3.2《复数的四则运算》习题(可编辑修改word版)
3.2复数的四则运算(2)除法和乘方
共轭复数的简单性质:
z+z=_2_a_;z-z=_2_b_i_;z z=_a__2+__b_2_
【类比推广】在实数中,除法运算是乘法的逆运算,
类似地,可以定义复数的除法运算:
复数除法定义: 把满足(c+di)(x+yi) =a+bi (c+di≠0)
位,则 z 等于 ( A )
A.-i B.i C.-1 D.1
解析 z=1i =-i.
练习 2.复数1i+-22i等于
( A)
A.i
B.-i
C.-45-35i
D.-45+35i
【复数的乘方】
复数的乘方是相同复数的积。实数集R中正
整数指数幂的运算律,在复数集C中仍然成
立.即对任意的z,z1,z2∈C及m,n∈N*,
故选 A.
2.
复数
i2+i3+i4 1-i
等于
A.-12-12i B.-12+12 i
【当堂检测】
C.12-12i
( C) D.12+12i
i2+i3+i4 -1-i+1 -i
解析
=
=
1-i
1-i 1-i
=1--ii1+1+ii=-i2+1=12-12i.
【当堂检测】
3.计算:(1)(1-i)(-12+ 23i)(1+i); (2)-1+2 23+3ii+(1-2i)2 006.
i4n + i4n1+ i4n2 + i4n3 =0,(n∈N*).
例4 设 1 3 i, 求证:
22
⑴ 1 2 0;
(2) 3 1.
证明:
(1) 2 ( 1
2
3 i)2 1
2
4
3 i 3 1 242
3.2《复数的四则运算》习题(最新整理)
3-2-1《数系的扩充与复数的引入》习题第1课时 复数加、减法与乘法的运算法则双基达标 限时15分钟1.若z 1=3-2i ,z 2=1+3i ,则z 1-2z 2=________.答案 1-8i2.(-6+4i )(-6-4i )=________.答案 523.如果复数(m 2+i )·(1+mi )是实数,则实数m =__________.解析 ∵(m 2+i )(1+mi )=(m 2-m )+(1+m 3)i ∈R∴1+m 3=0 ∴m =-1.答案 -14.已知复数z 1=1+2i ,z 2=m +(m -1)i ,若z 1·z 2的实部与虚部相等,则实数m =________.解析 z 1·z 2=(1+2i )[m +(m -1)i ]=m +(m -1)i +2mi -2(m -1)=(2-m )+(3m -1)i ,∵2-m =3m -1,∴m =.34答案 345.已知z 1=a +(a +1)i ,z 2=-3b +(b +2)i (a ,b ∈R ).若z 1-z 2=4,则a +b =_______3233___.解析 z 1-z 2=a +3b +(a -b -1)i =4,3233∴Error!∴a =2,b =1,∴a +b =3.答案 36.计算:(1)(-+i )-[(-)+(+i )]+(-i +);23323223(2)(1-2i )(2+i )(3-4i );解 (1)原式=(--++)+(---)i =-2i .232333222(2)原式=(2-2i 2-4i +i )(3-4i )=(4-3i )(3-4i )=12+12i 2-9i -16i =-25i .综合提高 限时30分钟7.复数(3i -1)i 的共轭复数是__________.解析 (3i -1)i =-3-i ,则共轭复数为-3+i .答案 -3+i8.设复数z =1+i ,则z 2-2z =________.2解析 z 2-2z =(z -1)2-1=(i )2-1=-3.2答案 -39.若x 是纯虚数,y 是实数,且2x -1+i =y -(3-y )i ,则x +y 等于__________.解析 由于x 是纯虚数,可设x =bi (b ∈R ,b ≠0),将其代入2x -1+i =y -(3-y )i 得-1+(2b+1)i =y -(3-y )i ,∴Error!解得Error!∴x +y =-1-i .52答案 -1-i 5210.已知复数z 满足+(1+2i )=10-3i ,则z =__________.z 解析 设z =a +bi ,(a ,b ∈R )则a -bi +1+2i =10-3i ,即Error!∴a =9,b =5. ∴z =9+5i .答案 9+5i11.已知z 1=(3x +y )+(y -4x )i ,z 2=(4y -2x )-(5x +3y )i (x ,y ∈R ).设z =z 1-z 2且=13+z 2i ,求z 1,z 2.解 z =z 1-z 2=(3x +y )+(y -4x )i -[(4y -2x )-(5x +3y )i ]=[(3x +y )-(4y -2x )]+[(y -4x )+(5x +3y )]i=(5x -3y )+(x +4y )i ,∴=(5x -3y )-(x +4y )i .z 又=13+2i ,z ∴Error!解得Error!∴z 1=(3×2-1)+(-1-4×2)i =5-9i ,z 2=[4×(-1)-2×2]-[5×2+3×(-1)]i =-8-7i .12.已知z =1+i ,=1-i ,求实数a ,b 的值.z 2+az +b z 2-z +1解 ∵z =1+i ,∴z 2=2i ,z 2-z +1=i ,z 2+az +b =(a +b )+(a +2)i ,∴z 2+az +b =(1-i )i =1+i ,∴(a +b )+(a +2)i =1+i ,∴Error!解得Error!13.(创新拓展)已知复数z=1+i,求实数a,b使az+2b=(a+2z)2.z解 ∵z=1+i,∴az+2b=(a+2b)+(a-2b)i,z(a+2z)2=(a+2)2-4+4(a+2)i=(a2+4a)+4(a+2)i.∵a,b都是实数,∴由az+2b=(a+2z)2,z得Error!两式相加,整理得a2+6a+8=0,解得a1=-2,a2=-4,对应得b1=-1,b2=2.∴所求实数为a=-2,b=-1或a=-4,b=2.。
高一数学(必修二)复数的四则运算练习题及答案
高一数学(必修二)复数的四则运算练习题及答案一、选择题1、若(1i)|1i |z +⋅=-,则z =( ) A.2222+ B.2222- C.2222-+ D.22i 22-- 2、若,则z =( )A. B.1i + C.D.i 3、若虚数..i,,z x y x y R =+∈,且1|1|2z -=,则y x 的取值范围为( ) A.33⎡⎢⎣⎦ B.330,3⎡⎫⎛⎤⎪ ⎢⎥⎪ ⎣⎭⎝⎦ C.[3,3]- D.[3,0)3]-⋃4、已知复数z 满足(1i)2z +=(i 是虚数单位),则||z =( )A.1 2 C.2 55、已知复数1i z =+,则1z=( ) A.11i 22- B.11i 22+ C.11i 22-- D.11i 22-+ 6、已知复数z 满足1i z =+:则i 3i z =+( ) A.12i 55-- B.12i 55-+ C.21i 55-+ D.21i 55+ 7、设复数z 满足()1i 2i z +=-,则z =( )A.1i +B.1i -+C.1i -D.1i --8、已知i 为虚数单位,若()1i ,1i a b a b =-∈+R ,则a b =( ) A.1 B.22 2 D.2 9、复数13i 3i +-的虚部是( ) A.2 B.-2 C.1D.-1()1i 1i z +=-1i -i -10、复数3i i z -=的实部为( ) A.-1 B.-3 C.1 D.3二、多项选择题11、下列命题中错误的是( )A.若复数1z 满足2110z +=,则1i z =B.若复数1z ,满足,则C.若复数,则z 为纯虚数的充要条件是D.若复数,则12z z =-12、若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A.||5z =B.复数z 的实部是2C.复数z 的虚部是1D.复数z 在复平面内对应的点位于第一象限三、填空题13、已知,22i z b =+,(,)a b ∈R 且1z 和2z 为共轭复数,则ab =_________.14、已知复数z 满足等式216i z z -=+,则z =___________.15、已知i 为虚数单位,复数2i z =-,则z z ⋅=____________.16、已知1z 、2z ∈C ,且12i z =+,234i z =-(其中i 为虚数单位),则12z z -=______.四、解答题17、计算下列各题.(1)(2+3 i)+(5i)--.2z 12z z =12z z =±i z a b =+0a =120z z +=13i z a =+(2) (12i)(12i)-++-.18、已知复数122i,z i z b a =-+=+.(1)若12z z =,求a 和b 的值;(2)2a =-,4b =,求12z z +.19、设复数23i12i z -=+.(1)求z 的共轭复数z ;(2)设a R ∈,i 1z a +=,求a 的值.参考答案1、答案:A解析:第一步:化简z|1i |2-=22(1i)22z -∴=== 第二步:根据共轭复数的概念求解2222z ∴=+ 2、答案:D解析:由(1i)1i z +=-,得,所以i z =,故选D. 3、答案:A解析:,即221(1)4x y -+=,就是以为圆心,以12为半径的圆, 设,即y kx =,直线y kx =与圆有公共点,, 解得333k . 4、答案:B解析:由(1i)2z +=,得(1i)(1i)2(1i)z +-=-,则()()22221i ,1i,112z z z =-=-=+-=故选:B.5、答案:A解析:1i z =+.()()111i 1i 11i 1i 1i 1i 222z --∴====-++-. 故选:A.6、答案:D解析:由题知1i z =+,所以1i z =-, 21i (1i)i 1i (1i)(1i)z --===-++-2221|1|(1)4z x y -=-+=(1,0)y k x =2121d k ∴=+所以i i i(12i)2i 21i 12i (12i)(12i)5553i z -+====+++-+, 故选:D.7、答案:B解析:因为()1i 2i z +=-, 所以2i 2i(1i)1i 1i (1i)(1i)z ---===--++-, 所以1i z =-+.故选:B.8、答案:B 解析:()()11i 1i 11i 1i 1i 1i 222--===-++-, 12a ∴=,12b =, 121222a b ⎛⎫∴== ⎪⎝⎭, 故选:B.9、答案:C解析:()()()()13i 3i 13i 10i i 3i 3i 3i 10+++===--+,虚部为1. 故选:C.10、答案:A解析:()i 3i 13i 1z -==---. 故选:A. 11、答案:ABC解析:当时满足2110z +=,A 错;当11i z =+,21i z =-时满足12z z =,但12z z ≠±,B 错;复数i z a b =+,当0a =且0b =时,复数z 为实数,不是纯虚数,C 错; 1i z =±令1i z a b =+,2i z c d =+,a ,b ,c ,d ∈R ,12()()i z z a c b d +=+++, 当120z z +=22()()0a c b d +++=,a c =-,c d =-,则12z z =-成立,D 正确. 故选:ABC.12、答案:ABD解析:(1i)3i z +=+,3i (3i)(1i)42i 2i 1i (1i)(1i)2z ++--∴====-++-,||5z ∴=A 正确;复数z 的实部是2,故选项B 正确;复数z 的虚部是-1,故选项C 错误;复数2i z =+在复平面内对应的点为(2,1),位于第一象限,故选项D 正确.故选ABD.13、答案:-6解析:123,2,(,)z a i z bi a b =+=+∈R 且1z 和2z 为共轭复数,23a b =⎧∴⎨=-⎩,6ab ∴=-. 故答案为:-6.14、答案:12i +解析:设i,,z a b a b =+∈R ,则23i 16i z z a b -=+=+,所以1,2a b ==,从而12i z =+.故答案为:12i +.15、答案:5解析:因为,所以2i z =+, 故()()22i 2i 4i 5z z ⋅=-+=-=.故答案为:5.16、答案:15i -+解析:122i 34i 15i z z -=+-+=-+.故答案为:15i -+.17、答案:(1).(2)0.解析:(1)原式(25)(31)i 32i =-++-=+.(2)原式.18、答案:(1)2a =-,1b = 2i z =-32i +(11)(22)i 0=-++-=(2)45i -+解析:(1)因为复数122i,z i z b a =-+=+, 故由12z z =可得2,1a b =-=;(2)由于2a =-,4b =,故1224i (2)i 45i z z +=-++-+=-+.19、答案:解:(1)因为()()()()2231223243647471212125555i i i i i i i z i i i i -----+--=====--++-; 所以4755z i =-+; (2)因为47475555z ai i ai a i ⎛⎫+=--+=-+- ⎪⎝⎭, 所以2247155z ai a ⎛⎫⎛⎫+=-+-= ⎪ ⎪⎝⎭⎝⎭,解得45a =或2a =.。
数学:《3.2复数的四则运算(1)》(选修2-2)
3.2复数的四则运算复习:我们引入这样一个数/ J把/叫做虚数单位"并且规定:*=-1;形如尹bid, bWR)的数叫做复数.全体复数所形成的集合叫做复数集,一般用字母C表示•复数的代数形式^通常用字母运表示,即i (a w R.b e R)。
复数集C 和实数集R 之间有什么关系?「实数b = o纯虚数o = 0, b 工0 非纯虚数QH O, b^O实部 虚部 其中「称为虚数单位。
复数a+bi< 虚数b 工0 Z = Q 讨如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.若a,b,c,d e R,a+bi = c + di 特别地,a=b=Oa+b i二Do问题:a=0是z二a+b i (a、bwR)为纯虚数白勺必要不充分条件注意:一般地,两个复数只能说相等或不相等,而不能比较大小.思考:对于任意的两个复数到底能否比较大小?答案:当且仅当两个复数都是实数时,才能比较大小.1 •复数加减法的运算法则:(1)运算法则:设复数G二a+b i, z2=c+d i,那么:z1+z2=(a+c) + (b+d) i ;z〔-Z2二(a-c) + (b-d) i. 即:两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减)•⑵复数的加法满足交换律、结合律,即对任何Z” Z2, Z3ec,有z1+z2=z2+z1,(z1+z2) +Z3二Z[+(Z2+Z3)-二二寸 — I —— 9—) + (T Z —「)H(Z寸+E)— — +—2 •复数的乘法(1)复数乘法的法则复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把i 2换成T, 并且把实部合并•即:(a+b i) (c+d i)二ac+bc i +ad i +bd i2=(ac-bd)+(bc+ad)i.(2)复数乘法的运算定理复数的乘法满足交换律、结合律以及乘法对加法的分配律.即对田可Z2, Z3有Z1Z2=Z2Z1:Z1Z2)Z3=Z1 Z2Z3)Zl(z2+z3)=z1z2+z1z3-例2:计算(1)(。
复数代数形式的四则运算测试题附答案
复数代数形式的四则运算测试题(附答案)3.2复数代数形式的四则运算(人教实验A版选修2-2)建议用时实际用时满分实际得分45分钟100分一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若C,是()A.纯虚数B.实数C.虚数D.不能确定2.为正实数,i为虚数单位,,则=()A.2B.C.D.13.的值是()A.B.C.D4若复数满足,则的值等于()ABCD5已知,那么复数在复平面内对应的点位于()A第一象限B第二象限C第三象限D第四象限6.已知复数z=1+i,z-为z的共轭复数,则zz--z -1=()A.-2iB.-iC.iD.2i7.设则的关系是()ABCD无法确定8.已知N),集合的元素个数是()ABCD无数个二、填空题(本大题共2小题,每小题5分,共10分)9.R)定义运算“⊙”为⊙=,设非零复数在复平面内对应的点分别为,点O为坐标原点,若⊙=0,则在中,的大小为__________.10.若且为纯虚数,则实数的值为___________.三、解答题(本大题共5小题,共50分)11(10分)已知复数满足:求的值12.(10分)四边形是复平面内的平行四边形,三点对应的复数分别为求点对应的复数.13.(10分)已知复数z满足|z|=5,且(3+4i)z是纯虚数,求z.14.(10分)设是纯虚数,求复数z对应的点的轨迹方程.15.(10分)已知复数,满足,,证明:.3.2复数代数形式的四则运算3.2复数代数形式的四则运算答案一、选择题1.B解析:.2.B解析:a0,故=3.D解析:.4.C解析:.5.A6.B解析:依题意得zz--z-1=(1+i)(1-i)-(1+i)-1=-i.7.A解析:8.C解析:二、填空题9.解析一:(解析法)设,故得点,,且=0,即.从而有=.故,也即.解析二:(用复数的模)同解析一的假设,知,,=+-2()=+-2×0=+=+.由勾股定理的逆定理知.解析三:(用向量的数量积)同解析一的假设,知,则有故.10.解析:,又为纯虚数,3a-8=0,且6+4a0,.三、解答题11.解:设,而即,则.12.解:由已知并应用中点公式可得AC的中点对应的复数为,所以点对应的复数为13.解:设z=x+yi(x,y∈R),∵|z|=5,∴x2+y2=25.又(3+4i)z=(3+4i)(x+yi)=(3x-4y)+(4x+3y)i是纯虚数,∴联立三个关系式解得或∴z=4+3i或z=-4-3i.14.解:∵是纯虚数,∴+=0,即+=,∴=0,∴).设i(,∈R),2(2+2)+2=0(≠0),∴(x+)2+y2=(y≠0).它为复数z对应点的轨迹方程.15.证明:设复数,在复平面上对应的点为,,由知,以,为邻边的平行四边形为矩形,,故可设,所以.。
高二数学3.2复数代数形式的四则运算练习新人教A版选修1-2
22
3. 共轭复数.
当两个复数的 实部相等 ,虚部互为相反数 时,称这两个复数是互为共轭复数.设复数
z
=a+ bi( a, b∈ R) ,则它的共轭复数记为 -z = a- bi ( a, b∈R) .
基础自测
1
1.已知复数 z1= a+ bi , z2= c+ di( a, b, c,d∈ R) ,若 z1+ z2 是纯虚数,则 ( D)
i
即 3+z=- i ,
∴ z=- 3- i.
答案: - 3- i
(一)复数的加减法运算 (1) 复数代数形式的加减法运算满足交换律、 结合律. 复数的加、 减法法则是一种规定, 可以推广到多个复数的相加减. (2) 当 b= 0, d= 0 时,复数的加减法与实数的加减法法则一致. (3) 复数的加减法符合向量的加减法法则. (二)复数加减法的几何意义
复平面内两点 Z1、 Z2 所对应的复数, d 表示 Z1 和 Z2 之间的距离.
3.三个或三个以上的复数相乘可按从左到右的顺序运算或利用结合律运算;混合运算
与实数的运算一样; 对于能够使用乘法公式计算的两个复数的乘法,
用乘法公式更简捷, 如
平方差公式、完全平方公式等.
4.在做除法运算时,要牢记分母实数化,乘法与除法的运算结果都得写成实部与虚部
高中数学 3.2 复数代数形式的四则运算练习 新人教 A 版选修 1-2
基础梳理
1.复数的加法与减法. (1) 复数的加法与减法法则.
① ( a+bi) + ( c+ di) = ( a+ c) + ( b+d)i ;
② ( a+bi) - ( c+ di) = ( a- c) + ( b-d)i .
A. a-c= 0 且 b- d≠ 0
复数的四则运算练习题(文理通用)
1.已知复数z 满足z +i -3=3-i ,则z 等于( ).A .0B .2iC .6D .6-2i解析 z =3-i -(i -3)=6-2i. 答案 D2.A ,B 分别是复数z 1,z 2在复平面内对应的点,O 是原点,若|z 1+z 2|=|z 1-z 2|,则三角形AOB 一定是( ).A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 ¥解析 根据复数加(减)法的几何意义,知以OA →,OB →为邻边所作的平行四边形的对角线相等,则此平行四边形为矩形,故三角形OAB 为直角三角形. 答案 B3.已知z 1=2+i ,z 2=1+2i ,则复数z =z 2-z 1对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限解析 z =z 2-z 1=(1+2i)-(2+i)=-1+i ,实部小于零,虚部大于零,故位于第二象限. 答案 B4.若z 1=2-i ,z 2=-12+2i ,则z 1,z 2在复平面上所对应的点为Z 1、Z 2,这两点之间的距离为________.解析 |Z 1Z 2→|=⎝⎛⎭⎫2+122+-1-22=612.{答案6125.已知z 1=32a +(a +1)i ,z 2=-33b +(b +2)i(a ,b ∈R ),若z 1-z 2=43,则a +b =________.解析 ∵z 1-z 2=32a +(a +1)i -[-33b +(b +2)i]=⎝ ⎛⎭⎪⎫32a +33b +(a -b -1)i =43,由复数相等的条件知⎩⎪⎨⎪⎧32a +33b =43,a -b -1=0,解得⎩⎪⎨⎪⎧a =2,b =1.∴a +b =3. 答案 36.已知z ,ω为复数,(1+3i)z 为纯虚数,ω=z2+i,且|ω|=52,求ω.解 设z =a +b i(a ,b ∈R ),则(1+3i)z =a -3b +(3a +b )i ,由题意得a =3b ≠0.∵|ω|=⎪⎪⎪⎪z 2+i =52, ∴|z |=a 2+b 2=510,:将a =3b 代入上式,得⎩⎪⎨⎪⎧ a =15,b =5,或⎩⎪⎨⎪⎧a =-15,b =-5.故ω=±15+5i2+i=±(7-i).综合提高限时25分钟7.设z ∈C ,且|z +1|-|z -i|=0,则|z +i|的最小值为( ).A .0B .1解析 由|z +1|=|z -i|知,在复平面内,复数z 对应的点的轨迹是以(-1,0)和(0,1)为端点的线段的垂直平分线,即直线y =-x ,而|z +i|表示直线y =-x 上的点到点(0,-1)的距离,其最小值等于点(0,-1)到直线y =-x 的距离. 答案 C8.复数z 1、z 2分别对应复平面内的点M 1、M 2,且|z 1+z 2|=|z 1-z 2|,线段M 1M 2的中点M 对应的复数为4+3i ,则|z 1|2+|z 2|2等于(( ).A .10B .25C .100D .200解析 根据复数加减法的几何意义,由|z 1+z 2|=|z 1-z 2|知,以OM 1→、OM 2→为邻边的平行四边形是矩形(对角线相等),即∠M 1OM 2为直角,M 是斜边M 1M 2的中点,∵|OM →|=42+32=5, ∴|M 1M 2|=10.∴|z 1|2+|z 2|2=|OM 1→|2+|OM 2→|2=|M 1M 2→|2=100.答案 C9.在平行四边形OABC 中,各顶点对应的复数分别为z O =0,z A =2+a2i ,z B =-2a +3i ,zC=-b +a i ,则实数a -b 为________.解析 因为OA →+OC →=OB →,所以2+a2i +(-b +a i)=-2a +3i ,所以⎩⎪⎨⎪⎧2-b =-2a ,a 2+a =3,得a-b =-4.)答案 -410.复数z =x +y i(x ,y ∈R )满足条件|z -4i|=|z +2|,则2x +4y 的最小值为________.解析 方程|z -4i|=|z +2|表示线段Z 1Z 2(Z 1(0,4)、Z 2(-2,0))的中垂线, 易求其方程为x +2y =3. ∴2x +4y =2x +22y ≥22x ·22y =22x +2y=223=4 2. 当且仅当2x =22y , 即x =2y 且x +2y =3,即x =32,y =34时取到最小值4 2. 答案 42^11.设m ∈R ,复数z 1=m 2+mm +2+(m -15)i ,z 2=-2+m (m -3)i ,若z 1+z 2是虚数,求m 的取值范围.解 因为z 1=m 2+mm +2+(m -15)i ,z 2=-2+m (m -3)i ,所以z 1+z 2=⎝ ⎛⎭⎪⎫m 2+m m +2-2+[(m -15)+m (m -3)]i=m 2-m -4m +2+(m 2-2m -15)i.因为z 1+z 2是虚数,所以m 2-2m -15≠0且m ≠-2, 所以m ≠5且m ≠-3且m ≠-2, 所以m 的取值范围是(-∞,-3)∪(-3,-2)∪(-2,5)∪(5,+∞).*12.设z 1、z 2∈C ,已知|z 1|=|z 2|=1,|z 1+z 2|=2,求|z 1-z 2|.解 法一 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),由题设知a 2+b 2=1,c 2+d 2=1,(a +c )2+(b +d )2=2,又由(a +c )2+(b +d )2=a 2+2ac +c 2+b 2+2bd +d 2,可得2ac +2bd =0. |z 1-z 2|2=(a -c )2+(b -d )2 =a 2+c 2+b 2+d 2-(2ac +2bd )=2, ∴|z 1-z 2|= 2.法二 ∵|z 1+z 2|2+|z 1-z 2|2=2(|z 1|2+|z 2|2), ∴将已知数值代入,可得|z 1-z 2|2=2, ∴|z 1-z 2|= 2.法三 作出z 1、z 2对应的向量OZ 1→、OZ 2→, ~ 使OZ 1→+OZ 2→=O Z →.∵|z 1|=|z 2|=1,又OZ 1→、OZ 2→不共线(若OZ 1→、OZ 2→共线,则|z 1+z 2|=2或0与题设矛盾), ∴平行四边形OZ 1ZZ 2为菱形. 又∵|z 1+z 2|=2, ∴∠Z 1OZ 2=90°,即四边形OZ 1ZZ 2为正方形,故|z 1-z 2|= 2.1.(1-2i)(3+4i)(-2+i)等于( ).A .20+15iB .20-15i )C .-20-15iD .-20+15i解析 (1-2i)(3+4i)(-2+i)=(3+4i -6i +8)(-2+i)=(11-2i)(-2+i)=-22+11i +4i +2=-20+15i. 答案 D2.(1+i)20-(1-i)20的值是( ).A .-1 024B .1 024C .0D .512解析 (1+i)20-(1-i)20=[(1+i)2]10-[(1-i)2]10= (2i)10-(-2i)10=(2i)10-(2i)10=0. 答案 C)+-2+i 1+2i的值是( ).A .0B .1C .iD .2i 解析 原式=-1+3i 3[1+i 2]3+-2+i i 1+2i i=⎝ ⎛⎭⎪⎫2×-1+3i 232i3+-2+i i -2+i=-1i +i =2i ,故选D. 答案 D4.设复数z =1+2i ,则z 2-2z =________.解析 ∵z =1+2i∴z 2-2z =z (z -2)=(1+2i)(1+2i -2) =(1+2i)(-1+2i)=-3. 答案 -3(5.若z 1=a +2i ,z 2=3-4i ,且z 1z 2为纯虚数,则实数a 的值为________.解析 z 1z 2=a +2i 3-4i =a +2i 3+4i 9+16=3a +4a i +6i -825 =3a -8+4a +6i 25,∴⎩⎪⎨⎪⎧3a -8=0,4a +6≠0,∴a =83.答案 83 6.计算(1)⎝⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i; (2)⎝ ⎛⎭⎪⎫12+32i 4. 解 (1)原式=i 6+2+3i i 3-2i i=i 2+2+3i i2+3i=-1+i.(2)法一 原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12+32i 22=⎝ ⎛⎭⎪⎫-12+32i 2=-12-32i. "法二 ∵⎝ ⎛⎭⎪⎫-12-32i 3=1,∴原式=⎝ ⎛⎭⎪⎫-12-32i 4=⎝ ⎛⎭⎪⎫-12-32i 3⎝ ⎛⎭⎪⎫-12-32i=-12-32i.综合提高限时25分钟7.复数z 满足(1+2i)z -=4+3i ,那么z =( ).A .2+iB .2-iC .1+2iD .1-2i解析 z -=4+3i1+2i =4+3i 1-2i 1+2i1-2i=15(10-5i)=2-i ,∴z =2+i. 【答案 A8.若x =1-3i 2,那么1x 2-x=( ).A .-2B .-1C .1+3iD .1解析 ∵x 2-x =x (x -1)=1-3i 2.⎝ ⎛⎭⎪⎫1-3i 2-1=1-3i 2·-1-3i 2=-14(1-3i)(1+3i)=-1,所以1x 2-x =-1,故选B.答案 B9.对任意复数z =x +y i(x ,y ∈R ),i 为虚数单位,则下列结论正确的是________.①|z -z |=2y ;②z 2=x 2+y 2; ③|z -z |≥2x ;④|z |≤|x |+|y |.:解析 ∵z =x -y i(x ,y ∈R ),|z -z |=|x +y i -x +y i|=|2y i|=|2y |,∴①不正确;对于②,z 2=x 2-y 2+2xy i ,故不正确;∵|z -z |=|2y |≥2x 不一定成立,∴③不正确;对于④,|z |=x 2+y 2≤|x |+|y |,故④正确. 答案 ④10.设f (z +i)=1-z -,z 1=1+i ,z 2=1-i ,则f ⎝⎛⎭⎫1z 1+1z 2=________. 解析 令z +i =t ,得z =t -i ,f (t )=1-(t -i )=1-i -t -,1z 1+1z 2=11+i +11-i =1-i +1+i 1+i 1-i=22=1. ∴f ⎝⎛⎭⎫1z 1+1z 2=f (1)=1-i -1=-i. 答案 -i 11.复数z =1+i2+31-i2+i,若z 2+az <0,求纯虚数a .…解 由z 2+a z <0可知z 2+az 是实数且为负数. z =1+i2+31-i2+i=2i +3-3i 2+i =3-i2+i=1-i. ∵a 为纯虚数,∴设a =m i(m ≠0),则 z 2+a z =(1-i)2+m i1-i =-2i +m i -m 2=-m 2+⎝⎛⎭⎫m 2-2i<0,∴⎩⎨⎧-m2<0,m2-2=0,∴m =4,∴a =4i.12.复数z =1+i3a +b i1-i且|z |=4,z 对应的点在第一象限,若复数0,z ,z -对应的点是正三角形的三个顶点,求实数a 、b 的值. 解 z =1+i2·1+i1-i(a +b i)=2i·i(a +b i)=-2a -2b i. 由|z |=4,得a 2+b 2=4,①∵复数0,z ,z -对应的点构成正三角形,∴|z -z -|=|z |.把z =-2a -2b i 代入化简得|b |=1.②又∵z 对应的点在第一象限, ∴a <0,b <0.由①②得⎩⎨⎧a =-3,b =-1.故所求值为a =-3,b =-1!。
数学:《3.2复数的四则运算(2) 》(选修2-2)
【探究】 怎样判断一个复数是实数? ① z的虚部为0 ② z = z
【例1】已知复数 z=1+i 使 ,求实数a,b
2
a z 2b z (a 2 z)
a=-2,b=-1; a=-4,b=2;
2. 复数 z 满足 (1 2i ) z 4 3i 求z
3.2 复数的四则运算
复习: z1 a bi , z2 c di
z1 z2 (a c) (b d )i
z1 z2 ac adi bci bdi
2
(ac bd) (ad bc)i
运算满足交换律、结合律、分配律
a bi (a bi ) (c di ) c di (a bi)(c di) (c di)(c di)
拓
设关于 x 的方程
2
展
x (tan i ) x (2 i ) 0 ( R) 若方程有实数根,求锐角 的值, 并求出方程的所有根。
解: 2 x tan 2) ( x 1)i 0 (x x x tan 2 0, x 1 0 x 1, tan 1
2
45
o
i __ , i __ , i __ , i __
5 6 7 8
你能发现规律吗?有怎样的规律?
i
4n
1 ,
i
4n 1
i ,
i
4n 2
1
, i
4n 3
i
【例2】求值: i i
2
i i
3
2 3 4
2006
复数的四则运算同步练习题文科附答案精修订
复数的四则运算同步练习题文科附答案标准化管理部编码-[99968T-6889628-J68568-1689N]复数的四则运算同步练习题一、选择题1. 若复数z 满足z +i -3=3-i ,则z 等于 ( D ) A .0 B .2i C .6 D .6-2i2. 复数i +i 2在复平面内表示的点在( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3. 复数z 1=3+i ,z 2=-1-i ,则z 1-z 2等于( C ) A .2 B .2+2i C .4+2i D .4-2i4. 设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为( D ) A .1+i B .2+I C .3 D .-2-i 5. 已知|z |=3,且z +3i 是纯虚数,则z 等于( B ) A .-3i B .3i C .±3i D .4i6. 复数-i +1i等于( A ) A .-2i i C .0 D .2i7. i 为虚数单位,1i +1i 3+1i 5+1i7等于( A ) A .0 B .2i C .-2i D .4i8. 若a ,b ∈R ,i 为虚数单位,且(a +i)i =b +i ,则( D ) A .a =1,b =1 B .a =-1,b =1 C .a =-1,b =-1 D .a =1,b =-19. 在复平面内,复数i 1+i+(1+3i)2对应的点位于( B )A .第一象限B .第二象限C .第三象限D .第四象限 10. 设复数z 的共轭复数是z ,若复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于( A )C .-43D .-3411. 若z =1+2ii,则复数z 等于( D ) A .-2-i B .-2+I C .2-i D .2+i12.复数11z i =-的共轭复数是( B ) A .i 2121+ B .i 2121- C .i -1D .i +113.=++-ii i 1)21)(1(( C ) A .i --2B .i +-2C .i -2D .i +214. 若复数z 1=1+i ,z 2=3-i ,则z 1·z 2等于( A )A .4+2iB .2+iC .2+2iD .3+i15. 已知a +2ii=b +i(a ,b ∈R ),其中i 为虚数单位,则a +b 等于( B )A .-1B .1C .2D .316.若x -2+y i 和3x -i 互为共轭复数,则实数x 与y 的值是( D ) A .x =3,y =3 B .x =5,y =1 C .x =-1,y =-1 D .x =-1,y =117.在复平面内,复数i 1+i+(1+3i)2对应的点位于( B )A. 第一象限B. 第二象限C. 第三象限D. 第四象限18.设i 是虚数单位,_z 是复数z 的共轭复数,若,z ?z ̅̅̅z +2=2z ,则z =( A ) (A )1+i (B )1i - (C )1+i - (D )1-i - 19.若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为( D ) (A)-4(B )-45(C )4(D )4520.设复数z 满足,2)1(i z i =-则z =( A )(A )i +-1 (B )i --1 (C )i +1 (D )i -121.复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为( D ) (A) 2+i (B) 2-i (C) 5+i (D) 5-i 22.在复平面内,复数(2-i)2对应的点位于( D )A.第一象限B. 第二象限C.第三象限D. 第四象限23.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( C ) A.(2,4) B.(2,-4) C.(4,-2) D.(4,2)24.复数的11Z i =-模为( B ) (A )12(B )2 (C (D )225.()3=( A ) (A )8- (B )8 (C )8i - (D )8i26. i 是虚数单位,3(1)(2)i i i -++等于 ( D )A .1+iB .-1-iC .1+3iD .-1-3i27.设复数z=1,则z 2-2z 等于 ( A ) A .-3B .3C .-3iD .3i28.已知i 是虚数单位,则31ii+-=( D )A .1-2i +i D .1+2i29.下面是关于复数21z i=-+的四个命题:其中的真命题为( C )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24()D ,p p 3430.复数2(1)2i i-=( B ) A 、1 B 、1- C 、i D 、i - 31.若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为( A )(A )35i + (B )35i - (C )35i -+ (D )35i --32.设i 为虚数单位,则复数56ii-=( D ) A .6+5i B .6-5i C .-6+5iD .-6-5i33.复数z 满足:()(2)5z i i --=;则z =( D )()A 22i -- ()B 22i -+()C i 2-2 ()D i 2+234.若(2)a i i b i -=-,其中a 、b R ∈,i 使虚数单位,则22a b +=( D )A .0B .2C . 52D .535.复数z =i +i 2+i 3+i 4的值是( B ) A .-1 B .0 C .1D .i36.()()221111iii i -++=+-( D ) A .i B .i - C .1 D .1-37.复数(1+1i)4的值是 ( D ) A .4iB .-4iC .4D .-4二、填空题38. 若复数z 1=-1,z 2=2+i 分别对应复平面上的点P 、Q ,则向量PQ →对应的复数是_ _3+i __. 39.设复数i 满足i(z +1)=-3+2i(i 为虚数单位),则z 的实部是____1____.40.复数2i -1+3i的虚部是___-12____.41.已知z 是纯虚数,z +21-i是实数,那么z =___-2i____.42.已知,43,2121i z i z +=-=则=⋅21z z ___11-2i _____. 43.已知复数512iz i=+(i是虚数单位),则_________z =44.若bi a i i +=++)2)(1(,其中,,a b R i ∈为虚数单位,则a b += 4 45.设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 8 . 46.若 12z a i =+, 234z i =-,且12z z 为纯虚数,则实数a 的值为 38. 47.已知312ia i--=+(i 是虚数单位),那么a 4= -4 . 48.已知复数z 与(z +2)2-8i 均是纯虚数,则z= -2i .三、解答题49.复平面内有A ,B ,C 三点,点A 对应的复数是2+i ,向量BA →对应的复数是1+2i ,向量BC →对应的复数是3-i ,求C 点在复平面内的坐标. 解 ∵AC →=BC →-BA →,∴AC →对应的复数为(3-i)-(1+2i)=2-3i ,设C (x ,y ),则(x +y i)-(2+i)=2-3i ,∴x +y i =(2+i)+(2-3i)=4-2i ,故x =4,y =-2.∴C 点在复平面内的坐标为(4,-2). 50.在复平面内A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i.(1)求AB →,BC →,AC →对应的复数;(2)判断△ABC 的形状;(3)求△ABC 的面积.解析: (1)AB →对应的复数为2+i -1=1+i ,BC →对应的复数为-1+2i -(2+i)=-3+i , AC →对应的复数为-1+2i -1=-2+2i.(2)∵|AB →|=2,|BC →|=10,|AC →|=8=22,∴|AB →|2+|AC →|2=|BC →|2,∴△ABC 为直角三角形.(3)S △ABC =12×2×22=2.51.已知复数z=1+i,求实数a,b 使得az +2b z =(a +2z)2.52.已知复数z=1+i ,如果221z az bz z ++-+=1-i,求实数a,b 的值.解析:由z=1+i 得221z az b z z ++-+=()(2)a b a ii +++=(a +2)-(a +b)i 从而21()1a a b +=⎧⎨-+=-⎩,解得12a b =-⎧⎨=⎩.。
高中数学第三章3.2复数的四则运算(第一课时)复数的加减与乘法运算讲义(含解析)苏教版选修2_2
3.2复数的四则运算第一课时复数的加减与乘法运算复数的加减法已知复数z1=a+b i,z2=c+d i(a,b,c,d∈R).问题1:多项式的加减实质是合并同类项,类比想一想复数如何加减?提示:两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减).问题2:复数的加法满足交换律和结合律吗?提示:满足.1.复数的加法、减法法则设z1=a+b i,z2=c+d i(a,b,c,d∈R),则z1+z2=(a+b i)+(c+d i)=(a+c)+(b+d)i,z1-z2=(a+b i)-(c+d i)=(a-c)+(b-d)i.即两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减).2.复数加法的运算律(1)交换律:z1+z2=z2+z1;(2)结合律:(z1+z2)+z3=z1+(z2+z3).复数的乘法设z1=a+b i,z2=c+d i,(a,b,c,d∈R)问题1:如何规定两复数相乘?提示:两个复数相乘,类似于两个多项式相乘,只要在所得的结果中把i2换成-1,并且把实部与虚部分别合并即可.即z1z2=(a+b i)(c+d i)=ac+bc i+ad i+bd i2=(ac-bd)+(bc+ad)i.问题2:试验复数乘法的交换律.提示:z1z2=(a+b i)(c+d i)=(ac-bd)+(bc+ad)i,z2z1=(c+d i)(a+b i)=(ac-bd)+(bc+ad)i.故z1z2=z2z1.1.复数的乘法设z 1=a +b i ,z 2=c +d i 是任意两个复数,那么它们的积(a +b i)(c +d i)=ac +bc i +ad i +bd i 2=(ac -bd )+(ad +bc )i(a ,b ,c ,d ∈R ).2.复数乘法的运算律 对于任意z 1、z 2、z 3∈C ,有交换律 z 1·z 2=z 2·z 1结合律 (z 1·z 2)·z 3=z 1·(z 2·z 3)乘法对加法的分配律z 1(z 2+z 3)=z 1z 2+z 1z 3共轭复数问题:复数3+4i 与3-4i ,a +b i 与a -b i(a ,b ∈R )有什么特点? 提示:两复数的实部相等,虚部互为相反数.1.把实部相等,虚部互为相反数的两个复数叫做互为共轭复数. 2.复数z =a +b i 的共轭复数记作z -,即z -=a -b i.3.当复数z =a +b i 的虚部b =0时,z =z -,也就是说,实数的共轭复数仍是它本身.1.复数加、减法的规定:实部与实部相加(减)、虚部与虚部相加(减).两个复数的和或差仍是一个复数.2.复数的乘法与多项式的乘法是类似的,有一点不同即必须在所得结果中把i 2换成-1,再把实部,虚部分别合并、两个复数的积仍是一个复数,可推广到任意多个复数,任意多个复数的积仍然是一个复数.[对应学生用书P38]复数的加减运算[例1] 计算: (1)(3+5i)+(3-4i); (2)(-3+2i)-(4-5i);(3)(5-5i)+(-2-2i)-(3+3i).[思路点拨] 解答本题可根据复数加减运算的法则进行.[精解详析] (1)(3+5i)+(3-4i)=(3+3)+(5-4)i=6+i.(2)(-3+2i)-(4-5i)=(-3-4)+[2-(-5)]i=-7+7i.(3)(5-5i)+(-2-2i)-(3+3i)=(5-2-3)+[-5+(-2)-3]i=-10i.[一点通] 复数加减运算法则的记忆方法:(1)复数的实部与实部相加减,虚部与虚部相加减.(2)把i看作一个字母,类比多项式加减中的合并同类项.1.(3-5i)+(-4-i)-(3+4i)=________.解析:(3-5i)+(-4-i)-(3+4i)=(3-4-3)+(-5-1-4)i=-4-10i.答案:-4-10i2.若(-7i+5)-(9-8i)+(x+y i)=2,则x+y=________. 解析:(-7i+5)-(9-8i)+(x+y i)=(5-9+x)+(-7+8+y)i=(x-4)+(y+1)i.∴(x-4)+(y+1)i=2,即x-4=2,y+1=0.∴x=6,y=-1.∴x+y=5.答案:53.计算:(1)(1+2i)+(3-4i)-(5+6i);(2)5i-[(3+4i)-(-1+3i)].解:(1)原式=(4-2i)-(5+6i)=-1-8i;(2)原式=5i-(4+i)=-4+4i.复数的乘法[例2] 计算:(1)(1-i)(1+i)+(-1+i);(2)(2-i)(-1+5i)(3-4i)+2i.[思路点拨] 应用复数的乘法法则及乘法运算律来解.[精解详析] (1)(1-i)(1+i)+(-1+i)=1-i 2-1+i =1+i. (2)(2-i)(-1+5i)(3-4i)+2i =(-2+10i +i -5i 2)(3-4i)+2i =(-2+11i +5)(3-4i)+2i =(3+11i)(3-4i)+2i =(9-12i +33i -44i 2)+2i =53+21i +2i =53+23i.[一点通] (1)三个或三个以上的复数相乘,可按从左向右的顺序运算,或利用结合律运算.混合运算的顺序与实数的运算顺序一样.(2)平方差公式,完全平方公式等在复数范围内仍然成立.一些常见的结论要熟悉:i 2=-1,(1±i)2=±2i.4.(浙江高考改编)已知i 是虚数单位,则(-1+i)(2-i)=________. 解析:(-1+i)(2-i)=-2+i +2i -i 2=-1+3i. 答案:-1+3i5.若(1+i)(2+i)=a +b i ,其中a ,b ∈R ,i 为虚数单位,则a +b =________. 解析:∵(1+i)(2+i)=1+3i =a +b i ,∴a =1,b =3, 故a +b =4. 答案:46.计算下列各题. (1)(1+i)2;(2)(-1+3i)(3-4i); (3)(1-i)⎝ ⎛⎭⎪⎫-12+32i (1+i).解:(1)(1+i)2=1+2i +i 2=2i.(2)(-1+3i)(3-4i)=-3+4i +9i -12i 2=9+13i. (3)法一:(1-i)⎝ ⎛⎭⎪⎫-12+32i (1+i)=⎝ ⎛⎭⎪⎫-12+32i +12i -32i 2(1+i)=⎝ ⎛⎭⎪⎫3-12+3+12i (1+i)=3-12+3+12i +3-12i +3+12i 2=-1+3i.法二:原式=(1-i)(1+i)⎝ ⎛⎭⎪⎫-12+32i=(1-i 2)⎝ ⎛⎭⎪⎫-12+32i =2⎝ ⎛⎭⎪⎫-12+32i =-1+3i.共轭复数的概念[例3] 已知z ∈C ,z 为z 的共轭复数,若z ·z -3i z =1+3i ,求z . [思路点拨]设z =a +b i (a ,b ∈R )―→z =a -b i(a ,b ∈R )―→代入等式利用复数相等的条件求解.[精解详析] 设z =a +b i(a ,b ∈R ), 则z =a -b i(a ,b ∈R ),由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i , 即a 2+b 2-3b -3a i =1+3i ,则有⎩⎪⎨⎪⎧a 2+b 2-3b =1,-3a =3,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =-1,b =3,所以z =-1或z =-1+3i. [一点通](1)实数的共轭复数是它本身,即z ∈R ⇔z =z ,利用此性质可以证明一个复数是实数. (2)若z ≠0且z +z =0,则z 为纯虚数,利用此性质可证明一个复数是纯虚数.7.已知复数z =1+i ,z 为z 的共轭复数,则z ·z -z -1=________. 解析:∵z =1+i ,∴z =1-i , ∴z ·z =(1+i)(1-i)=2,∴z ·z -z -1=2-(1+i)-1=2-1-i -1=-i. 答案:-i8.复数z 满足(1+2i)z =4+3i ,则z =________. 解析:设z =a +b i ,则z =a -b i. ∴(1+2i)(a -b i)=4+3i ,∴a -b i +2a i +2b =4+3i , 即(a +2b )+(2a -b )i =4+3i ,∴⎩⎪⎨⎪⎧a +2b =4,2a -b =3,解之得a =2,b =1.∴z =2+i. 答案:2+i9.已知复数 z =1+i ,求实数 a ,b 使 az +2b z =(a +2z )2成立. 解:∵z =1+i ,∴az +2b z =(a +2b )+(a -2b )i , (a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i. ∵a ,b 都是实数, ∴由 az +2b z=(a +2z )2,得⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =4(a +2).两式相加,整理得 a 2+6a +8=0.解得 a 1=-2,a 2=-4,对应得 b 1=-1,b 2=2. ∴所求实数为 a =-2,b =-1 或 a =-4,b =2.1.复数的加减运算把复数的代数形式z =a +b i 看作关于“i”的多项式,则复数的加法、减法运算,类似于多项式的加法、减法,只需要“合并同类项”就行,不需要记加、减法法则.2.复数的乘法运算复数的乘法可以把虚数单位i 看作字母,按多项式乘法的法则进行,注意要把i 2化为-1,进行最后结果的化简.[对应学生用书P40]一、 填空题1.计算(-i +3)-(-2+5i)的结果为________. 解析:(-i +3)-(-2+5i) =-i +3+2-5i =-6i +5.答案:5-6i2.若复数z =1-2i ,(i 为虚数单位)则z ·z +z 的实部是________. 解析:∵z =1-2i , ∴z =1+2i ,∴z ·z =(1-2i)(1+2i)=5, ∴z ·z +z =5+1-2i =6-2i. 答案:63.已知3+i -(4+3i)=z -(6+7i),则z =________. 解析:∵3+i -(4+3i)=z -(6+7i) ∴z =3+i -(4+3i)+(6+7i) =(3-4+6)+(1-3+7)i =5+5i. 答案:5+5i4.(北京高考)若(x +i)i =-1+2i(x ∈R ),则x =________. 解析:(x +i)i =-1+x i =-1+2i ,由复数相等的定义知x =2. 答案:25.已知z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t =________. 解析:∵z 2=t +i , ∴z 2=t -i ,∴z 1·z 2=(3+4i)(t -i) =3t -3i +4t i -4i 2=(3t +4)+(4t -3)i , 又∵z 1·z 2是实数, ∴4t -3=0,即t =34.答案:34二、解答题6.计算:(1)⎝ ⎛⎭⎪⎫2-12i +⎝ ⎛⎭⎪⎫12-2i ; (2)(3+2i)+(3-2)i ;(3)(6-3i)+(3+2i)-(3-4i)-(-2+i).解:(1)原式=⎝ ⎛⎭⎪⎫2+12-⎝ ⎛⎭⎪⎫12+2i =52-52i ;(3)(3+2i)+(3-2)i =3+(2+3-2)i =3+3i ;(3)(6-3i)+(3+2i)-(3-4i)-(-2+i) =[6+3-3-(-2)]+[-3+2-(-4)-1]i =8+2i. 7.计算:(1)⎝ ⎛⎭⎪⎫12+32i (4i -6)+2+i ; (2)⎝ ⎛⎭⎪⎫-12+32i ⎝ ⎛⎭⎪⎫32+12i (1+i). 解:⎝ ⎛⎭⎪⎫12+32i (4i -6)+2+i =2i +6i 2-3-9i +2+i =-7-6i.(2)⎝ ⎛⎭⎪⎫-12+32i ⎝ ⎛⎭⎪⎫32+12i (1+i) =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-34-34+⎝⎛⎭⎪⎫34-14i (1+i)=⎝ ⎛⎭⎪⎫-32+12i (1+i) =⎝⎛⎭⎪⎫-32-12+⎝ ⎛⎭⎪⎫12-32i =-1+32+1-32i.8.(江西高考改编)z 是z 的共轭复数.若z +z =2,(z -z )i =2(i 为虚数单位),求z .解:法一:设z =a +b i(a ,b ∈R ),则z =a -b i , ∵z +z =2a =2,∴a =1. 又(z -z )i =2b i 2=-2b =2. ∴b =-1. 故z =1-i.法二:∵(z -z )i =2,∴z -z =2i=-2i又z+z=2.∴z-z+(z+z)=-2i+2,∴2z=-2i+2,∴z=1-i.。
数学人教A版选修2-2预习导航:3.2 复数代数形式的四则运算(第2课时) Word版含解析
预习导航
1.复数代数形式的乘法及其运算律
(1)复数代数形式的乘法运算法则.
设z 1=a +b i ,z 2=c +d i 是任意两个复数,那么它们的积(a +b i)(c +d i)=ac +bc i +ad i +bd i 2=(ac -bd )+(ad +bc )i(a ,b ,c ,d ∈R ).
(2)复数乘法的运算律.
对于任意z 1,z 2,z 3∈C ,有
思考1121+z 2)2=z 21+2z 1z 2+z 22?
提示:成立.复数的乘法(乘方)类似于实数范围内的多项式的乘法(乘方),只不过是在运算中遇到i 2时就将其换为-1,因此在复数范围内,完全平方公式、平方差公式等仍然成
立,即若z 1,z 2∈C ,则有(z 1+z 2)2=z 21+2z 1z 2+z 22,z 21-z 22=(z 1+z 2)(z 1-z 2)等.
2.共轭复数的概念
一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.通常记复数z 的共轭复数为z ,虚部不等于0的两个共轭复数也叫做共轭虚数.
思考 2z ·z 与|z |2和|z |2有什么关系?
提示:z ·z =|z |2=|z |2.
3.复数代数形式的除法运算法则
复数的除法法则是:
(a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -ad c 2+d
2i(c +d i ≠0).
思考3复数除法的实质是怎样的?
提示:复数除法的实质是分母实数化的过程,两个复数相除,就是先把它们的商写成分数的形式,然后把分子与分母都乘以分母的共轭复数,再把结果化简即可.。
(完整版)复数的四则运算同步练习题(文科)(附答案)
复数的四则运算同步练习题一、选择题1. 若复数z 满足z +i -3=3-i ,则z 等于 ( D )A .0B .2iC .6D .6-2i2. 复数i +i 2在复平面内表示的点在( B )A .第一象限B .第二象限C .第三象限D .第四象限3. 复数z 1=3+i ,z 2=-1-i ,则z 1-z 2等于( C )A .2B .2+2iC .4+2iD .4-2i4. 设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为( D )A .1+iB .2+IC .3D .-2-i5. 已知|z |=3,且z +3i 是纯虚数,则z 等于( B )A .-3iB .3iC .±3iD .4i6. 复数-i +1i 等于( A ) A .-2i B.12i C .0 D .2i 7. i 为虚数单位,1i +1i 3+1i 5+1i 7等于( A ) A .0 B .2i C .-2i D .4i8. 若a ,b ∈R ,i 为虚数单位,且(a +i)i =b +i ,则( D )A .a =1,b =1B .a =-1,b =1C .a =-1,b =-1D .a =1,b =-19. 在复平面内,复数i1+i +(1+3i)2对应的点位于( B )A .第一象限B .第二象限C .第三象限D .第四象限10. 设复数z 的共轭复数是z ,若复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于( A)A.34B.43 C .-43 D .-3411. 若z =1+2ii ,则复数z 等于( D ) A .-2-i B .-2+I C .2-i D .2+i12.复数11z i =-的共轭复数是( B ) A .i 2121+ B .i 2121- C .i -1 D .i +113.=++-i i i 1)21)(1(( C ) A .i --2 B .i +-2 C .i -2 D .i +214. 若复数z 1=1+i ,z 2=3-i ,则z 1·z 2等于( A )A .4+2iB .2+iC .2+2iD .3+i15. 已知a +2ii =b +i(a ,b ∈R ),其中i 为虚数单位,则a +b 等于( B )A .-1B .1C .2D .316.若x -2+y i 和3x -i 互为共轭复数,则实数x 与y 的值是( D )A .x =3,y =3B .x =5,y =1C .x =-1,y =-1D .x =-1,y =117.在复平面内,复数i1+i +(1+3i)2对应的点位于( B )A. 第一象限B. 第二象限C. 第三象限D. 第四象限18.设i 是虚数单位,_z 是复数z 的共轭复数,若,,则z =( A )(A )1+i (B )1i - (C )1+i - (D )1-i -19.若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为( D )(A)-4 (B )-45 (C )4 (D )4520.设复数z 满足,2)1(i z i =-则z =( A )(A )i +-1 (B )i --1 (C )i +1 (D )i -121.复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为( D )(A) 2+i (B) 2-i (C) 5+i (D) 5-i22.在复平面内,复数(2-i)2对应的点位于( D )A.第一象限B. 第二象限C.第三象限D. 第四象限23.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( C )A.(2,4)B.(2,-4)C.(4,-2)D.(4,2)24.复数的11Z i =-模为( B ) (A )12 (B (C (D )225.()3=( A ) (A )8- (B )8 (C )8i - (D )8i26. i 是虚数单位,3(1)(2)i i i -++等于 ( D ) A .1+i B .-1-i C .1+3i D .-1-3i27.设复数z=1,则z 2-2z 等于 ( A )A .-3B .3C .-3iD .3i28.已知i 是虚数单位,则31i i+-=( D ) A .1-2i B.2-i C.2+i D .1+2i29.下面是关于复数21z i=-+的四个命题:其中的真命题为( C ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 3430.复数2(1)2i i-=( B ) A 、1 B 、1- C 、i D 、i - 31.若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为( A )(A )35i + (B )35i - (C )35i -+ (D )35i --32.设i 为虚数单位,则复数56i i-=( D ) A .6+5i B .6-5i C .-6+5i D .-6-5i 33.复数z 满足:()(2)5z i i --=;则z =( D )()A 22i -- ()B 22i -+()C i 2-2 ()D i 2+2 34.若(2)a i i b i -=-,其中a 、b R ∈,i 使虚数单位,则22a b +=( D )A .0B .2C . 52D .5 35.复数z =i +i 2+i 3+i 4的值是( B ) A .-1B .0C .1D .i 36.()()221111ii i i -++=+-( D ) A .i B .i - C .1 D .1- 37.复数(1+1i )4的值是 ( D ) A .4iB .-4iC .4D .-4 二、填空题38. 若复数z 1=-1,z 2=2+i 分别对应复平面上的点P 、Q ,则向量PQ →对应的复数是_ _3+i __.39.设复数i 满足i(z +1)=-3+2i(i 为虚数单位),则z 的实部是____1____.40.复数2i -1+3i的虚部是___-12____. 41.已知z 是纯虚数,z +21-i是实数,那么z =___-2i____. 42.已知,43,2121i z i z +=-=则=⋅21z z ___11-2i _____.43.已知复数512i z i =+(i 是虚数单位),则_________z =44.若bi a i i +=++)2)(1(,其中,,a b R i ∈为虚数单位,则a b += 4 45.设a b ∈R ,,117i i 12ia b -+=-(i 为虚数单位),则a b +的值为 8 . 46.若 12z a i =+, 234z i =-,且12z z 为纯虚数,则实数a 的值为 38 . 47.已知312i a i--=+(i 是虚数单位),那么a 4= -4 . 48.已知复数z 与(z +2)2-8i 均是纯虚数,则z= -2i .三、解答题49.复平面内有A ,B ,C 三点,点A 对应的复数是2+i ,向量BA →对应的复数是1+2i ,向量BC →对应的复数是3-i ,求C 点在复平面内的坐标.解 ∵AC →=BC →-BA →,∴AC →对应的复数为(3-i)-(1+2i)=2-3i ,设C (x ,y ),则(x +y i)-(2+i)=2-3i , ∴x +y i =(2+i)+(2-3i)=4-2i ,故x =4,y =-2.∴C 点在复平面内的坐标为(4,-2).50.在复平面内A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i.(1)求AB →,BC →,AC →对应的复数;(2)判断△ABC 的形状;(3)求△ABC 的面积.解析: (1)AB →对应的复数为2+i -1=1+i ,BC →对应的复数为-1+2i -(2+i)=-3+i ,AC →对应的复数为-1+2i -1=-2+2i.(2)∵|AB →|=2,|BC →|=10,|AC →|=8=22,∴|AB →|2+|AC →|2=|BC →|2,∴△ABC 为直角三角形.(3)S △ABC =12×2×22=2. 51.已知复数z=1+i,求实数a,b 使得az +2b z =(a +2z)2.52.已知复数z=1+i ,如果221z az b z z ++-+=1-i,求实数a,b 的值. 解析:由z=1+i 得221z az b z z ++-+=()(2)a b a i i +++=(a +2)-(a +b)i 从而21()1a a b +=⎧⎨-+=-⎩,解得12a b =-⎧⎨=⎩.。
复数的四则运算(2)
zm zn (z
m
z m n
mn
)
n
z
n
(z1 z 2 )
2
n n z1 z 2
易知:
i 1, i 1, i i, i 1.
1
3
4
一般地,如果
n N ,有
i 4 n 1, i 4 n1 i , i 4 n2 1, i 4 n3 i
由于
c di 0, 所以c d 0,
2 2
可见,两个复数的商仍是一个复数.
分层训练:
必做题:P110 练习 2
3
选做题P111习题7
走进高考
4 3i 1.复数 的实部是( 1 2i
)
A. 2
B.2
C.3
D.4
2.若复数 (1 bi )(2 i) 是纯虚数(b是实数), 则b等于( )
§3.2复数的四则运算
学习目标:
掌握复数的乘方和除法运算.
自习指导:
1.实数范围内正整数指数幂的运算律在复数 范围内成立吗?如何表达? 2.关于虚数i的正整数指数幂有什么规律吗?你 发现的规律是什么? 3.复数的除法是怎样定义的?求两个复数的商 有几种方法?
自主检测:P110练习1
复数的乘方
复数的乘方运算是指几个相同复数相乘. 对任意复数z, z1 ,z2 以及正整数m,n有
A.2
作业:P111 习题 3
1 B. 2
1 C. 2
D. 2
例4 设
(1)
1 3 i ,求证: 2 2
2
1 0;
(2)
1.
3
思考:如果把例4中的 换 , 那么,欲证的两个等式 成 x 3 1 的三个根吗? 还成立吗?在复数范围内,你能写出方程 复数除法的运算法则: 把满足(c +di)(x +yi) = a +bi (c+di≠0) 的复数 x +yi 叫做复数 a+bi 除以复数c +di的商
高中数学 3.2复数的四则运算习题课(含解析)苏教版高二选修1-2数学试题
2015年高中数学全套备课精选 3.2复数的四则运算习题课(含解析)苏教版选修1-2 课时目标 1.进一步理解复数的四则运算.2.了解解复数问题的基本思想.1.复数乘方的性质:对任何z ,z 1,即z ∈C 及m 、n ∈N *,有z m ·z n =________(z m )n =z mn(z 1z 2)n =z n 1z n 22.n ∈N *时,i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.一、填空题 1.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是____________.2.设z 的共轭复数是z ,若z +z =4,z ·z =8,则zz =______.3.设C ,R ,I 分别表示复数集、实数集、纯虚数集,取C 为全集,下列命题正确的是____________(请填写相应的序号).①R ∪I =C ;②R ∩I ={0};③C ∩I =∁I R ;④R∩I =∅.4.1+i 1-i表示为a +b i(a ,b ∈R ),则a +b =________. 5.设复数z 1=1+i ,z 2=x +2i (x ∈R ),若z 1·z 2为实数,则x =________.6.已知复数z 满足z +(1+2i)=10-3i ,则z =________.7.复数z 满足(1+2i)z =4+3i ,则z =________.8.若x 是实数,y 是纯虚数且满足2x -1+2i =y ,则x =________,y =________.二、解答题9.已知z ∈C ,z 为z 的共轭复数,若z ·z -3i z =1+3i ,求z .10.解方程x 2-(2+3i)x +5+3i =0.能力提升11.已知z 是虚数,且z +1z 是实数,求证:z -1z +1是纯虚数.12.满足z +5z是实数,且z +3的实部与虚部互为相反数的虚数z 是否存在,若存在,求出虚数z ;若不存在,请说明理由.1.对于复数运算中的分式,要先进行分母实数化.2.充分利用复数相等的条件解方程问题.习题课答案知识梳理1.z m +n作业设计1.3-3i解析 3i -2的虚部为3,3i 2+2i 的实部为-3,故所求复数为3-3i.2.±i解析 设z =x +y i (x ,y ∈R ),则z =x -y i ,依题意2x =4且x 2+y 2=8,解之得x =2,y =±2. ∴zz =z 2z ·z =2±2i28=±i.3.④解析 复数的概念,纯虚数集和实数集都是复数集的真子集,但其并集不是复数集,当ab ≠0时,a +b i 不是实数也不是纯虚数,利用韦恩图可得出结果.4.1解析 ∵1+i 1-i =1+i 22=i ,∴a =0,b =1, 因此a +b =1.5.-2 6.9+5i7.2+i解析 z =4+3i 1+2i =4+3i 1-2i 5=10-5i 5=2-i. ∴z =2+i.8.122i 解析 设y =b i (b ≠0),∴⎩⎪⎨⎪⎧ 2x -1=0b =2,∴x =12. 9.解 设z =a +b i (a ,b ∈R ), 则z =a -b i (a ,b ∈R ),由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i ,即a 2+b 2-3b -3a i =1+3i ,则⎩⎪⎨⎪⎧ a 2+b 2-3b =1,-3a =3,解得⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧ a =-1,b =3.所以z =-1或z =-1+3i.10.解 设x =a +b i (a ,b ∈R ),则有a 2-b 2+2ab i -[(2a -3b )+(3a +2b )i]+5+3i =0,根据复数相等的充要条件得 ⎩⎪⎨⎪⎧ a 2-b 2-2a -3b +5=0,2ab -3a +2b +3=0, 解得⎩⎪⎨⎪⎧a =1,b =4,或⎩⎪⎨⎪⎧ a =1,b =-1. 故方程的解为x =1+4i 或x =1-i. 11.证明 设z =a +b i (a 、b ∈R ),于是 z +1z =a +b i +1a +b i =a +b i +a -b i a 2+b 2 =a +a a 2+b 2+⎝ ⎛⎭⎪⎫b -b a 2+b 2i. ∵z +1z ∈R ,∴b -b a 2+b 2=0. ∵z 是虚数,∴b ≠0,∴a 2+b 2=1且a ≠±1.∴z -1z +1=a -1+b i a +1+b i=[a -1+b i][a +1-b i]a +12+b 2=a 2-1+b 2+[a +1b -a -1b ]i a 2+b 2+2a +1=0+2b i 1+2a +1=b a +1i.∵b ≠0,a ≠-1,a 、b ∈R , ∴b a +1i 是纯虚数,即z -1z +1是纯虚数. 12.解 设存在虚数z =x +y i (x 、y ∈R 且y ≠0). 因为z +5z =x +y i +5x +y i=x +5x x 2+y 2+⎝ ⎛⎭⎪⎫y -5y x 2+y 2i.由已知得⎩⎪⎨⎪⎧ y -5y x 2+y 2=0,x +3=-y .因为y ≠0,所以⎩⎪⎨⎪⎧ x 2+y 2=5,x +y =-3. 解得⎩⎪⎨⎪⎧ x =-1,y =-2,或⎩⎪⎨⎪⎧ x =-2,y =-1.所以存在虚数z =-1-2i 或z =-2-i 满足以上条件.。
(完整)复数的四则运算(含答案解析),推荐文档
复数的四则运算1.复数z=的虚部为()A.-1B.-3C.1D.22.已知m为实数,i为虚数单位,若m+(m2-4)i>0,则=()A.iB.1C.-iD.-13.已知a∈R,i为虚数单位,若(1-i)(a+i)为纯虚数,则a的值为()A.2B.1C.-2D.-14.已知(a,b∈R),其中i为虚数单位,则a+b=()A.0B.1C.-1D.25.计算=()A.-1B.iC.-iD.16.已知i是虚数单位,,则|z|=()A. B.2 C. D.47.复数z满足z(2-i)=2+i(i为虚数单位),则在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限8.若a=i+i2+…+i2013(i是虚数单位),则的值为()A.iB.1-iC.-1+iD.-1-i 9.设i是虚数单位,如果复数的实部与虚部是互为相反数,那么实数a的值为()A. B. C.3 D.-310.复数z满足(z+2i)i=1+i,则z=()A.1+3iB.1-3iC.-1+3iD.-1-3i11.已知复数z的实部为a(a<0),虚部为1,模长为2,是z的共轭复数,则的值为()A. B.--i C.-+i D.-12.设x,m均为复数,若x2=m,则称复数x是复数m 的平方根,那么复数3-4i(i是虚数单位)的平方根为()A.2-i或-2+iB.2+i或-2-iC.2-i或2+iD.-2-i或-2+i13.设i为虚数单位,则()2014等于()A.21007iB.-21007iC.22014D.-2201414.已知复数z1=1+i,|z2|=3,z1z2是正实数,则复数z2= ______ .15.复数z=,i是虚数单位,则z2015= ______ .复数的四则运算答案和解析1. B解:∵z==,∴复数z=的虚部为-3.2. A 解:∵m+(m2-4)i>0,∴,解得:m=2.则=.3. D 解:∵(1-i)(a+i)=1+a+(1-a)i为纯虚数,∴,解得:a=-1.4. B解:∵=,∴,解得,则a+b=1.5. B解:=.6. C解:由,得,即|z|=.7. D解:∵z(2-i)=2+i,∴z(2-i)(2+i)=(2+i)(2+i),∴z=(3+4i),则=-i在复平面内对应的点(,-)所在象限为第四象限.8. D解:因为i+i2+i3+i4=0,所以a=i+i2+…+i2013=i.===-=-=-1-i.9. C解:==,∵复数的实部与虚部是互为相反数,∴,即a=3.10. B解:由(z+2i)i=1+i,得,∴z=1-3i.11. D解:∵复数z的实部为a(a<0),虚部为1,则复数z=a+i.又模长为2,∴,解得a=.∴z=,.则==.12. A解:设z=x+yi,则(x+yi)2=3-4i,即x2-y2+2xyi=3-4i,∴,解得:或.∴复数3-4i的平方根为2-i或-2+i.13. A解:∵()2=-2i,∴()2014=(-2i)1007=(-2)1007•i1007=21007i.14. 解:设复数z2=a+bi(a,b∈R),z1z2=,∵|z2|=3,z1z2是正实数,∴,解得:.则复数z2=.故答案为:z2=.15. 解:∵z==(1+i),∴z2=(1+2i+i2)=i,z3=z2•z=i•(1+i)=(-1+i),z4=(z2)2=-1,z5=z4•z=-(1+i),z6=z4•z2=-i,z7=z3•z4=(1-i),z8=z2•z6=1,z9=z•z8=(1+i),∴z t=z8k+t(k、t∈N*),∵2015=251×8+7,∴z2015=z7=(1-i),故答案为:(1-i).。
复数的四则运算⑴
3. 共轭复数的概念、性质: (1)定义: 实部相等,虚部互为相反数的两个复数互为共轭 复数.
复数 z=a+bi 的共轭复数记作
z, 即 z a bi
一步到位!
注意: a+bi 与 a-bi 两复数的特点.
( 2 ) (a bi) a 2abi b i
2 2
2 2
a b 2abi
2 2
( 3 ) (1 2i)(3 4i)(2 i)
(1 2i )(3 4i )( 2 i ) (11 2i )( 2 i ) 20 15i
这就是复数加法的几何意义.
类似地,复数减法: y
Z2(c,d)
OZ1-OZ2
Z1(a,b) O
x Z
这就是复数减法的几何意义.
练一练:如图的向量对应的复数z,试作出下列运算的结果
对应的向量:(书 P109, 2)
1、z+1 y
Z
2、z-1
Z
3、z+(-2+i) y
OZ
O
O 1 1
OZ
x
x
3.复数的乘法:
复数z=a+bi (数) y z=a+bi b a Z(a,b)
一一对应
直角坐标系中的点Z(a,b) (形)
一一对应
平面向量 OZ
0
x
2、复数的加法与减法几何意义
我们知道,两个向量的和满足平行四边形法则, 复数可以表示平面上的向量,那么复数的加法与向量 的加法是否具有一致性呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a 3- = 3-2-1《数系的扩充与复数的引入》习题 第1课时 复数加、减法与乘法的运算法则 双基达标 限时15分钟
1.若z 1=3-2i ,z 2=1+3i ,则z 1-2z 2=
. 答案 1-8i 2.(-6+4i )(-6-4i )
=
. 答案 52
3. 如果复数(m 2+i )·(1+mi )是实数,则实数m =
. 解析 ∵(m 2+i )(1+mi )=(m 2-m )+(1+m 3)i ∈R
∴1+m 3=0 ∴m =-1.
答案 -1
4. 已知复数z 1=1+2i ,z 2=m +(m -1)i ,若z 1·z 2的实部与虚部相等,则实数m = . 解析 z 1·z 2=(1+2i )[m +(m -1)i ]
=m +(m -1)i +2mi -2(m -1)=(2-m )+(3m -1)i , ∵2-m =3m 1 m 3
- ,∴ = . 4
3 答案 4
3 .已知 = + + , =-3 3b +(b +2)i (a ,b ∈R ).若z -z =
4 3,则a +b =
1 a (a 2
.
1)i z 2 1 2 解析 z z 3 + 3b +(a -b -1)i =4 3, 1 2 2 ∴Error!
∴a =2,b =1,∴a +b =3.
答案 3
6. 计算:
(1)(- 2+ 3i )-[( 3- 2)+( 3+ 2i )]+(- 2i + 3);
(2)(1-2i )(2+i )(3-4i );
解 (1)原式=(- 2- 3+ 2+ 3)+( 3- 3- 2- 2)i =-2 2i .
(2)原式=(2-2i 2-4i +i )(3-4i )
=(4-3i )(3-4i )=12+12i 2-9i -16i =-25i .
综合提高 限时30分钟
7. 复数(3i -1)i 的共轭复数是
. 解析 (3i -
1)i =-3-i ,则共轭复数为-3+i .
5 z
答案 -3+i 8. 设复数z =1+
2i ,则z 2-2z =
. 解析 z 2-2z =(z -1)2-1=( 答案 -3
2i )2-1=-3.
9. 若x 是纯虚数,y 是实数,且2x -1+i =y -(3-y )i ,则x +y 等于 .
解析 由于x 是纯虚数,可设x =bi (b ∈R ,b ≠0),将其代入2x -1+i =y -(3-y )i 得-1+(2b +1)i =y -(3-y )i ,
∴Error!解得Error! x y 1 5
∴ + =- - i . 2
1 5 答案 - - i 2
10.已知复数z 满足z +(1+2i )=10-3i ,则z = .
解析 设z =a +bi ,(a ,b ∈R )则a -bi +1+2i =10-3i ,
即Error!
∴a =9,b =5. ∴z =9+5i .
答案 9+5i
11.已知z 1=(3x +y )+(y -4x )i ,z 2=(4y -2x )-(5x +3y )i (x ,y ∈R ).设z =z 1-z 2且z =13+ 2i ,求z 1,z 2.
解 z =z 1-z 2
=(3x +y )+(y -4x )i -[(4y -2x )-(5x +3y )i ]
=[(3x +y )-(4y -2x )]+[(y -4x )+(5x +3y )]i
=(5x -3y )+(x +4y )i ,
∴z =(5x -3y )-(x +4y )i .
又z =13+2i ,
∴Error!解得Error!
∴z 1=(3×2-1)+(-1-4×2)i =5-9i , z 2=[4×(-1)-2×2]-[5×2+3×(-1)]i =-8-7i .
12 z 1 i z 2+az +b 1 i a b .已知 = + , = z 2-z +1
- ,求实数 , 的值. 解 ∵z =1+i ,∴z 2=2i ,z 2-z +1=i ,
z 2+az +b =(a +b )+(a +2)i ,
∴z 2+az +b =(1-i )i =1+i ,
∴(a +b )+(a +2)i =1+i ,
∴Error!解得Error!
13.(创新拓展)已知复数z=1+i,求实数a,b使az+2b
z=(a+2z)2.解∵z=1+i,
∴az+2b z=(a+2b)+(a-2b)i,
(a+2z)2=(a+2)2-4+4(a+2)i
=(a2+4a)+4(a+2)i.
∵a,b都是实数,
∴由az+2b
z=(a+2z)2,
得Error!
两式相加,整理得a2+6a+8=0,
解得a1=-2,a2=-4,对应得b1=-1,b2=2.
∴所求实数为a=-2,b=-1或a=-4,b=2.。