特种陶瓷概述

合集下载

特种陶瓷简介

特种陶瓷简介

10.2.1.1 氧化铝陶瓷
• 是以α-Al2O3为主晶相的陶瓷材料,其Al2O3含量一般 在75-99%之间,并习惯以配料中Al2O3含量分类。 Al2O3含量在75%左右为“75瓷”,含量在85%为“85 瓷”,含量在95%的为“95瓷”,含量在99%的为“99 瓷”。 • 氧化物陶瓷用途最广的是氧化铝。它是唯一以单晶形式 广泛使用的氧化物陶瓷。然而以多晶氧化铝的用途占压 倒多数。以质量计算氧化铝基材料的主要市场为:
(4)气氛烧结
• 对在空气中很难烧结的制品,为防止其氧化,可在炉膛内通入一
定量的某种气体,在这种特定气氛下进行烧结称为气氛烧结。
(5)反应烧结
• 通过多孔坯体同气相或液相发生化学反应,使坯体质量增加,空 隙减少,并烧结成具有一定强度和尺寸精度的成品的一种烧结工艺。
(6)化学气相沉积法
• 将准备在其表面沉积一层瓷质薄膜的物质置于真空室中,加热至 一定温度后,然后将欲被覆涂料的气态化合物通过加热载体的表面。
一般不需要加工
炊具、餐具、陈设品
10.1 特种陶瓷工艺特点 10.2 高温结构陶瓷简介
10.3 发展中的特种陶瓷
10.1特种陶瓷工艺特点
• 主要从粉体制备、成型和烧结三方面来简述其工艺特点。
10.1.1粉体制备
制取方法有两大类:
机械破碎法,只占从属地位,不作介绍
物理化学法:通常包括固相法、液相法、气相法。
(3)流延法成型
• 将准备好的粉料内加粘结剂、增塑剂、分散剂、溶剂,然后进行混合,再将 料浆放入流延机料斗中,料浆从料斗下部流至流延机薄膜载体(传送带)上。 用刮刀控制厚度,再经红外线加热等方法烘干,得到膜坯,连同载体一起卷 轴待用。
料浆 刮刀 剥离成型薄膜 干燥炉

特种陶瓷

特种陶瓷

特种陶瓷复习资料第一章特种陶瓷的定义:采用人工合成的高纯度无机化合物为原料,在严格控制的条件下经成型、烧结和其他处理而制成具有微细结晶组织的无机材料——特种陶瓷。

这类陶瓷又称为先进陶瓷或精细陶瓷。

分类:按化学成分:氧化物和非氧化物陶瓷按功能分:结构陶瓷和功能陶瓷结构陶瓷:利用力学和热学性能应用于制造发动机,切削工具和轴承等领域功能陶瓷:利用电光磁声化学等功能性,应用于检测,控制,以及生物医学领域等。

按性能:工程陶瓷,热功能,电功能,磁学功能,光学功能,化学功能,放射性功能,声学功能,生物医学功能。

第三章弹性模量的定义:在工程意义上,弹性模量是表征材料对弹性变形的抵抗能力。

在应力应变关系意义上,弹性模量代表着单位应力作用下原子间距的变化率。

陶瓷材料弹性模量的特点比金属大得多;压缩时比拉伸时大(金属相等)1 抗弯强度定义:材料抵抗抗弯曲不断裂的能力。

测试方法:三点弯曲 :四点弯曲断裂韧性K 1C 的定义和测定方法断裂韧性:表征材料抵抗其内部裂纹扩展能力的性能指标K 1C —裂纹尖端的临界应力强度因子. 3 断裂韧性K 1C 的测定方法硬度的概念:硬度是材料抵抗外来异物压入时产生永久变形的能力 ()232/3t PL b ωσ=()232/3t PL b ωσ=()232/3t PL b ωσ=()232/3t PL b ωσ=影响因素表面原子或离子填充密度;弹性模量、强度、裂纹的方向、塑性变形程度等。

疲劳断裂在交变负荷产生的交变应力作用下,材料内部显微组织发生变化,最后导致的断裂。

称为疲劳断裂这样的变化过程称为材料的疲劳(或交变应力损伤)热学性质包括:热容量,热导率,热膨胀、耐热冲击性能等性质;3.4 陶瓷的增强和增韧1.细晶强化增韧2.晶界增强增韧3.相变增强增韧4.复合增强增韧1.2.晶界增强增韧原理通过改变晶相组成和烧结后的热处理,使晶界玻璃相结晶成高强度的晶界相来提高强度改变晶相组成• 3.相变增韧原理•利用晶态不同变体发生晶型转变时产生的体积变化使材料内部形成应力场,当材料断裂时,应力的释放阻止裂纹的扩张,只有增加外力做功,才能使裂纹继续扩展,于是材料的强度和韧性都得到了提高。

特种陶瓷的相关介绍

特种陶瓷的相关介绍

特种陶瓷的相关介绍特种陶瓷是指在传统陶瓷基础上,通过改变原始的成分配比、成形工艺、烧成工艺等,制成性能优异、用途广泛、具有特殊需求的陶瓷材料。

下面将对特种陶瓷的种类、应用领域和制造工艺等进行介绍。

特种陶瓷的种类1.电子陶瓷:以氧化铝、氧化铝质玻璃、石英等为原料,制成用于半导体器件包装、介质等的电子陶瓷。

2.结构陶瓷:以氧化锆、氧化铝、碳化硅等为原料,经过加压模压、注射成型后,高温烧制而成的具有高强度、抗磨损性、耐腐蚀性等性能的结构陶瓷。

3.生物陶瓷:以氧化锆、氧化铝、磷酸三钙等为原料,经过特殊制造工艺后,制成用于人工关节、牙科医疗和植入式医疗等领域的生物陶瓷。

4.热媒体陶瓷:以氧化铝、氧化锆等为原料,经过特殊工艺处理,制成用于高温传热的热媒体陶瓷。

5.摩擦材料陶瓷:以氧化铝、氮化硅、氧化锆等为原料,经过特殊烧制工艺,制成用于汽车、飞机、铁路等领域摩擦材料的陶瓷。

特种陶瓷的应用领域1.电子领域:用于电容器、介质、射频器件、振荡器、陶瓷滤波器、压电陶瓷、声波陶瓷等领域。

2.医疗领域:用于人工关节、人牙种植体、口腔修复等领域的生物陶瓷。

3.环保领域:用于重金属和有害气体的吸附、污水处理、空气净化等领域的陶瓷。

4.新能源领域:用于氢能源技术、太阳能电池等领域的氧化锆陶瓷。

5.机械领域:用于轴承、密封、磨损件等机械领域的结构陶瓷。

特种陶瓷的制造工艺特种陶瓷的制造过程包括原料选取、配料、成型、烧结等多个工艺环节。

原料选取是关键环节,不同种类的特种陶瓷要选取不同的原料。

例如,生物陶瓷需要选用生物相容性好、生物安全性高的原料,并采用特殊的工艺进行处理,保证最终陶瓷的生物可接受性。

配料是根据要求的化学组成比配制粉末混合物的重要环节,粉末混合方法有湿法和干法两种。

成型是将混合后的陶瓷粉末通过模具成型的环节,通常包括压制、注射成型、挤出成型和印制等多种成型方式。

烧结是将成型后的陶瓷样品放入特殊的烧结设备中加热处理的环节,经过高温烧结,使得陶瓷颗粒结合更紧密、密度更高,从而得到更高的强度和硬度。

特种陶瓷总结

特种陶瓷总结
优点: 缺点:
脆性差
高硬度,耐磨 高熔点,耐高温 高强度 高化学稳定性 比重小,约为金属1/3
原因:
化学键差异造成的。 金属:金属键,没有方向性,塑性变形性能好 陶瓷:离子键和共价键,方向性强,结合能大,很难塑性形 变,脆性大,裂纹敏感性强
第一章 粉体性能及制备
特种陶瓷粉体要求
1) 化学成分纯度高,均匀性好 2) 相组成均匀,准确 3) 粒度小于1um,粒度分布范围窄 4) 颗粒形状为球形式自形晶形 5) 团聚程度低 6) 粉体流动性好


2、特种陶瓷分类
⑴ 结构陶瓷
以耐高温、高强度、超硬度、耐磨损、抗腐蚀等机械力学性 能为主要特征。
⑵ 功能陶瓷
以电、磁、光、热和力学等性能及其相互转换为主要特征, 在通信电子、自动控制、集成电路、计算机、信息处理等方面 的应用日益普及。
⑶ 陶瓷基复合材料
陶瓷材料的最大缺点是韧性低,使用时会产生不可预测的突 然性断裂,陶瓷基复合材料主要是为了改善陶瓷韧性。
对于固定体 系E是固定的
吸 附 层
扩 散 层
可通过塑化 剂或者解凝 剂调整
当粒子和介质固定时,ζ和扩散层厚度成正比; 而ζ电位的增高,可提高团粒间的斥力,有助于克服范德华力和和 布朗运动,获得良好的悬浮性。
以Al203为例, Al203用盐酸处理后,在粒子表面生成三氯化铝 (AlCl3),三氯化铝立即水解,生成AlCl2+和AlCl2+离子,犹如Al203 粒子表面吸附了一层阳离子,使其成为一个带正电荷的胶粒,然后 胶粒吸附OH-而形成一个庞大的胶团。
相变增韧对多晶转变有什么要求?
相变增韧的多晶转变要求 ①高温相转变为低温相的体积膨胀要大 ②多晶转变可以通过改变晶体粒度、加入稳定 剂或增加压力等手段使之在室温下不能进行 ③相变速度要快 ④晶体本身要有高强度 ZrO2由四方相到单斜相的变化属于马氏体相变, 满足上述条件,因此不仅用在本身,也在其他 陶瓷有明显的效果。

特种陶瓷

特种陶瓷

2.特种陶瓷材料的分类:
特种陶瓷
结构陶瓷
功能陶瓷
生物陶瓷
3.各种陶瓷的特点及功能
结构陶瓷:具有高强度、高硬度、高耐磨、耐高温、 耐腐蚀等特性。 功能陶瓷:具有导电、半导性、绝缘、透光、光电、 电光、声光、磁光等性能。 生物陶瓷:具有医疗(人工关节. 骨、牙齿等)和催 化等功能。 特种陶瓷在现代工业技术,特别是在高新技术领域 中的地位日趋重要。
为保护政要,各国不惜高价在其座驾上安装高 性能防弹玻璃。去年8月,奥巴马成为总统候选
轻型透明装甲的另一应用是爆炸物(EOD)处理 行动。虽然有拆弹机器人的加入,但驻阿美军拆 弹部队还是要经常零距离面对简易路边爆炸装置。
人后,美国特工处便订制了大批被称为“透明
装甲”的新型防弹玻璃,它由4层不同透明物质 复合组成,能抵御化学物、火焰和多重枪击, 在就职典礼上成为保护奥巴马最重要的装备。
这在反映驻伊美军战争生活的美国大片《拆弹部
队》中不止一次出现。在他们所使用的防爆面甲 中,透明层压板占据了很大一部分重量。
轻型陶瓷复合装甲:装甲车辆的发展趋势是轻型化,即在保证攻击和防
护能力的前提下显著减小自重,以提高机动能力。
俄罗斯的罗斯托克”BTR-90装甲车车体用高硬度装甲钢制造,全焊接装甲结构,内有
无机非金属材料 ------------特种陶瓷
1.概述
特种陶瓷也称为先进陶瓷、现代陶瓷、新型陶瓷、 高性能陶瓷、高技术陶瓷和精细陶瓷。突破了传统陶 瓷以黏土为主要原料的界限,主要以氧化物、炭化物、 氮化物、硅化物等为主要原料, 有时还可以与金属进 行复合形成陶瓷金属复合材料,是一种采用现代材料工 艺制备的、具有独特和优异性能的陶瓷材料。已成为 现代高性能复合材料的一个研究热点。特种陶瓷于二 十世纪发展起来,在近二、三十年内,新产品不断现, 在现代工业技术,特别是在高技术、新技术领域中的 地位日趋重要。许多科学家预言:特种陶瓷在二十一 世纪的科学技术发展中,必将占据十分重要的地位。

特种陶瓷

特种陶瓷


特种陶瓷成形方法、结合剂种类和用 量 成形方法 结合剂举例 <;结合剂用量 (质量%) 千压法聚乙烯醇缩丁醛等 1~5 浇注法 丙烯基树脂类 1~3 挤压法 甲基纤维素等 5~15 注射法 聚丙烯等 10~25 等静压法 聚羧酸铵等 0~3

特种陶瓷由于拥有众多优异性能,因而用途广泛。现按材料的性能及种类简要
特种陶瓷具有高强度、高硬度、高韧性、 耐腐蚀、导电、绝缘、磁性、透光、半 导体以及压电、光电、电光、声光、磁 光等性能。由于性能特殊,这类陶瓷可 作为工程结构材料和功能材料应用于机 械、电子、化工、冶炼、能源、医学、 激光、核反应、宇航等方面本世纪初特 种陶瓷的国际市场规模预计将达到500亿 美元,因此许多科学家预言:特种陶瓷 在二十一世纪的科学技术发展中,必定 会占据十料性能 ; 由于汽车行驶的速度越来越快,使用的范围越来越广泛,其使用环境 将来越来越苛刻。在许多情况下以传统的金属材料制成的零件与部件已不 能满足汽车工业的发展,而将陶瓷制品用于汽车将具备很多优良的功能与 机械性能。如可以长期耐20g的振动功能;用于燃烧、排气 零件可以长期忍 耐50—60℃急热急冷;机械性能的可靠性高,故障率仅在10ˉ5以下;特种陶瓷 可与金属或其它材质接合性良好;可以大批量生产且价格低廉等等。 从事汽车材料的研究人员,经过长年的开发、研制、试验与工业化应 用证明:许多部位改用陶瓷材料后,其机械特性远远优于金属材料或其它 材料制成的零、部件。 2、丰富多样的特种陶瓷零、部件 氧化锆陶瓷质氧传感器可靠性很高。作为净化排气的部件,用它测定 排气中的o2浓度,再将该测定值反馈给发动机给气及燃料供给系统,以促 进内燃机的燃烧经常保持在充分燃烧状态。这样可以达到显著的节能效果。 由于采用的陶瓷材料全部的相位是完全立方晶型的稳定氧化锆、四方晶型 和单斜晶型混合的部分稳定氧化锆,在使用过程中机械性能优良,而且可 以减少许多由于摩擦产生的热,延长部件的使用时间。

特种陶瓷

特种陶瓷
四、氧化铝陶瓷的低温烧结
由于氧化铝熔点高达2050℃,导致氧化铝陶瓷的烧结温度普遍较高,从而使得氧化铝陶瓷的制造需要使用高温发热体或高质量的燃料以及高级耐火材料作窑炉和窑具,这在一定程度上限制了它的生产和更广泛的应用。因此,降低氧化铝陶瓷的烧结温度,降低能耗,缩短烧成周期,减少窑炉和窑具损耗,从而降低生产成本。
预烧方法不同、添加物不同、气氛不同,预烧质量也不一样。工业中预烧氧化铝时,通常要加入适量添加物,如 、 、 等,加入量一般为0.3%~3%,添加物可以降低预烧温度、促进晶型转化、排除Na2O等杂质。硼酸盐除碱效果好,氟化物可促进晶型转变,且收缩大、活性好。还原气氛也有利于排除Na2O等杂质。
预烧质量还与预烧温度有关:预烧温度偏低,则不能完全转变成 -Al2O3且电性能降低;若温度过高,粉料烧结, -Al2O3晶粒异常长大、硬度高,不易粉碎,且烧结活性低,制品难以烧结,不利于形成均匀的结构。一般情况下,Al2O3粉体煅烧温度控制在1400~1450℃。
湿化学法制备的Al2O3粉体粒径可达到纳米级,粒径分布范围窄,化学纯度高,晶体缺陷多。因此化学法粉体的表面能与活性比机械法粉体要高得多。采用这种超细Al2O3粉体作原料不仅能明显降低氧化铝瓷的烧结温度(可降150℃—300℃),而且可以获得微晶高强的高铝瓷材料。
4.2通过瓷料配方设计掺杂降低瓷体烧结温度
物料
-Al2O3
苏州土
CaCO3
BaCO3
烧骨石
ZrO2、CeO2、La2O3
Wt%
91
3
1.5
0.5
2
2
3.采用特殊烧成工艺降低瓷体烧结温度
采用热压烧结工艺,在对坯体加热的同时进行加压,那么烧结不仅是通过扩散传质来完成,此时塑性流动起了重要作用,坯体的烧结温度将比常压烧结低很多,因此热压烧结是降低Al2O3陶瓷烧结温度的重要技术之一。目前热压烧结法中有压力烧结法和高温等静压烧结法(HIP)二种。HIP法可使坯体受到各向同性的压力,陶瓷的显微结构比压力烧结法更加均匀。就氧化铝瓷而言,如果常压下普通烧结必须烧至1800℃以上的高温,热压20MPa烧结,在1000℃左右的较低温度下就已致密化了。热压烧结技术不仅显著降低氧化铝瓷的烧结温度,而且能较好地抑制晶粒长大,能够获得致密的微晶高强的氧化铝陶瓷,特别适合透明氧化铝陶瓷和微晶刚玉瓷的烧结。此外,由于氧化铝的烧结过程与阴离子的扩散速率有关,而还原气氛有利于阴离子空位的增加,可促进烧结的进行。因此,真空烧结、氢气气氛烧结等是实现氧化铝瓷低温烧结的有效辅助手段。

一种特种陶瓷材料及其制备方法与应用

一种特种陶瓷材料及其制备方法与应用

一种特种陶瓷材料及其制备方法与应用全文共四篇示例,供读者参考第一篇示例:特种陶瓷材料在现代工业中发挥着重要作用,其在各种领域的应用越来越广泛。

本文将以一种特种陶瓷材料为例,探讨其制备方法和应用情况。

一、特种陶瓷材料简介特种陶瓷材料是指在特定条件下制备的,具有特殊物理、化学、结构等性质的陶瓷材料。

它具有较高的耐磨性、耐高温性、耐腐蚀性等特点,被广泛应用于航空航天、汽车、电子、医疗器械等领域。

1. 原料选择:特种陶瓷材料的制备要首先选择适合的原料。

通常采用氧化铝、氧化锆、碳化硅等高纯度材料作为主要原料。

2. 混合和粉碎:将选定的原料进行混合,并通过球磨等方法进行粉碎,以确保原料的均匀性和细度。

3. 成型:采用压制或注模等方法将粉末成型成所需的形状,然后进行烧结。

4. 烧结:通过高温处理,使混合的粉末颗粒结合成为致密的陶瓷坯体。

5. 后处理:经过烧结后的陶瓷坯体可能存在气孔或其他缺陷,需要进行热处理或其他后处理工艺,以提高其性能。

1. 航空航天领域:特种陶瓷材料具有优异的耐高温性能和机械性能,被广泛应用于航空发动机喷嘴、涡轮叶片等部件。

2. 汽车领域:特种陶瓷材料在汽车发动机、制动系统等部件中具有重要作用,可以提高汽车的性能和耐久性。

3. 电子领域:特种陶瓷材料在电子器件中被广泛应用,如陶瓷电容器、电子陶瓷等,具有良好的绝缘性能和耐高温性能。

4. 医疗器械领域:特种陶瓷材料在医疗器械中也有重要应用,如人工关节、牙科修复材料等,具有良好的生物相容性和耐腐蚀性。

特种陶瓷材料具有独特的性能和广泛的应用前景,在现代工业中发挥着重要作用。

通过不断的研究和创新,特种陶瓷材料的性能和应用领域将会得到进一步拓展和提升。

希望本文可以对特种陶瓷材料的制备方法和应用情况有所了解,激发读者对陶瓷材料的研究和开发的兴趣。

第二篇示例:特种陶瓷材料是一种具有特殊性能和功能的陶瓷材料,具有优异的热导性、耐磨性、耐腐蚀性、绝缘性等特点,被广泛应用于航空航天、电子、医疗、军事等领域。

特种陶瓷概述

特种陶瓷概述
无机功能材料
特种陶瓷概述
传统陶瓷是以粘土为主要原料烧制而成, 其成分中含硅酸盐。
特种陶瓷,或称入特别配方的无机材料,经过1360 1360度左右 加入特别配方的无机材料,经过1360度左右 高温烧结成型, 高温烧结成型,从而获得稳定可靠的防静电 性能,成为一种新型特种陶瓷。 性能,成为一种新型特种陶瓷。
Page 10
催化及环保用陶瓷
催化剂载体既要有良好机械性能,又要求有化学 催化剂载体既要有良好机械性能, 环境稳定性和特定化学物质反应选择性。在汽车尾气 环境稳定性和特定化学物质反应选择性。 和化工环保行业得到广泛应用。 和化工环保行业得到广泛应用。
代替进口、可形成批量生产的高性能催化剂载体; 代替进口、可形成批量生产的高性能催化剂载体; 环保用高性能多孔陶瓷材料。 环保用高性能多孔陶瓷材料。
此外,有一大类在陶瓷中添加了金属而生成的金 此外,有一大类在陶瓷中添加了金属而生成的金 属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷, 属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷, 硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。 硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。
特种陶瓷刀具
Page 5
Page 9
光功能陶瓷材料
新型功能陶瓷材料具有独特的光电性能,已成 新型功能陶瓷材料具有独特的光电性能, 为光通信产业不可缺少的材料。 为光通信产业不可缺少的材料。
激光元件用功能陶瓷材料,红外辐射与接收材料, 激光元件用功能陶瓷材料,红外辐射与接收材料, 实用化的光转换材料; 实用化的光转换材料; 光存储、视频显示和存储系统、光开关等用光功能陶瓷; 光存储、视频显示和存储系统、光开关等用光功能陶瓷; 薄膜显示、 材料、 薄膜显示、PDP材料、高亮度超高效发光管用材料; 材料 高亮度超高效发光管用材料; 新型高性能的光传输材料、光放大、 新型高性能的光传输材料、光放大、光电耦合材料的功 能陶瓷制品。 能陶瓷制品。

特陶

特陶

一.名词解释1.特种陶瓷:不同于传统日用、建筑卫生陶瓷的用于现代工业、高科技技术领域的陶瓷材料,亦称先进陶瓷、高技术陶瓷或精细陶瓷等。

包括利用其力学、高温性能等的结构陶瓷与及利用其特殊功能的功能陶瓷等等。

2.功能陶瓷:利用材料的力学之外的性能的一类陶瓷材料,能表现出优异的电学性能、磁学性能、光学性能等。

如压电、热释电、热敏、气敏、湿敏、光敏、磁敏等以及其功能的耦合等等。

3.流延成型:将粉体加入粘合剂混合成浆料,再把浆料放入流延机的料斗中,流经薄膜载体上,形成膜坯。

4.反应烧结:通过多孔坯体同气相或液相发生化学反应,从而使坯体质量增加,孔隙减小,并烧结成为具有一定强度和尺寸精度的成品的工艺5.95氧化铝陶瓷:以刚玉为主晶相,氧化铝含量在95%左右的陶瓷材料,具备优良的力学性能、热学性能及其它功能性。

6.部分稳定氧化锆陶瓷:是指在氧化锆中添加适量的可形成固溶体的氧化钇等物质,稳定四方氧化锆晶体不相变。

从而在室温得到不相变的四方和立方氧化锆的混合物,称为部分稳定氧化锆。

这种材料称部分稳定氧化锆。

简称PSZ。

7.微裂纹增韧:陶瓷材料中存在许多小于临界尺寸的微纹,这些微裂纹在负载作用下是非扩展性的,但大的裂纹在扩展中遇到这些裂纹时,使扩展裂纹转向,吸收能量,起到提高韧性的作用,称为微裂纹增韧。

8.表面强化韧化:由于氧化锆四方晶向单斜晶转变产生的体积膨胀,从而使表面产生压应力,起到强化和韧化的作用。

9.低膨胀陶瓷材料:指膨胀系数的绝对值小于2×10-6/℃的陶瓷材料。

10.蜂窝陶瓷:有规范的孔结构的陶瓷材料,主要利用其特殊的孔型结构,起到过滤、隔热、隔音、抗热震性等等性能的一类陶瓷材料。

11.复合材料:由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料。

既保留原组成材料的重要特点,又通过复合效应获得原组分所不具备的性能。

这种材料称复合材料。

12.梯度陶瓷材料:在同一材料内不同方向上由一种功能逐渐连续分布为另一种功能的材料称为梯度材料。

特种陶瓷的特点和用途

特种陶瓷的特点和用途

特种陶瓷的特点和用途
特种陶瓷是一种在高温高压环境下制造出的陶瓷材料,具有独特的性质和用途。

由于其良好的耐热、耐腐蚀、耐磨损、绝缘、导热性好等特点,特种陶瓷已经被广泛应用于许多领域,包括电子、机械、航空航天、医疗、化工、环保等。

特种陶瓷具有良好的耐热性。

在高温环境下,许多材料会出现熔化、变形或者老化现象,而特种陶瓷则能够保持其稳定的物理和化学性质。

因此,特种陶瓷被广泛应用于高温炉窑、热电站、航空发动机等领域。

特种陶瓷具有优异的耐腐蚀性。

在酸碱等腐蚀性物质的环境下,普通材料容易受到侵蚀和腐蚀,而特种陶瓷则能够保持其完整和稳定性。

因此,特种陶瓷被广泛应用于化工、环保等领域。

特种陶瓷具有良好的耐磨损性。

在高速运转的机械设备中,普通材料容易出现磨损和疲劳现象,而特种陶瓷则能够保持其完整和耐用性。

因此,特种陶瓷被广泛应用于汽车、船舶、机械等领域。

特种陶瓷还具有良好的绝缘性和导热性能。

在电子、医疗等领域中,特种陶瓷被广泛应用于电子元件、热敏电阻、医疗器械等方面。

特种陶瓷具有独特的性质和用途,已经成为现代工业中不可或缺的材料之一。

随着技术的不断发展和应用领域的不断扩大,特种陶瓷
的应用前景将会越来越广阔。

特种陶瓷

特种陶瓷

1、采用高度精选的原料,具有能精确控制的化学组成,按照便于进行结构设计及控制的方法进行制造、加工的,具有优异特性的陶瓷。

特种陶瓷有很多种叫法,例如:精细陶瓷、技术陶瓷、现代陶瓷、新型陶瓷等等。

2、粘土在陶瓷生产中的作用:1)粘土的可塑性是陶瓷坯泥赖以成型的基础。

2)粘土使注浆泥料与釉料具有悬浮性与稳定性。

3)粘土一般呈细分散颗粒,同时具有结合性。

4)粘土是陶瓷坯体烧结时的主体。

5)粘土是形成陶器主体结构和瓷器中莫来石晶体的主要来源。

4、特种陶瓷分类:按特性和用途分⑴结构陶瓷⑵功能陶瓷⑶陶瓷基复合材料5、特种陶瓷性能(和金属材料相比)优点:高硬度,耐磨;高熔点,耐高温;高强度;高化学稳定性;比重小,约为金属1/3缺点:脆性大研究热点:如何提高陶瓷的韧性成为世界瞩目的陶瓷材料研究领域的核心课题!!!原因:化学键差异造成的。

金属:金属键,没有方向性,塑性变形性能好陶瓷:离子键和共价键,方向性强,结合能大,很难塑性形变,脆性大,裂纹敏感性强6、提高陶瓷韧性的方法1)利用金属的延展性2)利用晶须或者纤维增韧3)利用相变增韧4)纳米陶瓷增韧7、特种陶瓷用途特陶可以“上天入地”,“上天”指特种陶瓷应用于航天科技行业,“入地”指特种陶瓷可以应用于汽车等行业。

陶瓷刹车盘、陶瓷刀具、陶瓷装甲金刚石:作为世界上最硬的物质,是一种天然“陶瓷”。

8、陶瓷发动机优势①提高发动机热效率。

②减少辅助功率消耗,发动机结构简化。

③适应多种燃料燃烧④降低噪声,减少排气污染⑤减轻质量⑥资源丰富。

9、特种陶瓷研究方向探求材料的组成、结构与性能之间的关系组分一确定,工艺过程是控制材料结构的主要手段陶瓷的显微结构对材料性能影响很大,而材料的显微结构在很大程度上依赖于粉体特性。

1、粉体:作为物质的一种存在状态,粉体不同于气体、液体,也不完全同于固体;它是大量固体粒子的集合体,具有很多固体的属性,如物质结构,密度等等;颗粒间存在宏观空隙,颗粒间结合力较弱;同时它具有固体所不具有的流动性。

特种陶瓷

特种陶瓷

绪论,第一章特种陶瓷是一类“采用高度精选的原料,具有能精确控制的化学组成,按照便于控制的制造加工技术的,便于结构设计的,具有优异性能的陶瓷。

”特种陶瓷与传统陶瓷材料差别体现在1、原材料不同2、结构不同3、制备工艺不同4、性能不同5、应用领域不同。

理想粉体:1、形状规则一致,各向同性。

2、粒径均匀且细小3、不结块4、纯度高5、能控制相。

特种陶瓷粉体应有特性:1、化学组成精确2、化学组成均匀性好3、纯度高4、适当小的颗粒尺寸5、球状颗粒且尺寸均匀单一6分散性好无团聚。

团聚体:团聚体由一次颗粒通过表面力吸引或化学键键合形成的颗粒,是很多一次颗粒的集合体。

团聚原因:1、分子之间的范德华力;2、颗粒间的静电引力;3吸附水分的毛细管力;4、颗粒间的磁引力。

5、颗粒表面不平滑引起的机械纠缠力。

由以上原因形成的团聚体为软团聚体,由化学键键合形成的团聚体为硬团聚体,团聚体的形成使体系能量下降。

粉体颗粒表面能:内部原子在周围原子的均等作用下处于能量平衡的状态;而表面原子只是一侧受到内部原子的引力,另一侧则处于一种具有“过剩能量”的状态,该“过剩能量”就称为表面能。

粉体表面颗粒的“过剩能量”就称为粉体颗粒的表面能。

粉体制备方法一般有两种:1、粉碎法;2、合成法。

粉碎法是由粗颗粒来获取细粉的方法,通常采用机械粉碎(机械制粉),现在已经发展到采用气流粉碎,但是不易制得粒径在1微米以下的微细颗粒。

合成法是由离子,原子,分子通过反应、成核和成长、收集、后处理来获得微细颗粒的方法(化学制粉)。

特点:纯度高,粒度可控,均匀性好,颗粒微细,可以实现颗粒在分子水平上的复合均化。

包括固相法,液相法,气相法。

溶胶凝胶法:用于制备纳米颗粒和薄膜。

它将金属化合物或氢氧化物浓溶液溶胶转变为凝胶,再将凝胶干燥后进行煅烧,然后制得氧化物的方法。

优点:1、在溶液中进行反应,均匀度高;2、化学计量准确,易于改型掺杂;3烧结温度可较大降低;4、制得的粉料粒径小,分布均匀,纯度高。

绪论-特种陶瓷材料及工艺

绪论-特种陶瓷材料及工艺

的雷达天线罩、导弹鼻锥等部件。
其他领域应用案例
环保领域
特种陶瓷材料可用于环保领域,如制造高温烟气过滤器、催化剂载 体等,具有优异的耐高温、耐腐蚀和催化性能。
新能源领域
特种陶瓷材料在新能源领域中也有广泛应用,如用于太阳能电池板、 燃料电池中的电解质材料等。
高端装备制造
特种陶瓷材料还可应用于高端装备制造领域,如高精度轴承、超硬刀 具等,提高装备的耐磨性、精度和使用寿命。
感谢您的观看
THANKS
等静压成型
利用液体介质不可压缩的性质和均匀传递压力的特点,将 原料粉末装入橡胶或塑料等软模中,在各方向均匀加压, 得到密度均匀、形状复杂的坯体。
烧结过程控制及优化
根据原料的性质和特种陶瓷的性能要求,选择合适的 烧结温度和时间,以获得致密的显微结构和优异的性
能。
输入 气标氛控题制
在烧结过程中,通过控制气氛的组成和分压,可以实 现对陶瓷材料的氧化、还原、氮化等反应的控制,从 而得到具有特定性能的特种陶瓷。
化学稳定性及耐腐蚀性
耐酸碱腐蚀
特种陶瓷材料如氧化铝、氮化硅等,在 强酸、强碱环境下具有优异的耐腐蚀性。
耐化学腐蚀
特种陶瓷材料在多种化学介质中具有 很高的稳定性,不易发生化学反应。
抗氧化性
高温下,特种陶瓷材料能够抵抗氧化 气氛的侵蚀,保持稳定的化学性质。
生物相容性
部分特种陶瓷材料具有良好的生物相 容性,可用于医疗、生物工程等领域。
成型方法及设备简介
干压成型
将干燥的原料粉末放入模具中,通过压力机施加压力,使 粉末颗粒紧密结合形成所需形状的坯体。
热压铸成型
在加热加压的条件下,使原料粉末与有机添加剂混合后形 成的料浆注入金属模具中,冷却后得到所需形状的坯体。

特种陶瓷 整理版

特种陶瓷 整理版

绪论1名词解释特种陶瓷:采用高度精选的原料,具有能精确控制的化学组成,按照便于控制的制造技术加工的,便于进行结构设计,具有优异特性的陶瓷。

结构陶瓷:具有高硬、高强、耐磨、耐蚀、耐高温、润滑性好等性能,可用作机械结构零部件的陶瓷材料。

功能陶瓷:具有声、光、电、热、磁特性和化学、生物功能的陶瓷材料。

2简述特种陶瓷和传统陶瓷的区别①原材料不同。

传统陶瓷以天然矿物,如粘土、石英和长石等不加处理直接使用;而现代陶瓷则使用经人工合成的高质量粉体作起始材料,突破了传统陶瓷以粘土为主要原料的界线,代之以“高度精选的原料”。

②结构不同。

传统陶瓷的组成由粘土的组成决定,不同产地的陶瓷有不同的质地,所以由于原料的不同导致传统陶瓷材料中化学和相组成的复杂多样、杂质成分和杂质相较多而不易控制,显微结构粗劣而不够均匀,多气孔;先进陶瓷的化学和相组成较简单明晰,纯度高,即使是复相材料,也是人为调控设计添加的,所以先进陶瓷材料的显微结构一般均匀而细密。

③制备工艺不同。

传统陶瓷用的矿物经混合可直接用于湿法成型,如泥料的塑性成型和浆料的注浆成型,材料的烧结温度较低,一般为900℃-1400℃,烧成后一般不需加工;而先进陶瓷一般用高纯度粉体添加有机添加剂才能适合于干法或湿法成型,材料的烧结温度较高,根据材料不同从1200℃到2200℃,烧成后一般尚需加工。

在制备工艺上突破了传统陶瓷以炉窑为主要生产手段的界限,广泛采用诸如真空烧结、保护气氛烧结、热压、热等静压等先进手段。

④性能不同。

由于以上各点的不同,导致传统陶瓷和先进陶瓷材料性能的极大差异,不仅后者在性能上远优于前者,而且特种陶瓷材料还发掘出传统陶瓷材料所没有的性能和用途。

传统陶瓷材料一般限于日用和建筑使用,而特种陶瓷具有优良的物理力学性能,高强、高硬、耐磨、耐腐蚀、耐高温、抗热震,而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能,某些性能远远超过现代优质合金和高分子材料。

特种工程陶瓷简介

特种工程陶瓷简介

国内市场的部分稳定氧化锆的应用正处于起 步发展阶段,主要为:光纤接插件及套管、氧化锆 磨介、刀具、纺织及烟草机械承板等。其中磨介 占据一半以上的份额,以适应对耐磨性和机械强 度提出更高要求的工作条件。出现的氧化锆增韧 氧化铝陶瓷(简称ZTA)材料,主要是在氧化铝母相 基质中引入一定量的相变材料氧化锆所形成的一 种复相精细陶瓷材料。这种复相陶瓷材料既显现 出氧化锆陶瓷高韧性和高强度的特性,又保留了 氧化铝陶瓷高硬度的优点,而且随着这种综合力 学性能的提高,其耐磨性也得到了较大的改善。
碳化物复合陶瓷 微波超高温烧结碳化硼陶瓷装甲材料 高致密的碳化硅/碳化硼复合陶瓷,其弯曲 强度即使在1400°C左右的高温下仍可达500~ 600MPa。该公司采用微波增强反应渗透工艺生 产的碳化硅/碳化硼复合特种陶瓷材料具有比重 小、高硬度、高模量、耐冲击的特点,应用于 新一代的陶瓷装甲。
耐高温、高强度、高韧性陶瓷
SiC陶瓷的高温蠕变速率小。在高温长时 间使用中,SiC陶瓷很稳定,抗氧化性好,强 度较少受环境(例如氧化)的影响。SiC的耐急 冷急热性好,且具有优良的高温抗腐蚀性。因 而,碳化硅常用于制备航天器燃烧室、火箭喷 嘴及轴承、滚珠、机械密封等处。
3、碳化硼陶瓷
碳化硼陶瓷具有高硬度、高熔点和低密 度,良好的物理性能和优越的抗化学侵蚀能 力的特点,是优异的结构陶瓷,在民用、宇 航和军事等领域都得到了重要应用。但碳化 硼陶瓷有两个致命的弱点:①碳化硼陶瓷的 断裂韧性很低;②原子间以牢固的共价键连 接,共价键含量高达93.9%,因而,获得高 密度的烧结体非常困难。
常用结构陶瓷
1、氮化硅陶瓷
氮化硅陶瓷是近20多年来发展起来的新型工程陶瓷, 与一般硅酸盐陶瓷不同之处在于氮化硅的结合属于共价键 性质的结合,因而有结合力强、绝缘性好的特点。用热压 工艺可制得接近理论密度的高致密的氮化硅陶瓷,其弯曲 强度即使在1400℃左右的高温下仍可达500-600MPa,而 经添加剂经过优化后的氮化硅陶瓷1400℃下仍然可以维持 接近1000MPa的强度。通过复相增韧的氮化硅基复合材料, 其断裂韧性可以达到2OllMPa•m1/2。以Y2O3-La03为添加 剂的自韧氮化硅,其室温和1350℃的断裂韧性可分别达到 4-1213 MPa•m1/2和2224MPa•m1/2。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特种陶瓷概述特种陶瓷概述摘要本文主要叙述了国内特种陶瓷市场发展和生产现状,讲述了相关的制备方法和最新的相关技术前沿工艺,最后展望了特种陶瓷未来的发展趋势。

关键词特种陶瓷;市场现状;制备工艺;发展规模、八、,刖言特种陶瓷也称为先进陶瓷、新型陶瓷、高性能陶瓷等,突破了传统陶瓷以黏土为主要原料的界限,主要以氧化物、炭化物、氮化物、硅化物等为主要原料,有时还可以与金属进行复合形成陶瓷金属复合材料,是一种采用现代材料工艺制备的,具有独特和优异性能的陶瓷材料。

已成为现代高性能复合材料的一个研究热点。

特种陶瓷于二十世纪发展起来,在近二、三十年内,新产品不断涌现,在现代工业技术,特别是在咼技术、新技术领域中的地位日趋重要。

许多科学家预言:特种陶瓷在二^一世纪的科学技术发展中,必将占据十分重要的地位。

特种陶瓷不同的化学组成和组织结构决定了它不同的特殊性质和功能,可作为工程结构材料和功能材料应用于机械、电子、化工、冶炼、能源、医学、激光、核反应、宇航等领域。

一些经济发达国家,特别是日本、美国和西欧国家,为了加速新技术革命,为新型产业的发展奠定物质基础,投入大量人力、物力和财力研究开发特种陶瓷,因此,特种陶瓷的发展十分迅速,在技术上也有很大突破。

1.发展现状1.1市场情况:与20年前相比,目前我国特陶行业结构变化巨大,私营企业、外资企业的数量和比重迅猛增加,特别是外资企业增长势头迅猛,约占我国全部特陶企业的10%左右。

当前在电子陶瓷行业中,股份制和三资企业市场竞争力最强。

我国特陶市场的开放和市场规模的潜力,吸引许多国外企业纷纷进入,投资不断增加,规模逐步扩大,其投资模式已从最初的产品输入(经销产品)到生产输入(投资设厂),再到应用研究输入(设立实验室),对我国本土特陶企业带来巨大挑战。

1995年我国特种陶瓷产品销售额80亿元人民币(约合10亿美元),其中电子陶瓷约占70%约56亿元;结构陶瓷占30%约为24亿元。

相当于日本的1/9、美国的1/5 ,与欧洲的市场规模相当。

2015年,特种陶瓷产品产值达到约450 亿元。

45U460400350300250■ 1 J150 1 11003D ■■Q J Q Illi 1 112000 工OS 02016* ■暮 ft H EQ 丄.川虫J ff 爭.贖< r<_ m 1* 国 * 斗州:K鼻呻幅■1¥ p用ffi 1 ^2Q-iS 年4ft宙捕种IBIVB产Otmi2010年,我国特种陶瓷在无机非金属新材料6大领域(玻璃纤维、玻璃钢/复合材料、特种玻璃及深加工玻璃、石英玻璃、特种陶瓷、人工晶体)总需求919.64亿元中以32.6%的比例占首位。

我国特种陶瓷的市场需求巨大,为特种陶瓷产业的发展提供了大好机遇。

今后我国需求较大的特种陶瓷主要产品有:高导热氮化铝陶瓷基片、低介电常数陶瓷基片、陶瓷电容器、敏感陶瓷用瓷料、陶瓷光纤连接器、微波介质陶瓷材料等功能陶瓷产品;以机械行业需要的陶瓷刀具、陶瓷轴承、陶瓷密封环、陶瓷火花塞,建材行业需要的氧化铝研磨介质和衬里、辊道窑陶瓷辊棒,石油化工行业需要的球阀、缸套等耐磨耐腐蚀陶瓷部件等结构陶瓷产品;国防工业需要的特殊陶瓷材料;环境保护需要的生态环境陶瓷材料和生物医用陶瓷材料。

1.2生产厂家我国特种陶瓷生产企业有200多家。

集中分布在北京、上海、天津、江苏、山东、浙江、福建、广东等沿海城市和地区,武汉等华中部分城市地区,西南、西北等偏远地区以原军工三线企业为主。

电子陶瓷材料多集中在北京、广东、福建和长江三角洲地区等。

广东是我国的电子产业生产基地,多集中在佛山、深圳、东莞、惠州等地,已形成了完整的电子元器件产业集群,产业配套体系比较完善;广东省内清远、河源、三水、高要等新型陶瓷生产基地,大都已完成一期投资。

一些新规划陶瓷工业园如四会、广宁、德庆等地已准备建设。

福建已在泉州建设台湾学者创业园,首期项目重点开发生产微波介质陶瓷、压电陶瓷、陶瓷敏感器件、光导陶瓷材料与原器件等先进的特种陶瓷产品。

上海以中科院上海硅酸盐研究所为代表形成了产学研紧密结合的无机新材料产业,在锆钛酸铅等压电陶瓷器件、氧化铝增韧陶瓷、多孔陶瓷等方面具有很大优势。

浙江在杭州、嘉兴、湖州等地集中了压电陶瓷制造基地。

四川在稀土功能陶瓷材料方面已形成产业化。

国产特种陶瓷主要企业有:淄博华光、江苏高淳、唐山陶瓷、中材高新、深圳南玻、江苏华硅、景德镇特陶、河北隆达、湖南新化、绍兴锐克、湖南精诚、湖南泰鑫、福建智胜、南京泰龙、广东风华、珠海粤科清华、沈阳星光、郑州富炜、石家庄依斯特、中山高科等。

境内外资企业主要有:华光菲尼克斯、上海京瓷、上海华克、苏州共立、上海摩根美超、江苏江佳、江苏捷嘉、武进兴勤、珠海西门子-松下、大连须内等。

1.3生产规模我国特种陶瓷的研究和生产在过去二十几年中得到很大发展,但在实际应用、生产水平和工业化程度上仍然与发达国家相差甚远。

预计,到2010年和2015年,我国特种陶瓷产值将分别达到300亿元和450亿元,市场需求巨大。

我国从事特种陶瓷开发研制的高校、科研院所和生产企业已超过300家,其中研发生产功能陶瓷的单位占63.6%,研发生产结构陶瓷的单位占36.4%。

中国科学院、上海硅酸盐研究所、清华大学等对我国特种材料研究起到了重要的推动作用。

特种陶瓷广泛应用于工业机械设备、燃气具行业、汽车(摩托车)行业、纺织工业、机电行业、医疗器械等领域。

随着经济的发展,高科技陶瓷的应用范围也不断扩大。

2009年1-6月,全国规模以上日用陶瓷企业总产量完成75.11亿件,同比增长9.52%;卫生陶瓷完成0.7805亿件,同比增长3.85%;墙地砖完成28.03亿平米,同比增长7.8%;日用陶瓷制品总产值完成598.39亿元,同比增长4.6%; 工业销售产值累计完成580.08亿元,同比增长4.9%;出口交货累计136.50亿元,同比降低10.3%;出口占销售比重23.5%.1-6月,日用陶瓷(包括艺术瓷及未列名陶瓷)出口量为107.41万吨,同比降低12.23%,出口额累计13.08亿美元,同比增长5.96%;墙地砖出口量2.95亿平米,同比降低6.59%,出口额累计12.19 亿美元,同比降低1.25%;卫生瓷累计出口量2149万件,同比降低14.24%,出口额累计3.06亿美元,同比降低15.83%.1-6月,日用陶瓷进口量0.4678万吨,同比降低10.5%;进口额累计0.5986亿美元,同比降低32.06%.墙地砖进口量103.8万平米,同比降低35.36%;进口额1609.56万美元,同比降低37.99%;卫生瓷累计进口13.25万件,同比降低27.63%;进口额累计1253.19万美元,同比降低24.25%.2009年下半年以来,在各方的共同努力下,金融危机的寒冰在日渐消融。

面对金融危机引发的经济颓势,国家及时出台实施了扩内需保增长、提高出口退税率等一系列利好政策和措施,有力拉动了国内市场,对陶瓷企业降低损失、止跌回升产生了积极影响,发挥了重要作用。

但市场的回暖需要一个过程,特别是国际市场,而企业经历了金融危机的洗礼,复原也需要一段时间,因此效果不可能立竿见影。

受房地产影响,陶瓷上半年走势下滑,在下半年,由于内需的强劲拉升,陶瓷的发展速度会得到提升,预计建筑陶瓷全年增速将达到20% 左右,卫生陶瓷增速在15%^右。

受世界经济下滑影响,2009年我国陶瓷产品出口市场不容乐观,出口额将大幅下降。

据有关数字显示,上半年陶瓷砖累计出口 2.96亿平方米,同比下降6.6%,出口金额12.2亿美元,同比下降1.2%;卫生陶瓷累计出口金额 3.06亿美元,同比下降15.8%。

目前,我国经济进入一个企稳回升的关键时期,但经济复苏的基础尚不稳固,陶瓷业也是如此。

虽然国内市场已呈现回暖复苏的积极迹象,房地产升温、国家拉动经济的成效开始显现,但陶瓷企业近几年来的急剧扩张,新建生产线的产能释放也将在近一两年内发生,本就产能严重过剩的陶瓷市场,竞争将会更加激烈。

而国际市场的复苏更有待时日,虽然国内市场广阔,但许多陶瓷企业的外销比例都十分突出,对国际市场的依存度仍然较高,巨大产能的消化,国内市场是完不成的,必须依靠国际市场,从而导致国内陶瓷企业仍面临着尚未全面脱困的艰难时期。

2.特种陶瓷的生产2.1生产工艺特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成形,第三步是烧结。

下图为特种陶瓷制备工艺流程图:2.1.1陶瓷粉体的制备粉料的制备工艺、粉料的性质和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。

由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。

陶瓷材料本身具有硬、脆、难变形等特点。

因此,陶瓷材料的制备工艺显得更加重要。

由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。

因此界面和表面的大小起着至关重要的作用。

就是说,粉末的粒径是描述粉末品质的最重要的参数。

因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。

制备现代陶瓷材料所用粉末都是亚微米(V I卩m)级超细粉末,且现在已发展到纳米级超细粉。

粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著使组分之间发生固相反应,得到所需的物相。

粉末制备方法很多,但大体上可以归结为机械研磨法和化学法两个方面。

传统陶瓷粉料的合成方法是固相反应加机械粉碎(球磨)。

其过程一般为:将所需要的组分或它们的先驱物用机械球磨方法(干磨、湿磨)进行粉碎并混合。

然后在一定的温度下煅烧。

由于达不到微观均匀,而且粉末的细度有限(通常很难小于I卩m而达到亚微米级),因此人们普遍采用化学法得到各种粉末原料。

为了克服机械研磨法的缺点,人们普遍采用化学法得到各种粉末原料。

根据起始组分的形态和反应的不同,化学法可分为以下三种类型:(1)液相合成法液相有熔液和溶液两种。

将陶瓷的熔液制成液滴,以等离子流使之形成雾状,固化后便可获得粉末。

虽然这种方法作为合成金属而广泛使用,但陶瓷的液化必须在高温下进行,因为一面分解,另一面易于引起相分离。

所以广泛采用溶液合成法。

(2)气相合成法气相合成法有蒸发凝聚法(物理气相沉积、PVD和化学气相沉积(CVD法。

由气相合成析出的固体形态有晶须、薄膜、晶粒和微细粉末等。

蒸发凝聚法与液相合成法中的溶液喷雾法一样,将原料在高温下气化,用电弧、等离子体进行急冷而使其凝缩为微细粉料。

(3)气相反应法气相反应法是通过金属化合物蒸气的化学反应而合成的方法。

相关文档
最新文档