数学人教版八年级上册直角三角形全等的判定.2.4

合集下载

人教版数学八年级上册第四课时 三角形全等的判定(HL)课件

人教版数学八年级上册第四课时 三角形全等的判定(HL)课件

第十二章 全等三角形
上一页 返回导航 下一页
数学·八年级 (上)·配人教
13
能力提升
7 . 在 Rt△ABC 中 , ∠ACB = 90° , E 是 AB 上 一 点 , 且 BE = BC , 过 点 E 作
DE⊥AB交AC于点D,如果AC=5 cm,则AD+DE等于
(C)
A.3 cm
B.4 cm
△ACD(AAS),∴AE=AD.在 Rt△ADO 和 Rt△AEO 中,AAOD= =AAEO,,∴Rt△ADO ≌Rt△AEO(HL),∴∠DAO=∠EAO,即 AO 恰好平分∠BAC.
第十二章 全等三角形
上一页 返回导航 下一页
数学·八年级 (上)·配人教
19
思维训练
13.如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过点B、C向过点A 的直线作垂线,垂足分别为点E、F.
15
9.如图,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC= ________. 25°
第十二章 全等三角形
上一页 返回导航 下一页
数学·八年级 (上)·配人教
16
10.如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.若∠ABC=35°, 求∠CAO的度数.
第十二章 全等三角形
上一页 返回导航 下一页
数学·八年级 (上)·配人教
11
5.如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD.求证:∠ABE=
∠BAE.
证明:∵∠C=∠D=90°,∴△ACB 和△BDA 是直角三角形.在 Rt△ACB 和 Rt△BDA 中,AABC= =BBAD,, ∴Rt△ACB≌Rt△BDA(HL),∴∠ABE=∠BAE.

人教版数学八年级上册12.2.4 三角形全等的判定第4课时用“HL”判定直角三角形全等课件

人教版数学八年级上册12.2.4  三角形全等的判定第4课时用“HL”判定直角三角形全等课件
2.如图,已知 AE⊥BC,DF⊥BC,点E,F是垂足,AE=DF,AB=DC. 求证∶AC=DB. 证明∶∵AE⊥BC,DF⊥BC, ∴∠AEB=∠DFC=90°. 在 Rt△ABE和Rt△DCF中, AB=DC, AE=DF, ∴Rt△ABE≌Rt△DCF(HL), ∴∠ABE=∠DCF.
12.2.4 用“HL”判定直角三角形全等
个直角三角形全等吗?
下面,让我们来研究一下这个问题.
12.2.4 用“HL”判定直角三角形全等
新知学习
探究1
任意画出一个 Rt△ABC,使∠C = 90°, 再画一个 Rt△A'B'C',
使∠C' = 90°,B'C' = BC,A'B' = AB,把画好的 Rt△A'B'C' 剪下来放
到 Rt△ABC 上,它们全等吗?
12.2.4 用“HL”判定直角三角形全等
针对训练 1.如图,C 是路段 AB 的中点,两人从 C 同时出发,以相同的速度分别 沿两条直线行走,并同时到达 D,E 两地. DA⊥AB,EB⊥AB. D,E 与 路段 AB 的距离相等吗?为什么?
分析: CA = CB, CD = CE, ∠A =∠B = 90°.
几个条件,这两个直角三角形就全等了?
由三角形全等的条件可知,对于两个直角三角形: 满足一直角边及其相对(或相邻)的锐角分别相等(“AAS”或”ASA”), 或斜边和一锐角分别相等(“AAS”), 或两直角边分别相等(“SAS”), 这两个直角三角形就全等了.
12.2.4 用“HL”判定直角三角形全等 如果满足斜边和一条直角边分别相等,这两
12.2.4 用“HL”判定直角三角形全等

人教版八年级数学上册1三角形全等的判定第4课时用“HL”判定直角三角形全等课件

人教版八年级数学上册1三角形全等的判定第4课时用“HL”判定直角三角形全等课件

E
∴CD = CE,
B
又DA⊥AB,EB⊥AB,
∴∠A=∠B =90°,
在Rt△ACD与Rt△BCE中,
D
AC BC,
CD CE,
A
∴Rt△ACD≌Rt△BCE(HL).
∴DA = EB,
C
E
即D、E与路段AB的距离相等.
B
练习2 如图,AB = CD,AE⊥BC,DF⊥BC, 垂足分别为E,F,CE = BF.求证:AE = DF.
∴Rt△ABC ≌ Rt△DEF(HL).
例2 如图,有两个长度相同的滑梯,左边滑 梯的高度AC 与右边滑梯水平方向的长度DF 相等, 两个滑梯的倾斜角∠ABC 和∠DFE 的大小有什么 关系?为什么? 证明:∴∠ABC =∠DEF
(全等三角形对应角相等).
∵ ∠DEF +∠DFE =90°,
∴ ∠ABC +∠DFE =90°.
DC AB, CF BE, ∴Rt△DFC≌Rt△AEB(HL).
FE
∴AE = DF.
A
B
练习3 如图,B、E、F、C 在同一直线上, AF⊥BC 于F,DE⊥BC与E,AB = DC,BE = CF, 你认为 AB 平行于 CD 吗?说说你的理由.
解:平行. 理由:∵AF⊥BC,DE⊥BC, ∴∠AFB 和∠DEC 都是直角, 又 BE = CF, ∴BE+EF=CF+EF,即 BF = CE.
例2 如图,有两个长度相同的滑梯,左边滑 梯的高度AC 与右边滑梯水平方向的长度DF 相等, 两个滑梯的倾斜角∠ABC 和∠DFE 的大小有什么 关系?为什么?
证明:∵AC⊥AB,DE⊥DF,
∴∠CAB =∠FDE =90°.

人教版数学八年级上册12.2.4 用“HL”判定直角三角形全等 课件(共21张PPT)

人教版数学八年级上册12.2.4 用“HL”判定直角三角形全等  课件(共21张PPT)

人教版数学八年级上册12.2.4 用“HL”判定直角三角形全等课件(共21张PPT)(共21张PPT)12.2.4全等三角形的判定——HL(斜边、直角边)学习目标1.探索并理解直角三角形全等的判定方法“HL”.(难点)2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.(重点)新课导入我们已经学过判定全等三角形的方法有哪些?1.边边边(SSS)3.角边角(ASA)4.角角边(AAS)2.边角边(SAS)复习导入判断:如图,具有下列条件的Rt△ABC与Rt△DEF(其中△C=△F=90°)是否全等?若全等,在( )里填写理由;若不全等,在( )里打“×”:①AC=DF,△A=△D;( )②AC=DF,BC=EF;( )③AB=DE,△B=△E;( )④△A=△D,△B=△E;( )⑤AC=DF,AB=DE. ( )练一练ASASASAAS×HL问题:满足斜边和一条直角边对应相等的两个直角三角形是否全等呢?新课导入ABCA′B′C′1.两个直角三角形中,斜边和一个锐角对应相等,这两个直角三角形全等吗?为什么?2.两个直角三角形中,有一条直角边和一锐角对应相等,这两个直角三角形全等吗?为什么?3.两个直角三角形中,两直角边对应相等,这两个直角三角形全等吗?为什么?动脑想一想如图,已知AC=DF,BC=EF,△B=△E,△ABC△△DEF吗?我们知道,证明三角形全等不存在SSA定理.ABCDEF新课导入讲授新课1直角三角形全等的判定(“斜边、直角边”定理)问题任意画一个Rt△ABC,使△C =90°,再画一个Rt△A′B′C′,使△C′=90°,B′C′=BC,A′B′=AB,然后把画好的Rt△A′B′C′剪下来放到Rt△ABC上,你发现了什么?讲授新课ABC(1)画△MC′N =90°;(2)在射线C′M上取B′C′=BC;(3)以B′为圆心,AB为半径画弧,交射线C′ N于点A′;(4)连接A′B′.现象:两个直角三角形能重合.说明:这两个直角三角形全等.画法:A′NMC′B′“斜边、直角边”判定方法:文字语言:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:ABCA ′B′C ′△Rt△ABC △ Rt△ A′B′C′ (HL).AB=A′B′,BC=B′C′,“SSA”可以判定两个直角三角形全等,但是“边边”指的是斜边和一直角边,而“角”指的是直角.例1如图,AC△BC,BD△AD,AC﹦BD,求证:BC﹦AD.证明:△ AC△BC,BD△AD,△△C与△D都是直角.AB=BA,AC=BD .在Rt△ABC 和Rt△BAD 中,△ Rt△ABC△Rt△BAD (HL).△ BC﹦AD.ABDC应用“HL”的前提条件是在直角三角形中.这是应用“HL”判定方法的书写格式.利用全等证明两条线段相等,这是常见的思路.直角三角形全等的应用:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角△B和△F的大小有什么关系?解:在Rt△ABC和Rt△DEF中,BC=EF,AC=DF .△ Rt△ABC△Rt△DEF (HL).△△B=△DEF(全等三角形对应角相等).△ △DEF+△F=90°,△△B+△F=90°.例2证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.总结当堂练习1. 下列条件不能使两个直角三角形全等的是()A.斜边和一锐角对应相等B.有两边对应相等C.有两个锐角对应相等D.有一直角边和一锐角对应相等C2. 如图,O是△BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO△△AFO的依据是()A.HL B.AAS C.SSS D.ASAA3. 如图所示,BE△AC,CF△AB,垂足分别是E,F.若BE=CF,则图中全等三角形有( )A.1对B.2对C.3对D.4对C4. 如图所示,在△ABC中,AB=AC,D是BC的中点,DE△AB,DF△AC,垂足分别为E,F.则图中全等三角形共有( )A.2对B.3对C.4对D.5对B当堂练习当堂练习5. 如图,在△ABC中,△BAC=90°,AB=AC,点D在AC上,点E在BA的延长线上,BD=CE,BD的延长线交CE于点F.求证:BF△CE.证明:在Rt△BAD和Rt△CAE中,△Rt△BAD△Rt△CAE(HL).△△ABD=△ACE.又△△BDA=△CDF,△△CFD=△BAD=90°,即BF△CE.当堂练习AFCEDB6. 如图,AB=CD,BF△AC,DE△AC,AE=CF. 求证:BF=DE.证明: △ BF△AC,DE△AC, △△BFA=△DEC=90 °.△AE=CF,△AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,AB=CD,AF=CE.△ Rt△ABF△Rt△CDE(HL).△BF=DE.当堂练习7. 如图,两根长度为12 m的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.BD=CD.△△ADB=△ADC=90°,AB=ACAD=AD△Rt△ABD△Rt△ACD(HL),△ BD=CD.解:8. 如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD =AF,AC=AE. 求证:BC=BE.证明:△AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC =AE,△Rt△ADC△Rt△AFE(HL).△CD=EF.△AD=AF,AB=AB,△Rt△ABD△Rt△ABF(HL).△BD=BF.△BD-CD=BF-EF.即BC=BE.重难点突破课堂小结“斜边、直角边”内容斜边和一条直角边对应相等的两个直角三角形全等.前提条件在直角三角形中使用方法只须找除直角外的两个条件即可(两个条件中至少有一个条件是一对对应边相等)判定直角三角形全等的“四种思路”:(1)若已知条件中有一组直角边和一组斜边分别相等,用“HL”判定.(2)若有一组锐角和斜边分别相等,用“AAS”判定.(3)若有一组锐角和一组直角边分别相等:①直角边是锐角的对边,用“AAS”判定;②直角边是锐角的邻边,用“ASA”判定.(4)若有两组直角边分别相等,用“SAS”判定.课堂小结谢谢大家。

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

人教版八年级上册数学课件:两个直角三角形全等的判定条件

人教版八年级上册数学课件:两个直角三角形全等的判定条件

定理:如果两个直角三角形的斜边和一条直角边分别
对应相等,那么这两个直角三角形全等,简写成
“斜边、直角边”或“HL”表示。
B
几何语言
∵∠C=∠C ′=90°
A
C
B′
∴在RT∆ABC和RT∆A ′ B ′ C ′中
AB= A ′ B ′
AC= A ′ C ′
A′
C′
∴ RT∆ABC ≌ RT∆ A ′ B ′ C ′ (HL)
练习快速回答问题
1.两个锐角对应相等的两个直角三角形全等吗?
2.两条直角边对应相等的两个直角三角形全等吗?
3.有任意的两条边对应相等的两个直角三角形全等 吗? 4.有两边及一条边对应的三角形全等吗? 5.判定两个三角形全等,共有多少种方法?
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
DE=DF
∴Rt △DEB≌Rt △DFC
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
练习
2、如图,AC=AD,∠C=∠D=90° , 求证:BC=BD
C A

证明:∵∠C=∠D=90° ∴△ABC和△ABD是直角三角形 在Rt △ABC和Rt △ABD中 AB=AB
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
小结:
• 1、应用斜边直角边(HL)公理判定两个三 角形全等,要按照公理的条件,准确地 找出“对应相等”的边和角;
• 2、寻找使结论成立所需要的条件时,要注 意充分利用图形中的隐含条件,如“公 共边、公共角、对顶角等等”;

人教版数学八上第8讲直角三角形全等判定(提高)知识讲解

人教版数学八上第8讲直角三角形全等判定(提高)知识讲解

直角三角形全等判定(提高)【学习目标】1.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL”). 2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等.【要点梳理】要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理. 要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”1、判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”. 【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS、ASA、AAS、SSS、HL.举一反三:【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()【答案】(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,2、已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.【思路点拨】从已知条件只能先证出Rt △ADE ≌Rt △CBF ,从结论又需证Rt △CDE ≌Rt △ABF. 【答案与解析】证明:∵DE ⊥AC ,BF ⊥AC ,∴在Rt △ADE 与Rt △CBF 中.AD BC DE BF ⎧⎨⎩=,=∴Rt △ADE ≌Rt △CBF (HL )∴AE =CF ,DE =BF∴AE +EF =CF +EF ,即AF =CE 在Rt △CDE 与Rt △ABF 中,DE BF DEC BFA EC FA =⎧⎪∠=∠⎨⎪=⎩∴Rt △CDE ≌Rt △ABF (SAS ) ∴∠DCE =∠BAF ∴AB ∥DC.【总结升华】我们分析已知能推证出什么,再看要证到这个结论,我们还需要哪些条件,这样从已知和结论向中间推进,从而证出题目.3、如图 AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 相交于F .求证:AF 平分∠BAC .【思路点拨】若能证得AD =AE ,由于∠ADB 、∠AEC 都是直角,可证得Rt △ADF ≌Rt △AEF ,而要证AD =AE ,就应先考虑Rt △ABD 与Rt △AEC ,由题意已知AB =AC ,∠BAC 是公共角,可证得Rt △ABD ≌Rt △ACE . 【答案与解析】证明: 在Rt △ABD 与Rt △ACE 中∴Rt △ABD ≌Rt △ACE(AAS)∴AD =AE(全等三角形对应边相等) 在Rt △ADF 与Rt △AEF 中∴Rt △ADF ≌Rt △AEF(HL)∴∠DAF =∠EAF(全等三角形对应角相等) ∴AF 平分∠BAC(角平分线的定义)【总结升华】条件和结论相互转化,有时需要通过多次三角形全等得出待求的结论. 举一反三:【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形 在Rt △ABD 和Rt △BAC 中AB BABD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL) ∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS) ∴OD =OC .4、如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D. (1)求证:AE =CD ;(2)若AC =12cm ,求BD 的长.【答案与解析】(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°. ∴∠D =∠AEC .又∵∠DBC =∠ECA =90°, 且BC =CA ,∴△DBC ≌△ECA (AAS ). ∴AE =CD .(2)解:由(1)得AE =CD ,AC =BC , ∴△CDB ≌△AEC (HL ) ∴BD =EC =12BC =12AC ,且AC =12. ∴BD =6cm .【总结升华】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件 【巩固练习】 一、选择题1.下列命题中,不正确的是( )A.斜边对应相等的两个等腰直角三角形全等B.两条直角边对应相等的两个直角三角形全等C.有一条边相等的两个等腰直角三角形全等D.有一条直角边和斜边上的中线对应相等的两个直角三角形全等2. 如图,△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( ) A. 3对 B. 4对 C. 5对 D. 6对3. 如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1B.2C.3D.44. 在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A. △ABE≌△ACFB. 点D在∠BAC的平分线上C. △BDF≌△CDED. 点D是BE的中点5.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是().A.相等 B.不相等C.互余或相等 D.互补或相等6. 已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A. 1B. 2C. 5D. 无法确定二、填空题7. 如图,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.8. 如图,已知AB⊥BD于B,ED⊥BD于D,EC⊥AC,AC=EC,若DE=2,AB=4,则DB=______.9. 判定两直角三角形全等的各种条件:(1)一锐角和一边;(2)两边对应相等;(3)两锐角对应相等.其中能得到两个直角三角形全等的条件是_________.10. 如图,△ABC中,AM平分∠CAB,CM=20cm,那么M到AB的距离是_________cm.11. 如图,已知AD是△ABC的高,E为AC上一点,BE交AD于F,且BF=AC,FD=CD.则∠BAD=_______.12. 如图所示的网格中(4×4的正方形),∠1+∠2+∠3+∠4+∠5+∠6=________.三、解答题13.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON (如图),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.14. 求证:有两边和其中一边上的高对应相等的两个锐角三角形全等.15. 如图,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,•若AB=CD,试证明BD平分EF.【答案与解析】一.选择题1. 【答案】C;【解析】C选项如果是一个等腰三角形的腰和另一个等腰三角形的底边对应相等,这是肯定不全等.2. 【答案】D;【解析】Rt△ABD≌Rt△ACE;Rt△BEO≌Rt△CDO;Rt△AEO≌Rt△ADO;Rt△ABF≌Rt△ACF;Rt△BEC≌Rt△CDB;Rt△BFO≌Rt△CFO.3. 【答案】A;【解析】本题可先根据AAS判定△AEH≌△CEB,可得出AE=CE,从而得出CH=CE-EH =4-3=1.4. 【答案】D;【解析】A选项:∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;B选项:∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;C选项:∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确.5. 【答案】D;【解析】如果两个三角形都是锐角三角形或钝角三角形,那么相等;如果一个是锐角三角形一个是钝角三角形,那么互补.6. 【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D 作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可二.填空题7. 【答案】△DFE ,HL ;【解析】EB +BF =FC +BF ,即EF =BC ,斜边相等; 8. 【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6; 9. 【答案】(1)(2) 10.【答案】20;【解析】过M 作MD ⊥AB 于D ,可证△ACM ≌△ADM ,所以DM =CM =20cm . 11.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形. 12.【答案】270°;【解析】∠1+∠6=∠2+∠5=∠3+∠4=90°,所以∠1+∠2+∠3+∠4+∠5+∠6=270°.三.解答题 13.【解析】证明:在Rt △OPM 和Rt △OPN 中, OP OPOM ON=⎧⎨⎩=∴Rt △OPM ≌Rt △OPN.∴∠POM =∠PON ,即OP 平分∠AOB.14.【解析】根据题意,画出图形,写出已知,求证.已知:如图,在△ABC 与△A B C '''中.AB =A B '',BC =B C '',AD ⊥BC 于D ,A D ''⊥B C '' 于D '且 AD =A D ''求证:△ABC ≌△A B C '''证明: 在Rt △ABD 与Rt △A B D '''中∵AB A B AD A D ''=⎧⎨''=⎩∴Rt △ABD ≌ Rt △A B D ''' (HL)∴∠B =∠B '(全等三角形对应角相等)在△ABC与△A B C'''中∵AB A BB B BC B C''=⎧⎪'∠=∠⎨⎪''=⎩∴△ABC≌△'''A B C (SAS)15.【解析】证明∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.∵AE=CF,AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,,, AB CD AF CE=⎧⎨=⎩∴Rt△ABF≌Rt△CDE(HL),∴BF=DE.在△BFG和△DEG中,,,,BFG DEGBGF DGE BF DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFG≌△DEG(AAS),∴FG=EG,即BD平分EF.。

2021年人教版数学八年级上学期全等三角形知识点

2021年人教版数学八年级上学期全等三角形知识点

2021年人教版数学八年级上学期第十二章全等三角形知识点总结第十二章全等三角形一、知识框架:二、知识清单:1.全等图形与全等三角形:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.全等三角形中互相重合的顶点叫做对应顶点;全等三角形中互相重合的边叫做对应边;全等三角形中互相重合的角叫做对应角.2.全等三角形性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定公理:⑴边边边公理:三边对应相等的两个三角形全等.(简记为“边边边”或“SSS”)⑵边角边公理:两边和它们的夹角对应相等的两个三角形全等.(简记为“边角边”或“SAS”)⑶角边角公理:两角和它们的夹边对应相等的两个三角形全等.(简记为“角边角”或“ASA”)⑷角角边推论:两角和其中一角的对边对应相等的两个三角形全等.(简记为“角角边”或“AAS”)⑸斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等.(简记为“斜边、直角边”或“HL”)4.角平分线:把一个角平均分成两个等角的射线称为角的平分线.⑴角平分线的画法:a.以角的顶点为圆心,适当长为半径画弧,与角两边交于两个点;b.分别以两个交点为圆心,大于两交点连线段的1/2的相同长度为半径画弧,在角内交于一点;c.过角的顶点和b中的交点做射线.射线即为角的平分线.⑵角平分线性质定理:角平分线上的点到角两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(三角形三条角平分线的交点到三边距离相等,三条角平分线的交点称为三角形的内心)5.证明的基本步骤:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.。

八年级数学人教版(上册)第4课时用“HL”判定直角三角形全等

八年级数学人教版(上册)第4课时用“HL”判定直角三角形全等
解:CB=DA.理由: 由题意易知 AC=BD. ∵CB⊥AB,DA⊥AB, ∴∠DAB=∠CBA=90°. 在 Rt△DAB 和 Rt△CBA 中,
BD=AC, AB=BA, ∴Rt△DAB≌Rt△CBA(HL). ∴DA=CB.
3.如图,点 C,E,B,F 在同一条直线上,AB⊥CF 于点 B, DE⊥CF 于点 E,AC=DF,AB=DE.求证:AC∥DF.
证明:∵AB⊥CF,DE⊥CF, ∴∠ABC=∠DEF=90°. 在 Rt△ABC 和 Rt△DEF 中, AC=DF, AB=DE,
∴Rt△ABC≌Rt△DEF(HL). ∴∠C=∠F. ∴AC∥DF.
知识点 2 选择适当的方法判定两个直角三角形全等 4.下列条件中,不能判定两个直角三角形全等的是( C ) A.一个锐角和斜边对应相等 B.两条直角边对应相等 C.两个锐角对应相等 D.斜边和一条直角边对应相等
∴∠APE=∠BPF. ∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°. ∴PA⊥PB.
(2)若点 A 的坐标为(8,0),则点 B 的坐标为 (0,-4) . (3)OA-OB 的值为 4 .
(4)如图 2,当点 B 在 y 轴正半轴上运动时,求 OA+OB 的值. 解:过点 P 作 PE⊥x 轴于点 E,PF⊥y 轴于点 F, 同(1)可得,Rt△APE≌Rt△BPF, ∴AE=BF. ∵AE=OA-OE=OA-2,BF=OF-OB=2-OB, ∴OA-2=2-OB. ∴OA+OB=4.
又∵∠BCD=∠EDC=90°,
∴∠BCD-∠ACF=∠EDC-∠ADF, 即∠BCA=∠EDA.
BC=ED, 在△ABC 和△AED 中,∠BCA=∠EDA,
AC=AD,

直角三角形全等的判定(HL)(教学设计)-八年级数学上册同步备课系列(人教版)

 直角三角形全等的判定(HL)(教学设计)-八年级数学上册同步备课系列(人教版)

12.2.4直角三角形全等的判定(HL)教学设计一、教学目标:1.探索并理解直角三角形全等的判定方法“HL”.2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.二、教学重、难点:重点:掌握判定两个直角三角形全等的特殊方法-HL.难点:熟练选择判定方法,判定两个直角三角形全等.三、教学准备:课件、三角尺、圆规等。

四、教学过程:复习回顾1.判定两个三角形全等方法____________________.2.如图,AB⊥BE于B,DE⊥BE于E.(1)若∠A=∠D,AB=DE.则与△DEF______(填“全等”或“不全等”)根据______(用简写法).(2)若∠A=∠D,BC=EF.则△ABC与△DEF______(填“全等”或“不全等”)根据______(用简写法).(3)若AB=DE,BC=EF.则△ABC与△DEF_______(填“全等”或“不全等”)根据______(用简写法).若AB=DE,AC=DF,此时△ABC与△DEF还会全等吗?知识精讲探究:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使得∠C′=90°,B′C′=BC,A′B′=A B.把画好的Rt△A′B′C′剪下,放到Rt△ABC上,它们全等吗?斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).注意:(1)“HL”定理是仅适用于Rt△的特殊方法.因此,判定两个直角三角形全等的方法除了可以使用“SSS”、“SAS”、“ASA”、“AAS”外还可以使用“HL”.(2)应用HL定理时,虽只有两个条件,但必须先有两个Rt△.书写格式为:在Rt△ABC和Rt△A′B′C′中,==AB A B BC B C′′′′∴Rt△ABC≌Rt△A′B′C′(HL)典例解析例1.如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=B D.求证BC=AD.证明:∵AC ⊥BC ,BD ⊥AD ,∴∠C 与∠D 都是直角,在Rt △ABC 和Rt △BA D 中,BDAC BA AB ∴Rt △ABC ≌Rt △BAD (HL),∴BC =AD.【针对练习】如图,C 是路段AB 的中点,两人从C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D 、E 两地.DA ⊥AB ,EB ⊥A B.D ,E 与路段AB 的距离相等吗?为什么?解:AD =BE ,理由如下:依题意可得,AC =BC ,CD =CE .∵DA ⊥AB ,EB ⊥AB ,∴∠A =∠B =90°,在Rt △ACD 和Rt △BCE 中,BCAC CE CD ∴Rt △ACD ≌Rt △BCE (HL),∴AD =BE.例2.如图,AC ⊥AD ,BC ⊥BD ,AC=BD ,求证:AD=BC .证明:连接D C.∵AC ⊥AD ,BC ⊥BD ,∴∠A =∠B =90°,在Rt △ADC 和Rt △BC D 中,AB BA AC BD∴Rt △ADC ≌Rt △BCD (HL),∴AD =BC.【针对练习】已知:如图,AB ,AD DC ,AB AD ,求证:BC DC .证明:连接AC,如下图,∵AB ⊥BC,AD ⊥DC,∴∠B =∠D =90°,在Rt △ABC 和Rt △AD C 中,AC AC AD AB∴Rt △ABC ≌Rt △ADC (HL),∴BC =BD.例3.如图,已知AD 是△ABC 的角平分线,且BD =CD ,DE 、DF 分别垂直于AB 、AC ,垂足分别为E 、F .求证BE =CF.证明:AD 平分∠BAC ,∴∠BAD =∠CAD ,∵DE 、DF 分别垂直于AB 、AC ,∴∠AED =∠AFD =90°,在△AED 和△AFD 中,AED AFD EAD FAD AD AD∴△AED ≌△AFD (AAS),∴DE =DF ,在Rt △BDE 和Rt △CDF 中,BD CD DE DF∴Rt △BDE ≌Rt △CDF (HL ),∴BE =CF .【针对练习】已知:如图,点A 、E 、C 同一条直线上,AB ⊥BC ,AD ⊥DC ,AB =A D .求证:BE =DE.证明:∵AB ⊥BC ,AD ⊥DC ,∴在Rt ABC 与Rt ADC 中,AB AD AC AC,∴Rt ABC ADC ≌R t (HL ),∴∠BAE =∠DAE ,在ABE △与ADE 中,AB AD BAE DAE AE AE,∴ABE ADE ≌(SAS ),∴BE =DE .例4.如图,在△AB C 中,∠C =90°,AD 是∠CAB 的角平分线,DE ⊥AB 于E ,点F 在边AC 上,连接DF .(1)求证:AC =AE ;(2)若DF =DB ,试说明∠B 与∠AFD 的数量关系;(3)在(2)的条件下,若AB =m ,AF =n ,求BE 的长(用含m ,n 的代数式表示).(1)证明:∵∠C =90°,DE ⊥AB ,∴∠C =∠AED =90°,在△ACD 和△AE D 中,C AED CAD EAD AD AD,∴△ACD ≌△AED (AAS ),∴AC =AE ;(2)解:∠B +∠AFD =180°,理由如下:由(1)得:△ACD ≌△AED ,∴DC =DE ,在Rt △CDF 和Rt △ED B 中,DC DE DF DB,∴Rt△CDF≌Rt△EDB(HL),∴∠CFD=∠B,∵∠CFD+∠AFD=180°,∴∠B+∠AFD=180°;(3)解:由(2)知,Rt△CDF≌Rt△EDB,∴CF=BE,由(1)知AC=AE,∵AB=AE+BE,∴AB=AC+BE,∵AC=AF+CF,∴AB=AF+2BE,∵AB=m,AF=n,∴BE=12(m﹣n).课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。

初中数学人教版八年级上册“斜边、直角边”判定直角三角形全等

初中数学人教版八年级上册“斜边、直角边”判定直角三角形全等

证明:∵AP、DQ是△ABC和△DEF的高
A
∴∠APB=∠DQE=90°
在Rt△ABP和Rt△DEQ中
{ AB=DE AP=DQ
∴Rt△ABP≌Rt△DEQ (HL)
B
∴ ∠B=∠E
在△ABC和△DEF中
{ ∠BAC=∠EDF AB=DE ∠B=∠E
E
∴△ABC≌△DEF (ASA)
PC D QF
谈谈你本节课的收获
∴∠C=∠D=90° 在Rt△ABC和Rt△BAD中
D
AB BA BC AD
∴ Rt△ABC≌Rt△BAD (HL) A
C B
证明两个直角三角形全等,首先考虑用HL定理
例2已知:如图, △ABC中,AB=AC,AD是△ABC高
求证:BD=CD ;∠BAD=∠CAD
证明:∵AD是△ABC的高
∴∠ADB=∠ADC=90°
在Rt△ADB和Rt△ADC中
A
{ AB=AC AD=AD
∴ Rt△ADB≌Rt△ADC(HL)
∴BD=CD,∠BAD=∠CAD
此类问题将证明线段和角相等转化为B 证三角D 形全等C
学以致用
如图,有两个长度相同的滑梯,左边滑 梯的高度AC与右边滑梯水平方向的长 度DF相等,两个滑梯的倾斜角∠ABC和 ∠DFE有什么关系?
E
F
A
B
2,已知∠B = ∠C=90°,AB=CD, O
则△ABO≌ △DCO,其依据是_A_A_S___ C
D
A
3,在Rt△ABC中,∠C=90°,AD平分 ∠BAC,DE⊥AB,则△AED≌ △ACD, 其依据是 ________AAS
E
B
D
C

人教版初二数学上册直角三角形的全等判定(HL)

人教版初二数学上册直角三角形的全等判定(HL)
判定
应用:灵活运用各种方法证明直角三角形全等
谢谢大家
B
B′
5cm
5cm
A
4cm
C A′
4cm
C′
RT△ABC≌RT△A´B´C ´
斜边和一条直角边对应相等的两个直角三角形全等.
(简写成“斜边、直角边”或简写为“HL”)
H表示 斜边 L表示直角边
说明:
1、HL只能用于证明直角三角形的全等。 2、SSS、SAS、ASA、AAS适用于任何三角形证 全等,包括直角三角形。
∴ BD=AC..
C B
小试牛刀
已知:AB=CD,AE⊥BC,DF⊥BC ,CE=BF, 求证:AE=DF
C F A
D E
B
课堂小结
一般三角
形全等的 “ SSS ”
判定
“SAS” “ ASA ” “ AAS ”
直角三角
形全等的 “ SSS ” “ SAS ” “ ASA ” “ AAS ” “ HL ”
N
B
MA
C
动动手 做一做
Step1:画∠MCN=90°;
Step2:在射线CM上截取CA=4cm;
Step3:以A为圆心,5cm为半径画弧,交射线CN于B;
Step4:连结AB;
△ABC即为所要画的三角形
N
B
MA
C
动动手 做一做 比比看
把我们刚画好的直角三角形剪下来,和同桌的比比看, 这些直角三角形有怎样的关系呢?
直角三角形全等的判定
学习目标:
1、掌握“斜边、直角边”的判定方法。 2、会运用“斜边、直角边”的判定方法证 明两个直角三角形全等的简单问题。
重难点:
会运用“斜边、直角边”的判定 方法证明直角三角形全等的简单问题。

人教版初二数学上册:直角三角形全等判定(基础)知识讲解

人教版初二数学上册:直角三角形全等判定(基础)知识讲解

直角三角形全等判定(基础)【学习目标】1.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL ”). 2.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等. 【要点梳理】【高清课堂:379111 直角三角形全等的判定,知识点讲解】 要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理. 要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”. 【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行. 【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD , ∴∠ABD =∠CDB =90° 在Rt △ABD 和Rt △CDB 中,AD BC BD DB ⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL ) ∴AB =CD (全等三角形对应边相等) (2)由∠ADB =∠CBD ∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法. 举一反三:【高清课堂:379111 直角三角形全等的判定,例3】 【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB , ∴∠DAE =∠CBA =90° 在Rt △DAE 与Rt △CBA 中, ED ACAE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL ) ∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E +∠EAF =90°,即∠AFE =90° 即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( ) (2)一个锐角和斜边对应相等; ( ) (3)两直角边对应相等; ( ) (4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”. 【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS 、ASA 、AAS 、SSS 、HL. 举一反三:【变式】下列说法正确的有( )(1)一个锐角及斜边对应相等的两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等; (3)两个锐角对应等的两个直角三角形全等; (4)有两条边相等的两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等. A.2个 B.3个 C.4个 D.5个 【答案】C . 解:(1)一个锐角及斜边对应相等的两个直角三角形全等,根据AAS 可判定两个直角三角形全等;(2)一个锐角及一条直角边对应相等的两个直角三角形全等,根据AAS 或ASA 可判定两个直角三角形全等;(3)两个锐角对应等的两个直角三角形全等,缺少“边”这个条件,故不可判定两个直角三角形全等;(4)有两条边相等的两个直角三角形全等,根据SAS 或HL 可判定两个直角三角形全等;(5)有斜边和一条直角边对应相等的两个直角三角形全等,根据HL 可判定两个直角三角形全等.所以说法正确的有4个.故选C .3、(2016春•深圳校级月考)如图,AB ⊥AC 于A ,BD ⊥CD 于D ,若AC=DB ,则下列结论中不正确的是( )OB CDAA .∠A=∠DB .∠ABC=∠DCBC .OB=OD D .OA=OD【思路点拨】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合已知条件与全等的判定方法逐一验证. 【答案与解析】解:∵AB ⊥AC 于A ,BD ⊥CD 于D ∴∠A=∠D=90°(A 正确) 又∵AC=DB ,BC=BC ∴△ABC ≌△DCB(HL)∴∠ABC=∠DCB (B 正确) ∴AB=CD又∵∠AOB=∠C∴△AOB ≌△DOC(AAS) ∴OA=OD (D 正确)C 中OD 、OB 不是对应边,不相等. 故选C .【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、已知:如图1,在Rt△ABC 和Rt△A′B′C′中,AB=A′B′,AC=A′C′,C=∠C′=90° 求证:Rt△ABC 和Rt△A′B′C′全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)将△ABC 和△A′B′C′拼在一起,请你画出两种拼接图形;例如图2:(即使点A 与点A′重合,点C 与点C′重合.)(3)请你选择你拼成的其中一种图形,证明该命题.【答案与解析】解:(1)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等.(2)如图:图②使点A与点A′重合,点B与点B′重合图③使点A与B′重合,B与点A′重合.(3)在图②中,∵A和A′重合,B和B′重合,连接CC′.∵∠ACB=∠A′C′B′=90°,∠ACB﹣∠ACC′=∠A′C′B′﹣∠AC′C,即∠BCC′=∠BCC′,∴BC=B′C′.在直角△ABC和直角△A′B′C′中,,∴△ABC≌△A′B′C′(SSS).【总结升华】本题考查了直角三角形的全等中HL定理的证明,正确利用等腰三角形的性质是关键.附录资料:《三角形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力. 【知识网络】【要点梳理】要点一、三角形的有关概念和性质 1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. 2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外. (2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决; (2)内角和定理的应用:①已知多边形的边数,求其内角和; ②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数; ②已知正多边形边数,求外角度数. (2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同. 要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边. (2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用. 【典型例题】类型一、三角形的三边关系1. (2016•丰润区二模)若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为( )A .5cmB .8cmC .10cmD .17cm【思路点拨】直接利用三角形三边关系得出第三边的取值范围,进而得出答案. 【答案与解析】解:∵三角形的两条边长分别为6cm 和10cm , ∴第三边长的取值范围是:4<x <16, ∴它的第三边长不可能为:17cm . 故选:D .【总结升华】此题主要考查了三角形三边关系,正确得出第三边的取值范围是解题关键. 【高清课堂:与三角形有关的线段 例1】举一反三【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b.举一反三【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3. (江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm , 故有:BC+CD+BD-(AC+CD+AD)=3. 又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型三、与三角形有关的角5、(2014春•新泰市期末)已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°, (1)求∠BAE 的度数; (2)求∠C 的度数.【思路点拨】(1)根据AD 是BC 边上的高和∠DAE=10°,求得∠AED 的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC 的度数,再根据三角形的内角和定理就可求得∠C 的度数. 【答案与解析】 解:(1)∵AD 是BC 边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣10°=80°. ∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°. (2)∵AE 是∠BAC 平分线,∴∠BAC=2∠BAE=2×30°=60°.∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【总结升华】本题主要考查了三角形的内角和定理、角平分线的定义以及三角形的外角性质.【高清课堂:与三角形有关的角例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】设这个多边形是边形,则它的内角和是,∴,解得.∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三【变式】(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是.【答案】9.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,边数:360°÷40°=9.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【答案】C;类型七、镶嵌问题9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①B、②C、③D、④【答案】C【总结升华】用多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题.。

八年级数学上册三角形全等的判定知识点

八年级数学上册三角形全等的判定知识点

八年级数学上册三角形全等的判定知识点01三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。

2.有两边及其夹角对应相等的两个三角形全等(SAS)。

3.有两角及其夹边对应相等的两个三角形全等(ASA)。

4.有两角及一角的对边对应相等的两个三角形全等(AAS)。

5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。

02全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。

②全等三角形的周长、面积相等。

③全等三角形的对应边上的高对应相等。

④全等三角形的对应角的角平分线相等。

⑤全等三角形的对应边上的中线相等。

03找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形全等的证明中包含两个要素:边和角。

缺个角的条件:缺条边的条件:04构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。

角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。

关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。

例:如上右图所示,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

提示:在BC上取一点F使得BF=BA,连结EF。

(2)角分线上点向角两边作垂线构全等利用角平分线上的点到两边距离相等的性质来证明问题。

如下左图所示,过∠AOB的平分线OC上一点D向角两边OA、OB作垂线,垂足为E、F,连接DE、DF。

数学人教版八年级上册直角三角形全等的判断(HL)

数学人教版八年级上册直角三角形全等的判断(HL)

结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
证:△EBC≌△DCB.
A
证明: ∵ BD⊥AC,CE⊥AB,
∴∠BEC=∠BDC=90 °. 在 Rt△EBC 和Rt△DCB 中,
CE=BD,
E
D
BC=CB .
∴ Rt△EBC≌Rt△DCB (HL). B
C
3.如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.求证:BF=DE.
证明: ∵ BF⊥AC,DE⊥AC,
当堂练习
1. 如图,∠B=∠D=90°,要证明△ABC 与△ADC全等,
还需要补充的条件是
(写出一个即可).
A
答案: AB=AD 或 BC=DC
B
D 或 ∠BAC=∠DAC 或 ∠ACB=∠ACD.
C 注意 一定要注意直角三角形不是只能用HL证明全等,但 HL只能用于证明直角三角形的全等.
2.如图 在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE.求
第十二章 全等三角形
直角三角形的判定
导入新课
复习引入
1.全等三角形的性质: 对应角相等,对应边相等. 2.判别两个三角形全等的方法:
SSS
SAS ASA
AAS
3. AAA
60° 60° 60° 60°
SSA A
B
D
C
讲授新课
任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A ′B ′C ′ 使 ∠C′=90 °,B′C′=BC,A ′B ′=AB,把画好的Rt△A′B′ C′ 剪下来,放 到Rt△ABC上,它们全等吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版数学八年级上册
教师:孙圆圆
如图,舞台背景的形状是两个直角三角形,工作人员 想知道这两个直角三角形是否全等,但每个三角形都 有一条直角边被花盆遮住无法测量.
(1)你能帮他想个办法吗?
如图,舞台背景的形状是两个直角三角形,工作人员 想知道这两个直角三角形是否全等,但每个三角形都 有一条直角边被花盆遮住无法测量.
D
C
B A
2. 如图,AC=AD,∠C,∠D是直角,将上述 条件标注在图中,你能说明BC与BD相等吗?
C
解:在Rt△ACB和Rt△ADB中,则
A D
AB=AB, B AC=AD. ∴ Rt△ACB≌Rt△ADB (HL). ∴BC=BD (全等三角形对应边相等).
3. 如图,两根长度为12米的绳子,一端系在旗杆上,另 一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距 离相等吗?请说明你的理由。
B
AB =DE D
AC=DF
∴Rt△ABC≌Rt△DEF (HL) F
E
想一想
到现在为止,你能够用几种方法 说明两个直角三角形全等?
直角三角形是特殊的三角形,所以不仅有一般三角形判定 全等的方法,还有直角三角形特有的判定方法“HL”.
判断直角 三角形全应相等 ASA
⑵ 如果他只带了一个卷尺,能完成这个任务吗? 工作人员测量了每个三角形没有被遮住的直
角边和斜边,发现它们分别对应相等,于是他就 肯定“两个直角三角形是全等的”.你相信他的结 论吗?让我们一起来验证。
按照下面的步骤做一做: 利用尺规画一个Rt△ABC,∠C=90°,一直角边BC=3cm,斜边AB=4cm
一锐角和它的对边对应相等 AAS
两直角边对应相等
SAS
斜边和一条直角边对应相等 HL
我们应根据具体问题的实际情况选择判断两个直角三角 形全等的方法.
把下列说明Rt△ABC≌Rt△DEF的条件或根据补充完整. (1) _A__C_=_D_F_,∠A=∠D ( ASA ) A
(2) AC=DF,__B_C_=_E__F_ (SAS)
(3) AB=DE,BC=EF ( HL )
B
C
(4) AC=DF, A__B_=_D_E_ ( HL )
D
(5) ∠A=∠D, BC=EF ( AAS)
(6) ∠__B_=_∠_E___,AC=DF ( AAS )
E
F
如图,AC⊥BC,BD⊥AD,垂足分别为C,D, AC=BD,求证BC=AD.
⑴ 作∠MCN=∠C=90°; M
⑵ 在射线CM上截取线段CB=3cm; M
B
C
N
⑶ 以B为圆心,4cm为半径画弧,交 射线CN于点A;
M
B
C ⑷ 连接AB.
M B
C
A
N
C
N
A
N
探索交流:
❖ (1)△ABC就是所求作的三角形吗? ❖ (2)和同桌所作三角形进行比较,能重合吗? ❖ (3)交流后,你发现了什么? ❖ 想一想,画图时是根据什么条件?它们重合
小结:
这节课你有什么收获呢?与 你的同伴进行交流
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
的条件是什么?
直角三角形全等的判定
斜边和一条直角边对应相等的两个直角 三角形全等.
简写成“斜边、直角边”或“HL”.
在使用“HL”时,同学们应注意!!!
(1)“HL”是仅适用于直角三角形的特殊方法.
(2)注意对应相等.
(3)因为”HL”仅适用直角三角形,A
书写格式应为:
∵在Rt△ ABC 和Rt△ DEF中 C
相关文档
最新文档