晶体光学基础理论
《晶体光学与光性矿物学》教程讲义教案0目录
《晶体光学与光性矿物学》教程讲义教案第一至五章第一章:晶体光学基础1.1 引言介绍晶体光学与光性矿物学的重要性概述教程的目标和内容1.2 晶体的基本概念定义晶体及其特点晶体的分类和空间点阵1.3 晶体的光学性质介绍晶体光学性质的基本原理晶体的折射率、双折射和偏振1.4 晶体的衍射和干涉解释衍射和干涉现象衍射和干涉在晶体光学中的应用第二章:光性矿物学基本概念2.1 引言介绍光性矿物学的研究对象和方法概述光性矿物学的发展历程2.2 矿物的基本概念定义矿物及其特征矿物的分类和命名2.3 矿物的光学性质介绍矿物的光学性质及其测定方法矿物的折射率、双折射和偏振2.4 光性矿物学的研究方法介绍光性矿物学研究的基本方法光学显微镜和X射线衍射等技术第三章:矿物的结晶习性3.1 引言介绍矿物结晶习性的重要性概述本章内容3.2 矿物的晶体结构介绍矿物的晶体结构及其类型晶体的空间点阵和晶胞参数3.3 矿物的结晶习性解释矿物的结晶习性及其影响因素晶体的生长和晶体习性的变化3.4 矿物的形态和分类介绍矿物的形态及其分类方法晶体的形状和晶体习性的关系第四章:矿物的光学性质4.1 引言概述矿物光学性质的重要性介绍本章内容4.2 矿物的折射率和双折射解释矿物的折射率及其测定方法矿物的双折射和偏振现象4.3 矿物的颜色和条痕介绍矿物的颜色和条痕的形成原因颜色和条痕在矿物鉴定中的应用4.4 矿物的光泽和硬度解释矿物的光泽及其形成原因矿物的硬度及其测定方法第五章:光性矿物学的实验技术5.1 引言介绍光性矿物学实验技术的重要性概述本章内容5.2 光学显微镜的使用介绍光学显微镜的结构及其操作方法显微镜在光性矿物学中的应用5.3 X射线衍射技术解释X射线衍射技术的原理及其应用X射线衍射在矿物学中的应用5.4 其他实验技术介绍其他光性矿物学实验技术例如:红外光谱、拉曼光谱等第六章:矿物的物理性质6.1 引言概述矿物物理性质的重要性介绍本章内容6.2 矿物的密度和相对密度解释矿物的密度和相对密度的概念测定矿物密度和相对密度的方法6.3 矿物的热性质介绍矿物的热性质及其测定方法矿物的熔点、热膨胀和导热性6.4 矿物的电性质解释矿物的电性质及其影响因素矿物的电阻率和导电性第七章:矿物的化学成分7.1 引言介绍矿物化学成分的重要性概述本章内容7.2 矿物的元素组成解释矿物元素组成的基本概念矿物的化学元素和化合物的鉴定7.3 矿物的离子替代和同质多象解释离子替代和同质多象的概念离子替代和同质多象在矿物形成中的应用7.4 矿物的化学反应介绍矿物化学反应的基本原理矿物的化学反应和化学测试方法第八章:矿物的成因和分类8.1 引言概述矿物成因和分类的重要性介绍本章内容8.2 矿物的成因分类解释矿物成因分类的基本概念火成岩、沉积岩和变质岩中的矿物8.3 矿物的地质分布介绍矿物的地质分布特征矿物的分布规律和成矿条件8.4 矿物的经济价值和应用解释矿物经济价值的概念矿物的开采、利用和保护第九章:光学矿物学的实验操作9.1 引言介绍光学矿物学实验操作的重要性概述本章内容9.2 光性矿物学实验的操作步骤详细介绍光性矿物学实验的操作步骤实验操作的注意事项和技巧9.4 实验结果的分析和讨论介绍实验结果分析和讨论的方法分析实验结果和探讨实验中发现的问题第十章:矿物鉴定的综合应用10.1 引言概述矿物鉴定综合应用的重要性介绍本章内容10.2 矿物鉴定的方法和技巧介绍矿物鉴定的方法和技巧光学显微镜、X射线衍射等技术在矿物鉴定中的应用10.3 矿物鉴定的实例分析分析矿物鉴定的实际案例讨论矿物鉴定过程中的难点和解决方法10.4 矿物鉴定的综合应用解释矿物鉴定在实际应用中的重要性矿物鉴定在地质勘探、矿产开发等领域的应用前景第十一章:光学矿物学实验:岩石薄片的制备与观察11.1 引言介绍岩石薄片制备与观察在光性矿物学中的重要性概述本章内容11.2 岩石薄片的制备方法详细介绍岩石薄片的制备步骤和技术要点包括样品的选择、切割、磨光和抛光等过程11.3 光学显微镜的使用与操作解释光学显微镜的结构和功能操作显微镜进行岩石薄片观察的步骤和技巧11.4 岩石薄片的观察与描述介绍岩石薄片观察的方法和注意事项描述岩石薄片中的矿物组成、结构和构造特征第十二章:光性矿物学实验:X射线衍射分析12.1 引言介绍X射线衍射分析在光性矿物学中的重要性概述本章内容12.2 X射线衍射原理解释X射线衍射的原理和现象X射线衍射在矿物学中的应用12.3 X射线衍射仪的使用与操作详细介绍X射线衍射仪的结构和功能操作X射线衍射仪进行矿物分析的步骤和技巧12.4 X射线衍射分析的应用介绍X射线衍射分析在矿物学中的应用实例讨论X射线衍射分析在矿物鉴定和成因研究中的应用第十三章:光性矿物学实验:红外光谱分析13.1 引言介绍红外光谱分析在光性矿物学中的重要性概述本章内容13.2 红外光谱原理解释红外光谱的原理和现象红外光谱在矿物学中的应用13.3 红外光谱仪的使用与操作详细介绍红外光谱仪的结构和功能操作红外光谱仪进行矿物分析的步骤和技巧13.4 红外光谱分析的应用介绍红外光谱分析在矿物学中的应用实例讨论红外光谱分析在矿物鉴定和成因研究中的应用第十四章:光性矿物学实验:拉曼光谱分析14.1 引言介绍拉曼光谱分析在光性矿物学中的重要性概述本章内容14.2 拉曼光谱原理解释拉曼光谱的原理和现象拉曼光谱在矿物学中的应用14.3 拉曼光谱仪的使用与操作详细介绍拉曼光谱仪的结构和功能操作拉曼光谱仪进行矿物分析的步骤和技巧14.4 拉曼光谱分析的应用介绍拉曼光谱分析在矿物学中的应用实例讨论拉曼光谱分析在矿物鉴定和成因研究中的应用第十五章:总结与展望15.1 总结回顾整个教程的内容和重点知识点强调光性矿物学在地质学和矿物学中的重要性15.2 展望讨论光性矿物学的发展趋势和未来挑战探索光性矿物学在新领域的应用前景重点和难点解析本文档为您提供了一部关于晶体光学与光性矿物学的教程讲义教案,涵盖了从晶体光学基础、光性矿物学基本概念、矿物的结晶习性、矿物的光学性质、矿物的物理性质、矿物的化学成分、矿物的成因和分类、光学矿物学的实验技术、矿物的经济价值和应用,到光学矿物学实验操作以及矿物鉴定的综合应用等十五个章节的内容。
晶体光学基础理论
成绩评定
1.实验课,实验报告 20%
2.未知鉴定
20%
3.闭卷考试
60%
第一讲 晶体光学基础知识
晶体光学主要是研究可见光通过透明矿物晶体时的一些光学现 象及其变化规律,由于不同的晶体其光学性质不同(光学各向 异性),从而可以通过 其不同的光学特征鉴定矿物
本讲主要内容
●光学基本知识 ●光率体 ●光性方位 ●色散
二轴晶光率体正光性:Bxa = Ng ( Bxo = Np ) 光轴角 2 V < 90度 二轴晶光率体负光性:Bxo = Ng ( Bxa = Ng ) 光轴角 2 V > 90度
偏光显微镜技术
二轴晶光率体的切面类型
A. 垂直OA的切面 B. 平行OAP的切面 C. 垂直Bxa的切面(+) D.垂直Bxa的切面(-) E. 垂直Bxo的切面(+) F. 垂直Bxo的切面(-) G.任意斜交切面 H.垂直OAP的斜交切面
A:一轴晶正光性矿物的光性方位,B:一轴晶负光性矿物的光性方位
偏光显微镜技术
●低级晶族矿物的光性方位
斜方晶系、单斜晶系、三斜晶系
A: 斜方晶系矿物的光性方位 B:单斜晶系矿物的光性方位 C:三斜晶系矿物的光性方位
ห้องสมุดไป่ตู้
第四节 色散
在物理学中,色散是指白光(复色光)通过透明物质 后分解为单色光而形成红、橙、黄、绿、蓝、青、紫 连续光谱的现象。 ●白光是由多种色光组成。 ●透明物质对不同波长光波的折射率是不同的。
晶体光学 &
光性矿物学
主讲:
绪论
一、晶体光学
是研究可见光通过透明矿物晶体 所发生的折射、偏振、干涉、吸收,、 色散等一系列光学现象的基础学科; 是介绍用偏光显微镜在岩石薄片中测 定透明矿物光学性质的基本原理和基 本方法的应用学科
光子晶体理论和制备技术
光子晶体理论和制备技术
光子晶体,也叫光子带隙材料,是一种具有高度有序结构的材料,具有一定的光学特性和电学特性,并且对光的波长或频率具
有选择性反射和传输的能力,可广泛应用于光波分析、信息存储、光电通信、传感等领域。
光子晶体的理论基础是布拉格反射定律和光子带隙理论。
布拉
格反射定律是指入射角等于反射角时,波在介质中传播时受到空
间周期性折射的现象。
光子带隙理论是指光子晶体对特定的波长
或频率的光有反射作用,对剩余波长或频率的光则有透过作用,
并且反射率可以非常高,甚至接近于100%。
制备光子晶体有多种方法,包括自组装法、溶胶-凝胶法、气相沉积法等。
其中自组装法是一种简单易行的方法,是指让颗粒自
发地在表面自组装到一定程度,形成一定的空间排布结构。
溶胶-
凝胶法是将溶胶液加热,使其蒸发形成凝胶体,通过煅烧或热处
理形成光子晶体。
气相沉积法是通过高温化学气相沉积,沉积出
一定厚度的半导体晶体。
光子晶体的应用领域非常广泛。
例如,在生物检测领域,通过
改变光子晶体的结构和成分,可以制备出高灵敏度的生物传感器,
用于检测细胞生长状态和传染病细菌感染情况等。
在光波分析领域,利用光子晶体的选择性反射能力,可以制备出高精度光纤陀螺仪等精密仪器,用于测量光波的频率、相位和强度等。
总的来说,光子晶体是一种非常重要的材料,具有广泛的应用前景和丰富的理论基础,近年来在科研和实践中得到越来越广泛的关注和应用。
晶体学基础知识讲义导论X衍射
晶体结构 = 点阵 * 结构基元
点阵点或结点总和称为点阵(lattice),具有平移对称性。
沿着一定方向按某种规则把 结点联结起来,则可以得到 描述各种晶体结构的几何图 象----晶体的空间格子(简 称为晶格)
二 晶 体点 阵
晶体结构最突出的特点是其结构基元(原 子、离子、分子或络合离子)在晶体所占有的 空间中作周期性的排列,构成了晶体点阵结构 图案。点阵总是由为数无限和周围相同点组成。
CsCl的晶胞图
Cs+ Cl-
CsCl晶体结构示意图
CsCl的晶体结构示意图
CsCl的晶胞图 Cl–
Cs+
Cl–
1.1.1 经典晶体学
1669年丹麦学者斯蒂诺,发现了晶面角守恒定律。
1801年法国结晶学家赫羽依,发表了有理指数定律。
1805–1809年间德国学者外斯总结出晶体对称定律。 随后又提出了晶带定律。
1809年乌拉斯顿设计了第一台反射测角仪。 1818–1839年间外斯和英国学者密勒先后创立了用
以表示晶面空间方位的晶面符号。
经典晶体学还包括了对天然矿物物理性质的研究。
1.2.2 近代晶体学
1912年德国科学家劳埃成功发现了X射线对晶体的衍 射现象,具体地证实了晶体结构点阵理论的正确性。
1913年英国晶体学家布拉格父子和俄国晶体学家吴 里弗分别独立地推导出X射线衍射基本公式。 20世纪20年代,完成了收集X射线衍射图谱和推引 空间群方法等工作。
◆ 晶体生长是研究人工培育晶体的方法和规律 ◆ 晶体的几何结构是研究晶体外形的几何理论及内部质
分光晶体聚焦作用的教学研究
分光晶体聚焦作用的教学研究分光晶体是一种变形非球面光学元件,具有特殊的聚焦效果。
它可以将平均分布的光束准确地折射后集中到一个点上,即可实现聚焦作用。
由于分光晶体的聚焦作用系统比较复杂,因此在进行教学的时候,研究者需要借助于科学的实验方法,从而全面了解这一现象。
本文将从光学理论及实验室研究的角度,来探讨分光晶体的聚焦作用的教学研究。
二、分光晶体的光学理论1、分光晶体的折射原理分光晶体折射原理是分光晶体聚焦作用的基础理论。
其原理是:运用变形非球面光学元件,将均匀分布的光束折射后,所形成的光线可以将其集中到一个点上,从而实现聚焦作用。
2、分光晶体的聚焦作用光线在分光晶体内部进行折射时,被分成多条光线,每条光线经过不同的路径后,最终集中到一个点上,从而形成聚焦作用。
三、实验室实验在教学研究中,对分光晶体的聚焦作用进行实验研究是非常重要的。
首先,使用一个实验装置,将一个光源用一个分光晶体来取代,以模拟多色的光源。
然后,在射线的途中加入一个聚焦子,如镜子等,使光线折射后能够集中到一个点上,从而观察分光晶体的聚焦作用。
四、研究结论经过以上研究,可以得出以下结论:1、分光晶体的聚焦作用实际上是利用变形非球面光学元件,将光束准确地折射后,集中到一点上的现象;2、实验室实验可以使用实验装置将一个光源模仿多色光源,再在射线的途中加入聚焦子,从而观察分光晶体的聚焦作用;3、进行分光晶体聚焦研究时,必须结合光学原理及实验室实验,以便更加深入地观察分光晶体聚焦作用的变化规律。
五、结论分光晶体是一种特殊的变形非球面光学元件,它具有聚焦作用,可以将光束准确地折射后,集中到一点上。
由于分光晶体的聚焦作用系统比较复杂,研究者在进行教学的时候,需要借助于科学的实验方法,以便更加深入地观察分光晶体的聚焦作用及其变化规律。
本文通过对光学理论及实验室实验的研究,对分光晶体聚焦作用的教学有了一定的指导意义,为深入研究分光晶体聚焦作用提供了依据。
晶体双折射的波动光学理论基础各向异性介质的介电张量-青岛理工大学
Chapter 11偏振与晶体光学基础
晶体双折射的波动光学理论基础
各向异性介质的介电张量 电位移矢量D的方向代表在外加电场的作用下介质的极化方向. 在上述电各 向异性介质中, D和E最简单的关系是D的各个直角分量和E的各个直角分量 满足线性关系
H k D E k H 0 k D 0 k H 0
Engineering Optics Dr. F. Guo QUTech Spring 2016
k 0为波法线单位矢量
可以得到
Chapter 11偏振与晶体光学基础
H k D E k H 0 由 k D 0 k H 0
工程光学
Engineering Optics
郭 峰
青岛理工大学 机械工程学院
Engineering Optics Dr. F. Guo QUTech Spring 2016
Chapter 11偏振与晶体光学基础
晶体双折射的波动光学理论基础
各向异性介质的介电张量 各向同性介质的物质方程
Dx x 0 0 E x D 0 0 E 0 y y y D 0 0 E z z z
x,y,z三个方向互相垂直,称为主轴方向. x, y ,z 称为晶体的主介电常数. 一般说来 x y z 这就是双轴晶体。若其中两个相等但与另一个不相等
Engineering Optics Dr. F. Guo QUTech Spring 2016
Dx xx E x xy E y xz E z D y yx E x yy E y yz E z Dz zx E x zy E y zz E z
晶体学基础必学知识点
晶体学基础必学知识点1. 晶体的定义:晶体是由原子、离子或分子以有序排列形成的固态物质。
2. 结晶学:研究晶体的结构、性质以及晶体的生长过程。
3. 晶体的晶格:晶体具有规则的周期性排列结构,可以用晶格来描述。
4. 晶胞:晶体中最小的重复单元,可以通过平移来产生整个晶体结构。
5. 晶体的晶系:根据晶胞的对称性,晶体可以分为七个晶系,分别为三斜晶系、单斜晶系、正交晶系、四方晶系、六方晶系、菱方晶系和立方晶系。
6. 晶体的晶面和晶向:晶体表面上的平面称为晶面,晶体内部的线段称为晶向。
7. 晶体的点阵和晶格常数:晶胞中的基本单位称为点阵,晶体的晶格常数是指晶格中基本单位的尺寸参数。
8. 布拉格方程:描述X射线或中子衍射中晶体衍射角度与晶格参数之间的关系。
9. 动态散射理论:描述X射线或中子与晶体中原子、离子或分子相互作用的过程。
10. 逆格子:描述晶格的倒数空间,逆格子与晶格的结构存在对偶关系。
11. 晶体缺陷:晶体中的缺陷包括点缺陷、线缺陷和面缺陷,晶体缺陷对晶体的性质和行为有重要影响。
12. 晶体生长:研究晶体从溶液或气体中的形成过程,包括核化、生长和晶面的形态演化等。
13. 晶体的结构表征方法:包括X射线衍射、中子衍射、电子衍射、扫描电子显微镜和透射电子显微镜等。
14. 晶体结构的解析和精修:通过衍射数据和晶体学软件对晶体的结构进行解析和精修,得到晶体的准确原子位置和结构参数。
15. 晶体的物理和化学性质:晶体的结构对其性质有重要影响,包括光学性质、电学性质、磁学性质和力学性质等。
16. 晶体学的应用:晶体学在材料科学、化学、生物学、地质学和矿物学等领域有广泛的应用,如材料合成、催化剂设计、药物研发和矿石勘探等。
12晶体光学基础理论
晶面法线
晶面法线
o光:三线共面
e光:三线不共面
(3)振动方向: o 光振动方向与其主平面(光线和光轴 所决定的平面)垂直;e 光振动方向//其主平面。
o光主平面
e光主平面
o光 光轴
e光 光轴
主平面: 晶体内线与光轴构成的平面
6、光性均质体与光性非均质体
光性均质体 Optical isotropic substance 光性非均质体 Optical anisotropic substance
三个主折射率:
Ng(>Ng’>)Nm(>Np’>)Np
两个OA
光轴角(2V):OA锐夹角
Np
Bxa:OA锐角平分线,=Ng
Bxo
或Np;Bxo:钝角平分线
光轴面(OAP):包含两个 Nm OA的切面
(3) 光性正负之分
正光性: Ng=Bxa
近似公式: Ng-Nm > Nm-Np
负光性: Ng=Bxo
1)由光疏进入光密物质,折向光法线;反之,偏离光法线。
2)N:折射介质对入射介质的相对折射率,若入射介质为真空,为绝 对折射率。
3)光在介质中的传播速度受微观结构(密度、质点类型、堆积的紧密 程度等)的控制,因此折射率是反映介质成分和微观结构的重要参数。
4、光的全反射和全反射临界角
Φ Ni
Nr
Ni>Nr
电磁波是一种横波,因此光也是横波:振动方向 与传播方向相互垂直
光波具有一切电磁波属性:反射、折射、干涉、 偏振、色散、衍射特征。
波的相关术语
图中波自左向右以速度V传播
F = V/
➢波长 (wavelength):相邻两波峰之间的距离
第3章 晶体在外场作用下的光学性质 1
+
ε3
2 x3
=1
式中x1、x2 、x3为晶体的介电主轴坐标系,n1、n2、 n3为晶体的三个主折射率值,ε1、ε2、ε3为晶体介电张 量的三个主值。
17
3.2 电光效应
电光效应引起晶体折射率的改变可以用折射率 椭球面的变化来表示。这一变化可以视为椭球 面方程中各系数产生的微小的增量。通常把有 外电场存在时的折射率椭球方程改写为 式中
9
3.1 晶体光学简介
光线在中级晶族的晶体中传播时,会发生双折 射现象。然而,存在一个特殊的传播方向;在 这个方向,偏振方向互相垂直的任意两个线偏 振光的折射率和位相速度都相同,这个特殊方 向称为晶体的光轴。可见,沿着光轴方向传播 的光不发生双折射。中级晶族对应的晶体都只 有一个光轴,因此称为单轴晶体。如:冰洲石、 石英、红宝石、冰等。
7
3.1 晶体光学简介
4、三大晶族及特性 1)高级晶族 立方晶系属于高级晶系,具有最高的对称性。 立方晶系在光学上表现为各向同性,即 ε1=ε2=ε3=n2。
8
3.1 晶体光学简介
2)中级晶族 三方晶系、四方晶系和六方晶系都属于中级晶族,它 们的高次旋转轴就是光轴。中级晶族的介电张量具有 旋转对称性(ε1=ε2 ε3≠ ),在光频条件下,ε1=ε2= , 2 2 ε2=no 。no称为寻常折射率;ne称为异常折射率。当 ne 光线具有不同的偏振方向时,寻常折射率不变。值得 注意的是,不同偏振方向的电磁波对应的异常折射率 并不等于ne,而是随偏振方向与光轴间夹角的变化而 变化。
27cossinsincoscossinsincoscossinsincoscossinsincossincoscossincossinsincoscossincossin公式31可见kdp晶体沿z轴加电场时由单轴晶体变成了双轴晶体折射率椭球的主轴绕z轴旋转了45角此转角与外加电场的大小无关其折射率变化与电场成正比这是利用电光效应实现光调制调q锁模等技术的物理基础
《物理光学》第7章 光的偏振与晶体光学基础
vk = vs cos α
z
4、 自然光:具有一切可能的振动方向的许多光波的总和。 振动方向无规则。 自然光可以用相互垂直的两个光矢量表示,这两个光矢量的 振幅相同,但位相关系不确定。
没有优势方向
自然光的分解
一束自然光可分解为两束振动方向相互垂直的、 一束自然光可分解为两束振动方向相互垂直的、等幅 不相干的线偏振光。 的、不相干的线偏振光。
寻 常 光 线 (ordinary ray) 和 非 常 光 线 (extr- ordinary ray)
o光 : 遵从折射定律
n1 sin i = n2 sin ro sin i ≠ const sin re
自然光 n1 n2 (各向异 各向异 性媒质) 性媒质
e光 : 一般不遵从折射定律、 也不一定在入射面内。
Dx ε xx D = ε y yx Dz ε zx
ε xy ε xz Ex ε yy ε yz E y ε zy ε zz Ez
通过坐标变换,找到主轴方向:x,y,z,则 通过坐标变换,找到主轴方向:x,y,z,则:
均匀性及各向异性
2 晶体的介电张量(The dielectric tensor) (The 张量的基础知识: 零阶张量(标量): ( ) 如果一个物理量在坐标移动时数值不变,则称为标量(T, (T, m, …) )
一阶张量(矢量): ( ) 如果一个物理量由三个数表示,而且在坐标移动时如同坐标 一样变换,则此物理量称为矢量…
Dx ε x D = 0 y Dz 0
主介电常数 双轴晶体:
0
εy
0
0 Ex 0 Ey ε z Ez
晶体光学基础理论
五、光率体在晶体中的位置——光性方位 光率体的主轴与结晶轴及(晶面、晶棱)之间的关系称 为光性方位。不同晶体的光性方位不同,而同一种晶体的 光性方位基本固定,故确定光性方位可以帮助鉴定晶体。 均质体光率体任意方向切面都有是圆切面,也就有无数 光轴,就不存在光学主轴与晶轴、晶面等关系,即不存在 光性方位问题。 1、一轴晶光率体在晶体中的位置 三方、四方和六方晶系晶体的光率体均属于一轴晶光率 体,一轴晶光率体为旋转椭球体,其旋转轴(光轴Ne)与 结晶轴(C轴)相当,它与晶系的高次对称轴平行(重 合)。
2、一轴晶光率体
四方、三方、六方晶系的中 级晶族晶体的水平结晶轴单位 相等,而与高次对称轴(C轴) 方向不等,a=b≠c。因此其水 平方向上的光学性质相同(N 相同),而与C轴不同,所以 一轴晶光率体是以C轴为旋转 轴的旋转椭球体。沿C轴(Ne) 方向入射光不发生双折射,C 轴称光轴,因只有一个方向这 样轴故称一轴晶,Ne、No称 光学主轴。
折射率为1.003与真空相当。所
以通常把空气的折射率当作1, 实际测定时都是与空气相比的。 光的折射
如果把光在空气中的速度定为 v 0 ,在某介质中的速度定为v 1 , 则该介质的折射率定为
任何一种物质,折射率都与速度成反比。即传播速度 越快
(大)折射率越小;传播速度越慢折射率越大。当光从折射率 n小的介质(光疏介质)进入折射N大的介质(光密介质),由 于
三、光性均质体与光性非均质体
各种固体物质根据其光学性质可分为光性均质体和光性 非均质体两大类。
光性均质体是指光波在其中传播时,其传播速度不因振 动方向不同而发生改变的一类物质,即只有一个折射率。 光波入射光性均质体发生单折射现象,基本上不改变入射 光波的振动特点和振动方向的,如石盐,各个方向的折射 率均为1.544。当把石盐磨成薄片放在物台上,从下偏光上 来的光线向射入石盐晶体薄片后,不改变其振动方向,仍 按下偏光振动方向向上传播,而透不过上偏光镜,在正交 偏光系统下,看起来是黑的,转动物台一周都不变化。光 性均质体,简称均质体,属于这一类的有等轴晶系晶体和 非晶质的固体(如树胶、玻璃等)。
光的偏振与晶体光学基础
横波和纵波的区别——偏振 偏振 横波和纵波的区别 • 纵波:振动方向与传播方向一致,不存在偏振问题; 纵波:振动方向与传播方向一致,不存在偏振问题; • 横波:振动方向与传播方向垂直,存在偏振问题。 横波:振动方向与传播方向垂直,存在偏振问题。 最常见的偏振光有五种: 最常见的偏振光有五种: 自然光、线偏振光、部分偏振光、椭圆偏振光和圆偏振 自然光、线偏振光、部分偏振光、 光。
第一节 偏振光概述
光的干涉和衍射现象: 光的干涉和衍射现象:光的波动性 光的偏振和在光学各向异性晶体中的双折射 现象: 现象:光的横波性 一、偏振光和自然光 对于平面电磁波,电场强度矢量 对于平面电磁波,电场强度矢量——光矢量的振动方向与 光矢量的振动方向与 传播方向垂直。 传播方向垂直。 光矢量的振动方向总是与光的传播方向垂直的, 光矢量的振动方向总是与光的传播方向垂直的,即光 矢量的横向振动状态,相对于传播方向不具有对称性, 矢量的横向振动状态,相对于传播方向不具有对称性, 光矢量的振动相对于传播方向的不对称性, 这种光矢量的振动相对于传播方向的不对称性 这种光矢量的振动相对于传播方向的不对称性,称为 光的偏振性。 光的偏振性。
与x, y方向选择无关
总光强
I = Ix + Iy
——非相干叠加 非相干叠加
(2)线偏振光
将自然光中两个相互垂直的等幅振动之一完全移去得到的光, 将自然光中两个相互垂直的等幅振动之一完全移去得到的光, 称为完全偏振光。 称为完全偏振光。 定义:在垂直于传播方向的平面内, 定义:在垂直于传播方向的平面内,光矢量只沿某一个固定方 向振动,则称为线偏振光,又称为平面偏振光或完全偏振光。 向振动,则称为线偏振光,又称为平面偏振光或完全偏振光。 线偏振光也可以用传播方向相同、相位相同或相差Π、振动相 线偏振光也可以用传播方向相同、相位相同或相差Π 传播方向相同 互垂直的两列光波的叠加描述。 互垂直的两列光波的叠加描述。 描述 y
物理光学-第七章:光的偏振与晶体光学基础
一、偏振光和自然光的特点
由麦克斯韦理论知:
光波是一种横波,即它的光矢量始终是与传
播方向垂直的。
kE0 kB0
B
1
k
E
1.线偏振光:光矢量的振动方向在传播过程 中(在自由空间中)保持不变,只是它的大 小在随位相改变,即为线偏振光。
2.振动面:线偏振光的光矢量与传播方向组 成的面。
2、由二向色性产生线偏振光 二向色性:某些各向异性的晶体对不同振动 方向的偏振光有不同的吸收系数的性质。
晶体的二向色性与光波波长有关,当振动方 向互相垂直的两束线偏振白光通过晶体后会 呈现出不同的颜色。此为二向色性这个名称 的由来。
§7-1偏振光和自然光
此外,有些原本各向同性的介质在受到外界 作用时会产生各向异性,它们对光的吸收本 领也随着光矢量的方向而变。把介质的这种 性质也称为二向色性。
§7-1偏振光和自然光
6.部分偏振光:自然光在传播过程中,若受 到外界的作用造成各个振动方向上的强度 不等,使某一方向振动比其它方向占优势, 即为部分偏振光。它可看成是由自然光和 线偏振光混合而成。
7.偏振度:线偏振光在部分偏振光总强度中 所占的比例: PIP ImaxImin
It ImaxImin
我们把这时的最小透射光强与两偏振器透光 轴互相平行时的最大透射光强之比称为消光 比,它是衡量偏振器件质量的重要参数。
§7-2晶体的双折射
当一束单色光在各向异性晶体的界面折射时, 一般可以产生两束折射光,这种现象称为双 折射。双折射现象比较显著的是方解石 (CaCO3). 实验现象:取一块冰洲石(方解石的一种) 放在一张有字的纸上,我们将看到双重的像, 且冰洲石内的两个像浮起的高度是不同的, (此是光的折射引起的,折射率越大,像浮 起的高度越大)。
晶体光学实训收获与体会
晶体光学实训收获与体会引言晶体光学是光学中的重要分支,研究晶体对光的产生、传播和相互作用的现象和规律。
晶体光学实训是通过实际操作和实验来深入学习晶体的光学性质和特点。
在本次实训中,我对晶体光学有了更深入的了解,并从中获得了许多收获和体会。
实训内容本次晶体光学实训主要包括以下几个方面: 1. 晶体光学基础理论知识学习:学习晶体光学的基本概念、原理和理论知识,包括晶胞、晶格、光电效应、光的吸收、衍射等。
2. 实验设备和器材介绍:了解实验室中常用的晶体光学实验设备,如单色光源、偏振片、晶体样品等,以及相关测量仪器和装置。
3. 晶体光学实验操作:进行一系列晶体光学实验,如晶体透射、衍射、偏振现象等,并记录实验数据和观察结果。
4. 数据处理和结果分析:通过对实验数据的处理和分析,得出相应的结论,并与理论知识进行比较和验证。
收获与体会在本次晶体光学实训中,我得到了以下几点收获与体会:1. 深入理解晶体光学的基本原理通过实际操作和实验,我更加深入地理解了晶体光学的基本原理。
在实验中,我通过观察晶体透射、衍射、偏振等现象,直观地感受到了晶体对光的特殊响应和表现。
这使我更加直观地理解了晶体在光学中的重要性和特点。
2. 掌握晶体光学实验技能通过实际操作,我掌握了一系列晶体光学实验技能。
例如,我学会了如何使用偏振片进行光的偏振处理,如何调节角度和强度来观察光的衍射现象,以及如何通过衍射花样来分析晶体的结构和性质。
这些实验技能的掌握使我在将来的研究和实验中具备了更丰富的实践经验和实验操作能力。
3. 培养了实验数据处理和结果分析的能力在实验过程中,我通过对实验数据的处理和分析,培养了实验数据处理和结果分析的能力。
我学会了如何使用统计方法和软件工具对实验数据进行处理和整理,并通过图表、曲线等形式进行结果展示和分析。
这使我能够更加准确和全面地理解实验结果,从而得出结论并与理论知识进行比较和验证。
4. 增强了团队合作与沟通能力在晶体光学实训中,我参与了与同学的合作实验。
晶体光学
折射率: 折射率:
water
光密物质 Ni Nr
air
光疏物质 Ni>Nr
N=Vi/V r=Sini/Sinr. (拆射介质相对入射介质的拆射率 当入射 拆射介质相对入射介质的拆射率,当入射 拆射介质相对入射介质的拆射率 为拆射介质的绝对拆射率) 介质为空气 时,N为拆射介质的绝对拆射率 为拆射介质的绝对拆射率
光率体构成示意图
第一讲:晶体光学基础
五、光率体
1.均质体光率体 1.均质体光率体
不同方向振动的光波折射率相等,所以为球体 不同方向振动的光波折射率相等,
第一讲:晶体光学基础
五、光率体
2.一轴晶光率体 一轴晶光率体
Ne No 平行于结晶轴C轴方向 平行于结晶轴 轴方向 入射的光波,在垂直于 轴的 入射的光波 在垂直于C轴的 在垂直于 平面内振动,折射率为No, 平面内振动,折射率为 , 不产生双折射。因此C轴与 不产生双折射。因此 轴与 光轴一致。 光轴一致。 垂直于C轴入射的光波, 垂直于 轴入射的光波, 轴入射的光波 将分解为平行和垂直于C轴 将分解为平行和垂直于 轴 振动的两种偏光, 振动的两种偏光,前者折射 率为Ne,后者为No。 率为 ,后者为 。 形态:旋转椭球体, 形态:旋转椭球体,旋 转轴与结晶轴C轴一致 转轴与结晶轴 轴一致
⊥OA切面 OA切面
⊥OA切面: OA切面: 切面 半径为Nm的圆切面 双拆率为 , 的圆切面,双拆率为 半径为 的圆切面 双拆率为0, 可测N 的颜色和折射率 的颜色和折射率, 可测Nm的颜色和折射率, 锥光下可测轴性和光符,光轴角大小。 锥光下可测轴性和光符,光轴角大小。
华中科技大学物理光学第七章-光的偏振与晶体光学基
o光和e光都是线偏光,o光的电矢量垂直 于o主平面,e光的电矢量平行于e主平面 当入射光在主截面内时,o光垂直于e光
7-3 双折射的电磁理论 一、晶体的各向异性和介电张量
晶体的各向异性
晶体对不同方向偏振的 光表现出不同的响应
O-2 Ca++ O-1 C+ O-3
晶体结构各向异性→ 极化各向异性→对光 响应的各向异性 右图:方解石的分子 结构CaCO3
——折射率椭球或光率体
7-4 一、
折 射 率 椭 球
x z nz
D o ny nx y
7-4 一、
已知k0, 用折射 率椭球 求D和相 应的折 射率
k0
n1o D1
n2 D2
7-4 一表示D的方向,r 的长度表示D光波的折射率 D与椭球面相交点的法线为E方向 从球原点o出发,做波法线矢量k0,过o做垂 直于k0的平面,即k0的法平面,该平面与椭 球的交线为一椭圆,椭圆的长短轴方向分别 为允许D的两个方向,其长度分别为这两个 D光波的折射率
∇⋅ D = 0 ∇⋅ E = 0 ∇×E = −µ0 ∂H ∂t ∇× H = ∂D ∂t D = [ε ]E
7-3 二、1、光波与光线
由于E、D方向不同,晶体中的平面波可 以写成 E E0 D = D exp[i(k ⋅ r −ωt)] 0 H H0 E0、D0、H0为振幅
7-1 三、
实际偏振片不是理想的 最大透射光强IM,最小透射光强Im,则消 光比r=Im/IM 衡量偏振器件质量的方法:同种器件取 两个,一个做起偏器,一个做检偏器, 计算其消光比r
7-2 晶体的双折射
双折射:各向 异性晶体的界 面产生两束折 射光的现象 右图为方解石 晶体的双折射 现象
无机晶体光学性能的理论计算与分析
无机晶体光学性能的理论计算与分析无机晶体是一种广泛应用的材料,具有优异的光学性能。
为了更好地理解和应用这种材料,我们需要进行无机晶体光学性能的理论计算与分析。
一、无机晶体光学性能的理论基础无机晶体的光学性质与电子结构密切相关。
通过理论计算可以获得无机晶体的晶格常数、折射率、吸收系数、反射率等光学性质。
常用的计算方法有密度泛函理论(DFT)、半经验赝势方法和格林函数方法等。
其中,DFT是目前最为常用的计算方法之一,它采用波函数密度作为基本参数,能够计算无机晶体的很多性质,比如电子结构、光学性能、力学性能等。
二、无机晶体光学性能的量化分析通过理论计算,我们可以获得无机晶体的光学常数和吸收光谱。
其中,光学常数包括折射率和吸收系数。
折射率与晶体的密度、电子结构等有关,可通过波动方程计算。
吸收系数反映了晶体对光的吸收程度,是光学材料性能评价的重要参数之一。
通过计算得到的吸收光谱可以实现对晶体结构、缺陷等信息的定性分析和定量分析。
三、无机晶体光学性能的应用无机晶体的光学性能与其应用密切相关。
在材料科学领域,无机晶体广泛应用于光通讯、光电探测、激光技术、光伏技术等方面。
例如,在光通讯领域,铝氧化物薄膜广泛应用于光纤通信中的放大器和谐振腔等元件中,通过计算得到其光学常数和吸收光谱可以优化材料的性能。
在激光技术领域,基于无机晶体的激光器已成为制造高功率、高质量激光光束的基础。
总之,通过无机晶体的光学性能的理论计算与分析,我们可以更好地理解和应用这种材料。
未来,无机晶体光学领域的发展还需要进一步探索和深入研究,以满足各类应用的需求。
晶体知识点总结归纳
晶体知识点总结归纳一、晶体结构1、晶体的周期性结构晶体的原子或者分子按照一定的规则排列,形成周期性的结构。
这种周期性结构能够使得晶体在空间中呈现出一定的几何形状,比如正方体、六棱柱等。
晶体的周期性结构是晶体学的基础,它决定了晶体的物理性质和化学性质。
2、晶体的晶胞晶体的周期性结构可以用一个最小的单位来描述,这个单位就是晶胞。
晶胞是一个由原子或者分子组成的空间结构,它能够通过平移操作重复填充整个晶格。
晶胞的几何形状可以是立方体、正六边形、正八面体等。
晶胞之间的排列方式可以分为立方晶系、四方晶系、正交晶系、六方晶系、单斜晶系和三斜晶系六种。
3、晶体的结构体系晶体学根据晶体的结构特点将晶体分为七种结构体系:三斜晶系、单斜晶系、正交晶系、六方晶系、三方晶系、四方晶系和立方晶系。
每种结构体系又可以进一步细分为不同的晶体族和晶体面。
4、晶体的晶面和晶向在晶体的结构中,晶面和晶向是两个非常重要的概念。
晶面是晶体中原子或者分子排列的平行表面,它通过Miller指数来进行描述。
晶向是晶体中原子或者分子排列的方向,它通过晶向指数来进行描述。
晶面和晶向的概念对于描述和理解晶体的外观和物理性质有着重要的作用。
5、晶体的点阵和空间群晶体的周期性结构可以用点阵和空间群来描述。
点阵是晶体结构中最小的重复单元,它能够通过平移操作重复填充整个晶格。
空间群是晶体结构中具有平移、旋转和镜像对称性的一种对称操作。
点阵和空间群的描述能够完整地描述晶体的结构和对称性。
二、晶体的生长1、晶体生长的方式晶体生长是晶体学中一个非常重要的研究领域,它研究的是晶体是如何从溶液或者气态中长大的。
晶体生长的方式包括溶液生长、气相生长和固相生长三种。
溶液生长是晶体从溶液中长大的过程,这是晶体生长中最常见的一种方式。
气相生长是晶体从气态中长大的过程,它常用于生长单晶膜和纳米颗粒。
固相生长是晶体从固态中长大的过程,它常用于生长大尺寸的单晶材料。
2、晶体生长的控制晶体生长的过程受到各种因素的影响,比如温度、浓度、界面能等。
1 晶体光学基础理论_2020-wlx (1)
晶体光学及光性矿物学Crystal Optics & Optical Mineralogy(48学时)任课教师:王连训副教授助教:李乐广、徐晓波(硕士生)矿物岩石学国家级教学团队中国地质大学(武汉)地球科学学院“…我的晶体光学就是池际尚教授讲的,她不是仅仅讲一堂课,而是整整给我们讲了半年。
至今,我都清清楚楚地记得她的音容笑貌,她讲的是那么清楚、那么深刻,甚至费氏台的操作她都自己进行…”—温家宝,2005年9月9日我校岩石学科奠基人池际尚教授为本科生讲授晶体光学课程(1964年)光与晶体的“美丽邂逅”When light and crystal meet…◆晶体光学:研究可见光通过透明矿物晶体产生的光学现象及其变化规律的学科。
◆光性矿物学:用透射偏光显微镜研究透明矿物光学性质的学科。
偏光显微镜岩石切片,厚30µm研究对象:岩石矿物薄片光学研究方法广泛应用于地球科学、珠宝鉴定、资源勘查、材料科学、工程、制造业、食品工业、医学、制药、环境科学、刑侦等领域。
为什么要学习这门课程?泰米尔“红宝石”红色尖晶石与红宝石文物研究及保护混凝土性能分析岩石矿物鉴定矿石分析聚合物材料研究采样岩石薄片制备流程切割研磨,抛光制片教材Textbook 参考书Reference Books中国地质大学出版社,2017科学出版社,2008地质出版社,2005南京大学出版社,2009英文参考书及图册常丽华等编著地质出版社,2006Oxford University Press William Nesse ,20134th edition理论课(7次,14学时)1.晶体光学基础理论2.单偏光镜下的晶体光性特征3.正交偏光镜下的晶体光性特征(上)4.正交偏光镜下的晶体光性特征(下)5.锥光镜下的晶体光性特征(上)6.锥光镜下的晶体光性特征(下)7.系统鉴定及光性矿物学基础课程内容安排Syllabus实习课安排(17次)Practical Classes光性矿物学部分⚫系统鉴定:角闪石⚫橄榄石类⚫辉石类⚫石英、云母类矿物⚫碱性长石、斜长石⚫碳酸盐矿物⚫未知薄片矿物鉴定(实践考试)晶体光学部分⚫偏光显微镜的构造与使用⚫解理、多色性⚫突起等级、贝克线⚫消光、补色法则、干涉色级序⚫消光类型、消光角、延性⚫一轴晶干涉图、二轴晶干涉图成绩评定方法Performance assessment理论部分(晶体光学)实践部分(光性矿物学)评定方法闭卷考试平时成绩未知鉴定占总评比例35%30%35%晶体光学基础理论Principles of Crystal Optics 一、光学基础知识◆光的波动性◆可见光、单色光与白光、自然光与偏光◆光的折射与折射率◆双折射和双折射率◆光的全反射和全反射临界角◆光性均质体与光性非均质体◆光波是一种电磁波,电磁波是一种横波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主截面、主平面、入射面、主轴面
光的主平面:晶体中的光线与光轴所形成的平面 晶体主截面:由光轴和晶体表面的法线所组成的平面 入射面:晶面法线与入射线所决定的平面 主轴面(主切面):包含2个主轴的切面
1.均质体光率体
Isotropic indicatrix
N N
不同方向振动的光波N相等,
为一圆球体 只有一个折射率值N
N
N
任何切面都是圆切面 圆切面的半径=N
为什么关注光率体切面?
2.一轴晶光率体
Uniaxial indicatrix
(1)特征
形态:旋转椭球体,旋转轴
与结晶轴c轴一致
Ne No
∥c轴入射光波,在⊥c轴的 平面内振动,折射率为No,不 发生双折射。故c轴∥ OA。
⊥c轴入射光波,分解为∥
和⊥c轴振动的两种偏光,折射
率为Ne,No。
(2)光率体要素: 有No和Ne两个主折射率,
或光率体椭球半径,介于之 间者为Ne’
OA
Ne
|Ne–No|为最大双折射率
o
e
冰洲石
冰洲石下的绳子有两个像 双折射
玻璃下的绳子只有一个像 单折射 o e
冰洲石
当光线入射到矿物晶体之中时,一般都发生双 折射现象。即形成两束折射光。
一束为寻常光( o 光),服从折射定律, 沿各方向传播的o光速度相同,即各方向的折 射率相同。 另一束为异常光(e 光),不服从折射定律, 沿各方向传播的光速度不同,即各方向的折射 率不同。
波长(nm)
波长nm
可见光在电磁波谱中的位置
附 近
自然光:在垂直光波传播方向的平面内,各个方向上 都有等振幅振动的光波
偏光:仅在垂直光波传播方向的某一个固定方向上振 动的光波
偏光化作用(Polarization):使自然光转变为偏光的 作用。
反射、折射、双折射、选择性吸收可使自然光转变为 偏振光。
Φ
Ni
Sinr = Sini/ N
若Sini=N,则r =90
*光波由光密介质进入光疏介质,当入射角增大 到某一临界角Φ时,会产生全反射,据此原理, 在已知Ni时,测出Φ值就能测出Nr.
5、双折射和双折射率
Double refraction & Birefringence
双折射现象的发现:冰洲石下的双像
No Ne’
Ne‘ 5 No
垂直OA切面 平行OA切面 斜交OA切面
正光性
负光性
3.二轴晶光率体 Biaxial indicatrix
(1)光率体形态:
三轴(半径)不等的椭球体,三 个椭圆半径分别为Ng、Nm、Np。 Ng > Nm > Np
Ng>Nm>Np Z
OA
X Y
OA
(2)光率体要素:
电磁波是一种横波,因此光也是横波:振动方 向与传播方向相互垂直 光波具有一切电磁波属性:反射、折射、干涉、 偏振、色散、衍射特征。
波的相关术语
F = V/ 图中波自左向右以速度V传播 波长 (wavelength):相邻两波峰之间的距离 频率F (frequency):每秒钟内波峰通过某一点处的次数 振幅A (amplitude):波的高度
主平面: 晶体内光线与光轴构成的平面
6、光性均质体与光性非均质体
光性均质体 Optical isotropic substance
光性非均质体 Optical anisotropic substance
光性均质体
指光学性质各个方向相同的物质,如玻璃质和 等轴晶系的矿物
传播速率不因振动方向的不同 而改变,任何方向振动的光波折 射率相同 自然光仍为自然光,偏振光仍 为偏振光
No Ne (+) (-)
Ne No
斜交OA切面:半径为Ne’、No的椭圆切面, 可测No的折射率和颜色,当斜交角较小时,可用 来确定光性符号
No Ne’
•椭圆的两半径方向决定两 偏光振动方向 •长短代表折射率
注意:一轴晶光率体所有切面上都有No。为什么?
连连看!
No 1 No 2 Ne Ne 4 No 3
不发生双折射
思考:是否会发生折射?
光性非均质体
光学性质因方向而异的矿物,即除等轴晶系以 外的所有其它晶系的矿物
传播速度、折射率随光波的振动方 向而变。
有一个或者两个光轴,一轴晶和二
轴晶(中、低级晶族) 除特殊方向外均要发生双折射,分
解成两束振动方向不同、传播速度不同、
折射率不等的偏光。
光性均质体/光性非均质体(是否发生双折射)
类玻璃质:玻璃、水、空气、树胶、蛋 晶 白石…… 单折射 (一个折射率)自然光 体 光 进自然光出,偏振光进偏振光出 等轴晶系:石榴石、萤石、尖晶石、金 刚石、白榴石…… 学 研 一轴晶: 六方晶系:磷灰石、霞石、绿柱石… (2个主折射率) 究 四方晶系:锆石、金红石、方柱石… 的 三方晶系:石英、方解石、刚玉、电 对 非均质体: 气石… 象
晶体光学及光性矿物学
Crystal Optics & Optical Mineralogy
(64学时)
任课教师:佘振兵 (地球科学学院) 联系方式: zbsher@ 67884734
教 材
晶体光学及光性矿物学,曾广策等编著,中国地质大学出版社,
2006,O734/Z1
参考书
每次课2学时
实验课安排(共23次课)
Practical Class
晶体光学部分 偏光显微镜的构造与使用,2课时 解理、多色性 ,2课时 突起等级、贝克线,4课时 消光、补色法则、干涉色级序,4课时 消光类型、消光角、延性,4课时 一轴晶干涉图、二轴晶干涉图,4课时 寻找定向切面、测一轴晶矿物多色性公式 ,4课时
2. 可见光、单色光、白光
可见光:正常的人眼能感觉到的电磁波。 单色光:频率为某一定值或在某一窄小范围的可见光。
白光:是指由七种基本单色光混合的光(如日光)。
紫外 390 紫 兰 绿 黄 430 500 570 590 650 770
橙
红 红外
人 眼 最 为 敏 感 的 光 是 黄 绿 光 , 即 555 nm
实验课安排(共23次课)
光性矿物学部分
系统鉴定:普通角闪石,2课时 橄榄石及其蚀变矿物 ,2课时 辉石族矿物 ,4课时 云母族矿物 ,4课时 斜长石成分鉴定法,4课时 钾长石、石英 ,4课时 方解石、萤石 ,2课时
实验课分班:每班不超过30人
成绩评定方法
理论部分(晶体光学):闭卷考试,占总分 50% 实践部分(光性矿物学):平时实验课成绩, 占总分50%
1669年,丹麦科学家巴塞林那斯 (E.Bartholinus) 透过冰洲石看书,发现每个 字都变成了两个。
10年后,荷兰物理学家惠更斯(Christiaan Huygens) 给出了解释: 一束光进入冰洲石后分为两束(双折射) 其中一束遵从折射定律,称为常光(O 光);另外一束不遵开。
101 .5
光轴 (optical axis, OA):晶体
内特殊的方向,当光线沿该方
向入射时,不发生双折射。
78 .5
相关说明
(1)o 光与e 光均为偏振光,二者传播方向、传播速
度、折射率一般不同。 o 光、e 光折射率之差为双折率。
(2) 传播方向:o 光始终在入射面(晶面法线与入射线所决
光从非光轴方向入射, 产生双折射,分解成振 斜方晶系:橄榄石、紫苏辉石…… 动方向互相垂直的两束 二轴晶: 偏振光。 (3个主折射率) 单斜晶系:普通角闪石、透长石…… 三斜晶系:斜长石、硅灰石……
均质体:
思考题
1. 所有介质的折射率总是 > 1,
为什么? 2. 垂直入射的光线如何折射? 3. 为什么右图中玻璃杯中的铅笔 没有变成两根?
光通过下偏光镜时
west (left)
自然光
单偏光 “PPL” east (right)
只有东西方向振动的光才能通过
3、光的折射与折射率
Refraction & refractive index
生活中的光折射
i
疏
密
法 线 Ni
Water
i
密
疏
法 线 Ni
Nr
Air
Nr
r r
Ni<Nr
Ni>Nr
折射定律(Snell定律): N = Sini / Sinr = Vi / Vr
晶体光学基础理论(1)小结
光的波动性:电磁波、横波 可见光(390-770nm)、单色光/白光、自然光/偏光
白光可以是自然光,也可以是偏光
自然光可以是白光,也可以是单色光
偏光可以是白光,也可以是单色光
光的折射:折射后发生了什么?V、F、 、传播方向?
光的全反射和全反射临界角
双折射:
1)由光疏进入光密物质,折向光法线;反之,偏离光法线。 2)N:折射介质对入射介质的相对折射率,若入射介质为真空,为绝 对折射率。 3)光在介质中的传播速度受微观结构(密度、质点类型、堆积的紧密 程度等)的控制,因此折射率是反映介质成分和微观结构的重要参数。
4、光的全反射和全反射临界角
Ni>Nr 据折射定律: N = Vi / Vr 密 疏 Nr Φ为全反射临界角 = Sini / Sinr = Nr / Ni