区不邻接:新建表项,填写首地址和大小,并插入链表;如图前向指针N +20N 个字节可用后向指针N +2图 4-6 内存分配流程4.3.6 可重定位分区分配1.动态重定位的引入例:在内存中有四个互不邻接的小分区,容量分别为10KB 、30KB 、14KB 和26KB;若现有一作业要获得40KB 的内存空间,因连续空间不足作业无法装入;可采用的一种解决方法是:通过移动内存中作业的位置,以把原来多个分散的小分区拼接成一个大分区的方法,称为“拼接”或“紧凑;由于用户程序在内存中位置的变化,在每次“紧凑”后,都必须对移动了的程序或数据进行重定位;图 4-8 紧凑的示意4.3.7 对换即中级调度1. 对换Swapping 的引入(a ) 紧凑前(b ) 紧凑后“活动阻塞”进程占用内存空间;外存上的就绪作业不能进入内存运行;所谓“对换”,是指把内存中暂时不能运行的进程或者暂时不用的程序和数据,调出到外存上,以便腾出足够的内存空间;再把已具备运行条件的进程或所需要的程序和数据,调入内存;对换是提高内存利用率的有效措施;根据对换单位可分为:进程对换、页面对换和分段对换;为了能实现对换,系统应具备以下三方面功能:对换空间的管理、进程的换出与换入2. 进程的换出与换入1进程的换出选择阻塞且优先级最低的进程,将它的程序和数据传送到磁盘对换区上;回收该进程所占用的内存空间,并对该进程的进程控制块做相应的修改;2进程的换入找出“就绪” 但已换出到磁盘上时间最久的进程作为换入进程,将之换入,直至已无可换入的进程;4.4 基本分页存储管理方式前面的连续分配方案会形成许多“碎片”,“紧凑”方法可以解决碎片但开销大;是否允许进程离散装入 离散单位不同,称分页式存储和分段式存储;不具备对换功能称为“基本分页式”,支持虚拟存储器功能称为“请求基本分页式”;4.4.1 页面与页表1. 页面1 页面和物理块---将进程的逻辑地址空间分成若干个大小相等的片,称为页面,并为各页编号;相应地把内存空间分成与页面相同大小的若干个存储块,称为物理块,也同样编号;分配时,将进程中的页装入到物理块中,最后一页经常装不满一块而形成 “页内碎片”;2 页面大小---页面的大小应选择适中;页面太小,内存碎片减小,利用率高;但页表过长,占大量内存;页面较大,页表长度小;但页内碎片大;因此,页面的大小应选择得适中,且页面大小应是2的幂,通常为512 B~8 KB;2. 地址结构分页地址中的地址结构如下:31 12 11 0它含有两部分:页号P12~31位,最多有1M 页和页内位移量W0~11位,每页的大小4KB ; 对某特定机器,其地址结构是一定的;若给定一个逻辑地址空间中的地址为A,页面的大小为L,则页号P 和页内地址d 可按下式求得:MODL A d L A INT P ][=⎥⎦⎤⎢⎣⎡=3. 页表---实现从页号到物理块号的地址映射用户程序0 页1 页2 页3 页4 页5 页…n 页页表内存4.4.2 地址变换机构任务:将逻辑地址转换为物理地址;页内地址变换:因页内地址与物理地址一一对应, 可直接转换;页号变换:页表可实现从逻辑地址中页号到内存中物理块号的变换; 1.基本的地址变换机构a. 页表功能可由一组专门的寄存器实现原理;b. 页表大多驻留内存,系统中只设置一页表寄存器来存放页表在内存的始址和页表长度实际操作;c. 进程未执行时,页表始址和长度存放在PCB 中;执行时才将这两个数据装入页表寄存器中过程;图 4-12 分页系统的地址变换机构2. 具有快表的地址变换机构a. 仅用页表寄存器时,CPU 每存取一数据要两次访问内存页表-地址变换-数据;b. 为提高地址变换速度,可在地址变换机构中增设一具有并行查寻能力的特殊高速缓冲寄存器用以存放当前访问的那些页表项,称为“快表”;c. ->在CPU 给出逻辑地址,将页号P 送入快表 ->页号匹配,读物理块号后送物理地址寄存器->无匹配页号,再访问内存中页表,把从页表项中读出的物理块号送地址寄存器;同时,再将此页表项存入到快表中;->如快表已满,则OS 须找到一换出页表项换出; 为什么增加“快表”为了提高地址变换速度,可在地址变换机构中增设一个具有并行查寻能力的特殊高速缓冲寄存器,又称为“联想寄存器”Associative Memory,或称为“快表 “快表”有何缺点越界中断图 4-13 具有快表的地址变换机构4.5 基本分段存储管理方式4.5.1 分段存储管理方式的引入为什么引入推动内存从固定分配到动态分配直到分页存储,主要动力是内存利用率,而引入分段存储管理方式,主要是为了满足用户和程序员的下述一系列需要:1方便编程---把作业按逻辑关系划分为若干段,每段有自己的名字和长度,并从0开始编址;LOAD 1,A|<D>; STORE 1,B|<C>2 信息共享---段是信息的逻辑单位;为实现共享,存储管理应与用户程序分段的组织方式相适应;3 信息保护---对信息的逻辑单位进行保护,应分段管理;4 动态增长---分段存储能解决数据段使用过程中动态增长;5 动态链接---运行过程中动态调入以段为单位的目标程序;4.5.2 分段系统的基本原理1. 分段作业划分为若干段,如图4-16,每个段用段号来代替段名,地址空间连续;段的长度由逻辑信息长度决定,因而各段长度不等;其逻辑地址由段号段名和段内地址所组成,结构如下: 31 16 15 0该地址结构中,允许一个作业最多有64K 个段,每个段的最大长度为64KB;编译程序能自页表寄存器逻辑地址L 物理地址动根据源程序产生若干个段;2.段表,其中每段占一个表项,中;图4-16 利用段表实现地址映射3.分页和分段的主要区别1 页是信息的物理单位,分页是为提高内存的利用率,是为满足系统管理的需要;段则是信息的逻辑单位,分段是为了能更好地满足用户的需要;2 页的大小固定且分页由系统硬件实现;而段的长度不固定,通常由编译程序根据信息的性质来划分;3 分页的作业地址空间是一维的,程序只需一个地址记忆符;而分段的作业地址空间是二维的,程序员既需给出段名,又需给出段内地址;4.5.3 信息共享可重入代码纯代码:允许多个进程同时访问的代码;绝对不允许可重入代码在执行中改变,因此,不允许任何进程修改它;4.5.4 段页式存储管理方式1.基本原理---,,,4KB;作业空间内存空间子程序段数据段(a)段号(S)段内页号(P)页内地址(W)(b)主程序段图4-21 利用段表和页表实现地址映射4.6 虚拟存储器的基本概念前面各种存储器管理方式共同点:它们要求将一个作业全部装入内存后方能运行,于是出现了下面这样两种情况:1 有的作业很大,其所要求的内存空间超过了内存总容量,作业不能全部被装入内存,致使该作业无法运行;2 有大量作业要求运行,但由于内存容量不足以容纳所有这些作业,只能将少数作业装入内存让它们先运行,而将其它大量的作业留在外存上等待;4.5.1 虚拟存储器的引入1.常规存储器管理方式的特征1 一次性;将作业全部装入内存后方能运行,此外有许多作业在每次运行时,并非其全部程序和数据都要用到;一次性装入,造成了对内存空间的浪费;2 驻留性;作业装入内存后一直驻留,直至运行结束;尽管因故等待或很少运行,都仍将继续占用宝贵的内存资源;现在要研究的问题是:一次性及驻留性在程序运行时是否必需;2.局部性原理早在1968年, Denning.P就曾指出:1 程序执行时,除了少部分的转移和过程调用指令外,在大多数情况下仍是顺序执行的;2 过程调用将会使程序的执行轨迹由一部分区域转至另一部分区域,但经研究看出,过程调用的深度在大多数情况下都不超过5;3 程序中存在许多循环结构,这些虽然只由少数指令构成, 但是它们将多次执行;4 程序中还包括许多对数据结构的处理, 如对数组进行操作,它们往往都局限于很小的范围内;局限性主要表现在下述两个方面:1 时间局限性-由于循环操作的存在;如果程序中的指令或数据一旦执行,则不久以后可能再次访问;2 空间局限性-由于程序的顺序执行;程序在一段时间内所访问的地址,可能集中在一定的范围之内;3. 虚拟存储器定义---基于局部性原理程序运行前,仅须将要运行的少数页面或段装入内存便可启动,运行时,如果需要访问的页段尚未调入内存缺页或缺段,用OS提供请求调页段功能调入;如果此时内存已满,则还须再利用页段的置换功能,将内存中暂时不用的页段调至外存,腾出足够的内存空间后,再将要访问的页段调入;所谓虚拟存储器,是指具有请求调入功能和置换功能,能从逻辑上扩充内存容量的一种存储器系统;其逻辑容量由内存容量和外存容量之和所决定,其运行速度接近于内存,成本接近于外存;4.6.3 虚拟存储器的特征1)多次性---一个作业被分成多次调入内存运行,最初装入部分程序和数据,运行中需要时,再将其它部分调入;2)对换性---允许在作业的运行过程中进行换进、换出;换进和换出能有效地提高内存利用率;3)虚拟性---从逻辑上扩充内存容量,使用户所看到远大于实际内存容量;这是虚拟存储器最重要的特征和最重要的目标;4)离散性---是以上三个特性的基础,在内存分配时采用离散分配的方式;备注:虚拟性是以多次性和对换性为基础的,而多次性和对换性又必须建立在离散分配的基础上;4.7 请求分页存储管理方式4.6.1 请求分页中的硬件支持---页表、缺页中断和地址变换请求分页系统是在分页的基础上,增加了“请求调页”和“页面置换”功能,每次调入和换出基本单位都是长度固定的页,实现比请求分段简单;1.页表机制---将用户地址空间中的逻辑地址变换为内存空间中的物理地址,因只将部分调入内存,需增设若干项;在请求分页系统中的每个页表项如下所示:1 状态位P:该页是否已调入内存,供访问时参考;2 访问字段A:记录一段时间内本页被访问的频率,供选择换出页时参考;3 修改位M:页在调入内存后是否被修改过,供置换页面时参考;4 外存地址:指出该页在外存上的地址,即物理块号,供调入该页时参考;4.7.2 内存分配策略和分配算法1.最小物理块数的确定是指能保证进程正常运行所需的最小物理块数,当系统为进程分配的物理块数少于此值时,进程将无法运行;进程应获得的最少物理块数与计算机的硬件结构有关;对于某些简单的机器,所需的最少物理块数为2,分别用于存放指令和数据,间接寻址时至少要有三块;对于某些功能较强的机器,因其指令本身、源地址和目标地址都可能跨两个页面,至少要为每个进程分配6个物理块,以装入这些页面;2. 物理块的分配策略请求分页系统的两种内存分配策略:即固定和可变分配策略;两种置换策略:即全局置换和局部置换;可组合出以下三种策略;1 固定分配局部置换Fixed Allocation, Local Replacement--每进程分配一定数目的物理块,在整个运行期间都不再改变,换入换出都限于这些物理块;每个进程物理块难以确定,太多太少都不好2 可变分配全局置换Variable Allocation, Global Replacement --每进程分配一定数目的物理块,OS 保持一空闲物理块队列;进程缺页时,摘下一空闲块,并将该页装入;3 可变分配局部置换Variable Allocation, Local Replacemen --每进程分配一定数目的物理块;进程缺页时,只允许从该进程内存页中选出一页换出;若缺页中断频繁,再为该进程分配若干物理块,直至缺页率减少;若缺页率特低,则减少该进程的物理块数,应保证缺页率无明显增加;3. 物理块分配算法1 平均分配算法--将所有可供分配的物理块,平均分配给各个进程; 例如,有100个物理块,5个进程,每进程可分20个物理块;未考虑到各进程本身的大小;2 按比例分配算法--根据进程的大小按比例分配物理块;共n 个进程,每进程页面数为si,则页面数的总和为:设可用的物理块为m,每进程分到的物理块数为bi,有:3 考虑优先权的分配算法--为了照顾重要、紧迫的作业尽快完成,为它分配较多的空间;通常采取:把可供分配的物理块分成两部分:一部分按比例分给各进程;另一部分根据优先权分给各进程;有的系统是完全按优先权来分配;4.7.3 调页策略1. 何时调入页面1 预调页策略缺页前 :页面存放连续,用预测法一次调入多个相邻页,预测成功率仅为50%;2 请求调页策略缺页时:运行中,发现不在内存,立即请求,由OS 调入;2. 从何处调入页面请求分页系统中外存分为两部分:文件区和对换区;这样,当发生缺页请求时,系统应从何处将缺页调入内存:1 系统拥有足够的对换区,可以全部从对换区调入所需页面;在进程运行前,须将有关的文件拷贝到对换区;2 系统缺少足够的对换区,这时凡是不会被修改的文件,都直接从文件区调入,由于它们未被修改而不必换出;但对于可能被修改的部分,换出时调到对换区,以后需要时,再从对换区调入;3 UNIX 方式;凡是未运行过的页面,都应从文件区调入;曾运行过但已换出的页面,放在∑==ni iS S 1m SS b ii ⨯=对换区,下次应从对换区调入;4.8 页面置换算法当进程运行时,所访问的页面不在内存而需要将他们调入内存,但内存无空闲时,需要选择一页面换出到对换区,选择算法即页面置换算法;算法评价:页面置换频率低,调出页面将不会或很少访问;4.8.1 最佳置换算法和先进先出置换算法1. 最佳Optimal 置换算法由Belady 于1966年提出的一种理论上的算法;原理:其所选择的被淘汰页面,将是以后永不使用的, 或是在最长未来时间内不再被访问的页面;特点:通常可获得最低的缺页率,但由于进程运行不可预知而无法实现,用来评价其他算法;假定系统为某进程分配了三个物理块,并考虑有以下的页面号引用串:7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1进程运行时,先将7,0,1三页装入内存;当进程要访问页面2时,将会产生缺页中断,此时OS 根据最佳置换算法,将选择页面7予以淘汰;共发生6次页面置换;图 4-25 利用最佳页面置换算法时的置换图 2. 先进先出FIFO 页面置换算法---总是置换最先进入内存的页面;用FIFO 算法共发生12次页面置换;该算法与进程的实际运行规律不相符,有些页面经常被访问全局变量,常用函数;图 4-26 利用FIFO 置换算法时的置换图4.8.2 最近最久未使用Least Recently Used LRU 置换算法1. LRU置换算法 ---在无法预测各页面将来使用情况下,利用“最近过去”作为“最近将来”的近似选择最近最久未使用的页面予以淘汰;用LRU 算法共发生9次页面置换;引用率70770170122010320304243230321201201770101页框(物理块)203图 4-27 LRU 页面置换算法2. LRU 置换算法的硬件支持LRU 算法比较好,但为了快速知道哪一页是最近最久未使用的页面,需要硬件支持:寄存器或栈;1 寄存器为了记录某进程在内存中各页的使用情况,须为每个页面配置一个移位寄存器,可表示为:原理:进程访问某物理块时,先将寄存器的Rn-1位设成1;此时,定时信号将每隔一定时间将寄存器右移一位;若将n 位寄存器的数看做是一整数,那么,具有最小数值的寄存器所对应的页面,就是最近最久未使用的页面;例:某进程在内存中有8个页面,为每页面配置一8位寄存器时的LRU 访问情况,如图4-28图 4-28 某进程具有8个页面时的LRU 访问情况2 栈--利用栈来保存当前使用的各页面的页面号;原理:每当进程访问某页面时,便将该页面的页面号从栈中移出,将它压入栈顶;因此,栈顶始终是最新被访问页面的编号,而栈底则是最近最久未使用页面的页面号;假定现有一进程所访问的页面的页面号序列为:4,7,0,7,1,0,1,2,1,2,6随着进程的访问,栈中页面号的变化情况如图4-29所示;在访问页面6时发生了缺页,此时页面4是最近最久未被访问的页,应将它置换出去;LRU 算法较好,但要求较多硬件支持, 实际使用接近LRU算法-Clock 算法;图引用率70770170122010323104430230321013201770201页框2304204230230127127011474074704170401741074210741207421074621074-29 用栈保存当前使用页面时栈的变化情况。

深入了解计算机操作系统的存储管理

深入了解计算机操作系统的存储管理

深入了解计算机操作系统的存储管理计算机操作系统是计算机系统的核心组成部分,为计算机软件和硬件的协调运行提供支持。

计算机内存是计算机硬件中的重要组成部分,是计算机系统运行的基础。

在计算机操作系统中,存储管理是最基本的操作之一。

本文将深入探讨计算机操作系统中的存储管理。

一、存储管理概述在计算机操作系统中,存储管理主要包括内存分配和内存回收两个方面。

内存分配是指在计算机系统启动时,将内存分为多个块,并为进程和线程分配所需的内存,以保证它们可以正常运行;内存回收是指在进程和线程退出时,将分配给它们的内存释放给系统,以便供其他进程和线程使用。

二、内存分配技术为了更好地满足进程和线程的内存需求,计算机操作系统采用了多种内存分配技术,包括动态内存分配和静态内存分配两种。

1、动态内存分配动态内存分配是指在进程和线程运行时,根据其实际内存需求进行内存分配。

操作系统通常采用分区技术对内存进行分配,可以分为固定分区和动态分区两种。

(1) 固定分区固定分区是指将内存分为若干个固定大小的分区,每个分区只能分配给一个进程或线程使用。

由于分区大小固定,因此容易产生“内存碎片”的问题,如果分区大小过小会浪费内存,如果分区大小过大则会导致分配不均。

因此,固定分区在实际应用中并不常用。

(2) 动态分区动态分区是指将内存分为若干个不固定大小的分区,每个分区可以根据进程或线程的实际内存需求进行分配。

动态分区主要解决了固定分区的一些问题,但也会产生“内存碎片”问题。

2、静态内存分配静态内存分配是指在编译时就将内存分配给进程或线程,并在运行时不再进行内存分配。

静态内存分配主要用于一些固定的程序或数据结构上,通常不适用于通用操作系统中。

三、内存回收技术在进程或线程退出时,需要将其占用的内存释放,并返还给系统。

内存回收主要包括两种技术,分别为手动回收和自动回收。

1、手动回收手动回收是指在编写程序时,由程序员手动释放所分配的内存。

手动回收需要注意内存泄漏和悬挂指针等问题,需要程序员自己负责管理内存。

操作系统分页存储管理例题

操作系统分页存储管理例题

操作系统分页存储管理例题
操作系统中常用的分页存储管理方式是通过地址空间映射到物理存储介质来实现的。

分页存储管理的主要目的是使得程序能够更有效地访问存储介质,提高程序的性能。

下面是一个简单的分页存储管理例题,以供参考: 假设有一个程序需要对磁盘上的一段数据进行读取和写入操作,假设这段数据的大小为1MB。

为了解决这个问题,我们可以使用分页存储管理方式。

首先,我们需要定义一个页的大小,通常为4KB。

然后,我们需要在程序中设置一个页地址,用于表示需要访问的页面。

假设我们使用的是4KB的页面大小,那么页地址应该为4个字节(即4KB/4=1024字节)。

接下来,我们需要将程序的地址空间划分为多个页面,使得程序能够访问不同大小的页面。

假设程序的地址空间为2MB,我们可以将地址空间划分为4个页面,每个页面大小为1MB。

这样,每个页面的地址就是4个字节(即4KB/4=1024字节)。

最后,我们需要将程序的地址空间映射到物理存储介质上,使得程序能够实际访问到存储介质上的页面。

这个过程通常需要通过操作系统中的页表来实现。

页表将程序的地址空间映射到物理存储介质上的页面地址空间中,从而实现地址空间的访问。

在实际使用中,我们可以根据程序的需要来动态地划分地址空间,以满足不同的需求。

例如,如果程序需要访问的文件很大,我们可以将地址空间划分为多个页面,每个页面的大小为1MB,以便更好地利用存储介质。

如果程序需要访问的文件很小,我们可以将地址空间划分为单个页面,即使用较小的页面大小,以节省存储空间。

操作系统中的数据存储与数据库管理

操作系统中的数据存储与数据库管理

操作系统中的数据存储与数据库管理随着计算机技术的发展和普及,大量的数据被产生和应用,数据管理成为一项重要的任务。

操作系统中的数据存储和数据库管理,是指操作系统如何有效地存储和管理数据,保证数据的完整性和安全性。

本文将探讨操作系统中的数据存储和数据库管理的关键概念和原理。

一、数据存储的概念和原理数据存储是指将数据保存在计算机中的过程。

在操作系统中,数据存储是以文件的形式进行的。

文件是数据的有组织的集合,可以包含文本、图像、音频等各种类型的数据。

文件存储需要考虑以下几个关键概念和原理。

1. 文件系统:文件系统是操作系统中用于组织和管理文件的一种机制。

它提供了文件的创建、读取、写入和删除等操作。

常见的文件系统包括FAT、NTFS、EXT等。

2. 文件结构:文件结构指的是文件中数据的组织形式。

常见的文件结构有顺序文件、索引文件和散列文件等。

顺序文件将数据按照一定的顺序存储,索引文件使用索引方式建立数据的快速访问,散列文件使用散列函数将数据映射到不同的存储位置。

3. 文件操作:文件操作是对文件进行读取、写入和删除等操作。

常见的文件操作包括打开文件、关闭文件、读取文件和写入文件等。

文件操作需要考虑并发访问、数据一致性和安全性等问题。

二、数据库管理的概念和原理数据库管理是指对数据库进行组织、存储和管理的过程。

数据库是一个包含了相关数据的集合,可以被多个用户共享和访问。

数据库管理需要考虑以下几个关键概念和原理。

1. 数据模型:数据模型是对数据结构和数据操作进行抽象的方式。

常见的数据模型有关系模型、层次模型和网络模型等。

关系模型是最常用的数据模型,它使用表格来表示实体和实体之间的关系。

2. 数据库系统:数据库系统是用来管理数据库的软件系统。

它提供了对数据库进行定义、查找、插入、删除和更新等操作的接口。

常见的数据库系统有MySQL、Oracle和SQL Server等。

3. 事务管理:事务是指一系列数据库操作的逻辑单位。

实验四 操作系统存储管理实验报告

实验四  操作系统存储管理实验报告

实验四操作系统存储管理实验报告一、实验目的本次操作系统存储管理实验的主要目的是深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握内存分配、回收、地址转换等关键技术,提高对操作系统存储管理机制的认识和应用能力。

二、实验环境操作系统:Windows 10开发工具:Visual Studio 2019三、实验原理1、内存分配方式连续分配:分为单一连续分配和分区式分配(固定分区和动态分区)。

离散分配:分页存储管理、分段存储管理、段页式存储管理。

2、内存回收算法首次适应算法:从内存低地址开始查找,找到第一个满足要求的空闲分区进行分配。

最佳适应算法:选择大小最接近作业需求的空闲分区进行分配。

最坏适应算法:选择最大的空闲分区进行分配。

3、地址转换逻辑地址到物理地址的转换:在分页存储管理中,通过页表实现;在分段存储管理中,通过段表实现。

四、实验内容及步骤1、连续内存分配实验设计一个简单的内存分配程序,模拟固定分区和动态分区两种分配方式。

输入作业的大小和请求分配的分区类型,程序输出分配的结果(成功或失败)以及分配后的内存状态。

2、内存回收实验在上述连续内存分配实验的基础上,添加内存回收功能。

输入要回收的作业号,程序执行回收操作,并输出回收后的内存状态。

3、离散内存分配实验实现分页存储管理的地址转换功能。

输入逻辑地址,程序计算并输出对应的物理地址。

4、存储管理算法比较实验分别使用首次适应算法、最佳适应算法和最坏适应算法进行内存分配和回收操作。

记录不同算法在不同作业序列下的内存利用率和分配时间,比较它们的性能。

五、实验结果与分析1、连续内存分配实验结果固定分区分配方式:在固定分区大小的情况下,对于作业大小小于或等于分区大小的请求能够成功分配,否则分配失败。

内存状态显示清晰,分区的使用和空闲情况一目了然。

动态分区分配方式:能够根据作业的大小动态地分配内存,但容易产生内存碎片。

2、内存回收实验结果成功回收指定作业占用的内存空间,内存状态得到及时更新,空闲分区得到合并,提高了内存的利用率。

基本分段存储管理方式

基本分段存储管理方式

基本分段存储管理方式基本分段存储管理方式是计算机操作系统用来管理内存的一种方法。

通常将内存分成固定大小的若干段,每个段都有一个起始地址和一个长度,随着程序的运行,可以动态地将不同大小的进程加载到这些段中,从而优化内存使用,提高系统性能。

基本分段存储管理方式的实现过程大致分为三个步骤:操作系统将物理内存划分成若干固定大小的段,这些段称为物理段或实际段。

接着,操作系统为每个进程分配虚拟地址空间,并用一组相同的大小将其划分为若干虚拟段。

每个虚拟段的起始地址和长度都与实际段相对应,但它们不一定在物理空间上是连续的。

操作系统将进程的虚拟地址映射到实际的物理地址,以便进程能够访问内存。

基本分段存储管理方式有以下几个优点:1. 灵活性:基本分段存储管理方式可以用相对较少的内存空间来持久存储多个进程,这增加了系统的灵活性,使得操作系统能够同时运行多个进程,而不会导致内存溢出。

2. 内存利用率:基本分段存储管理方式允许操作系统根据每个进程的需求动态分配内存,从而提高内存利用率。

如果一个进程只需要几百KB的内存,而系统中的物理内存大大小于这个需求,那么只需要分配给它一个相应的虚拟段就可以了,这样就避免了浪费内存的情况。

3. 保护:基本分段存储管理方式可以通过在每个虚拟段中设置访问权限进行内存保护。

只允许进程访问它被授权访问的虚拟地址范围,而禁止它访问其他虚拟地址空间,从而增强系统的安全性。

基本分段存储管理方式也有以下几个缺点:1. 内部碎片:由于每个分段的大小是固定的,使得当进程只需要使用部分段时,其中未使用的部分会变成内部碎片。

这会浪费一些内存,降低内存利用率。

2. 外部碎片:当系统中有大量的小进程时,这些小进程可能会被分配到不同的分段中。

当一些分段中的进程被撤销时,这些空闲的小空间难以合并在一起,从而导致外部碎片的产生。

3. 上下文切换:由于每个进程的虚拟空间不一定是连续的,因此在进程切换时需要进行频繁的虚拟地址到物理地址的映射操作,这会增加系统的开销。

操作系统的文件系统与存储管理

操作系统的文件系统与存储管理

操作系统的文件系统与存储管理在计算机科学领域中,操作系统是一种重要的软件,其主要功能是管理计算机硬件资源,并提供用户与计算机硬件之间的接口。

操作系统的文件系统和存储管理是其中两个重要的组成部分。

本文将对操作系统的文件系统和存储管理进行详细讨论。

一、操作系统的文件系统文件系统是操作系统用来管理计算机存储设备上的文件和目录的一种机制。

它负责文件和目录的创建、读取、写入、修改和删除等操作。

同时,文件系统还提供了访问权限和数据保护的机制,以确保文件和目录的安全性。

1. 文件与目录文件是存储在计算机硬盘上的数据的集合,可以是文本、图片、音频或视频等形式。

操作系统通过为每个文件分配唯一的标识符,如文件名和扩展名来进行区分。

目录则是文件的容器,用于组织和管理文件。

操作系统通常提供了层次化的目录结构,使得用户可以方便地浏览和访问文件。

2. 文件的访问方式操作系统中的文件可以通过两种方式进行访问:顺序访问和随机访问。

顺序访问是按照文件中数据的逻辑顺序进行读写操作,适用于大型文件,但不便于寻找和修改特定数据。

而随机访问则可以直接访问文件中的指定位置的数据,灵活性更高。

3. 文件的存储方式文件的存储方式有两种常见的实现方式:连续存储和链式存储。

连续存储是将文件的数据按照顺序存储在硬盘上的连续物理块中,访问效率高,但文件大小往往受到硬盘连续可用空间的限制。

链式存储则是通过链表的方式将文件的数据存储在不连续的物理块上,解决了连续存储的限制,但访问速度较慢。

二、操作系统的存储管理存储管理是操作系统用来管理计算机内存和硬盘空间的一种机制。

它负责将计算机的物理内存和硬盘空间划分成一系列逻辑块,并对其进行分配、回收和保护等操作,以提供有效的资源利用和保证系统的稳定性。

1. 内存管理内存管理是操作系统的一项重要任务,其主要功能是将计算机的物理内存划分成若干逻辑块,并对其进行分配和回收。

常用的内存分配算法包括首次适应、最佳适应和最坏适应等。

计算机操作系统中的文件系统与存储管理

计算机操作系统中的文件系统与存储管理

计算机操作系统中的文件系统与存储管理现代计算机操作系统在处理文件管理和数据存储方面起着至关重要的作用。

文件系统和存储管理是操作系统的核心组成部分,它们负责协调和管理计算机上所有的文件和数据,使得用户能够方便地存储、访问和管理信息。

一、文件系统文件系统是计算机操作系统中用于管理和组织文件的机制。

它定义了文件的创建、读取、修改和删除等操作,以及文件的存储和检索方式。

文件系统不仅仅是一个简单的文件管理工具,而是一个结构化的数据组织体系,为用户提供了一种逻辑层面上的文件管理抽象。

1. 文件组织在文件系统中,文件以一定的格式和结构进行组织和存储。

常见的文件组织方式有顺序文件、索引文件和散列文件等。

顺序文件是将记录按照顺序存储的文件,适用于顺序访问;索引文件通过建立索引表来加快文件的查找速度;散列文件采用散列函数将记录分布到不同的桶中,实现了均匀的记录访问。

2. 文件访问方式文件系统支持不同的文件访问方式,包括顺序访问、直接访问和索引访问等。

顺序访问是按照文件中的顺序逐个访问记录,适用于顺序处理;直接访问是通过记录的物理地址直接读取和写入数据,适用于随机访问;索引访问通过索引表查找记录的位置,可以快速访问和修改记录。

二、存储管理存储管理是操作系统中负责管理计算机存储资源的模块。

它包括分配和回收内存空间、虚拟内存管理和高效的页面替换算法等,以保障计算机的正常运行和资源的合理利用。

1. 内存管理内存管理是操作系统中最重要的一部分,它负责分配和回收内存空间,以满足进程的需求。

常见的内存管理方式有连续内存分配和离散内存分配。

连续内存分配将内存按照物理地址的连续性进行划分,适用于静态分区和动态分区;离散内存分配通过页表和分段表将进程的逻辑地址映射到物理地址空间,实现了虚拟内存管理。

2. 虚拟内存管理虚拟内存是计算机系统的重要特性之一,它使得操作系统能够管理比物理内存更大的地址空间。

虚拟内存管理通过将进程的部分数据和指令存储在物理内存中,将其余部分存储在磁盘上,以实现内存的扩展和共享。

操作系统的基本分页存储管理方式

操作系统的基本分页存储管理方式

操作系统的基本分页存储管理方式操作系统中的分页存储管理是一种常见的内存管理方式,它将进程的地址空间划分为固定大小的页面,并将页面映射到物理内存的不同位置。

这种方式能够有效地管理内存资源,并提高系统的性能。

下面将详细介绍操作系统中的基本分页存储管理方式。

分页存储管理是将进程的内存划分为大小相等的固定大小的页面,与物理内存的页面大小相同。

通常,每个页面的大小为4KB或者8KB。

在分页存储管理中,每个进程的地址空间被划分为多个页面,每个页面都有一个唯一的页面号或索引。

这样,进程的地址空间可以通过页面号来访问。

在分页存储管理中,操作系统维护了一个页表,用于记录每个页面在物理内存中的位置。

页表中的每一项被称为页表项,它包含了页面号和物理内存地址之间的映射关系。

当一个进程访问或修改某个页面时,操作系统将根据页表查找页面在物理内存中的位置,并将该页面加载到内存中进行访问。

如果页面不在内存中,就会发生缺页中断,操作系统会将缺失的页面从硬盘上加载到内存,并更新页表。

分页存储管理方式的核心概念是页面的概念。

页面是一个连续的地址空间块,大小固定。

进程的地址空间被划分为多个页面,每个页面都有一个唯一的页面号。

页面的大小相同,这样能够简化内存管理和页面调度的工作。

页面之间是相互独立的,可以独立地加载和替换。

这种方式提供了更高的内存利用率和灵活性。

分页存储管理方式具有以下优点:1.内存利用率高:由于页面的大小固定,可以更好地利用内存空间。

如果一个进程的部分页面不用,可以将这些页面换出到磁盘上,从而腾出更多的内存空间给其他进程使用。

2.地址空间连续性:分页存储管理方式使得进程的地址空间在逻辑上是连续的。

每个页面的大小相同,页面之间没有空隙。

这样使得进程的地址空间更加规整和易于管理。

3.页面替换灵活:当物理内存不足时,操作系统可以通过页面替换算法将一些页面从内存中换出,从而为其他页面腾出空间。

由于页面的大小相同,可以更加灵活地选择被替换的页面。

操作系统:离散分配存储管理方式

操作系统:离散分配存储管理方式

操作系统:离散分配存储管理⽅式⽬录离散分配⽅式连续分配⽅式会形成许多外部碎⽚,虽然可通过“紧凑”⽅法将许多碎⽚拼接成可⽤的⼤块空间,但紧凑的时间开销和复杂度都很⾼。

如果允许将⼀个进程直接分散地装⼊到许多不相邻接的分区中,便可充分地利⽤内存空间,也就是采⽤离散分配的⽅式。

根据在离散分配时所分配地址空间的基本单位的不同,⼜可将离散分配分为以下三种:1. 分页存储管理⽅式:将⽤户程序的地址空间分为若⼲个固定⼤⼩的“页⾯”,也将内存空间分为若⼲个页框,将⽤户程序的任⼀页放⼊任⼀物理块中;2. 分段存储管理⽅式:把⽤户程序的地址空间分为若⼲个⼤⼩不同的段,以段为单位进⾏分配,这些段在内存中可以不相邻接;3. 段页式存储管理⽅式:将分页和分段两种存储管理⽅式相结合。

分页存储管理分页存储的结构分页存储管理将进程的逻辑地址空间分成若⼲个页⾯,并为各页加以编号。

相应地也把内存的物理地址空间分成若⼲个物理块,同样也加以编号。

在为进程分配内存时,以块为单位,将进程中的若⼲个页分别装⼊到多个可以不相邻接的物理块中。

若页⾯⼤⼩设置得较⼩,可以减⼩内存碎⽚并提⾼内存利⽤率,但会造成每个进程占⽤较多的页⾯,从⽽导致进程的页表过长、占⽤⼤量内存和降低页⾯换进换出的效率。

如果选择的页⾯过⼤,虽然可以减少页表的长度,提⾼页⾯换进换出的速度,但却⼜会使页内碎⽚增⼤。

因此页⾯的⼤⼩应选择适中,且页⾯⼤⼩应是 2 的幂,通常为 1KB~8KB。

分页地址中的地址长度为 32 位,地址结构包含两部分内容。

前⼀部分为页号 P,占在 12 ~ 31 位,地址空间最多允许有 1M 页。

后⼀部分为位(偏)移量 W(页内地址),占在 0 ~ 11 位,每页的⼤⼩为 4KB。

对某特定机器的地址结构是⼀定的,若给定⼀个逻辑地址空间中的地址为 A,页⾯的⼤⼩为 L,则页号 P 和页内地址 d 可按下式求得,其中INT 是整除函数。

例如系统的页⾯⼤⼩为 1KB,设 A = 2170B,则由公式可以求得 P = 2,d = 122。

操作系统-连续分配存储管理方式

操作系统-连续分配存储管理方式

操作系统-连续分配存储管理方式操作系统连续分配存储管理方式在计算机操作系统中,存储管理是一项至关重要的任务,它负责有效地管理计算机内存资源,以确保系统的高效运行和各种程序的正常执行。

连续分配存储管理方式是其中的一种常见方法,接下来让我们详细了解一下。

连续分配存储管理方式,顾名思义,就是为程序或进程分配连续的内存空间。

这种方式相对直观和简单,易于理解和实现。

首先,我们来谈谈单一连续分配。

在这种方式下,内存被分为系统区和用户区两部分。

系统区通常存放操作系统内核等关键系统程序,而用户区则只供一个用户程序使用。

这就好比一个房间被隔成了两个部分,一个部分是主人的私人空间,另一个部分则是留给客人的专属区域。

这种方式简单直接,但缺点也很明显,它只能用于单用户、单任务的操作系统,因为内存资源无法被多个程序共享,利用率较低。

接下来是固定分区分配。

这就像是把一个大房间提前划分成了几个固定大小的小房间。

每个小房间都有固定的大小,并且只能分配给大小合适的程序使用。

系统会预先将内存空间划分成若干个固定大小的分区,每个分区可以装入一个作业。

这种方式提高了内存的利用率,支持多道程序并发运行,但也存在一些问题。

比如,如果程序的大小小于分区的大小,就会造成内存空间的浪费,这就好比一个小个子住进了一个大房间,空间没有被充分利用。

而且,由于分区大小固定,缺乏灵活性,可能会出现大程序无法装入小分区的情况。

然后是动态分区分配。

这有点像一个灵活的仓库,根据货物的大小来随时调整存储空间。

在这种方式下,系统不会预先划分分区,而是在进程装入内存时,根据进程的实际需要,动态地划分出一块连续的内存空间分配给它。

当进程运行结束后,再将这块内存空间回收。

为了实现动态分区分配,系统通常需要使用一些数据结构来记录内存的使用情况,比如空闲分区表或者空闲分区链。

这种方式提高了内存的利用率,避免了固定分区分配中的一些浪费问题,但也带来了一些新的挑战。

比如说,随着进程的不断装入和退出,内存中会产生很多碎片,这些碎片可能很小,无法满足新进程的需求,从而导致内存的利用率降低。

《操作系统》课件页式存储管理

《操作系统》课件页式存储管理
请和释放内存。
延迟释放
对于一些不再使用但仍占用内存 的对象,可以采用延迟释放的策 略,等到系统空闲时再统一进行
内存回收。
实时监控和调试工具使用技巧
使用内存监控工具
可以使用一些内存监控工具来实时监控 系统的内存使用情况,包括内存占用率 、内存分配和释放的频率等,从而及时 发现内存抖动问题。
VS
使用调试工具
影响
内存抖动会导致系统性能下降,因为 频繁的分配和释放操作会消耗大量的 CPU时间,同时还会产生大量的内存 碎片,从而降低内存利用率。
避免或减少内存抖动方法探讨
优化数据结构
通过合理设计数据结构,减少小 块内存的使用,从而降低内存分
配和释放的频率。
内存池技术
使用内存池技术可以预先分配一 块较大的内存区域,并通过自定 义的内存管理算法来管理该内存 区域,从而避免频繁地向系统申
页面大小调整
根据应用程序的特点和访问模式, 动态调整页面大小,以适应不同的 工作负载。
降低缺页率、提高命中率技巧
01
02
03
预测技术
利用程序的行为模式和历 史数据,预测未来可能访 问的页面,并提前将其加 载到内存中。
局部性原理
根据程序的局部性访问原 理,尽量将相关的数据和 代码放在同一个页面内, 以减少页面置换的次数。
THANKS FOR WATCHING
感谢您的观看
页面保护
采用写时复制、只读保护 等技术,减少不必要的页 面写操作,降低缺页率。
多级页表、反置页表等扩展技术
多级页表
将页表分为多级结构,以减少页表占用的内存空间和加快页表查找速度。
反置页表
将页表项按照物理页帧号进行组织,而不是按照逻辑页号,以加快页表查找和页面置换的速度。

某操作系统采用动态分区分配存储管理方法

某操作系统采用动态分区分配存储管理方法

某操作系统采用动态分区分配存储管理方法动态分区分配存储管理方法是一种常见的操作系统存储管理策略。

它通过将内存分为多个大小不等的分区,以适应不同程序和数据的内存需求。

每个分区可以被动态地分配给不同的进程,从而实现了高效的内存利用。

在这篇文章中,我们将介绍动态分区分配存储管理方法的原理、优点和缺点,以及它在实际操作系统中的应用。

动态分区分配存储管理方法的原理是将可用的内存划分为不同大小的分区,每个分区可以被分配给一个进程来使用。

当一个进程需要内存时,操作系统将会分配一个合适大小的分区给该进程。

而当进程不再需要内存时,操作系统将会将该分区释放,以便其他进程可以使用它。

这种方式可以有效地避免内存碎片的问题,提高内存利用率。

与静态分区分配存储管理方法相比,动态分区分配存储管理方法具有以下几个优点:1.高效的内存利用:动态分区分配存储管理方法可以根据不同进程的需求动态地分配内存,从而最大限度地提高内存利用率。

2.灵活性:动态分区分配存储管理方法允许内存的分配和释放是动态的,进程可以根据需要动态地申请或释放内存空间,提高了系统的灵活性。

3.适应性强:动态分区分配存储管理方法可以根据不同进程的需求,动态地调整内存分区大小,以适应不同程序和数据的内存需求。

然而,动态分区分配存储管理方法也存在一些缺点:1.内存碎片:由于内存分配和释放是动态的,可能会导致内存碎片的问题。

即使内存总量足够,但是由于内存空间的不连续分配,可能会导致大量的碎片化内存空间无法利用。

2.空间浪费:分配给一个进程的分区大小通常会略大于进程的实际需要,以避免分配不足的情况。

这可能会导致一些内存空间的浪费。

3.分配算法复杂:动态分区分配存储管理方法需要设计合适的分配算法来选择合适的分区来满足进程的需求。

这可能会导致一些分配算法的复杂性。

在实际操作系统中,动态分区分配存储管理方法被广泛应用。

例如,Windows操作系统使用的虚拟内存管理策略中的分页文件功能就是基于动态分区分配存储管理方法实现的。

操作系统中存储器管理的主要功能

操作系统中存储器管理的主要功能

操作系统中存储器管理的主要功能存储器管理是操作系统中的核心组成部分之一,它主要负责管理计算机中的存储器资源,以便有效地分配和利用存储空间,并且为不同的程序和进程提供安全的访问。

在操作系统中,存储器管理的主要功能包括内存分配、内存保护、内存扩充、内存回收和换页操作。

内存分配内存分配是指操作系统根据进程的需要以及存储器的可用空间,为进程分配合适的内存空间。

在操作系统启动时,它会将系统的内存划分为多个连续的内存块,每个内存块可以用来存储一个进程或一部分进程。

内存分配可以通过两种方式进行:静态分配和动态分配。

静态分配是在程序编译或装载时进行的,操作系统会为每个进程分配固定大小的内存空间。

这种方式简单、高效,但是会导致内存的浪费和碎片化的问题。

动态分配则是在程序运行时进行的,操作系统根据进程的需要动态地分配内存空间,使得进程能够根据实际需求来使用存储空间。

内存保护内存保护是操作系统中存储器管理的重要功能之一,它主要通过权限控制来保护进程的内存空间。

每个进程被分配的内存空间应该是相互独立的,进程之间不能相互干扰或篡改彼此的数据。

操作系统通过给每个进程设置访问权限,限制进程对其他进程内存空间的访问,从而保护了每个进程的数据安全。

为了实现内存保护,操作系统使用地址映射、地址转换和访问控制等方法。

地址映射将逻辑地址转换为物理地址,以便进程能够正确访问内存。

地址转换是通过分页或分段的方式来实现的,将逻辑地址划分为不同的页或段,并映射到实际的物理地址上。

访问控制则是通过设置访问权限位来限制进程对内存空间的访问。

内存扩充随着计算机系统的发展,存储器的容量需求也越来越大。

内存扩充是操作系统中存储器管理的重要任务之一,它可以通过两种方式实现:覆盖和交换。

覆盖是指将进程的一部分数据从内存中移出,然后将新的数据加载到内存中。

这种方式适用于内存空间有限的情况下,可以有效地利用存储资源。

但是,由于数据的移动会导致额外的开销和延迟,因此需要谨慎使用。

操作系统实验报告可变分区存储管理方式的内存分配回收

操作系统实验报告可变分区存储管理方式的内存分配回收

操作系统实验报告可变分区存储管理方式的内存分配回收可变分区存储管理方式是一种常见的内存分配和回收策略,通过将内存分成若干大小不等的分区,分配给不同大小的进程使用。

本文将对可变分区存储管理方式的内存分配和回收进行详细介绍。

首先,可变分区存储管理方式需要对内存进行划分,将内存分成若干个大小不等的分区。

这些分区可以是固定大小的,也可以是可变大小的。

当进程申请内存时,系统会根据申请内存的大小来选择一个合适大小的分区进行分配。

分配时分为两种情况:首次适应和最佳适应。

首次适应算法是指从内存的起始位置开始遍历分区,找到第一个能满足进程要求的分区进行分配。

这种算法的优点是找到满足条件的分区速度较快,缺点是容易造成较大的内存碎片。

最佳适应算法是指通过遍历整个内存,找到一个大小最接近进程要求的分区进行分配。

这种算法的优点是能够减小内存碎片的产生,但是分配速度较慢。

当进程结束时,需要回收其占用的内存。

对于可变分区存储管理方式,在回收内存时出现了两种情况:内部碎片和外部碎片。

内部碎片是指分配给进程的分区中,有一部分空闲内存无法被其他进程利用。

这是因为当一些进程需要分配内存时,分配的大小可能大于其实际需要的大小,导致分区中留下了空余空间。

解决内部碎片的方法是动态地调整分区的大小,使其能够更好地适应进程的大小需求。

外部碎片是指存储空闲的分区之间的一些不可利用的内存。

当进程需要分配内存时,可能没有一个分区能满足其大小需求,导致无法分配内存。

解决外部碎片的方法是内存紧缩和分区合并。

内存紧缩是指将内存中的进程向一端移动,使剩余的空闲内存空间连在一起。

这样可以使得所有的空闲内存空间都可以被利用,减少外部碎片的产生。

分区合并是指将不连续的空闲分区进行合并,形成更大的连续空闲分区。

这样可以提供给大型进程使用,减少外部碎片的产生。

综上所述,可变分区存储管理方式的内存分配和回收是一个动态的过程,需要根据进程的需求进行灵活地管理。

它可以通过首次适应或最佳适应算法选择合适的分区进行内存分配,通过动态调整分区大小解决内部碎片问题,并通过内存紧缩和分区合并减少外部碎片的产生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

操作系统实验报告一、实验目的:1. 动态测试WINDOWS2OOO/XP 系统内存二、实验环境:1. PC机一台(VC C VB等编程环境)三、实验内容和要求:1.了解WINDOWS 用户进程地址空间分布、系统地址空间分布、WINDOWS中用户空间内存分配方式(以页为单位的虚拟内存分配方法)、WINDOWS的内存保护机制。

四、实验步骤:#in clude<iostream> #in clude<cstri ng>#in clude<ctime> #in clude<w in dows.h> using n ames pace std; const int MM_SIZE=100; // 内存块数const int ROW=10; //绘制内存行数const int COL=10; //绘制内存列数const int NEME_LEN=10; // 名字长度const int WAITTIME=2000; // 等待时间int UsedNum=0; //当前已占用的内存块数int FreeNum=MM_SIZE; //当前空闲的内存块数int ProCnt=O; //当前用户进程数int NowID=1; //当前分配的进程编号int MM[MM_SIZE]; //Mai n Mem ony //0 -> //-1 -> //k -> /*进程class P ROCESS{public:PROCESS。

:next(0){}//构造函数重载,用于构造队列队头P ROCESS(char* Name,i nt p N): PageNum( pN), next(0) { pN ame=new char[NEME LEN];内存块在初始化时已被系统占用内存块已被分配给plD=k的用户进程Obj*/ageTable[i]=-1; plD=NowlD++;}~PROCESSO{delete pN ame;delete P ageTable;}PROCESS* next; //指向下一个进程char* Get pN ame(void)co nst {return p Name;} // 获取进程名int Get plD(void)co nst {return pID;} // 获取进程编号int GetPageNum(void)const {return PageNum;} // 获取进程所需页数void UnionTable(int i,int j); //关联页号i与块号j(创建页表) void PrintPageTable(void); // 打印页表p rotected:char* p Name; // 进程名int pID; //进程编号int PageNum; //进程所需页数int* P ageTable; // 页表};PROCESS* ProLinkHead=new PROCESS; // 申请进程队列队头空间void P ROCESS::U nio nTable(i nt i,i nt j){P ageTable[i]=j;return;}void P ROCESS:: PrintP ageTable(void){cout<<" PAGETABLE (页表)"<<endl;cout<<"页号ID 块号ID#"<<endl;for(i nt i=0;i<MM_SIZE;i++)if(P ageTable[i]!=-1)printf(” %-2d %-2d\n",i, PageTable[i]);cout<<e ndl;return;}void In itial_MM(void); // 初始化void Menu(void); // 菜单void CheckMM(void); // 查看内存状态void PrintProList(void); //打印当前用户进程列表void CheckPro(void); // 查看进程状态void CreatePro(void); // 创建新用户进程void DelPro(void); // 删除用户进程/*主函数*/int main( void){sran d(time(0));In itial_MM();Men u();return 0;}/*初始化内存状态*/void In itial_MM(void){memset(MM,0,sizeof(i nt)*MM_SIZE); // 缺省所有内存块空闲(0)int USE=rand()%4+2; //初始内存占用系数int UsedMM=MM_SIZE/USE; // 初始内存占用数(占用率=USEMM/MM_SIZE)for(int i=0;i<UsedMM;i++) // 随机分配UsedMM 个内存块给系统(-1){int id;docase 3:Create Pro();break; case 4:De IPro ();break; default: {cout<<e ndl;cout<<"主内存(块号)ID#="<<ROW<<"*iR+jC"<<endl;cout<<" 0C 1C 2C 3C 4C 5C 6C 7C 8C 9C"<<e ndl;for(i nt i=O;i<ROW;i++){prin tf("%dR ",i);for(i nt j=0;j<COL;j++)prin tf("%2d ",MM[ROW*i+j]);cout<<e ndl;}cout<<" -1 :系统使用的内存"<<endl;cout<<" 0 :释放内存"<<endl;cout<<" n : PROCESS_n 使用内存"<<endl;cout<<e ndl;cout<<"返回菜单?(Y/N)"<<endl;while(true){char Key;cin> >Key;if(Key=='Y' || Key=='y') break;cout<<"请输入'Y'..."<<endl;cout<<"你现在只能返回菜单"<<e ndl;}return;}/*创建新用户进程*/void Create Pro(void){system("cls");cout<<e ndl;cout<<"创建新的进程"<<endl;/*输入新进程参数*/char name[NEME LEN]; //新进程名字int pN; //新进程所需占用的页数cout<<"新进程名字:";cin>>n ame;cout<<"新进程页数:";cin>>pN;if(pN>FreeNum) //检查空闲块数是否足够分配给新进程{cout<<e ndl;cout<<"内存不足!无法创建该进程,请清理内存再重试"<<endl; cout<<"自动返回菜单"<<endl;Slee p(WAITTIME);return;}else{{p=p->n ext;printf(” %-10s %2d %4d\n", p->Get pN ame(), p->Get plD(), p->Get PageNum()); } return;}/*查看进程状态*/void Check Pro(void){system("cls");PrintP roList();if(ProCn t==0){cout<<"当前不存在任何用户进程"<<e ndl;cout<<"自动返回菜单"<<endl;Slee p(WAITTIME);return;}cout<<"输入PID查看指定进程的详细信息:"<<endl;int pid;cin>>pid;bool flag=false; //标记是否找到编号为pid的进程P ROCESS* p=ProLin kHead-> next;while( p){if(p->Get plD()!=pid)p=p->n ext;else {flag=true; break;}}if(!flag)cout<<"输入错误!不存在的进程!"<<endl; else {system("cls");cout<<e ndl;cout<<" P ROCESS_"<< p->Get pN ame()<<'_'<< p->Get plD()<<e ndl; cout<<" PAGENUM(页数):"<<p->GetPageNum()<<endl; cout<<e ndl;p->PrintPageTableO; 〃打印pid 进程的页表}cout<<"Back to Me nu? (Y/N)"<<e ndl;while(true){char Key;cin> >Key;if(Key=='Y' II Key=='y')break;cout<<"请输入'Y'"<<endl;cout<<"你现在只能返回菜单"<<e ndl;}return;}/*删除用户进程*/void Del Pro(void){system("cls");PrintProList(); //先打印用户进程列表int select;cout<<" (1)删除指定进程."<<endl;cout<<" (2)删除所有进程."<<endl; cout<<e ndl;while(ci n> >select){if(select==1 || select==2)break;cout<<"错误!"<<endl;}cout<<e ndl;if(select==1) //删除指定用户进程{int p id;cout<<"输入页号:";cin>>pid;bool flag=false; //标记是否找到编号为pid的进程P ROCESS* p仁P roLi nkHead;P ROCESS* p 2=ProLi nkHead-〉next;while( p2){if(p 2->Get plD()!=pid){p1=p1->n ext;p2=p2->n ext;}else {flag=true;p1->n ext =p2->n ext;delete p2; //释放pid进程对象占用的空间break;}}if(flag){ProCn t--;for(int i=O;i<MM_SIZE;i++)// 释放被pid进程占用的内存块if(MM[i]==pid)騙嚮鶴也洋:RBOCESS_n 使用內存 输入 Y进程状态P1D PflGENUM 名称㈱鑲何用户进程±内存H 总号MDEMiR*其 9C 1C 0 2C 3C 0 a 4C WU 6C a -1 7C KC a 9C If i IS 伸7M f l f l e_ fl 4 » -1 H a n e e f l « « «-1j 2程; 逬宀盍 的名页功成1单 j s i 逬返五、实验结果与分析(含程序、数据记录及分析和实验总结等):通过本次上机实践,使我了解了有关于存储管理的一些知识。

相关文档
最新文档