立体几何大题练习(文科)
文科高考数学立体几何大题求各类体积方法
![文科高考数学立体几何大题求各类体积方法](https://img.taocdn.com/s3/m/bf1277cda76e58fafbb003b8.png)
A BCD PA B CDP文科高考数学立体几何大题求各类体积方法【三年真题重温】1.【2011⋅新课标全国理,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,∠DAB =60,2AB AD =,PD ⊥底面ABCD . (Ⅰ) 证明:PA ⊥BD ;(Ⅱ) 若PD AD =,求二面角A PB C --的余弦值. 2.【2011 新课标全国文,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形.60,2,DAB AB AD PD ∠==⊥底面ABCD .(Ⅰ) 证明:PA BD ⊥;(Ⅱ) 设1PD AD ==,求棱锥D PBC -的高.根据DE PB PD BD ⋅=⋅,得32DE =.即棱锥D PBC -的高为32.3.【2010 新课标全国理,18】如图,已知四棱锥P-ABCD 的底面为等腰梯形,AB CD,AC ⊥BD ,垂足为H ,PH 是四棱锥的高 ,E 为AD 中点.(1) 证明:PE ⊥BC(2) 若∠APB=∠ADB=60°,求直线PA 与平面PEH 所成角的正弦值【解析】命题意图:本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.4.【2010 新课标全国文,18】如图,已知四棱锥P ABCD -的底面为等腰梯形,AB ∥CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高。
(Ⅰ)证明:平面PAC ⊥ 平面PBD ; (Ⅱ)若6AB =,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积。
5.【2012 新课标全国理】(本小题满分12分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==, D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小。
6.【2012 新课标全国文】(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。
立体几何测试题(文科).docx
![立体几何测试题(文科).docx](https://img.taocdn.com/s3/m/944595ffe518964bce847c5f.png)
立体几何文科试题一、选择题:本大题共12 小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1、设有直线m、n和平面、 . 下列四个命题中,正确的是( )A. 若m∥ , n∥ , 则m∥nB. 若m, n, m∥ , n∥ , 则∥C. 若, m, 则mD. 若, m, m, 则m∥2、已知直线 l , m与平面,,满足I l,l //, m和 m,则有A.且 l m B.且 m //C. m // 且 l m D. // 且r0,1,r r r r3.若a 1 , b1,1,0 ,且a b a ,则实数的值是()A .- 1 B.0 C.1 D.- 24、已知平面α⊥平面β,α∩β= l ,点 A∈α, A l,直线 AB∥ l ,直线 AC⊥l,直线 m∥α, m∥β,则下列四种位置关系中,不一定成立的是()...A. AB∥ mB. AC⊥ mC. AB∥βD. AC⊥β5一个几何体的三视图及长度数据如图,则几何体的表面积与体积分别为8、某几何体的三视图如图所示,当 a b 取最大值时,这个几何体的体积为(A.1B.1C.2D.163329、已知A, B,C , D在同一个球面上 , AB平面 BCD, BC CD , 若 AB6, AC球面距离是()A. B.4253C. D.33310、四面体ABCD的外接球球心在CD 上,且 CD 2,AB 3 ,在外接球面上AππC.2πD.5πA.B.633611、半径为 2cm的半圆纸片做成圆锥放在桌面上,一阵风吹倒它,它的最高处距桌面(A. 4cm B. 2cm C.23cm D.3cm12、有一正方体,六个面上分别写有数字1、 2、 3、 4、 5、 6,有三个人从不同的角3 的对面的数字为 m,4 的对面的数字为 n,那么 m+n 的值为()A.3B. 7C. 8D. 11A 72,3B 82,3C 73D 832,2,22二.填空题:本大题共 4 个小题。
高中数学立体几何大题练习(文科)
![高中数学立体几何大题练习(文科)](https://img.taocdn.com/s3/m/c57e2e4bf8c75fbfc67db20d.png)
立体几何大题练习(文科):1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD.(1)求证:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积.【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD⊥平面SAD,运用面面垂直的判定定理即可得证;(2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值.【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=,设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°,可得BD=a,∠CBD=45°,∠ABD=45°,由余弦定理可得AD==a,则BD⊥AD,由面SAD⊥底面ABCD.可得BD⊥平面SAD,又BD⊂平面SBD,可得平面SBD⊥平面SAD;(2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为,由AD=SD=a,在△SAD中,可得SA=2SDsin60°=a,△SAD的边AD上的高SH=SDsin60°=a,由SH⊥平面BCD,可得×a××a2=,解得a=1,由BD⊥平面SAD,可得BD⊥SD,SB===2a,又AB=2a,在等腰三角形SBA中,边SA上的高为=a,则△SAB的面积为×SA×a=a=.【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥的体积公式的运用,以及推理能力和空间想象能力,属于中档题.2.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊂平面ABC,AB⊂平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.3.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M和N分别是B1C1和BC的中点.(1)求证:MB∥平面AC1N;(2)求证:AC⊥MB.【分析】(1)证明MC1NB为平行四边形,所以C1N∥MB,即可证明MB∥平面AC1N;(2)证明AC⊥平面BCC1B1,即可证明AC⊥MB.【解答】证明:(1)证明:在三棱柱ABC﹣A1B1C1中,因为点M,N分别是B1C1,BC的中点,所以C1M∥BN,C1M=BN.所以MC1NB为平行四边形.所以C1N∥MB.因为C1N⊂平面AC1N,MB⊄平面AC1N,所以MB∥平面AC1N;(2)因为CC1⊥底面ABC,所以AC⊥CC1.因为AC⊥BC,BC∩CC1=C,所以AC⊥平面BCC1B1.因为MB⊂平面BCC1B1,所以AC⊥MB.【点评】本题考查线面平行的判定,考查线面垂直的判定与性质,考查学生分析解决问题的能力,属于中档题.4.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅰ)已知PD=DC=AD=2,求点P到平面BMQ的距离.【分析】(1)连结AC交BQ于N,连结MN,只要证明MN∥PA,利用线面平行的判定定理可证;(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离.【解答】解:(1)连结AC交BQ于N,连结MN,因为∠ADC=90°,Q为AD的中点,所以N为AC的中点.…(2分)当M为PC的中点,即PM=MC时,MN为△PAC的中位线,故MN∥PA,又MN⊂平面BMQ,所以PA∥平面BMQ.…(5分)(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离,所以V P=V A﹣BMQ=V M﹣ABQ,﹣BMQ取CD的中点K,连结MK,所以MK∥PD,,…(7分)又PD⊥底面ABCD,所以MK⊥底面ABCD.又,PD=CD=2,所以AQ=1,BQ=2,,…(10分)=V A﹣BMQ=V M﹣ABQ=.,…(11分)所以V P﹣BMQ则点P到平面BMQ的距离d=…(12分)【点评】本题考查了线面平行的判定定理的运用以及利用三棱锥的体积求点到直线的距离.5.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.【分析】(1)证明B1C1∥DE,即可证明B1C1∥平面A1DE;(2)证明DE⊥平面ACC1A1,即可证明平面A1DE⊥平面ACC1A1.【解答】证明:(1)因为D,E分别是AB,AC的中点,所以DE∥BC,…(2分)又因为在三棱柱ABC﹣A1B1C1中,B1C1∥BC,所以B1C1∥DE…(4分)又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE…(6分)(2)在直三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE…(8分)又BC⊥AC,DE∥BC,所以DE⊥AC,…(10分)又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1…(12分)又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1…(14分)【点评】本题考查线面平行、线面垂直、面面垂直的判定,考查学生分析解决问题的能力,属于中档题.6.在四棱锥P﹣ABCD中,PC⊥底面ABCD,M,N分别是PD,PA的中点,AC⊥AD,∠ACD=∠ACB=60°,PC=AC.(1)求证:PA⊥平面CMN;(2)求证:AM∥平面PBC.【分析】(1)推导出MN∥AD,PC⊥AD,AD⊥AC,从而AD⊥平面PAC,进而AD ⊥PA,MN⊥PA,再由CN⊥PA,能证明PA⊥平面CMN.(2)取CD的中点为Q,连结MQ、AQ,推导出MQ∥PC,从而MQ∥平面PBC,再求出AQ∥平面,从而平面AMQ∥平面PCB,由此能证明AM∥平面PBC.【解答】证明:(1)∵M,N分别为PD、PA的中点,∴MN为△PAD的中位线,∴MN∥AD,∵PC⊥底面ABCD,AD⊂平面ABCD,∴PC⊥AD,又∵AD⊥AC,PC∩AC=C,∴AD⊥平面PAC,∴AD⊥PA,∴MN⊥PA,又∵PC=AC,N为PA的中点,∴CN⊥PA,∵MN∩CN=N,MN⊂平面CMN,CM⊂平面CMN,∴PA⊥平面CMN.解(2)取CD的中点为Q,连结MQ、AQ,∵MQ是△PCD的中位线,∴MQ∥PC,又∵PC⊂平面PBC,MQ⊄平面PBC,∴MQ∥平面PBC,∵AD⊥AC,∠ACD=60°,∴∠ADC=30°.∴∠DAQ=∠ADC=30°,∴∠QAC=∠ACQ=60°,∴∠ACB=60°,∴AQ∥BC,∵AQ⊄平面PBC,BC⊂平面PBC,∴AQ∥平面PBC,∵MQ∩AQ=Q,∴平面AMQ∥平面PCB,∵AM⊂平面AMQ,∴AM∥平面PBC.【点评】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的位置关系,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.7.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,E、F分别为PC、BD的中点.(1)求证:EF∥平面PAD;(2)求证:面PAB⊥平面PDC.【分析】(1)连接AC,则F是AC的中点,E为PC 的中点,证明EF∥PA,利用直线与平面平行的判定定理证明EF∥平面PAD;(2)先证明CD⊥PA,然后证明PA⊥PD.利用直线与平面垂直的判定定理证明PA⊥平面PCD,最后根据面面垂直的判定定理即可得到面PAB⊥面PDC.【解答】证明:(1)连接AC,由正方形性质可知,AC与BD相交于BD的中点F,F也为AC中点,E为PC中点.所以在△CPA中,EF∥PA,又PA⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD;(2)平面PAD⊥平面ABCD平面PAD∩面ABCD=AD⇒CD⊥平面PAD⇒CD⊥PA正方形ABCD中CD⊥ADPA⊂平面PADCD⊂平面ABCD又,所以PA2+PD2=AD2所以△PAD是等腰直角三角形,且,即PA⊥PD.因为CD∩PD=D,且CD、PD⊂面PDC所以PA⊥面PDC又PA⊂面PAB,所以面PAB⊥面PDC.【点评】本题考查直线与平面垂直的判定,直线与平面平行的判定的应用,考查逻辑推理能力.8.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且PA=AD=2,BD=2,E、F分别为AD、PC中点.(1)求点F到平面PAB的距离;(2)求证:平面PCE⊥平面PBC.【分析】(1)取PB的中点G,连接FG、AG,证得底面ABCD为正方形.再由中位线定理可得FG∥AE且FG=AE,四边形AEFG是平行四边形,则AG∥FE,运用线面平行的判定定理可得EF∥平面PAB,点F与点E到平面PAB的距离相等,运用线面垂直的判定和性质,证得AD⊥平面PAB,即可得到所求距离;(2)运用线面垂直的判定和性质,证得BC⊥平面PAB,EF⊥平面PBC,再由面面垂直的判定定理,即可得证.【解答】(1)解:如图,取PB的中点G,连接FG、AG,因为底面ABCD为菱形,且PA=AD=2,,所以底面ABCD为正方形.∵E、F分别为AD、PC中点,∴FG∥BC,AE∥BC,,,∴FG∥AE且FG=AE,∴四边形AEFG是平行四边形,∴AG∥FE,∵AG⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB,∴点F与点E到平面PAB的距离相等,由PA⊥平面ABCD,可得PA⊥AD,又AD⊥AB,PA∩AB=A,AD⊥平面PAB,则点F到平面PAB的距离为EA=1.(2)证明:由(1)知AG⊥PB,AG∥EF,∵PA⊥平面ABCD,∴BC⊥PA,∵BC⊥AB,AB∩BC=B,∴BC⊥平面PAB,由AG⊂平面PAB,∴BC⊥AG,又∵PB∩BC=B,∴AG⊥平面PBC,∴EF⊥平面PBC,∵EF⊂平面PCE,∴平面PCE⊥平面PBC.【点评】本题考查空间点到平面的距离,注意运用转化思想,考查线面平行和垂直的判定和性质,以及面面垂直的判定,熟练掌握定理的条件和结论是解题的关键,属于中档题.9.在四棱锥P﹣ABCD中,底面ABCD为直角梯形,∠BAD=∠ADC=90°,DC=2AB=2AD,BC⊥PD,E,F分别是PB,BC的中点.求证:(1)PC∥平面DEF;(2)平面PBC⊥平面PBD.【分析】(1)由中位线定理可得PC∥EF,故而PC∥平面DEF;(2)由直角梯形可得BC⊥BD,结合BC⊥PD得出BC⊥平面PBD,于是平面PBC ⊥平面PBD.【解答】证明:(1)∵E,F分别是PB,BC的中点,∴PC∥EF,又PC⊄平面DEF,EF⊂平面DEF,∴PC∥平面DEF.(2)取CD的中点M,连结BM,则AB DM,又AD⊥AB,AB=AD,∴四边形ABMD是正方形,∴BM⊥CD,BM=CM=DM=1,BD=,∴BC=,∴BD2+BC2=CD2,∴BC⊥BD,又BC⊥PD,BD∩PD=D,∴BC⊥平面PBD,又BC⊂平面PBC,∴平面PBC⊥平面PBD.【点评】本题考查了线面平行,面面垂直的判定,属于中档题.10.如图,在三棱锥A﹣BCD中,E,F分别为BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平ABD面;(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.【分析】(1)利用线面平行的性质可得BD∥EF,从而得出EF∥平面ABD;(2)由AE⊥平面BCD可得AE⊥CD,由BD⊥CD,BD∥EF可得EF⊥CD,从而有CD⊥平面AEF,故而平面AEF⊥平面ACD.【解答】证明:(1)∵BD∥平面AEF,BD⊂平面BCD,平面BCD∩平面AEF=EF,∴BD∥EF,又BD⊂平面ABD,EF⊄平面ABD,∴EF∥平ABD面.(2)∵AE⊥平面BCD,CD⊂平面BCD,∴AE⊥CD,由(1)可知BD∥EF,又BD⊥CD,∴EF⊥CD,又AE∩EF=E,AE⊂平面AEF,EF⊂平面AEF,∴CD⊥平面AEF,又CD⊂平面ACD,∴平面AEF⊥平面ACD.【点评】本题考查了线面平行、线面垂直的性质,面面垂直的判定,属于中档题.。
立体几何大题练习(文科)
![立体几何大题练习(文科)](https://img.taocdn.com/s3/m/0fc42eeac5da50e2534d7f83.png)
立体几何大题演习(文科):1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,正面SAD⊥底面ABCD.(1)求证:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求正面△SAB 的面积.【剖析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,应用勾股定理和余弦定理,可得AD,由线面垂直的剖断定理可得BD⊥平面SAD,应用面面垂直的剖断定理即可得证;(2)应用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,应用勾股定理和余弦定理,可得SA,SB,应用三角形的面积公式,即可得到所求值.【解答】(1)证实:在梯形ABCD 中,AB∥DC,∠ABC=90°,BC=CD=,设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°,可得BD=a,∠CBD=45°,∠ABD=45°,由余弦定理可得AD==a,则BD⊥AD,由面SAD⊥底面ABCD.可得BD⊥平面SAD,又BD⊂平面SBD,可得平面SBD⊥平面SAD;(2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为,由AD=SD=a,在△SAD中,可得SA=2SDsin60°=a,△SAD的边AD上的高SH=SDsin60°=a,由SH⊥平面BCD,可得×a××a2=,解得a=1,由BD⊥平面SAD,可得BD⊥SD,SB===2a,又AB=2a,在等腰三角形SBA中,边SA上的高为=a,则△SAB的面积为×SA×a=a=.【点评】本题考核面面垂直的剖断定理的应用,留意应用转化思惟,考核三棱锥的体积公式的应用,以及推理才能和空间想象才能,属于中档题.2.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E.F(E与A.D不重合)分离在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【剖析】(1)应用AB∥EF及线面平行剖断定理可得结论;(2)经由过程取线段CD上点G,贯穿连接FG.EG使得FG∥BC,则EG∥AC,应用线面垂直的性质定理可知FG⊥AD,联合线面垂直的剖断定理可知AD⊥平面EFG,从而可得结论.【解答】证实:(1)因为AB⊥AD,EF⊥AD,且A.B.E.F四点共面,所以AB∥EF,又因为EF⊂平面ABC,AB⊂平面ABC,所以由线面平行剖断定理可知:EF∥平面ABC;(2)在线段CD上取点G,贯穿连接FG.EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考核线面平行及线线垂直的剖断,考核空间想象才能,考核转化思惟,涉及线面平行剖断定理,线面垂直的性质及剖断定理,留意解题办法的积聚,属于中档题.3.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M 和N分离是B1C1和BC的中点.(1)求证:MB∥平面AC1N;(2)求证:AC⊥MB.【剖析】(1)证实MC1NB为平行四边形,所以C1N∥MB,即可证实MB∥平面AC1N;(2)证实AC⊥平面BCC1B1,即可证实AC⊥MB.【解答】证实:(1)证实:在三棱柱ABC﹣A1B1C1中,因为点M,N分离是B1C1,BC的中点,所以C1M∥BN,C1M=BN.所以MC1NB为平行四边形.所以C1N∥MB.因为C1N⊂平面AC1N,MB⊄平面AC1N,所以MB∥平面AC1N;(2)因为CC1⊥底面ABC,所以AC⊥CC1.因为AC⊥BC,BC∩CC1=C,所以AC⊥平面BCC1B1.因为MB⊂平面BCC1B1,所以AC⊥MB.【点评】本题考核线面平行的剖断,考核线面垂直的剖断与性质,考核学生剖析解决问题的才能,属于中档题.4.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证实:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.【剖析】(1)贯穿连接AC交BQ于N,贯穿连接MN,只要证实MN∥PA,应用线面平行的剖断定理可证;(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离.【解答】解:(1)贯穿连接AC交BQ于N,贯穿连接MN,因为∠ADC=90°,Q为AD的中点,所以N为AC的中点.…(2分)当M为PC的中点,即PM=MC时,MN为△PAC的中位线,故MN∥PA,又MN⊂平面BMQ,所以PA∥平面BMQ.…(5分)(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离,所以VP﹣BMQ=VA﹣BMQ=VM﹣ABQ,取CD的中点K,贯穿连接MK,所以MK∥PD,,…(7分)又PD⊥底面ABCD,所以MK⊥底面ABCD.又,PD=CD=2,所以AQ=1,BQ=2,,…(10分)所以VP﹣BMQ=VA﹣BMQ=VM﹣ABQ=.,…(11分)则点P到平面BMQ的距离d=…(12分)【点评】本题考核了线面平行的剖断定理的应用以及应用三棱锥的体积求点到直线的距离.5.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分离是AB,AC 的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.【剖析】(1)证实B1C1∥DE,即可证实B1C1∥平面A1DE;(2)证实DE⊥平面ACC1A1,即可证实平面A1DE⊥平面ACC1A1.【解答】证实:(1)因为D,E分离是AB,AC的中点,所以DE∥BC,…(2分)又因为在三棱柱ABC﹣A1B1C1中,B1C1∥BC,所以B1C1∥DE…(4分)又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE…(6分)(2)在直三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE…(8分)又BC⊥AC,DE∥BC,所以DE⊥AC,…(10分)又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1…(12分)又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1…(14分)【点评】本题考核线面平行.线面垂直.面面垂直的剖断,考核学生剖析解决问题的才能,属于中档题.6.在四棱锥P﹣ABCD中,PC⊥底面ABCD,M,N分离是PD,PA的中点,AC⊥AD,∠ACD=∠ACB=60°,PC=AC.(1)求证:PA⊥平面CMN;(2)求证:AM∥平面PBC.【剖析】(1)推导出MN∥AD,PC⊥AD,AD⊥AC,从而AD⊥平面PAC,进而AD⊥PA,MN⊥PA,再由CN⊥PA,能证实PA⊥平面CMN.(2)取CD的中点为Q,贯穿连接MQ.AQ,推导出MQ∥PC,从而MQ∥平面PBC,再求出AQ∥平面,从而平面AMQ∥平面PCB,由此能证实AM∥平面PBC.【解答】证实:(1)∵M,N分离为PD.PA的中点,∴MN为△PAD的中位线,∴MN∥AD,∵PC⊥底面ABCD,AD⊂平面ABCD,∴PC⊥AD,又∵AD⊥AC,PC∩AC=C,∴AD⊥平面PAC,∴AD⊥PA,∴MN⊥PA,又∵PC=AC,N为PA的中点,∴CN⊥PA,∵MN∩CN=N,MN⊂平面CMN,CM⊂平面CMN,∴PA⊥平面CMN.解(2)取CD的中点为Q,贯穿连接MQ.AQ,∵MQ是△PCD的中位线,∴MQ∥PC,又∵PC⊂平面PBC,MQ⊄平面PBC,∴MQ∥平面PBC,∵AD⊥AC,∠ACD=60°,∴∠ADC=30°.∴∠DAQ=∠ADC=30°,∴∠QAC=∠ACQ=60°,∴∠ACB=60°,∴AQ∥BC,∵AQ⊄平面PBC,BC⊂平面PBC,∴AQ∥平面PBC,∵MQ∩AQ=Q,∴平面AMQ∥平面PCB,∵AM⊂平面AMQ,∴AM∥平面PBC.【点评】本题考核线面垂直.线面平行的证实,考核空间中线线.线面.面面间的地位关系,考核推理论证才能.运算求解才能.空间想象才能,考核化归与转化思惟.数形联合思惟.函数与方程思惟,是中档题.7.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,正面PAD⊥底面ABCD,且PA=PD=AD,E.F分离为PC.BD的中点.(1)求证:EF∥平面PAD;(2)求证:面PAB⊥平面PDC.【剖析】(1)衔接AC,则F是AC的中点,E为PC 的中点,证实EF∥PA,应用直线与平面平行的剖断定理证实EF∥平面PAD;(2)先证实CD⊥PA,然后证实PA⊥PD.应用直线与平面垂直的剖断定理证实PA⊥平面PCD,最后依据面面垂直的剖断定理即可得到面PAB⊥面PDC.【解答】证实:(1)衔接AC,由正方形性质可知,AC与BD订交于BD的中点F,F也为AC中点,E为PC中点.所以在△CPA中,EF∥PA,又PA⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD;(2)平面PAD⊥平面ABCD平面PAD∩面ABCD=AD⇒CD⊥平面PAD⇒CD⊥PA正方形ABCD中CD⊥ADPA⊂平面PADCD⊂平面ABCD又,所以PA2+PD2=AD2所以△PAD是等腰直角三角形,且,即PA⊥PD.因为CD∩PD=D,且CD.PD⊂面PDC所以PA⊥面PDC又PA⊂面PAB,所以面PAB⊥面PDC.【点评】本题考核直线与平面垂直的剖断,直线与平面平行的剖断的应用,考核逻辑推理才能.8.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且PA=AD=2,BD=2,E.F分离为AD.PC中点.(1)求点F到平面PAB的距离;(2)求证:平面PCE⊥平面PBC.【剖析】(1)取PB的中点G,衔接FG.AG,证得底面ABCD为正方形.再由中位线定理可得FG∥AE且FG=AE,四边形AEFG是平行四边形,则AG∥FE,应用线面平行的剖断定理可得EF∥平面PAB,点F 与点E到平面PAB的距离相等,应用线面垂直的剖断和性质,证得AD⊥平面PAB,即可得到所求距离;(2)应用线面垂直的剖断和性质,证得BC⊥平面PAB,EF⊥平面PBC,再由面面垂直的剖断定理,即可得证.【解答】(1)解:如图,取PB的中点G,衔接FG.AG,因为底面ABCD为菱形,且PA=AD=2,,所以底面ABCD为正方形.∵E.F分离为AD.PC中点,∴FG∥BC,AE∥BC,,,∴FG∥AE且FG=AE,∴四边形AEFG是平行四边形,∴AG∥FE,∵AG⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB,∴点F与点E到平面PAB的距离相等,由PA⊥平面ABCD,可得PA⊥AD,又AD⊥AB,PA∩AB=A,AD⊥平面PAB,则点F到平面PAB的距离为EA=1.(2)证实:由(1)知AG⊥PB,AG∥EF,∵PA⊥平面ABCD,∴BC⊥PA,∵BC⊥AB,AB∩BC=B,∴BC⊥平面PAB,由AG⊂平面PAB,∴BC⊥AG,又∵PB∩BC=B,∴AG⊥平面PBC,∴EF⊥平面PBC,∵EF⊂平面PCE,∴平面PCE⊥平面PBC.【点评】本题考核空间点到平面的距离,留意应用转化思惟,考核线面平行和垂直的剖断和性质,以及面面垂直的剖断,闇练控制定理的前提和结论是解题的症结,属于中档题.9.在四棱锥P﹣ABCD中,底面ABCD为直角梯形,∠BAD=∠ADC=90°,DC=2AB=2AD,BC⊥PD,E,F分离是PB,BC的中点.求证:(1)PC∥平面DEF;(2)平面PBC⊥平面PBD.【剖析】(1)由中位线定理可得PC∥EF,故而PC∥平面DEF;(2)由直角梯形可得BC⊥BD,联合BC⊥PD得出BC⊥平面PBD,于是平面PBC⊥平面PBD.【解答】证实:(1)∵E,F分离是PB,BC的中点,∴PC∥EF,又PC⊄平面DEF,EF⊂平面DEF,∴PC∥平面DEF.(2)取CD的中点M,贯穿连接BM,则AB DM,又AD⊥AB,AB=AD,∴四边形ABMD是正方形,∴BM⊥CD,BM=CM=DM=1,BD=,∴BC=,∴BD2+BC2=CD2,∴BC⊥BD,又BC⊥PD,BD∩PD=D,∴BC⊥平面PBD,又BC⊂平面PBC,∴平面PBC⊥平面PBD.【点评】本题考核了线面平行,面面垂直的剖断,属于中档题.10.如图,在三棱锥A﹣BCD中,E,F分离为BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平ABD面;(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.【剖析】(1)应用线面平行的性质可得BD∥EF,从而得出EF∥平面ABD;(2)由AE⊥平面BCD可得AE⊥CD,由BD⊥CD,BD∥EF可得EF⊥CD,从而有CD⊥平面AEF,故而平面AEF⊥平面ACD.【解答】证实:(1)∵BD∥平面AEF,BD⊂平面BCD,平面BCD∩平面AEF=EF,∴BD∥EF,又BD⊂平面ABD,EF⊄平面ABD,∴EF∥平ABD面.(2)∵AE⊥平面BCD,CD⊂平面BCD,∴AE⊥CD,由(1)可知BD∥EF,又BD⊥CD,∴EF⊥CD,又AE∩EF=E,AE⊂平面AEF,EF⊂平面AEF,∴CD⊥平面AEF,又CD⊂平面ACD,∴平面AEF⊥平面ACD.【点评】本题考核了线面平行.线面垂直的性质,面面垂直的剖断,属于中档题.。
高考立体几何文科大题及答案
![高考立体几何文科大题及答案](https://img.taocdn.com/s3/m/856345e9a58da0116c174985.png)
高考立体几何大题及答案1.(2009 全国卷Ⅰ文)如图,四棱锥S ABCD中,底面ABCD 为矩形,SD 底面ABCD ,AD 2 ,DC SD 2,点M 在侧棱SC上,∠ABM=60。
(I)证明:M 是侧棱SC的中点;求二面角S AM B的大小。
2.(2009 全国卷Ⅱ文)如图,直三棱柱ABC-A 1B1C1 中,AB ⊥AC,D 、E 分别为AA 1、B1C 的中点,DE⊥平面BCC1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BD-C 为60°,求B1C 与平面BCD所成的角的大小A 1 C1 B 1D EAC B3.(2009 浙江卷文)如图,DC 平面ABC ,EB / /DC ,AC BC EB 2DC 2 ,ACB 120 ,P,Q 分别为AE, AB 的中点.(I)证明:PQ / / 平面ACD ;(II )求AD 与平面ABE所成角的正弦值.4.(2009 北京卷文)如图,四棱锥P ABCD 的底面是正方形,PD 底面ABCD ,点E 在棱PB 上.(Ⅰ)求证:平面AEC 平面PDB ;(Ⅱ)当PD 2AB 且 E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.5.(2009 江苏卷)如图,在直三棱柱ABC A1B1C1 中,E、F 分别是 A B 、A1C 的中点,点D1在B C 上,A1D B1C1 1 。
求证:(1)EF∥平面ABC ;(2)平面A FD 平面BB1C1C .16.(2009安徽卷文)如图,ABCD的边长为2的正方形,直线l与平面ABCD平行,g和F式l上的两个不同点,且EA=ED,FB=FC,和是平面ABCD内的两点,和都与平面ABCD垂直,(Ⅰ)证明:直线垂直且平分线段AD:(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面体ABCDEF的体积。
7.(2009江西卷文)如图,在四棱锥P ABCD中,底面ABCD是矩形,PA平面ABCD,PA AD4,AB2.以BD的中点O为球心、BD为直径的球P面交PD于点M.(1)求证:平面ABM⊥平面PCD;(2)求直线PC与平面ABM所成的角;M(3)求点O到平面ABM的距离.DAOBC8.(2009四川卷文)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB AE,FA FE,AEF45(I)求证:EF平面BCE;(II)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE(III)求二面角F BD A的大小。
高考复习 立体几何大题第一问精练(文科)
![高考复习 立体几何大题第一问精练(文科)](https://img.taocdn.com/s3/m/1279b53ead02de80d4d840a4.png)
高考复习 立体几何大题第一问精练题型1 线线平行、垂直1.(2016新课标Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD,故AC ∥EF ,由此得EF ⊥HD , 折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′.2.(2015新课标Ⅱ卷)如图,长方体ABCD-A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面 与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由).解 (1)交线围成的正方形EHGF 如图:题型2 线面平行3.(2017新课标Ⅱ卷)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC=21AD ,∠BAD=∠ABC=90°.(1)证明:直线BC ∥平面PAD.4.(2016新课标Ⅲ卷)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面PAB.解析 (Ⅰ)由已知得AM=32AD=2.取BP 的中点T ,连结AT ,TN ,由N 为PC 中点知TN ∥BC ,TN=21BC=2.(3分) 又AD ∥BC ,故TN ∥AM ,故四边形AMNT 为平行四边形,于是MN ∥AT.因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB.(6分)5.(2016四川卷)如图,在四棱锥PABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =21AD.(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由.(2)证明:平面PAB ⊥平面PBD.(1)解 取棱AD 的中点M(M ∈平面PAD),点M 即为所求的一个点,理由如下:因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM.所以四边形AMCB 是平行四边形,所以CM ∥AB. 又AB ⊂平面PAB ,CM ⊄平面PAB ,所以CM ∥平面PAB.(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)6.(2014新课标Ⅱ卷)如图,四棱锥PABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB∥平面AEC.(1)证明设BD与AC的交点为O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.又因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.题型3 线面垂直7.(2017新课标Ⅲ卷)如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD.[解析] (1)证明:取AC中点O,连OD,OB,∵AD=CD,O为AC中点,∴AC⊥OD,又∵△ABC是等边三角形,∴AC⊥OB,又∵OB∩OD=O,∴AC⊥平面OBD,BD 平面OBD,∴AC⊥BD;8.(2018新课标Ⅱ卷)如图,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC.(1)证明:∵AB=BC=22,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;9.(2015广东卷)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ;(2)证明:BC ⊥PD .解 (1)因为四边形ABCD 是长方形,所以BC ∥AD ,因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以BC ∥平面PDA.(2)因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,BC ⊂平面ABCD ,所以BC ⊥平面PDC ,因为PD ⊂平面PDC ,所以BC ⊥PD.10.(2016北京卷)如图,在四棱锥PABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC.(1)求证:DC ⊥平面PAC ;(2)求证:平面PAB ⊥平面PAC.(1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC ⊥DC.又AC ⊥DC ,PC ∩AC =C ,PC ⊂平面PAC ,AC ⊂平面PAC ,∴CD ⊥平面PAC.(2)证明 ∵AB ∥CD ,CD ⊥平面PAC ,∴AB ⊥平面PAC ,又AB ⊂平面PAB ,∴平面PAB ⊥平面PAC.11.(2014山东卷)如图,四棱锥PABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =21AD ,E ,F 分别为线段AD ,PC 的中点.(1)求证:AP ∥平面BEF ;(2)求证:BE ⊥平面PAC.证明 (1)设AC ∩BE =O ,连接OF ,EC.由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC , 所以AE ∥BC ,AE =AB =BC ,所以四边形ABCE 为菱形,所以O 为AC 的中点.又F为PC的中点,所以在△PAC中,可得AP∥OF.又OF⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC.所以四边形BCDE为平行四边形,所以BE∥CD.又AP⊥平面PCD,所以AP⊥CD,所以AP⊥BE.因为四边形ABCE为菱形,所以BE⊥AC.又AP∩AC=A,AP、AC⊂平面PAC,所以BE⊥平面PAC.12.(2016新课标Ⅰ卷)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点.解:(Ⅰ)证明:∵P−ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;题型4 面面垂直13.(2018新课标Ⅲ卷)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC.解:(1)证明:在半圆中,DM⊥MC,∵正方形ABCD所在的平面与半圆弧所在平面垂直,∴AD⊥平面BCM,则AD⊥MC,∵AD∩DM=D,∴MC⊥平面ADM,∵MC⊂平面MBC,∴平面AMD⊥平面BMC.14.(2018新课标Ⅰ卷)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC.解:(1)证明:∵在平行四边形ABCM 中,∠ACM=90°,∴AB ⊥AC ,又AB ⊥DA .且AD ∩AB=A ,∴AB ⊥面ADC ,∴AB ⊂面ABC ,∴平面ACD ⊥平面ABC ;15.(2017新课标Ⅰ卷)如图,在四棱锥P ABCD -中,AB CD ∥中,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD .(1)证明:∵90BAP CDP ∠=∠=︒∴PA AB ⊥,PD CD ⊥又∵AB CD ∥,∴PD AB ⊥又∵PD PA P =,PD 、PA ⊂平面PAD ∴AB ⊥平面PAD ,又AB ⊂平面PAB ∴平面PAB ⊥平面PAD16.(2015新课标Ⅰ卷)如图,四边形ABCD 为菱形,G 是AC 与BD 的交点,BE ⊥平面ABCD.(1)证明:平面AEC ⊥平面BED.解 (1)因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD ,所以AC ⊥BE.所以AC ⊥平面BED ,又AC ⊂平面AEC ,所以平面AEC ⊥平面BED.17.(2015湖南卷)如图,直三棱柱ABC-A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点.(1)证明:平面AEF ⊥平面B 1BCC 1.(1)证明∵△ABC为正三角形,E为BC中点,∴AE⊥BC,∴又B1B⊥平面ABC,AE⊂平面ABC,∴B1B⊥AE,∴由B1B∩BC=B知,AE⊥平面B1BCC1,又由AE⊂平面AEF,∴平面AEF⊥平面B1BCC1.。
文科立体几何大题训练
![文科立体几何大题训练](https://img.taocdn.com/s3/m/75234394f524ccbff1218468.png)
文科立体几何大题训练1.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.2.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.3.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.4.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.5.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,E为PA 的中点,∠BAD=60°.(Ⅰ)求证:PC∥平面EBD;(Ⅱ)求三棱锥P﹣EDC的体积.6.如图,在三棱锥D﹣ABC中,DA=DB=DC,E为AC上的一点,DE⊥平面ABC,F为AB的中点.(Ⅰ)求证:平面ABD⊥平面DEF;(Ⅱ)若AD⊥DC,AC=4,∠BAC=45°,求四面体F﹣DBC的体积.7.如图,四边形ABCD是正方形,平面ABCD⊥平面ABE,AF∥BE,AB⊥BE,AB=BE=2,AF=1.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求证:AC∥平面DEF;(III)求三棱锥D﹣FEB的体积.8.如图,四棱锥S﹣ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD.(1)求证:SO⊥平面ABCD;(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A﹣PCD 的体积.文科立体几何大题训练参考答案与试题解析一.解答题(共8小题)1.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.【解答】(1)证明:四棱锥P﹣ABCD中,∵∠BAD=∠ABC=90°.∴BC∥AD,∵AD⊂平面PAD,BC⊄平面PAD,∴直线BC∥平面PAD;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.设AD=2x,则AB=BC=x,CD=,O是AD的中点,连接PO,OC,CD的中点为:E,连接OE,则OE=,PO=,PE==,△PCD面积为2,可得:=2,即:,解得x=2,PO=2.则V P﹣ABCD=×(BC+AD)×AB×PO==4.2.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面PAC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE=PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC=S△ABC=××2×2=1,则三棱锥E﹣BCD的体积为DE•S△BDC=×1×1=.3.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(Ⅰ)证明MN∥平面PAB;(Ⅱ)求四面体N﹣BCM的体积.【解答】证明:(Ⅰ)取BC中点E,连结EN,EM,∵N为PC的中点,∴NE是△PBC的中位线∴NE∥PB,又∵AD∥BC,∴BE∥AD,∵AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,∴BE=BC=AM=2,∴四边形ABEM是平行四边形,∴EM∥AB,∴平面NEM∥平面PAB,∵MN⊂平面NEM,∴MN∥平面PAB.解:(Ⅱ)取AC中点F,连结NF,∵NF是△PAC的中位线,∴NF∥PA,NF==2,又∵PA⊥面ABCD,∴NF⊥面ABCD,如图,延长BC至G,使得CG=AM,连结GM,∵AM CG,∴四边形AGCM是平行四边形,∴AC=MG=3,又∵ME=3,EC=CG=2,∴△MEG的高h=,∴S△BCM===2,∴四面体N﹣BCM的体积V N﹣BCM===.4.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.【解答】证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.5.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,E为PA 的中点,∠BAD=60°.(Ⅰ)求证:PC∥平面EBD;(Ⅱ)求三棱锥P﹣EDC的体积.【解答】(Ⅰ)证明:连接AC,BD,设AC与BD相交于点O,连接OE.由题意知,底面ABCD是菱形,则O为AC的中点,又E为AP的中点,∴OE∥CP,∵OE⊂平面BDE,PC⊄平面BDE,∴PC∥平面BDE;(Ⅱ)解:∵E为PA的中点,∴,∵四边形ABCD是菱形,∴AC⊥BD,又∵PA⊥平面ABCD,∴PA⊥BD,又PA∩AC=A,∴DO⊥平面PAC,即DO是三棱锥D﹣PCE的高,DO=1,则.6.如图,在三棱锥D﹣ABC中,DA=DB=DC,E为AC上的一点,DE⊥平面ABC,F为AB的中点.(Ⅰ)求证:平面ABD⊥平面DEF;(Ⅱ)若AD⊥DC,AC=4,∠BAC=45°,求四面体F﹣DBC的体积.【解答】证明:(Ⅰ)∵DE⊥平面ABC,AB⊂平面ABC,∴AB⊥DE,又F为AB的中点,DA=DB,∴AB⊥DF,DE,DF⊂平面DEF,DE∩DF=D,∴AB⊥平面DEF,又∵AB⊂平面ABD,∴平面ABD⊥平面DEF.(Ⅱ)∵DA=DB=DC,E为AC上的一点,DE⊥平面ABC,∴线段DA、DB、DC在平面ABC的投影EA,EB,EC满足EA=EB=EC∴△ABC为直角三角形,即AB⊥BC由AD⊥DC,AC=4,∠BAC=45°,∴AB=BC=2,DE=2,∴S△FBC==2,∴四面体F﹣DBC的体积V F﹣DBC=V D﹣FBC==.7.如图,四边形ABCD是正方形,平面ABCD⊥平面ABE,AF∥BE,AB⊥BE,AB=BE=2,AF=1.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求证:AC∥平面DEF;(III)求三棱锥D﹣FEB的体积.【解答】(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD.又∵平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB,AB⊥BE,BE⊂平面ABEF,∴BE⊥平面ABCD.又∵AC⊂平面ABCD.∴BE⊥AC,又BE∩BD=B,∴AC⊥平面BDE;(Ⅱ)证明:取DE的中点G,连结OG,FG,∵四边形ABCD为正方形,∴O为BD的中点.则OG∥BE,且.由已知AF∥BE,且,则AF∥OG且AF=OG,∴四边形AOGF为平行四边形,则AO∥FG,即AC∥FG.∵AC⊄平面DEF,FG⊂平面DEF,∴AC∥平面DEF;(Ⅲ)解:∵平面ABCD⊥平面ABEF,四边形ABCD是正方形,平面ABEF∩平面ABCD=AB,∴AD∥BC,AD⊥AB.由(Ⅰ)知,BE⊥平面ABCD,AD⊂平面ABCD,∴BE⊥AD∴AD⊥平面BEF.∴.8.如图,四棱锥S﹣ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD.(1)求证:SO⊥平面ABCD;(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A﹣PCD 的体积.【解答】解:(1)证明:∵底面ABCD是菱形;∴对角线BD⊥AC;又BD⊥SA,SA∩AC=A;∴BD⊥平面SAC,SO⊂平面SAC;∴BD⊥SO,即SO⊥BD;又SA=SC,O为AC中点;∴SO⊥AC,AC∩BD=O;∴SO⊥平面ABCD;(2)如图,连接PO;∵SB∥平面APC,SB⊂平面SBD,平面SBD∩平面APC=PO;∴SB∥PO;在△SBD中,O是BD的中点,PO∥SB,∴P是SD的中点;取DO中点,并连接PE,则PE∥SO,SO⊥底面ACD;∴PE⊥底面ACD,且PE=;根据已知条件,Rt△ADO中AD=2,∠DAO=30°,∴DO=1;∴在Rt△SDO中,SD=2,SO=;∴;又;∴V三棱锥A﹣PCD=V三棱锥P﹣ACD=.。
立体几何大题练习(文科)
![立体几何大题练习(文科)](https://img.taocdn.com/s3/m/3809dd1b453610661ed9f464.png)
1.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.2.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.3.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,E、F分别为PC、BD的中点.(1)求证:EF∥平面PAD;(2)求证:面PAB⊥平面PDC.4.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且PA=AD=2,BD=2,E、F分别为AD、PC中点.(1)求点F到平面PAB的距离;(2)求证:平面PCE⊥平面PBC.5.在四棱锥P﹣ABCD中,底面ABCD为直角梯形,∠BAD=∠ADC=90°,DC=2AB=2AD,BC ⊥PD,E,F分别是PB,BC的中点.求证:(1)PC∥平面DEF;(2)平面PBC⊥平面PBD.6.如图,在三棱锥A ﹣BCD 中,E ,F 分别为BC ,CD 上的点,且BD ∥平面AEF .(1)求证:EF ∥平ABD 面;(2)若AE ⊥平面BCD ,BD ⊥CD ,求证:平面AEF ⊥平面ACD .7.已知四棱锥中,⊥平面,是直角梯形,,90º,.(1)求证:⊥;(2)在线段上是否存在一点,使//平面, 若存在,指出点的位置并加以证明;若不存在,请说明理由ABCD P -PA ABCD ABCD BC AD //BAD ∠AD BC 2=AB PD PB E AE PCD E。
高三立体几何习题(文科含答案)
![高三立体几何习题(文科含答案)](https://img.taocdn.com/s3/m/65139b0f770bf78a64295429.png)
23正视图 图1侧视图 图22 俯视图 2图3立几习题21假设直线l 不平行于平面a ,且l a ∉,则 A .a 内的所有直线与异面 B .a 内不存在与l 平行的直线 C .a 内存在唯一的直线与l 平行 D .a 内的直线与l 都相交 2.1l ,2l ,3l 是空间三条不同的直线,则以下命题正确的选项是〔A 〕12l l ⊥,23l l ⊥13//l l ⇒〔B 〕12l l ⊥,23//l l ⇒13l l ⊥〔C 〕233////l l l ⇒1l ,2l ,3l 共面〔D 〕1l ,2l ,3l 共点⇒1l ,2l ,3l 共面3.如图1 ~ 3,某几何体的正视图〔主视图〕,侧视图〔左视图〕和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为 A .3 B .4 C .3 D .24.某几何体的三视图如下图,则它的体积是〔 〕 A.283π- B.83π-D.23π5、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD的中点 求证:〔1〕直线E F ‖平面PCD ; (2)平面BEF ⊥平面PAD5〔本小题总分值13分〕如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OD=,△OAB,△OAC,△ODE,△ODF都是正三角形。
OA=,21∥;〔Ⅰ〕证明直线BC EF-的体积.〔Ⅱ〕求棱锥F OBED6.〔本小题共14分〕如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.〔Ⅰ〕求证:DE∥平面BCP;〔Ⅱ〕求证:四边形DEFG为矩形;〔Ⅲ〕是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.7.〔本小题总分值12分〕如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。
(完整)立体几何(文科)
![(完整)立体几何(文科)](https://img.taocdn.com/s3/m/475536db915f804d2a16c18e.png)
立体几何(文科)1、如图1。
4所示四棱锥P。
ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=错误!,M为BC上一点,且BM=错误!.(1)证明:BC⊥平面POM;(2)若MP⊥AP,求四棱锥P。
ABMO的体积.516图42、四面体ABCD及其三视图如图14所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H。
图1。
4(1)求四面体ABCD的体积;错误!.(2)证明:四边形EFGH是矩形.3、如图1。
5,在三棱柱ABC .A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.图1。
5(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E。
ABC的体积.错误!.4、如图1.3,四棱锥P。
ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=错误!,三棱锥PABD的体积V=错误!,求A到平面PBC的距离.错误!图13。
5、如图16所示,三棱锥A . BCD 中,AB ⊥平面BCD ,CD ⊥BD 。
(1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A MBC 的体积.错误!图1。
66、如图1。
4所示,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F ,G 分别为AC ,DC ,AD 的中点.(1)求证:EF ⊥平面BCG ;(2)求三棱锥D 。
BCG 的体积.错误!。
7、如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA ==1A(Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积.8、如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=。
2023全国甲卷数学立体几何18题
![2023全国甲卷数学立体几何18题](https://img.taocdn.com/s3/m/1919696bdc36a32d7375a417866fb84ae45cc3a0.png)
(1)证明见解析.
(2) 13 13
【基本思路】 (1)根据线面垂直,面面垂直的判定与性质定理可得 A1O 平面 BCC1B1 ,再由勾股定理 求出 O 为中点,即可得证; (2)利用直角三角形求出 AB1 的长及点 A 到面的距离,根据线面角定义直接可得正弦值. 【详细解析】⑴如图,
第 4 页(共 5 页)
由 CM∥A1C1,CM A1C1知四边形 A1CMC1 为平行四边形, C1M∥A1C ,C1M 平面 ABC ,又 AM 平面 ABC ,
C1M AM 则在 Rt△AC1M 中, AM 2AC,C1M A1C , AC1 (2AC)2 A1C2 , 在 Rt△AB1C1 中, AC1 (2AC)2 A1C2 , B1C1 BC 3 ,
(1)证明见解析. (2)1
【基本思路】
(1)由 A1C 平面 ABC 得 A1C BC ,又因为 AC BC ,可证 BC 平面 ACC1A1 ,从而 证得平面 ACC1A1 平面 BCC1B1 ; (2) 过点 A1 作 A1O CC1 ,可证四棱锥的高为 A1O ,由三角形全等可证 A1C AC ,从而证 得 O 为 CC1 中点,设 A1C AC x ,由勾股定理可求出 x ,再由勾股定理即可求 A1O .
AB1 (2 2)2 ( 2)2 ( 3)2 13 , 又 A 到平面 BCC1B1 距离也为 1,
所以 AB1 与平面 BCC1B1 所成角的正弦值为
1 13
13
.
13
第 5 页(共 5 页)
【详细解析】 ⑴证明:因为 A1C 平面 ABC , BC 平面 ABC , 所以 A1C BC , 又因为 ACB 90o,即 AC BC ,
高二文科数学《立体几何》经典练习题(含解析)
![高二文科数学《立体几何》经典练习题(含解析)](https://img.taocdn.com/s3/m/3a122d0dcd1755270722192e453610661ed95aa4.png)
高二文科数学《立体几何》大题训练试题1. (本小题满分14 分 )如图的几何体中,平面,平面,△ 为等边三角形,,为的中点.(1)求证:平面;(2)求证:平面平面。
2. (本小题满分14 分 ) GkStK如图, AB 为圆 O 的直径,点E、 F 在圆 O 上, AB ∥ EF,矩形 ABCD 所在的平面和圆O 所在的平面相互垂直,且,.(1)求证:平面;(2)设 FC 的中点为M ,求证:∥平面;(3)求三棱锥F- CBE 的体积 .3.(本小题满分14 分)如下图,正方形与直角梯形所在平面相互垂直,,,.(Ⅰ )求证:平面;(Ⅱ)求四周体的体积.4.如图 ,长方体中, ,,是的中点 .(Ⅰ )求证:直线平面;(Ⅱ )求证:平面平面;(Ⅲ )求三棱锥的体积.5.(此题满分14 分)如图,己知中,,,且(1)求证:无论为什么值,总有(2)若求三棱锥的体积.6.( 本小题满分 13 分 )如图,已知三棱锥 A— BPC中, AP⊥PC,AC⊥BC, M为 AB的中点,D为 PB的中点,且△ PMB 为正三角形.(1)求证: DM∥平面 APC;(2)求证: BC⊥平面 APC;(3)若 BC= 4, AB= 20,求三棱锥 D— BCM的体积.7、(本小分14 分)如 1,在直角梯形中,,,.将沿折起 ,使平面平面 ,获得几何体 ,如 2 所示 .(1)求 :平面; (2) 求几何体的体 .8、(本小分14 分)已知四棱( 5) 的三如 6 所示,正三角形,垂直底面,俯是直角梯形.( 1)求正的面;( 2)求四棱的体;( 3)求:平面;参照答案1. (本小分14 分 )(1)明:取的中点,.∵ 的中点,∴且.∵平面,平面,∴,∴.又,∴.⋯⋯⋯⋯3 分∴四形平行四形,.⋯⋯⋯⋯⋯5 分∵平面,平面,∴平面.⋯⋯⋯⋯7 分(2)明:∵ 等三角形,的中点,∴⋯⋯⋯⋯9 分∵平面,,∴.⋯⋯⋯⋯⋯ 10 分又,∴平面.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分∵,∴平面.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13分∵平面,∴平面平面.⋯⋯⋯⋯⋯⋯ 14分2.解:( 1)平面平面, ,平面平面,平面,∵平面,∴,⋯⋯⋯ 2 分又的直径,∴,∴平面 .⋯⋯⋯ 4 分(2)的中点,,又,,四形平行四形,∴,又平面,平面,∴平面.⋯⋯8分(3)∵面,∴,到的距离等于到的距离,点作于,、,∴ 正三角形,∴ 正的高,∴,⋯⋯⋯11 分∴⋯⋯12分。
立体几何文科练习题(精品).docx
![立体几何文科练习题(精品).docx](https://img.taocdn.com/s3/m/3faedd60f4335a8102d276a20029bd64783e62d9.png)
立体几何1.用斜二测画法画出长为6,宽为4的矩形水平放置的直观图,则该直观图面积为()A.12B. 24C. 6>/2D. 12^22.设是不同的直线,6Z,”是不同的平面,下列命题中正确的是()A.若mlla.n ± f3.m Ln ,则a L/3B.若mlla.n±/?,m,则a//”C.若mlla.n ±[3.mlIn ,则a ±D.若ml ta.n ± /3.ml In ,则a 11 /33.如图,棱长为1的正方体ABCD-A^C.D.中,P为线段A.B ±的动点,则下列结论错谖的是A. DC X 1B.平面D.A.P±平面A.APc. ZAPD]的最大值为90° D. AP + PD l的最小值为』2 +1 1 4.一个几何体的三视图如图所示(单位:m),则该几何体的体积为 m3. : 口2 1正视图侧视图I,1』5.若某几何体的三视图如图所示,则此几何体的体积等于. r* * it,2俯视图6.如图是一个几何体的三视图,则该几何体的体积是7 .如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D,E,F ,且知SD : DA = SE : EB = CF : FS = 2 :1,若仍用这个容器盛水,则最多可盛水的体积是原来的.8.如图,四边形ABCD为正方形,QA_L平面ABCD, PD〃QA, QA=AB=- PD.⑴证明:PCU平面DCQ;⑵求棱锥Q-ABCD的体积与棱锥P- DCQ的体积的比值.[来7T 9.如图所示的多面体中,ABCD是菱形,3DE尸是矩形,面ABCD, ZBAD = ~.3(1)求证:平面BCF H平面AEQ.(2)若BF = BD = a,求四棱锥A-BQEF的体积。
10.在四棱锥 P —A3CQ 中,底面ABCD为矩形,PD 1 ^ABCD , AB = 1, BC = 2, PD =的,G、F分别为AP、CQ的中点.(1)求证:AD 1 PC;(2)求证:FG〃平面BCP;11.如图,多面体AEDBFC的直观图及三视图如图所示,M,N分别为AF,BC的中点.(1)求证:MN 〃平面CDEF ;(2)求多面体A - CDEF的体积.12.如图,在三棱锥P-ABC中,ZABC = 90°,(1)求证:EFtmABC;(2)求证:平面AEF L平面PAB.P平面ABC , E, F分别为PB, PC的中点.B13.如图,在二棱锥 P—ABC 中,D, E, F 分别为棱 PC, AC, AB 的中点.已知 PAXAC, PA=6, BC=8, DF=5.求证:(1)直线PA〃平面DFE;(2)平面BDE±平面ABC.14.如图.直二棱柱ABC —AiBiCi中,AB= AC,点D、E分别是棱BC, CG上的点(点D不同于点C),且ADXDE, F为BC的中点.求证:(1)平面ADE_L平面BCCB(2)直线AF〃平面ADE.参考答案1. C【解析】试题分析:斜二测法:要求长边,宽减半,直角变为45°角,则面积为:6x2xsin45° = 6& 考点:直观图与立体图的大小关系.2. C【解析】试题分析:此题只要举出反例即可,A,B中由可得nil (3,则可以为任意角度的两平面,A, B均错误.C, D中由n V (3,mll n可得m L (3 ,则有all /3 ,故C正确,D错误.考点:线,面位置关系.3. C【解析】试题分析:g项侦回,「.A正确;"5恤M,.IB正确;当0<A/<g 时,ZAPD]为钝角,3错;将面AA X B与面ABB^沿人3展成平面图形,线段人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何大题练习(文科):1.如图,在四棱锥S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,侧面SAD⊥底面ABCD.(1)求证:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱锥S﹣BCD的体积为,求侧面△SAB的面积.【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD⊥平面SAD,运用面面垂直的判定定理即可得证;(2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值.【解答】(1)证明:在梯形ABCD中,AB∥DC,∠ABC=90°,BC=CD=,设BC=a,则CD=a,AB=2a,在直角三角形BCD中,∠BCD=90°,可得BD=a,∠CBD=45°,∠ABD=45°,由余弦定理可得AD==a,则BD⊥AD,由面SAD⊥底面ABCD.可得BD⊥平面SAD,又BD⊂平面SBD,可得平面SBD⊥平面SAD;(2)解:∠SDA=120°,且三棱锥S﹣BCD的体积为,由AD=SD=a,在△SAD中,可得SA=2SDsin60°=a,△SAD的边AD上的高SH=SDsin60°=a,由SH⊥平面BCD,可得×a××a2=,解得a=1,由BD⊥平面SAD,可得BD⊥SD,SB===2a,又AB=2a,在等腰三角形SBA中,边SA上的高为=a,则△SAB的面积为×SA×a=a=.【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥的体积公式的运用,以及推理能力和空间想象能力,属于中档题.2.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊂平面ABC,AB⊂平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.3.如图,在三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M和N分别是B1C1和BC的中点.(1)求证:MB∥平面AC1N;(2)求证:AC⊥MB.【分析】(1)证明MC1NB为平行四边形,所以C1N∥MB,即可证明MB∥平面AC1N;(2)证明AC⊥平面BCC1B1,即可证明AC⊥MB.【解答】证明:(1)证明:在三棱柱ABC﹣A1B1C1中,因为点M,N分别是B1C1,BC的中点,所以C1M∥BN,C1M=BN.所以MC1NB为平行四边形.所以C1N∥MB.因为C1N⊂平面AC1N,MB⊄平面AC1N,所以MB∥平面AC1N;(2)因为CC1⊥底面ABC,所以AC⊥CC1.因为AC⊥BC,BC∩CC1=C,所以AC⊥平面BCC1B1.因为MB⊂平面BCC1B1,所以AC⊥MB.【点评】本题考查线面平行的判定,考查线面垂直的判定与性质,考查学生分析解决问题的能力,属于中档题.4.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅰ)已知PD=DC=AD=2,求点P到平面BMQ的距离.【分析】(1)连结AC交BQ于N,连结MN,只要证明MN∥PA,利用线面平行的判定定理可证;(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离.【解答】解:(1)连结AC交BQ于N,连结MN,因为∠ADC=90°,Q为AD的中点,所以N为AC的中点.…(2分)当M为PC的中点,即PM=MC时,MN为△PAC的中位线,故MN∥PA,又MN⊂平面BMQ,所以PA∥平面BMQ.…(5分)(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离,所以V P=V A﹣BMQ=V M﹣ABQ,﹣BMQ取CD的中点K,连结MK,所以MK∥PD,,…(7分)又PD⊥底面ABCD,所以MK⊥底面ABCD.又,PD=CD=2,所以AQ=1,BQ=2,,…(10分)所以V P=V A﹣BMQ=V M﹣ABQ=.,…(11分)﹣BMQ则点P到平面BMQ的距离d=…(12分)【点评】本题考查了线面平行的判定定理的运用以及利用三棱锥的体积求点到直线的距离.5.如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.【分析】(1)证明B1C1∥DE,即可证明B1C1∥平面A1DE;(2)证明DE⊥平面ACC1A1,即可证明平面A1DE⊥平面ACC1A1.【解答】证明:(1)因为D,E分别是AB,AC的中点,所以DE∥BC,…(2分)又因为在三棱柱ABC﹣A1B1C1中,B1C1∥BC,所以B1C1∥DE…(4分)又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE…(6分)(2)在直三棱柱ABC﹣A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE…(8分)又BC⊥AC,DE∥BC,所以DE⊥AC,…(10分)又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1…(12分)又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1…(14分)【点评】本题考查线面平行、线面垂直、面面垂直的判定,考查学生分析解决问题的能力,属于中档题.6.在四棱锥P﹣ABCD中,PC⊥底面ABCD,M,N分别是PD,PA的中点,AC⊥AD,∠ACD=∠ACB=60°,PC=AC.(1)求证:PA⊥平面CMN;(2)求证:AM∥平面PBC.【分析】(1)推导出MN∥AD,PC⊥AD,AD⊥AC,从而AD⊥平面PAC,进而AD ⊥PA,MN⊥PA,再由CN⊥PA,能证明PA⊥平面CMN.(2)取CD的中点为Q,连结MQ、AQ,推导出MQ∥PC,从而MQ∥平面PBC,再求出AQ∥平面,从而平面AMQ∥平面PCB,由此能证明AM∥平面PBC.【解答】证明:(1)∵M,N分别为PD、PA的中点,∴MN为△PAD的中位线,∴MN∥AD,∵PC⊥底面ABCD,AD⊂平面ABCD,∴PC⊥AD,又∵AD⊥AC,PC∩AC=C,∴AD⊥平面PAC,∴AD⊥PA,∴MN⊥PA,又∵PC=AC,N为PA的中点,∴CN⊥PA,∵MN∩CN=N,MN⊂平面CMN,CM⊂平面CMN,∴PA⊥平面CMN.解(2)取CD的中点为Q,连结MQ、AQ,∵MQ是△PCD的中位线,∴MQ∥PC,又∵PC⊂平面PBC,MQ⊄平面PBC,∴MQ∥平面PBC,∵AD⊥AC,∠ACD=60°,∴∠ADC=30°.∴∠DAQ=∠ADC=30°,∴∠QAC=∠ACQ=60°,∴∠ACB=60°,∴AQ∥BC,∵AQ⊄平面PBC,BC⊂平面PBC,∴AQ∥平面PBC,∵MQ∩AQ=Q,∴平面AMQ∥平面PCB,∵AM⊂平面AMQ,∴AM∥平面PBC.【点评】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的位置关系,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.7.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,E、F分别为PC、BD的中点.(1)求证:EF∥平面PAD;(2)求证:面PAB⊥平面PDC.【分析】(1)连接AC,则F是AC的中点,E为PC 的中点,证明EF∥PA,利用直线与平面平行的判定定理证明EF∥平面PAD;(2)先证明CD⊥PA,然后证明PA⊥PD.利用直线与平面垂直的判定定理证明PA⊥平面PCD,最后根据面面垂直的判定定理即可得到面PAB⊥面PDC.【解答】证明:(1)连接AC,由正方形性质可知,AC与BD相交于BD的中点F,F也为AC中点,E为PC中点.所以在△CPA中,EF∥PA,又PA⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD;(2)平面PAD⊥平面ABCD平面PAD∩面ABCD=AD⇒CD⊥平面PAD⇒CD⊥PA正方形ABCD中CD⊥ADPA⊂平面PADCD⊂平面ABCD又,所以PA2+PD2=AD2所以△PAD是等腰直角三角形,且,即PA⊥PD.因为CD∩PD=D,且CD、PD⊂面PDC所以PA⊥面PDC又PA⊂面PAB,所以面PAB⊥面PDC.【点评】本题考查直线与平面垂直的判定,直线与平面平行的判定的应用,考查逻辑推理能力.8.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且PA=AD=2,BD=2,E、F分别为AD、PC中点.(1)求点F到平面PAB的距离;(2)求证:平面PCE⊥平面PBC.【分析】(1)取PB的中点G,连接FG、AG,证得底面ABCD为正方形.再由中位线定理可得FG∥AE且FG=AE,四边形AEFG是平行四边形,则AG∥FE,运用线面平行的判定定理可得EF∥平面PAB,点F与点E到平面PAB的距离相等,运用线面垂直的判定和性质,证得AD⊥平面PAB,即可得到所求距离;(2)运用线面垂直的判定和性质,证得BC⊥平面PAB,EF⊥平面PBC,再由面面垂直的判定定理,即可得证.【解答】(1)解:如图,取PB的中点G,连接FG、AG,因为底面ABCD为菱形,且PA=AD=2,,所以底面ABCD为正方形.∵E、F分别为AD、PC中点,∴FG∥BC,AE∥BC,,,∴FG∥AE且FG=AE,∴四边形AEFG是平行四边形,∴AG∥FE,∵AG⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB,∴点F与点E到平面PAB的距离相等,由PA⊥平面ABCD,可得PA⊥AD,又AD⊥AB,PA∩AB=A,AD⊥平面PAB,则点F到平面PAB的距离为EA=1.(2)证明:由(1)知AG⊥PB,AG∥EF,∵PA⊥平面ABCD,∴BC⊥PA,∵BC⊥AB,AB∩BC=B,∴BC⊥平面PAB,由AG⊂平面PAB,∴BC⊥AG,又∵PB∩BC=B,∴AG⊥平面PBC,∴EF⊥平面PBC,∵EF⊂平面PCE,∴平面PCE⊥平面PBC.【点评】本题考查空间点到平面的距离,注意运用转化思想,考查线面平行和垂直的判定和性质,以及面面垂直的判定,熟练掌握定理的条件和结论是解题的关键,属于中档题.9.在四棱锥P﹣ABCD中,底面ABCD为直角梯形,∠BAD=∠ADC=90°,DC=2AB=2AD,BC⊥PD,E,F分别是PB,BC的中点.求证:(1)PC∥平面DEF;(2)平面PBC⊥平面PBD.【分析】(1)由中位线定理可得PC∥EF,故而PC∥平面DEF;(2)由直角梯形可得BC⊥BD,结合BC⊥PD得出BC⊥平面PBD,于是平面PBC⊥平面PBD.【解答】证明:(1)∵E,F分别是PB,BC的中点,∴PC∥EF,又PC⊄平面DEF,EF⊂平面DEF,∴PC∥平面DEF.(2)取CD的中点M,连结BM,则AB DM,又AD⊥AB,AB=AD,∴四边形ABMD是正方形,∴BM⊥CD,BM=CM=DM=1,BD=,∴BC=,∴BD2+BC2=CD2,∴BC⊥BD,又BC⊥PD,BD∩PD=D,∴BC⊥平面PBD,又BC⊂平面PBC,∴平面PBC⊥平面PBD.【点评】本题考查了线面平行,面面垂直的判定,属于中档题.10.如图,在三棱锥A﹣BCD中,E,F分别为BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平ABD面;(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.【分析】(1)利用线面平行的性质可得BD∥EF,从而得出EF∥平面ABD;(2)由AE⊥平面BCD可得AE⊥CD,由BD⊥CD,BD∥EF可得EF⊥CD,从而有CD⊥平面AEF,故而平面AEF⊥平面ACD.【解答】证明:(1)∵BD∥平面AEF,BD⊂平面BCD,平面BCD∩平面AEF=EF,∴BD∥EF,又BD⊂平面ABD,EF⊄平面ABD,∴EF∥平ABD面.(2)∵AE⊥平面BCD,CD⊂平面BCD,∴AE⊥CD,由(1)可知BD∥EF,又BD⊥CD,∴EF⊥CD,又AE∩EF=E,AE⊂平面AEF,EF⊂平面AEF,∴CD⊥平面AEF,又CD⊂平面ACD,∴平面AEF⊥平面ACD.【点评】本题考查了线面平行、线面垂直的性质,面面垂直的判定,属于中档题.。