(完整word版)平面向量解题技巧

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量解题技巧
1. 这部分内容高考中所占分数一般在10分左右.
2. 题目类型为一个选择或填空题,一个与其他知识综合的解答题.
3. 考查内容以向量的概念、运算、数量积和模的运算为主.【考点透视】
"平面向量"是高中新课程新增加的内容之一,高考每年都考’
题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主.
透析高考试题,知命题热点为:
1. 向量的概念,几何表示,向量的加法、减法,实数与向量的积,
2. 平面向量的坐标运算,平面向量的数量积及其几何意义.
3. 两非零向量平行、垂直的充要条件.
4. 图形平移、线段的定比分点坐标公式.
5. 由于向量具有"数"与"形"双重身份,加之向量的工具性作用
向量经常与数列、三角、解析几何、立体几何等知识相结合’综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.
6. 利用化归思想处理共线、平行、垂直问题向向量的坐标运
算方面转化,向量模的运算转化为向量的运算等;利用数形结
合思想将几何问题代数化,通过代数运算解决几何问题.
【例题解析】
1. 向量的概念,向量的基本运算
⑴理解向量的概念,掌握向量的几何意义,了解共线向量的概念.
(2) 掌握向量的加法和减法.
(3) 掌握实数与向量的积,理解两个向量共线的充要条件.
(4) 了解平面向量的基本定理,理解平面向量的坐标的概念,掌
握平面向量的坐标运算.
(5) 掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.
(6) 掌握平面两点间的距离公式.
向量与三角函数创新题型的解题技巧
1. 三角函数的性质、图像及其变换,主要是的性质、图像及变换.考查三角函数的概念、奇偶性、周期性、单调性、有界性、图像的平移和对称等.以选择题或填空题或解答题形式出现,属中低档题,这些试题对三角函数单一的性质考查较少,一道题所涉及的三角函数性质在两个或两个以上,考
查的知识点来源于教材.
2. 三角变换.主要考查公式的灵活运用、变换能力,一般要
运用和角、差角与二倍角公式,尤其是对公式的应用与三角函数性质的综合考查. 以选择题或填空题或解答题形式出现, 属中档题.
3. 三角函数的应用.以平面向量、解析几何等为载体,或者用解三角形来考查学生对三角恒等变形及三角函数性质的应用的综合能力.特别要注意三角函数在实际问题中的应用和跨知识点的应用,注意三角函数在解答有关函数、向量、平面几何、立体几何、解析几何等问题时的工具性作用. 这类题一般以解答题的形式出现, 属中档题.
4. 在一套高考试题中,三角函数一般分别有1 个选择题、1 个填空题和1 个解答题,或选择题与填空题 1 个,解答题1 个,分值在17 分-22 分之间.
5. 在高考试题中, 三角题多以低档或中档题目为主, 一般不会出现较难题,更不会出现难题,因而三角题是高考中的得分点.
【考点透视】
1. 理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算.
2. 掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义, 掌握同解三角函数的基本关系式, 掌握正弦、余弦的
诱导公式,理解周期函数与最小正周期的意义.
3. 掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式.
4. 能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.
5. 了解正弦函数、余弦函数、正切函数的图象和性质,会用
"五点法"画正弦函数、余弦函数和函数y=Asin( 3 X )的
简图,理解A、3、X的物理意义•
6. 会由已知三角函数值求角,并会用符号arcsin x, arcos
x,arctan x 表示.
7. 掌握正弦定理、余弦定理,并能初步运用它们解斜三角形, 能利用计算器解决解三角形的计算问题.
8. 掌握向量与三角函数综合题的解法.
常用解题思想方法
1.三角函数恒等变形的基本策略。

⑴常值代换:特别是用"1"的代换,如仁cos2 e
sin2 e =tanx • cotx=tan4等。

°
(2) 项的分拆与角的配凑。

如分拆项:sin2x
2cos2x=(sin2x cos2x) cos2x=1 cos2x; 配凑角:a =( a
B B , B-=等。

(3) 降次与升次。

即倍角公式降次与半角公式升次。

(4) 化弦(切)法。

将三角函数利用同角三角函数基本关系化成弦
(切)。

⑸引入辅助角。

asin e bcos e = siri这里辅助角所在
象限由a、b 的符号确定, 角的值由tan = 确定
(6) 万能代换法。

巧用万能公式可将三角函数化成tan 的有理式。

2. 证明三角等式的思路和方法。

(1) 思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。

(2) 证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。

3. 证明三角不等式的方法:比较法、配方法、反证法、分析法, 利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。

4. 解答三角高考题的策略。

(1) 发现差异:观察角、函数运算间的差异,即进行所谓的" 差异分析" 。

(2) 寻找联系:运用相关公式,找出差异之间的内在联系。

(3) 合理转化:选择恰当的公式,促使差异的转化。

高一( 7 )班
郑潼。

相关文档
最新文档