陶瓷基复合材料(1)

合集下载

陶瓷基复合材料

陶瓷基复合材料

3、莫来石陶瓷(3Al2O3· 2SiO2, mullite)
莫来石一般是由人工合成的。工业上多用天然高铝矾土、粘土或工 业氧化铝等为原料,常用烧结或电熔法合成莫来石熔块,然后破碎成各 种粒度的莫来石粉料。一般合成温度高于1700℃。
实验室一般用化学法(如Sol-gel法)合成高纯、超细的莫来石粉体。
晶须
(陶瓷)
纤维
(连续、短纤维) (陶瓷、高熔点金属)
1650
结构复合式
(叠层、梯度) (按设计要求选择材料)
水泥
硅酸盐化合物、铝酸盐化合物等
叠层式(叠层、梯度)
(按设计要求选择材料)
二、原材料及其特性
陶瓷基复合材料是由基体材料和增强体材料组成。
基体材料有氧化物陶瓷、非氧化物陶瓷、水泥、玻璃等。 增强体材料主要以不同形态来区分,有颗粒状、纤维状、 晶须、晶板等。
表面强化增韧
陶瓷材料的断裂往往是从表面拉应力超过断裂 应力开始的。由于ZrO2陶瓷烧结体表面存在基 体的约束较少,t-ZrO2容易转变为m-ZrO2,而 内部t-ZrO2由于受基体各方向的压力保持亚稳 定状态。因此表面的m-ZrO2比内部的多,而转 变产生的体积膨胀使材料表面产生残余的压应 力,可以抵消一部分外加的拉应力,从而造成 表面强化增韧。
莫来石质陶瓷通常是在1550~1600℃下常压烧结而成,纯莫来石陶 瓷通常要在1750℃左右才能烧结。
加入适量的稳定剂后,t相可以部分或全部以亚稳定状态存在于室 温,分别称为部分稳定氧化锆(PSZ)或四方相氧化锆多晶体(TZP)。
利用t-ZrO2m-ZrO2的马氏体相变,可以用来增韧陶瓷材料,即 氧化锆增韧陶瓷材料(ZTC)。 ZrO2陶瓷的特点是呈弱酸性或惰性,导热系数小(在100~1000℃ 范围内,导热系数=1.7~2.0W/(mK),其推荐使用温度为2000~2200℃, 主要用于耐火坩埚、炉子和反应堆的绝热材料、金属表面的热障涂层等。

陶瓷基复合材料的制备方法

陶瓷基复合材料的制备方法
轨前进,沿着窑内设定的温度分布经预热、烧
结、冷却过程后,从窑的另一端取出成品。
4.精加工
由于高精度制品的需求不断增多,因此在烧结
后的许多制品还需进行精加工。 精加工的目的是为了提高烧成品的尺寸精度和 表面平滑性,前者主要用金刚石砂轮进行磨削加工, 后者则用磨料进行研磨加工。
以上是陶瓷基复合材料制备工艺的几个主要步
韧陶瓷基复合材料。
由于晶须的尺寸很小,从宏观上看与粉末一样,
因此在制备复合材料时,只需将晶须分散后与基体粉
末混合均匀,然后对混好的粉末进行热压烧结,即可
制得致密的晶须增韧陶瓷基复合材料。
目前常用的是SiC,Si3N4 ,Al2O3 晶须,常用的基 体则为Al2O3,ZrO2,SiO2,Si3N4及莫来石等。 晶须增韧陶瓷基复合材料的性能与基体和晶须的 选择、晶须的含量及分布等因素有关。
易造成烧成后的生坯变形或开裂、只能适用于形
状比较简单的制件。
采用橡皮模成型法是用静水压从各个方向均 匀加压于橡皮模来成型,故不会发生生坯密度不 均匀和具有方向性之类的问题。
由于在成型过程中毛坯与橡皮模接触而压成
生坯,故难以制成精密形状,通常还要用刚玉对 细节部分进行修整。
另一种成型法为注射成型法。从成型过程上看,
据需要的厚度将单层或若干层进行热压烧结成型,如
下图所示。
纤维 层 基体
纤维布层压复合材料示意图 这种材料在纤维排布平面的二维方向上性能优越,而在垂 直于纤维排布面方向上的性能较差。 一般应用在对二维方向上有较高性能要求的构件上。
另一种是纤维分层单向排布,层间纤维成一定角度,
如下图所示。 纤维层
基体
Z
三向C/C编织结构示意图 Y
这种三维多向编织结构还可以通过调节

陶瓷基复合材料介绍

陶瓷基复合材料介绍

陶瓷基复合材料介绍一、材料定义与特性陶瓷基复合材料(Ceramic Matrix Composites,简称CMC)是一种以陶瓷为基体,复合增强体材料的高性能复合材料。

它具有高强度、高硬度、耐高温、抗氧化、耐腐蚀等优异性能,被广泛应用于航空航天、汽车、能源、化工等领域。

二、基体与增强体材料陶瓷基体的主要类型包括氧化铝、氮化硅、碳化硅、氮化硼等,它们具有高熔点、高硬度、耐腐蚀等特性。

增强体材料主要包括纤维、晶须、颗粒等,它们可以显著提高陶瓷基体的强度和韧性。

三、制备工艺与技术陶瓷基复合材料的制备工艺主要包括:热压烧结法、液相浸渍法、化学气相沉积法、粉末冶金法等。

其中,热压烧结法和液相浸渍法是最常用的制备工艺。

四、增强纤维与基体的界面增强纤维与基体的界面是影响陶瓷基复合材料性能的关键因素之一。

为了提高材料的性能,需要优化纤维与基体的界面特性,包括润湿性、粘结性、化学稳定性等。

五、材料的应用领域陶瓷基复合材料具有广泛的应用领域,主要包括:航空航天领域的发动机部件、机载设备;能源领域的燃气轮机叶片、核反应堆部件;汽车领域的刹车片、发动机部件;化工领域的耐腐蚀设备、管道等。

六、发展现状与趋势随着科技的不断进步,陶瓷基复合材料的研究和应用不断深入。

目前,国内外研究者正在致力于开发低成本、高性能的陶瓷基复合材料,并探索其在更多领域的应用。

同时,研究者还在研究如何更好地控制材料的微观结构和性能,以提高材料的综合性能。

七、挑战与机遇尽管陶瓷基复合材料具有许多优异的性能,但它们的制备工艺复杂、成本高,且存在易脆性等挑战。

然而,随着科技的不断进步和新材料的发展,陶瓷基复合材料的成本逐渐降低,应用领域也在不断扩大。

同时,随着环保意识的提高和能源需求的增加,陶瓷基复合材料在能源和环保领域的应用前景广阔。

因此,陶瓷基复合材料在未来仍具有巨大的发展潜力。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料综述引言:陶瓷基复合材料是近二十年来发展起来的新型材料,由于该类材料具有良好的高温性能。

因此它作为耐高温结构材料在航空航天工业和能源工业等领域的应用具有巨大的潜力。

如航空发动机的推重比为10时,涡轮前进口温度达1650C, 在这样高的温度下,传统的高温合金材料已经无法满足要求【11,因此国内外的材料研究者纷纷把研究的重点转向陶瓷基复合材料。

研究者通过大量的实验发现,陶瓷基复合材料不仅具有良好的高温稳定性和高温抗氧化能力,而且材料在断裂过程中通过裂纹偏转、纤维断裂和纤维拔出等机理吸收能量,既有效的增强了材料的强度和韧性,又保持了基体材料低膨胀、低密度的特点。

摘要:概述了陶瓷基复合材料的基本概念,介绍了陶瓷基复合材料的性能、分类及其应用,以及各类陶瓷基复合材料的优点、缺点。

重点介绍了陶瓷基复合材料的增韧机理、制备工艺(包括粉末冶金法、浆体法、反应烧结法、液态浸渍法、直接氧化法等)。

最后对陶瓷复合基材料的发展前景及发展方向做了展望。

1、陶瓷基复合材料概述陶瓷分为普通陶瓷和特种陶瓷。

普通陶瓷就是我们日常用的陶瓷、建筑陶瓷、化学陶瓷、电瓷及其他工业用瓷。

虽然陶瓷外表美观,耐腐蚀,但是它塑性差,易碎,是其致命缺点。

而另一种陶瓷:特种陶瓷则刚好解决了这个缺点,让陶瓷的发展有了无限的空间。

特种陶瓷包括功能陶瓷和结构陶瓷。

是一种复合材料。

陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展从而得到有优良韧性的纤维增强陶瓷基复合材料。

2、陶瓷基基复合材料的基体与增强体(2) 增强体:陶瓷基复合材料中的增强体,通常也称为增韧体。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料引言。

陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。

它具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此被广泛应用于航空航天、汽车制造、化工等领域。

本文将介绍陶瓷基复合材料的组成、性能和应用,并对其未来发展进行展望。

一、陶瓷基复合材料的组成。

陶瓷基复合材料通常由陶瓷基体和增强材料组成。

陶瓷基体可以是氧化铝、碳化硅、氮化硅等陶瓷材料,而增强材料则可以是碳纤维、玻璃纤维、陶瓷颗粒等。

这些材料通过复合加工技术,如热压、注射成型等,将陶瓷基体与增强材料紧密结合,形成具有优异性能的复合材料。

二、陶瓷基复合材料的性能。

1. 耐磨性,陶瓷基复合材料具有优异的耐磨性,可以在高速、高负荷条件下保持较长的使用寿命,因此被广泛应用于机械设备的零部件制造。

2. 耐腐蚀性,由于陶瓷基复合材料具有优异的化学稳定性,可以在酸、碱等腐蚀性介质中长期稳定运行,因此在化工领域得到广泛应用。

3. 高强度,陶瓷基复合材料在高温、高压条件下依然保持优异的强度和刚性,因此被广泛应用于航空航天领域。

4. 高温稳定性,陶瓷基复合材料在高温条件下依然保持稳定的性能,因此被广泛应用于发动机、燃气轮机等高温设备的制造。

三、陶瓷基复合材料的应用。

1. 航空航天领域,陶瓷基复合材料被广泛应用于航空发动机、航天器外壳等高温、高压零部件的制造。

2. 汽车制造领域,陶瓷基复合材料被应用于汽车刹车片、离合器片等零部件的制造,以提高其耐磨性和耐高温性能。

3. 化工领域,陶瓷基复合材料被应用于化工设备的制造,以提高其耐腐蚀性和耐高温性能。

四、陶瓷基复合材料的发展展望。

随着科学技术的不断进步,陶瓷基复合材料将会在性能和应用范围上得到进一步提升。

未来,我们可以期待陶瓷基复合材料在新能源领域、生物医药领域等新兴领域的广泛应用,为人类社会的发展做出更大的贡献。

结论。

陶瓷基复合材料具有优异的耐磨、耐腐蚀、高强度和高温稳定性等特点,因此在航空航天、汽车制造、化工等领域得到广泛应用。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和增强相组成的新型材料。

陶瓷基复合材料具有优异的耐高温、耐磨损、耐腐蚀性能,因此在航空航天、汽车制造、机械制造等领域有着广泛的应用。

本文将从材料特性、制备工艺、应用领域等方面对陶瓷基复合材料进行介绍。

首先,陶瓷基复合材料的材料特性是其具有的重要特点之一。

陶瓷基复合材料具有高温强度高、热震稳定性好、耐磨损、耐腐蚀等优异性能。

这些特性使得陶瓷基复合材料在高温、高压、腐蚀等恶劣环境下能够发挥出色的性能,因此在航空航天领域得到了广泛的应用。

其次,陶瓷基复合材料的制备工艺是影响其性能的重要因素之一。

陶瓷基复合材料的制备工艺包括原料的选择、配比、成型、烧结等多个环节。

其中,原料的选择和配比直接影响着复合材料的成分和性能,而成型和烧结工艺则决定了复合材料的内部结构和组织。

因此,制备工艺的优化对于提高陶瓷基复合材料的性能具有重要意义。

最后,陶瓷基复合材料在航空航天、汽车制造、机械制造等领域有着广泛的应用。

在航空航天领域,陶瓷基复合材料被用于制造发动机涡轮叶片、导向器、复合材料轴承等部件,以提高其耐高温、耐磨损、耐腐蚀等性能。

在汽车制造领域,陶瓷基复合材料被用于制造发动机零部件、刹车盘、离合器等,以提高汽车的性能和安全性。

在机械制造领域,陶瓷基复合材料被用于制造轴承、密封件、刀具等,以提高机械设备的使用寿命和性能。

总之,陶瓷基复合材料具有优异的性能和广泛的应用前景。

随着科学技术的不断进步,陶瓷基复合材料将在更多领域得到应用,并为人类社会的发展做出更大的贡献。

《陶瓷基复合材料》课件

《陶瓷基复合材料》课件
陶瓷基复合材料
陶瓷基复合材料结合了陶瓷和其他材料的优点,具有出色的力学、热学和电 学性能,是一种重要的先进材料。
什么是陶瓷基复合材料?
定义
陶瓷基复合材料是将陶瓷作为基质,与其他材料(如金属、聚合物等)混合制成的材料。
ห้องสมุดไป่ตู้特点
具有高硬度、高强度、耐高温、抗腐蚀等优良性能,可满足各种工业领域的需求。
陶瓷基复合材料的制备方法
结论
陶瓷基复合材料的优点
高强度、高硬度、耐高温、 抗腐蚀等特点使其成为各行 业重要的材料选择。
为何有利于工业发展
在提升产品性能和降低成本 方面具有巨大潜力,能推动 产业升级。
未来应如何发展?
加强技术研究、推动产学研 合作,不断创新和提升陶瓷 基复合材料的性能和应用范 围。
电子行业
用于集成电路、芯片封装等电子器件,提供优异的 绝缘和散热性能。
其他领域
如能源、化工、医疗等领域都有广泛的应用。
陶瓷基复合材料的发展前景
1
技术难点及解决方法
面临制备工艺、材料选择等方面的挑战,需要深入研究和创新技术。
2
未来发展趋势
预计在新能源、高端装备制造等领域有更广泛的应用,为工业发展带来新机遇。
热性能
耐高温性能出众,可 在高温环境下保持稳 定。
电性能
具备优异的绝缘性和 导电性能,适用于各 种电子器件。
其他性能
如耐腐蚀性、低摩擦 系数等特殊性能,广 泛应用于特定领域。
陶瓷基复合材料的应用
航空航天领域
用于制造发动机叶片、航天器外壳等关键部件,提 供高温和高强度的支撑。
汽车工业
应用于制动系统、排气系统等部件,提高汽车的性 能和耐久性。
1 热压法

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料陶瓷基复合材料是一种由陶瓷基体和其他添加剂组成的复合材料。

其综合性能优异,因此在航空航天、电子器件、能源领域等多个领域得到广泛应用。

本文将介绍陶瓷基复合材料的制备方法、性能及应用,并对其未来发展进行展望。

一、制备方法陶瓷基复合材料的制备方法多种多样,主要包括烧结法、溶胶-凝胶法、机械合金化法等。

首先,烧结法是最常用的制备陶瓷基复合材料的方法之一。

该方法将陶瓷粉末与其他添加剂混合,并通过高温下的烧结过程将其烧结成坚固的材料。

这种方法制备的复合材料具有较高的结晶度和致密性。

其次,溶胶-凝胶法是一种制备陶瓷基复合材料的新方法。

该方法通过将金属盐、有机物等混合,形成胶体溶胶,然后通过热处理使其成为凝胶,并进一步高温热处理得到致密材料。

这种方法制备的复合材料具有较高的纯度和均匀性。

最后,机械合金化法是一种通过粉末冶金技术制备陶瓷基复合材料的方法。

该方法将陶瓷颗粒与添加剂一起经过球磨、混合等机械处理,使其均匀分散,并通过热处理得到复合材料。

这种方法制备的复合材料具有较高的强度和断裂韧性。

二、性能陶瓷基复合材料具有一系列优异的性能,主要包括高温稳定性、硬度高、抗腐蚀性好等。

首先,陶瓷基复合材料具有较好的高温稳定性。

由于陶瓷基复合材料的陶瓷基体具有较高的熔点和热稳定性,因此能够在高温环境下保持较好的性能,不易发生烧结变形等问题。

其次,陶瓷基复合材料具有较高的硬度。

陶瓷基体的硬度往往比金属基体或聚合物基体要高,因此陶瓷基复合材料在硬度方面具有优势。

这使得该材料在需要高硬度的应用中表现出色,如切割工具、磨料等领域。

再次,陶瓷基复合材料具有良好的抗腐蚀性。

由于陶瓷基体的本身特性,该材料在酸碱等腐蚀性环境中有很好的稳定性,不易受到腐蚀侵蚀。

这使得陶瓷基复合材料在化工、生物医药等领域得到广泛应用。

三、应用陶瓷基复合材料在很多领域都有广泛的应用。

下面将介绍几个典型的应用领域。

首先,陶瓷基复合材料在航空航天领域具有重要应用。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料摘要:概述了陶瓷基复合材料的内涵,介绍了陶瓷基复合材料的设计原则和基体选择,以及了陶瓷基复合材料的结构,种类。

综述了陶瓷基复合材料的研究方向及研究进展。

关键词:陶瓷基复合材料,基体材料,陶瓷基复合材料增强体,韧性,界面,梯度,连续纤维补强陶瓷基复合材料。

陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料(ceramic matrix composite,简记为CMC)是在陶瓷基体中引入第二相材料,是指增强、增韧的多相材料,又称为多相复合陶瓷(multiphase composite ceramic)或复相陶瓷。

一、陶瓷基复合材料的设计原则(1)选用高强度、高模量的纤维或晶须(均应比基体大);(2)在复合材料制备过程中(温度和气氛),纤维和晶须性能不致受损;(3)纤维、晶须在制备条件(2)下,不与晶体之间发生化学反应;(4)纤维、晶须应与基体在热膨胀系数TEC上匹配;(5)纤维、晶须与基体的界面结合适中。

二、基体材料的选择:对基体材料要求他有较高的耐高温性能,与纤维(或晶须)之间有良好的相容性,同时还应考虑到复合材料制作工艺性能。

可选择的基体材料有这样几类:玻璃、玻璃-陶瓷、氧化物陶瓷和非氧化物陶瓷材料等。

(1)玻璃基复合材料:复合材料范畴。

玻璃基复合材料比原玻璃基体的韧性有明显改善。

例如以短4J·m1/2,断裂韧性为0.5J·ml/2。

可应用于制造各种耐化学腐蚀(2)氧化物类陶瓷材料:主要有MgO、Al3O2、SiO2、ZrO2、莫来石等,但这些材料均不宜用于高应力和高温环境中。

陶瓷基复合材料综述

陶瓷基复合材料综述

陶瓷基复合材料综述陶瓷基复合材料是指以陶瓷材料为基体,通过添加其他材料或者通过热处理等方式形成的一种具有复合结构的新型材料。

陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。

本文将对陶瓷基复合材料的制备方法、性能以及应用方面进行综述。

一、陶瓷基复合材料的制备方法陶瓷基复合材料的制备方法可以分为两大类:一种是在陶瓷基体中添加其他材料,如纳米颗粒、纤维、碳纳米管等;另一种是通过热处理等方式改变陶瓷基体的结构和性能。

其中,添加其他材料的方法主要包括浸渍法、溶胶凝胶法、等离子熔融法等;热处理方法主要包括烧结、热压、热等静压等。

二、陶瓷基复合材料的性能陶瓷基复合材料具有许多独特的性能,其主要包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性。

其中,高温稳定性是指材料在高温下仍然能够保持物理和化学性能的稳定性。

高硬度则是指材料的硬度较高,能够抵抗外界的划痕和磨损。

高抗磨损性则是指材料能够在摩擦和磨损等条件下保持其表面的完整性和光洁度。

化学稳定性则是指材料对酸、碱、盐等化学介质的稳定性较好,不易发生腐蚀和溶解。

三、陶瓷基复合材料的应用方面由于陶瓷基复合材料具有优异的性能,因此在许多领域都得到了广泛的应用。

其中,陶瓷基复合材料在航空航天领域中被广泛应用于火箭发动机喷管、刹车盘等高温部件中。

此外,在能源领域,陶瓷基复合材料可以用于制备高效的催化剂、光催化剂和固态电解质等。

在汽车制造领域,陶瓷基复合材料可以应用于汽车刹车系统、传动系统和发动机部件等。

此外,陶瓷基复合材料还可以用于制备耐磨、耐蚀和高温结构件,如轴承、密封件和切割工具等。

综上所述,陶瓷基复合材料具有许多优异的性能,包括高温稳定性、高硬度、高抗磨损性和良好的化学稳定性等。

通过添加其他材料或者通过热处理等方式改变陶瓷基体的结构和性能,可以制备出具有不同功能和应用的陶瓷基复合材料。

由于其广泛的应用前景,陶瓷基复合材料在材料科学领域中受到了广泛的研究和开发。

陶瓷基复合材料PPT课件

陶瓷基复合材料PPT课件
定的成果。
面临的挑战
高成本
陶瓷基复合材料的制备工 艺复杂,导致其成本较高, 限制了大规模应用。
性能稳定性
陶瓷基复合材料在复杂环 境下性能稳定性不足,易 受温度、湿度等外部因素 影响。
生产效率
目前陶瓷基复合材料的生 产效率相对较低,影响了 其推广和应用。
未来展望
降低成本
通过技术创新和规模化生产,降低陶瓷基复合材 料的成本,提高其市场竞争力。
制备工艺的优化
熔融浸渗法
压力辅助成型法
通过优化熔融浸渗工艺参数,如温度、 压力和时间,提高陶瓷基复合材料的 致密化程度和力学性能。
通过调整压力辅助成型的压力、温度 和时间等参数,提高复合材料的密度 和力学性能。
化学气相沉积法
优化化学气相沉积工艺参数,如反应 温度、气体流量和沉积时间,以获得 均匀、致密的陶瓷基复合材料。
04
陶瓷基复合材料的性能优化
增强相的选择与优化
增强相种类
选择合适的增强相是提高陶瓷基 复合材料性能的关键,常用的增 强相包括碳纤维、玻璃纤维、晶
须等。
增强相分散与分布
优化增强相在基体中的分散和分布, 确保其均匀分布,以提高复合材料 的整体性能。
增强相表面处理
通过表面处理技术改善增强相与基 体之间的界面结合力,提高复合材 料的力学性能。
陶瓷基复合材料的性能优化主要通过 添加增强相、调整基体组成和工艺参 数实现。
陶瓷基复合材料在高温、高强度、抗 氧化等极端环境下的应用前景广阔, 但需要解决其可靠性、寿命和成本等 问题。
对未来研究的建议
01
02
03
04
深入研究陶瓷基复合材料的微 观结构和性能之间的关系,为 材料设计和优化提供理论支持

《陶瓷基复合材》课件

《陶瓷基复合材》课件

2
陶瓷基复合材料的问题及挑战
陶瓷基复合材料在制备过程中存在工艺复杂、成本高等问题,需要进一步解决和 改进。
结论
陶瓷基复合材料的综合性能评价
综合考虑陶瓷基复合材料的力学性能、热学性能、耐久性等方面,可以评价其综合性能水平。
陶瓷基复合材料的发展前景
陶瓷基复合材料在高科技领域有着广阔的应用前景,将为科学技术的发展提供重要支持。
参考文献
1. 文献1 2. 文献2 3. 文献3
陶瓷基复合材料的组成包括陶瓷基体和增强材料,其结构形式可以是颗粒增强、 纤维增强等。
性能测试
1 陶瓷基复合材料的力学性能测试
力学性能测试包括强度、硬度、韧性等方面的评估,以确保陶瓷基复合材料的可靠性和 耐久性。
2 陶瓷基复合材料的热学性能测试
热学性能测试包括热导率、热膨胀系数等方面的评估,以确保陶瓷基复合材料在高温环 境下的稳定性。
应用案例
陶瓷基复合材料在航天领域的应用
陶瓷基复合材料在航天器结构、导航系统和热保护 层等方面发挥重要作用。
陶瓷基复合材料在医疗领域的应用
陶瓷基复合材料应用于仿生器官、骨修复、人工关 节等方面,为医疗技术的发展带来新的突破。
进一步研究
1
陶瓷基复合材料的未来发展趋势
随着科学技术的不断进步,陶瓷基复合材料将会在性能、制备技术等方面取得更 大突破。
陶瓷基复合材 PPT课件
研究陶瓷基复合材料是为了探索新型材料的结构与性能,本PPT课件将介绍陶 瓷基复合材料的概述、制备方法、性能测试、应用案例、未来发展趋势以及 参考文献。Leabharlann 概述什么是陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和其他增强物质组成的复合材料,具有优异的力学和热学 性能。

陶瓷基体材料和高性能陶瓷基复合材料(1)

陶瓷基体材料和高性能陶瓷基复合材料(1)
高性能复合材料学
7 陶瓷基体和高性能陶瓷基 复合材料
2021/3/2
国防科学技术大学航天与材料工程学院
1
高性能复合材料学
7 陶瓷基体和高性能陶瓷基复合材料
7.1 高性能复合材料的陶瓷基体材料 7.2 高性能陶瓷基复合材料
2021/3/2
国防科学技术大学航天与材料工程学院
2
高性能复合材料学
7.1 高性能复合材料的陶瓷基体材料 (ceramic matrix materials of HPCM)
• 高熔点、高弹性模量(high melting point, high elastic modulus);
• 位错和原子不易运动(low dislocation and atomic mobility),即塑性变形性差;
• 高硬度、低密度(high hardness, low density)。
2021/3/2
14
高性能复合材料学
(2)可靠性指标:强度 (Indexes of Reliability: Strength)
F = YKc/c1/2
式中, Y: 无量纲常数,取决于缺陷的几何形状(不是尺
寸)、应力场和试样的几何形状(a dimensionless constant dependent on the geometry (not size) of the flaw and the geometry of the stress field and the sample); c: 裂纹尺寸(the flaw size); Kc: 断裂韧性(the fracture toughness)。
2021/3/2
国防科学技术大学航天与材料工程学院
5
高性能复合材料学

陶瓷基复合材料

陶瓷基复合材料

C/SiC陶瓷基复合材料的应用领域
1、在刹车系统中的应用 C/SiC制动材料具有低成本、环境适应性强 (如湿态下摩擦系数不衰减)等优势,因 而成为新一代高性能制动材料,从而引起 广大研究者的重视。目前德国研究人员以 研制出C/C-SiC刹车片,并应用于Porsche (保时捷)轿车刹车系统中。
3、低密度 C/SiC陶瓷基复合材料的密度基本在 2.0g/cm3,与高温合金8.0g/cm3的密度相 比具有较大的优势,在航空航天领域应用 时可使结构减重1/2-2/3。 4、性能可设计性强 通过采用不同的纤维预制体编织方式, 可以实现材料性能的预先设计,在满足性 能要求的前提下达到节约成本的目的。
2、在高温连接件中的应用

连续纤维增强陶瓷基复合材料用于热结 构材料的机械连接已取得相当程度的进展。 在欧洲的一项发展计划中,热结构材料的 先进连接技术已经发展得非常成熟,用 C/SiC热结构材料连接,能够防止超音速气 流干扰,且能够在高温下密封、模拟测试 结果证明连接件可以适用于实际高温环境, 并能满足必要的飞行标准。
CVI工艺制备C/SiC和C/C-SiC陶瓷基复合 材料的主要优点:(
(1)可在较低温度下制备SiC基体,避免 高温使纤维与基体发生化学反应,从而对 纤维造成损伤; (2)制备过程中能保持预制体结构的完整 性,实现近净成型制备异型C/SiC和C/CSiC陶瓷基复合材料; (3)可对C/SiC和C/C-SiC陶瓷基复合材料 的成分进行设计;(4)制备的材料的基体 组织均匀、纯度较高。
1、先驱体浸渍裂解法
先驱体浸渍裂解法又成为液态聚合物浸 渍法(PIP),在一定温度和压力下,采用 有机先驱体溶液或熔融体浸渍碳纤维预制 体,交联固化后在惰性气氛中进行高温裂 解,使先驱体转化为SiC陶瓷基体。制备 C/SiC和C/C-SiC陶瓷基复合材料使用的聚 合物先驱体通常为聚碳硅烷(PCS)。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料
陶瓷基复合材料是一种由陶瓷基体和其他增强材料组成的复合材料。

它具有优异的耐高温、耐腐蚀、耐磨损、绝缘性能和较高的强度和硬度,因此在航空航天、汽车、机械等领域有着广泛的应用前景。

首先,陶瓷基复合材料的制备方法有多种,包括热压法、热等静压法、注射成型法等。

其中,热压法是一种常用的制备方法,通过将陶瓷粉末和增强材料粉末混合后,经过模具成型,再进行高温高压烧结而成。

这种方法制备的陶瓷基复合材料具有较高的密度和强度,适用于要求较高性能的领域。

其次,陶瓷基复合材料的增强材料多样,常见的有碳纤维、硅碳化物、氧化锆等。

这些增强材料能够有效提高陶瓷基复合材料的强度和韧性,使其具有更广泛的应用前景。

同时,通过合理选择和设计增强材料的类型和比例,可以使陶瓷基复合材料具有更优异的性能。

另外,陶瓷基复合材料的应用领域广泛,例如在航空航天领域,可以用于制造发动机零部件、导弹外壳等高温、高压、高速工作的零部件;在汽车领域,可以用于制造发动机缸套、刹车盘等耐磨损、耐腐蚀的零部件;在机械领域,可以用于制造轴承、刀具等需要耐磨损、耐高温的零部件。

最后,陶瓷基复合材料在实际应用中还面临着一些挑战,如制备工艺复杂、成本较高、易受到裂纹和断裂等。

因此,需要进一步研究和改进制备工艺,提高制备效率和降低成本,同时加强对陶瓷基复合材料的性能评价和监测,以确保其在各个领域的可靠应用。

综上所述,陶瓷基复合材料具有广阔的应用前景和发展空间,通过不断的研究和创新,相信它将在未来的材料领域发挥越来越重要的作用。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料陶瓷基复合材料是一种将陶瓷作为基体,同时添加其他材料形成的复合材料。

它具有优异的高温性能、耐磨性、耐腐蚀性和机械性能,广泛应用于航空航天、汽车、电子、能源和化工等领域。

本文将重点介绍陶瓷基复合材料的特点、制备方法和应用。

陶瓷基复合材料的特点有以下几个方面。

首先,它具有很高的耐高温性能。

陶瓷基复合材料可以在高温下长时间工作,不会烧结或软化,因此在航空航天和汽车引擎等高温环境中得到广泛应用。

其次,它具有优异的耐磨性。

陶瓷基复合材料的硬度和抗磨损性能远远超过金属材料,可以用于制造耐磨件,如轴承、机械密封件等。

此外,它还具有较高的抗腐蚀性能和较低的摩擦系数,可以用于制造化学装置和摩擦副。

陶瓷基复合材料的制备方法主要包括烧结法和浸渍法。

烧结法是将陶瓷粉末和其他材料混合后,通过高温加热使其熔结成型。

这种方法适用于制备纯陶瓷基复合材料,如氧化铝基陶瓷复合材料。

浸渍法是将陶瓷基体浸渍于其他材料溶液中,然后通过热处理使其形成复合材料。

这种方法可以制备各种类型的陶瓷基复合材料,如碳纤维增强陶瓷基复合材料和碳化硅增强陶瓷基复合材料。

陶瓷基复合材料在各个领域中都有广泛的应用。

在航空航天领域,它可用于制造发动机组件、航空轴承、导弹和卫星零部件等。

在汽车领域,它可用于制造发动机缸套、刹车片、活塞环等。

在电子领域,它可用于制造电子散热器、半导体器件等。

在能源领域,它可用于制造核燃料颗粒、核电站部件等。

在化工领域,它可用于制造化学反应器、蒸馏柱等。

综上所述,陶瓷基复合材料具有优异的高温性能、耐磨性、耐腐蚀性和机械性能,广泛应用于航空航天、汽车、电子、能源和化工等领域。

随着科技的进步和材料制备技术的发展,陶瓷基复合材料的应用前景将更加广阔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.6 复合材料
无机非金属材料概论
Chapter 6 陶瓷基复合来自料 (Ceramic-Matrix Composites)
CMC
编辑ppt
1
C.6 复合材料
无机非金属材料概论
聚合物、金属、陶瓷的工作温度极限
One relatively complex composite material is the modern ski. In this illustration, a cross-section of a high-performance snow ski, are shown the various components. The function of each component is noted, as well as the material that is used in its construction.
b. 功能复合材料:具有某种特殊的物理或化学特性, 可根据其功能来分类,如导电、磁性、阻尼、摩擦、换能等。 功能复合材料一般由功能体组元(增强相)和基体组元(基体相) 组成,基体相不仅起到构成整体的作用,而且能产生协同或加 强功能的作用。
编辑ppt
7
C.6 复合材料
无机非金属材料概论
按制造成本和性能高低分类: 复合材料还可分为常用和先进两类。 常用复合材料如玻璃钢便是用玻璃纤维等性能较低的增强相与 普通高聚物(树脂)构成 。 价格低廉,得以大量发展,广泛用于船舶、车辆、化工管道和 贮罐、建筑结构、体育用品等,可代替钢材。
3.增强相的作用: 增强相起承受应力(结构复合材料)和显示功能 (功能复合材料)的作用。
编辑ppt
4
C.6 复合材料
无机非金属材料概论
4.为何要使用复合材料? 与一般材料的简单混合有本质的区别,合理的材料设计, 可使复合材料既能保持原组成材料的重要特色, 又通过复合效应使各组分的性能互相补充,获得原组分 不具备的许多优良性能。
编辑ppt
10
C.6 复合材料
无机非金属材料概论
Types of composite based on the form of reinforcement
编辑ppt
11
C.6 复合材料
无机非金属材料概论
Schematic illustration of principle of composite
特种陶瓷具有优秀的力学 性能、耐磨性好、硬度高 及耐腐蚀性好等特点,但 其脆性大,耐热震性能差, 而且陶瓷材料对裂纹、气 孔和夹杂等细微的缺陷很 敏感。
编辑ppt
2
C.6 复合材料
无机非金属材料概论
编辑ppt
3
C.6 复合材料
无机非金属材料概论
§6.1 概 述
1.何谓复合材料? 是由有机高分子、无机非金属或金属等不同材料 通过复合工艺组合而成的。
复合材料是多相材料。它主要包括基体相和增强相。 2.基体相的作用: 基体相是一种连续相材料,它把增强相材料固结成一体, 并起着传递应力的作用;
按基体相的材料种类分类, 分为金属基复合材料, 陶瓷基复合材料, 水泥基复合材料, 塑料基复合材料, 橡胶基复合材料等。
编辑ppt
9
C.6 复合材料
无机非金属材料概论
FIGURE 15.2 A classification scheme for the various
composite types discussed in this chapter.
microstructures
编辑ppt
12
C.6 复合材料
无机非金属材料概论
FIGURE 15.8 Schematic representations of (a) continuous and aligned, (b) discontinous and aligned, and (c) discontinuous and randomly oriented fiberreinforced composites.
先进复合材料: 高性能增强相(如碳纤维、芳纶等)与高性能耐热高聚物构成的 复合材料,后来又把金属基、陶瓷基和碳(石墨)基以及功能复 合材料包括在内。
编辑ppt
8
C.6 复合材料
无机非金属材料概论
它们的性能优良,但价格相对较高,主要用于国防工业、航空 航天、精密机械、深潜器、机器人结构件和高档体育用品等。
无机非金属材料概论
增强相包括各种玻璃、陶瓷、碳素、高聚物、金属以及天 然纤维、织物、晶须、片材和颗粒等,基体相则有高聚物(树 脂)、金属、陶瓷、玻璃、碳和水泥等。 结构复合材料的特点:可根据材料在使用中受力的要求进行组 元选材设计,更重要的是还可进行复合结构设计,即增强相排 布设计,能合理地满足特殊要求并节约用材。
编辑ppt
5
C.6 复合材料
无机非金属材料概论
5.复合材料的种类:
复合材料的种类繁多,分类方法亦不统一。
按性能分类: 结构复合材料、功能复合材料
a.结构复合材料是作为承力结构使用的材料, 基本上由能承受荷载的增强相与能连接增强体 成为整体材料同时又起传递力作用的基体组元构成。
编辑ppt
6
C.6 复合材料
(a) A crack prior to inducement of
the ZrO2 particle phase transformation.
(b) Crack arrestment due to the stress-
induced phase transformation.
编辑ppt
17
一、陶瓷基复合材料概述
编辑ppt
13
C.6 复合材料
无机非金属材料概论
编辑ppt
14
C.6 复合材料
无机非金属材料概论
编辑ppt
15
C.6 复合材料
无机非金属材料概论
编辑ppt
16
C.6 复合材料
无机非金属材料概论
FIGURE 15.11
Schematic demonstration of
transformation toughening.
例如,金属与陶瓷各有特点,金属及其合金的热稳定性 好,延展性和韧性好,但在高温下易氧化和蠕变,高温 强度低,抗腐蚀能力差;陶瓷耐火度高,耐腐蚀性强, 抗氧化,但脆性大,热稳定性不好。
金属陶瓷就是把二者结合成整体,集二者之优点,使之 具有高硬度、高强度、耐高温、耐腐蚀、耐磨损和膨胀 系数小等特点,用以制作工具材料、结构材料、耐热耐 腐蚀材料。
相关文档
最新文档