桩基完整性试验

合集下载

桩基超声波透射法完整性检测

桩基超声波透射法完整性检测

桩基超声波透射法完整性检测桩基超声波透射法完整性检测是一种常用的桩基测试方法,能够有效地检测桩基的质量和完整性,可以帮助工程师在施工前、施工中和施工后确定桩基的状态,从而保证工程质量和安全性。

桩基是土木工程中常用的基础结构,在建筑和桥梁等大型工程中得到广泛应用。

桩基质量的好坏直接关系到工程的可靠性和稳定性。

如果桩基的完整性受到损害,那么它的承载能力就会降低,从而导致工程安全事故的发生。

因此,对桩基的完整性进行检测非常重要。

桩基超声波透射法完整性检测是一种比较常用的测试方法。

这种方法可以利用超声波,穿透整个桩体,来检测桩基的完整性。

通过测试数据的分析和解释,可以精确地确定桩基的质量和完整性,从而指导工程师进行后续的建设工作。

这种检测方法的优点很多。

首先,它可以避免对桩基的损伤。

在测试过程中,不需要对桩基进行切割或其他物理损伤,只需要用超声波即可实现数据的采集,不会对桩基质量和完整性造成影响。

其次,它具有高精度和高可靠性。

超声波透射法可以穿透桩体,利用波传播的速度变化来确定桩基的完整性,测试结果准确可靠。

最后,这种方法还可以节省时间和成本。

相对于其他测试方法,桩基超声波透射法不需要进行大量的试验和测量,所需时间和成本较少。

不过,在进行桩基超声波透射法完整性检测时,也会面临一些挑战和难点。

比如,测试数据可能会受到土体的干扰,影响测试结果的准确性。

此外,不同类型的桩基可能对测试结果产生不同的影响,需要注意选择合适的测试方案。

为了更好地应对这些问题,工程师需要积累丰富的实践经验,掌握先进的测试技术和分析方法。

总的来说,桩基超声波透射法完整性检测是一种比较可靠和有效的测试方法,可以帮助工程师在桩基建设的不同阶段确定桩基质量和完整性,从而提高工程的可靠性和稳定性。

在将来,这种测试方法还有望进一步发展,提高其测试精度和可靠性,为工程建设和工程质量的提升做出更大的贡献。

基桩低应变完整性试验

基桩低应变完整性试验

低应变测试仪PIT 测定桩身完整性试验一、实验目的:1. 掌握低应变测试仪PIT 基本使用方法;2. 掌握低应变测试仪PIT 测定桩身完整性的方法;二、实验内容:用低应变桩身完整性。

三、实验仪器及检测评定标准:1. 美国PDI 公司生产的低应变桩身完整性测试仪PIT ;2. 试验桩;3.《公路工程基桩动测技术规程》JTG/T F81-01-2004四、现场检测检测流程本次检测,严格依据桩基动测规程执行。

被检测桩均应凿去浮浆及破损部分,露出新鲜密实的混凝土;每根桩布置2~4个检测点,每个检测点记录的有效信号数均大于3。

现场检测示意图如图1。

图1 基桩反射波法现场检测示意图判断标准1、波速计算:tL c ∆=2 or f L c ∆⋅=2 式中(图2):c—桩身材料的一维应力波纵波波图2完整摩擦桩纵波波速计算示意图速(m/s ),简称波速;L —测点下桩的长度(m );Δt —桩底反射波峰值与入射波峰值的时刻差(s ); Δf ——幅值谱上完整桩相邻峰值间的频率差(Hz )。

被检工程的桩身材料平均波速值m c 为5根以上完整桩的波速平均值。

2、完整性类别划分:Ⅰ类桩:桩身结构完整。

桩底反射合理,实测波速在合理范围内,桩底反射波到达前,无同相反射波发生。

Ⅱ 类桩:桩身结构基本完整,存在轻微缺陷。

桩底反射基本合理,实测波速在合理范围之内缺陷反射波幅值相对较弱。

Ⅲ 类桩:完整性介于Ⅱ类和Ⅳ类之间,一般存在明显缺陷,宜采用钻芯法或声波透射法等其它方法进一步判断或直接进行处理。

记录到多个同相反射信号,形成复杂波列,且无合理的桩底反射信号。

依反射信号和提供桩长计算的波速明显偏离同类完整桩平均波速,或时域信号存在较强的异常同相反射。

嵌岩端承型桩虽有明显的桩底反射,但反射波却与入射波相位相同。

Ⅳ 类桩:桩身结构存在严重缺陷,就其结构完整性而言不能使用。

未见桩底反射。

出现多次幅值较强的同相、等间距反射信号,或信号幅值明显较强并以大低频形式出现,当振源脉冲宽度极窄时,同时伴有连续的t ∆很小的同相反射(频域为双峰),此为典型的浅部断桩特征。

桩基施工中的桩身完整性检测与材料试验要求

桩基施工中的桩身完整性检测与材料试验要求

桩基施工中的桩身完整性检测与材料试验要求引言桩基作为一种重要的土木工程基础结构,其质量和完整性对工程的稳定性和可靠性起着至关重要的作用。

而桩身完整性检测与材料试验是保障桩基质量的重要手段。

本文将就桩身完整性检测与材料试验的要求及其重要性进行探讨。

一、桩身完整性检测的要求1. 检测方法桩身完整性检测通常采用声波或超声波检测方法,通过测量声波或超声波在桩内传播的速度和反射情况,判断桩身是否存在破损或裂缝。

该方法具有简单、快速、准确的特点,能够及时发现桩身的问题,保证桩基施工质量。

2. 检测要求桩身完整性检测的主要要求包括以下几个方面:(1)检测时间:应在桩基施工完成后进行,以确保测试结果的准确性和可靠性。

(2)检测点位:应选择具有代表性的位置进行检测,通常选择钻孔设置的探测点位或施工作业中存在疑点的位置进行检测。

(3)检测精度:检测仪器的精度应符合相关标准的要求,以确保测试结果的可信度。

(4)检测参数:应测量桩身的声波或超声波传播速度、反射情况等参数,以判断桩身的完整性情况。

(5)检测报告:应将检测结果以正式的报告形式呈现,包括桩身的完整性情况、存在的问题及建议的处理措施等内容。

二、材料试验的要求1. 试验对象桩基施工中常用的桩材料包括钢筋混凝土桩和钢管桩。

对于钢筋混凝土桩,主要试验对象是混凝土和钢筋;对于钢管桩,主要试验对象是钢管的材质和焊接接头。

2. 试验内容(1)混凝土试验:包括强度试验、密度试验和收缩试验等。

强度试验主要包括抗压强度试验和抗拉强度试验,通过试验可以评估混凝土的力学性能和耐久性能。

(2)钢筋试验:包括钢筋的拉伸试验和弯曲试验,通过试验可以评估钢筋的强度和延性。

(3)钢管试验:包括钢管的拉伸试验和冲击试验,通过试验可以评估钢管的强度和韧性。

(4)焊接试验:对于钢管桩的焊接接头,应进行焊缝强度试验和焊缝断裂韧性试验,以评估焊接质量。

3. 试验要求材料试验应符合相应的标准和规范要求,包括试验方法、试样制备、试验设备和试验结果的评定等。

四种常用基桩完整性检测方法对比分析

四种常用基桩完整性检测方法对比分析

四种常用基桩完整性检测方法对比分析某高速公路桥梁工程桩,桩径:1600 mm;桩长:43.5 m,桩型钻孔灌注桩。

桩基验收检测方案为超声波透射法检测,分别对次桩依次采用:超声波透射法检测,低应变反射波法检测,钻孔取芯完整性检测,钻孔电视检测四种检测方法对其进行完整性判定。

一、超声波透射法检测检测目的:基桩的完整性仪器型号:RSM-SY7(F)采用四只45KHz超声波跨孔探头,一次提升同时完成四管,六剖面的测试,从超声波测试结果来看,发现有五个剖面在6.8-7.0米处,出现幅值超判据情况。

再对该桩6.9米处异常点波形观察,异常点信号首波幅值和后续谐振波信号都偏弱,但其声速正常。

由于是在同深度,多剖面信号异常,在与施工方沟通排除声测管焊接因素的影响,在做钻孔取芯前,使用低应变反射波法检测进一步查明缺陷情况。

二、低应变反射波法检测检测目的:基桩的完整性仪器型号:RSM-PRT(M)采用加速度传感器,通过改变不同的锤击频率及不同的采样间隔对该桩的 6.8米处的,缺陷进行核查判断。

采用加速度传感器,通过改变不同的锤击频率及不同的采样间隔对该桩的 6.8米处的,缺陷进行核查判断。

第一次采集结果:信号在6.8米处有较小幅值的同相反射。

第二次采集结果:变换传感器安装位置信号在 6.8米处有较大幅值的同相反射,并可见第二次、第三次缺陷反射。

第三次采集结果:采用频率较高的钢筋敲击,提高缺陷位置精度,同相缺陷反射幅值较小,但也很清晰,可见微弱第二次缺陷反射。

最终低应变检测核定其缺陷位置在距桩顶 6.8米处,与超声波投射法检测缺陷深度相符,因低应变数据缺陷较为严重,怀疑桩大面积断桩,决定采用钻孔取芯进一步验证其缺陷情况。

三、钻孔取芯完整性检测检测目的:基桩的完整性仪器型号:钻孔取芯机采用钻机对该桩进行钻孔取芯检测,着重观察该桩 6.9米处混凝土完整性情况,但通过对芯样的目测观察,在 6.9 米处未取出连续较完整的芯样,以钻孔取芯检测结果出具报告也很难判定该桩缺陷情况。

桩基完整性检测方法

桩基完整性检测方法

桩基完整性检测方法
桩基完整性检测方法通常分为两种:非破坏性检测和破坏性检测。

1. 非破坏性检测方法:
- 应力波法:通过在桩顶施加冲击或震动,利用应力波在桩体内的传播特点,检测桩体的完整性。

通过分析反射波和散射波的特征,可判断桩体是否存在缺陷。

- 超声波法:通过超声波在桩体内传播的速度和衰减情况,检测桩体的完整性。

如果桩体存在裂缝或空洞等缺陷,会导致超声波的传播速度变化和能量衰减。

- 电磁法:利用电磁波在桩体内的传播特性,检测桩体的完整性。

通过测量电磁波的传播时间、幅值和相位等参数,可以判断桩体的状态和存在的缺陷。

2. 破坏性检测方法:
- 钻孔取芯法:通过钻孔在桩体中取芯样品,并对样品进行室内试验,如压缩试验、剪切试验等,来评估桩体的完整性和强度。

- 桩顶弯曲监测法:通过在桩顶安装位移传感器,监测桩顶的变形情况,并结合弯矩传感器监测桩顶的弯曲变形情况,来评估桩体的完整性和稳定性。

- 桩身钻孔检测法:通过在桩身上钻孔,检测桩身的质量和连续性。

如通过钻孔取芯、钻孔埋置传感器等方式,检测桩身的材料性质和存在的缺陷。

选择具体的检测方法需根据具体情况综合考虑,包括桩基类型、场地条件、检测目的和要求等。

反射波法检测基桩完整性(1

反射波法检测基桩完整性(1

现场检测技术方法
安装传感器
传感器安装点及其附近不得有缺损或裂缝; 当锤击点在桩顶中心时,传感器安装点与桩中心的距离
宜为桩半径的三分之二; 当锤击点不在桩顶中心时,传感器安装点与锤击点的距
离不宜小于桩半径的二分之一; 对于预应力管桩,传感器安装点、锤击点与桩顶面圆心
构成的平面夹角宜为90度。
T1
Toe
-0.02
Vel
0 5 10 15 20 25 m
从检测波形上看,该桩在距桩顶16米左右处同相反射信号较强,桩身完整性 存在比较严重的缺陷,判定该桩为Ⅲ类桩。结合地质报告,该桩所处主要地 层结构为卵石层和亚粘土层,判定缺陷类型为夹泥。后据施工单位反映,该 桥场地地质情况比较差,成孔比较困难,钻孔过程中经常会出现孔壁坍塌的 情况。该桩桩身夹泥缺陷明显,此缺陷的形成有以下几个原因:其一主要是 混凝土灌注过程中出现了局部塌孔的情况,泥土挤入桩身;其二是施工单位 在处理坍孔或加大泥浆稠度时直接加入孔内的粘土在施工中被分散成泥团、 泥块,在灌注混凝土时夹入桩身;其三是缺陷位置处的混凝土灌注速度不正 常,低于正常灌注速度,当混凝土下泄时,不足以将泥浆全部挤出,造成夹 泥的缺陷。
Ⅳ类桩实例分析
cm/s
0.01 0.01 0.00
2: # 156
MA: 2.00 MD: 2.00 LE: 40.00 WS: 4000 LO: 0.77 HI: 0.00 PV: 0 T1: 63
T1
Toe
-0.01
Vel
0 5 10 15 20 25 30 35 40 m
从检测波形上看,该桩在距桩顶24米处同相反射信号非常强,并且可以见 到该缺陷的二次和三次重复反射,见不到桩底反射信号,故判断该桩为断 桩。后经事故调查得知,该起断桩事故与地质情况无关,为人为原因造成。 当时施工单位在对该桩灌注过程中,发现所购商品混凝土坍落度连续七车 不满足施工质量要求,最小的为11cm,最大的为15cm,随即对该商品混凝 土清退出场,等合格的商品混凝土到场后,此时该桩已经中断灌注混凝土 2.5至3个小时,继续灌注时导管内混凝土已经不能顺利下落,施工单位随 即采取敲击导管并利用25吨吊车小幅度上下往复运动导管,强行使混凝土 下落,此时孔内混凝土已经凝结,不可能继续上浮,最终形成二次浇筑面 造成断桩。这是一种典型的断桩形成原因。

桩基高应变完整性检测

桩基高应变完整性检测

桩基高应变完整性检测引言基础工程是建筑工程的主要组成部分,地基质量直接关系到整个建筑物的机构安全,直接关系到人民生命财产安全。

桩基础是主要的基础形式之一,随着高层建筑的层高增加,结构体型复杂、层数相差悬殊的建筑以及地下空间的开发利用越来越广泛,桩基础是许多高层建筑的首选或必选基础形式。

而桩基础单桩承载力的测试是保证桩基隐蔽工程的重要保证之一。

而高应变检测结合了低应变检测和静载荷实验的功能,既能检测桩基的完整性,又能检测桩基的承载力,高应变检测方法填充了静载荷实验的缺点。

技术原理高应变检测的目的是检测工程桩的竖向抗压承载力和桩身结构完整性,并对桩基的质量进行评价。

其基本原理是:用重锤冲击桩顶,使桩—土产生足够的相对位移,以充分激发桩周土阻力和桩端承载力,通过安装在桩顶以下转身两侧的力和加速度传感器接收桩的应力波信号,应用应力波理论分析处理力和速度时程曲线,从而判断桩的承载力和评价桩身质量完整性。

由于应力波在其沿着桩身的传播过程中将产生十分复杂的透射和反射,因此,将桩身内运动的各种应力波划分为上行波和下行波。

由于下行波的行进方向和规定的正向运动方向一致,在下行波的作用下,正的作用力(压力)将产生正向的运动,而负的作用力(拉力)将产生负向的运动。

上行波则正好相反,上行的压力波将使桩产生负向的运动,而上行波的拉力则产生正向的运动。

由于锤击所产生的压力波向下传播,在有桩侧摩阻力或桩截面突然增大处会产生一个压力回波,这一压力回波回到桩顶,将使桩顶处的力增加,速度减少。

同时,下行的压力波在桩截面突然减少处或有负摩阻力处,将产生一个拉力回波,将使桩顶处的力减小,速度增加。

通过这一基本概念就可在实测的力波曲线和速度曲线中根据二者变化关系来判断桩身的各种情况。

布置方案图1 高应变动力测桩示意图检测的工作面要求:(1)为确保试验时吹激力的正常传递和提高工作效率,应先凿掉桩顶部的破碎层和软弱混凝土,对灌注桩、桩头严重破损的混凝土预制桩和桩头已出现屈服变形的钢桩,试验前应对桩头进行修复或加固处理。

基桩的承载力和桩身完整性的检测

基桩的承载力和桩身完整性的检测

基桩的承载力和桩身完整性的检测根据《建筑基桩检测技术规范》JGJ106-2014,以下简称“基桩检测”,确定建筑工程基桩的承载力和桩身完整性的检测与评价。

一、总要求(承载力和桩身完整性)《基桩检测》3.1.1 基桩检测可分为施工前为设计提供依据的试验桩检测和施工后为验收提供依据的工程桩检测。

基桩检测应根据检测目的、检测方法的适应性、桩基的设计条件、成桩工艺等,按表3.1.1合理选择检测方法。

二、试桩(施工前)《基桩检测》3.1.2 当设计有要求或有下列情况之一时,施工前应进行试验桩检测并确定单桩极限承载力:1 设计等级为甲级的桩基;2 无相关试桩资料可参考的设计等级为乙级的桩基;3 地基条件复杂、基桩施工质量可靠性低;4 本地区采用的新桩型或采用新工艺成桩的桩基。

《基桩检测》3.3.1 为设计提供依据的试验桩检测应依据设计确定的基桩受力状态,采用相应的静载试验方法确定单桩极限承载力,检测数量应满足设计要求,且在同一条件下不应少于3根;当预计工程桩总数小于50根时,检测数量不应少于2根。

“地基条件、桩长相近,桩端持力层、桩型、桩径、成桩工艺相同”即为本规范所指的“同一条件”。

对于大型工程,“同一条件”可能包含若干个桩基分项(子分项)工程。

同一桩基分项工程可能由两个或两个以上“同一条件”的桩组成,如直径400mm和500mm 的两种规格的管桩应区别对待。

本条规定同一条件下的试桩数量不得少于一组3根,是保障合理评价试桩结果的低限要求。

三、单桩承载力和桩身完整性(施工后)《基桩检测》3.1.3 施工完成后的工程桩应进行单桩承载力和桩身完整性检测。

基桩质量检测时,承载力和完整性两项内容密不可分,往往是通过低应变完整性普查,找出基桩施工质量问题并得到对整体施工质量的大致估计,而工程桩承载力是否满足设计要求则需通过有代表性的单桩承载力检验来实现。

《基桩检测》3.2.7 验收检测时,宜先进行桩身完整性检测,后进行承载力检测。

桩基检测方法

桩基检测方法

桩基检测方法
1排桩、抗滑桩均采用声波透射法检测桩基完整性。

2、声波透射法是通过在桩身预埋声测管,将声波发射、接受换能器分别放入声测管内,管内注满清水,将换能器置于同一水平面或保持一定高差,进行声波发射和接受,使声波在混凝土中传播,通过对声波传播时间、波幅及主频等声学参数的测试与分析,对桩身完整性做出评价的一种检测方法该方法一般不受场地限制,测试精度高,在缺陷的判断上较其他方法更全面,检测范围可覆盖全桩长的各个横截面;
3、为了更好顺利完成桩基检测工作,准确检测桩基完整性,故埋设声测管施工环节尤为重要,声测管在钢筋笼制造场预先安装在已成型的钢筋笼上,声测管要下端采用钢板封闭,上端加盖,管内无杂物;声测管应可靠的固定在钢筋笼内,预防连接处断裂或堵管现象;连接处要光滑过度,不漏水;管口要易高出桩顶200mm以上,且各声测管管口高度要一致,成型后的声测管要垂直、相互平行,防止堵塞现象。

桩基完整性(声波透射试验)试验方法

桩基完整性(声波透射试验)试验方法

桩基完整性(声波透射试验)2.1一般规定(1)对于桩径小于0.6m的桩,不宜采用本方法,因为桩径较小时声波换能器与检测管的声耦合会引起较大的相对测试误差。

其桩长不受限制。

(2)当出现下列情况之一时,不得采用本方法a 声测管未沿桩身通长配置b声测管堵塞导致检测数据不全c声测管数量不符合要求(3)受检桩混凝土强度不应低于设计强度的70%,且不低于15MPa,2.2检测基本原理及方法混凝土是由多种材料组成的多相非匀质体。

对于正常的混凝土,声波在其中传播的速度是有一定范围的,当传播路径遇到混凝土有缺陷时,如断裂、裂缝、夹泥和密实度差等,声波要绕过缺陷或在传播速度较慢的介质中通过,声波将发生衰减,造成传播时间延长,使声时增大,计算声速降低,波幅减小,波形畸变,利用超声波在混凝土中传播的这些声学参数的变化,来分析判断桩身混凝土质量。

声波透射法检测桩身混凝土质量,是在桩身中预埋2~4根声测管。

将超声波发射、接收探头分别置于2根导管中,进行声波发射和接收,使超声波在桩身混凝土中传播,用超声仪测出超声波的传播时间t、波幅A及频率f等物理量,就可判断桩身结构完整性。

2.3仪器设备(1)试验装置声波透射法试验装置包括超声检测仪、超声波发射及接收换能器(亦称探头)、预埋测管等,也有加上换能器标高控制绞车和数据处理计算机。

其装置见图37-21。

(2)超声检测仪的技术性能应符合下列规定:接收放大系统的频带宽度宜为5~50kHz,增益应大于100dB,并带有0~60(或80)dB的衰减器,其分辨率应为1dB,衰减器的误差应小于1dB,其档间误差应小于1%。

发射系统应输出250~1000V的脉冲电压,其波形可为阶跃脉冲或矩发射系统应输出250~1000V的脉冲电压,其波形可为阶跃脉冲或矩形脉冲。

显示系统应同时显示接收波形和声波传播时间,其显示时间范围宜大于300μs,计时精度应大于1μs,仪器必须稳定可行,2h中声时漂移不得大于±0.2μs。

浅析建筑工程桩基完整性检测

浅析建筑工程桩基完整性检测

浅析建筑工程桩基完整性检测作者简介:倪承暐(1987.05.31-),男,汉,本科,检测室主任。

摘要:桩基是建筑工程的重要组成部分,桩基的质量直接影响到整个建筑工程的质量。

随着我国建筑工程的不断发展,对于建筑工程桩基的检测也日益重要。

桩基完整性检测是桩基检测的重要内容之一,对建筑工程进行完整性检测是为了检测桩基是否存在潜在危险,以避免工程事故。

通过对建筑工程桩基的完整性检测,我们可以辅助确认桩基的承载能力的限度,从而达到对建筑工程质量测评的目的。

关键词:建筑工程;桩基;完整性检测引言桩基作为一种重要基础,在建筑工程中有着举足轻重的地位。

整个建筑工程的质量与稳固与桩基的质量息息相关,由于桩基作为一种基础工程,其特点具有不明显性,对其进行检测具有一定的技术难度。

所以,如何采用高效的检测方法检测其质量成为工程之中的重点。

尤其是二十一世纪以来,我国的建筑工程建设突飞猛进,在对速度要求增长的同时,对于建筑质量也有了越来越高的要求。

因此,建筑工程的桩基检测有着越来越举足轻重的作用和不可忽视的意义。

1.建筑工程桩基检测概述在建筑工程中,桩基是较早运用的技术,早在上古的石器时期,我们的先祖就已经学会以木桩为桩基来搭建住所。

此后,木桩作为桩基延续了相当长的一段时期。

在我国的历史上,木桩始终是人们建造房屋的主要桩基材料。

一直到十九世纪的工业革命时期,欧洲人利用钢板作为桩基材料建造码头,从此开启了桩基的新时期。

到了十九世纪末,桩基的材料如钢板和水泥等已经被广泛的应用,木桩被逐渐取代。

二十世纪初期,以钢材为桩基在北美的使用也获得广泛传播。

在二十世纪的四十年代末,钢筋混凝土的桩基出现,标志着桩基又出现一次历史性改变。

早在上世纪五十年代的建国初期,我国也已经开始采用这一技术来进行建筑工程建设。

在此之后,随着人类科学技术的不断发展,建筑工程的桩基技术也日益进步,在越来越复杂艰巨的建筑环境中发挥了巨大的作用。

在今天,随着桩基技术越来越完善,越来越丰富多样其应用也越来越广泛,桩基的检测技术也在不断进步。

桩基完整性试验方法

桩基完整性试验方法

桩基完整性试验方法桩基完整性试验是指对桩基的钻孔成孔质量、桩身材料、桩体交界处以及桩顶是否存在破损或者其他缺陷进行检测和评估的一种试验方法。

这种试验方法通常是通过使用非破坏性检测技术进行,在对桩基完整性进行评估的同时,也能够对桩顶的质量进行检测。

以下将详细介绍几种常用的桩基完整性试验方法。

1.声波法:声波法是通过发射和接收超声波来检测桩体内部缺陷的一种方法。

在试验中,将超声波发射器固定在桩上,发射超声波。

当超声波遇到桩内的缺陷时,会被反射或者散射,然后被接收器接收。

通过分析接收到的超声波信号,可以判断桩体内部是否存在破损或者其他缺陷。

这种方法广泛应用于预应力混凝土桩的检测。

2.高频电阻法:高频电阻法是通过在桩顶附近放置两个电极,并施加高频交流电流,通过测量桩体内电阻的变化来判断桩体的完整性。

在桩体完整时,电阻值较大;而当桩体存在缺陷时,电阻值较小。

通过测量桩体的电阻变化,可以评估桩的完整性。

这种方法适用于混凝土桩和钢筋混凝土桩的完整性检测。

3.风化层钻探法:这种方法是通过在桩体上进行风化层钻探,从钻探得到的岩土样品中,评估桩基的完整性。

在风化层钻探过程中,如果探针遇到阻力较大或无法进入的情况,可能意味着桩体出现了破损或其他缺陷。

这种方法对于桩基在较浅的风化层内的检测较为有效,但对桩身材料的完整性无法进行评估。

4.桩顶荷载试验:桩顶荷载试验是一种直接的桩基完整性试验方法,它通过在桩顶施加荷载,然后监测桩顶变形来判断桩体的完整性。

在试验中,可以使用沉降测量仪等装置来对桩顶位移进行监测。

如果桩顶变形较大或产生明显的过载,可能意味着桩体存在破损或其他缺陷。

这种方法广泛应用于桩基的质量控制和结构验收。

综上所述,桩基完整性试验方法多种多样,可根据桩基的类型、结构和施工环境的不同进行选择。

这些试验方法可以有效地评估桩体的完整性,并提供参考信息给相关人员进行后续的工程决策和设计调整。

桩基完整性检测规范要求

桩基完整性检测规范要求

桩基完整性检测规范要求
1.检测标准依据
《贵州省建筑桩基设计与施工技术规程》DBJ52/T088-2018
《建筑桩基检测技术规范》JGJ106-2014
2.检测工作的主要内容
采用低应变发及超声透射法检测桩身完整性
3.标准规定
3.1不超过12m 的桩,可采用低应变动力检测桩身完整性,检验数量应为100%。

对检测存在桩身质量缺陷,或对桩端持力层质量、沉渣厚度有疑问的桩,要求核验单桩竖向承载力时,应采用钻芯法进行检测,必要时进行孔内摄像检测,检测数量由设计、施工、地勘、监理工程师共同确定;
3.2超过 12m 的桩应按照超过该长度桩总数的 10%,采用预埋管超声波法或钻芯法检测桩身完整性、混凝土强度;
3.3采用水下混凝土灌注的桩基,或位于岩溶发育强烈、
淤泥、流砂,施工难度大的桩基:应采用钻芯法或声波透射法
检测桩身质量,检测数量不应少于上述灌注桩总数的 30%,且
不应少于10 根,少于10 根时应全部检测。

3.4桩径小于或等于800mm时,不得少于2根声测管;桩
径大于800mm且小于或等于1600mm时,不得少于3根声测管;
桩径大于1600mm时,不得少于4根声测管;桩径大于2500mm
时,宜增加预埋声测管数量;。

桩基完整性(低应变试验)试验方法

桩基完整性(低应变试验)试验方法

桩基完整性(低应变试验)试验方法1.1 基础完整性检测(低应变试验)1.1.1 适用范围低应变反射波法适用于混凝土灌注桩、混凝土预制桩、预应力管桩和CFG桩。

对于桩身截面多变且变化幅度较大的灌注桩,应采用其他方法辅助验证低应变法检测的有效性。

受检桩混凝土强度不应低于设计强度的70%,且不应低于15MPa。

1.1.2 检测原理低应变反射波法是目前国内普遍采用的低应变法。

它通过采用瞬态冲击的方式(瞬态激振),实测桩顶加速度或速度响应曲线,以一维线弹性杆件模型为依据,采用一维波动理论分析判定基桩的桩身完整性。

因此,基桩必须符合一维波动理论要求,满足平截面假定和一维线弹性杆件模型要求。

一般要求其桩长远大于直径即长径比大于5或瞬态激励有效高频分量的波长与桩的横向尺寸之比大于5.1.1.3 检测方法及工艺要求1.1.3.1 检测前的准备工作a。

受检基桩混凝土强度至少达到设计强度的70%,或期龄不少于14天时方可报检。

b。

施工单位填写报检表,经监理工程师签字确认后,至少提前2天提交给现场检测人员。

c。

施工单位向检测单位提供基桩工程相关参数和资料。

d。

检测前,施工单位需做好以下准备工作:1.剔除桩头,使桩顶标高为设计的桩顶标高。

2.要求受检桩桩顶的混凝土质量、截面尺寸应与桩身设计条件基本相同。

3.灌注桩要凿去桩顶浮浆或松散破损部分,并露出坚硬的混凝土表面。

4.桩顶表面平整干净且无积水。

5.实心桩的第三方位置打磨出直径约10cm的平面,平面保证水平,不要带斜坡;在距桩第三方2/3半径处,对称布置打磨2~4处(具体见图1),直径约为6cm的平面,打磨面应平顺光洁密实。

6.当桩头与垫层相连时,相当于桩头处存在很大的截面阻抗变化,会对测试信号产生影响。

因此,测试前应将桩头侧面与断层断开。

7.准备黄油1~2包,作为测试耦合剂用。

8.在基坑内检测,应提前将基坑内水抽干,并搭设好梯子,便于上下。

e。

搜集受检桩的相关技术资料,包括工程概况、基桩的设计参数、场地的工程地质资料以及施工记录情况。

小应变

小应变

图4 桩身截面减小实测波形图
(b) L1处桩截面增大
如图5所示,在L1
处有 n
Z1 A 1 1 Z 2 A2
, 0。 F
可得结论:截面减小处,VR与VI反号,而VT与VI同号。
图5 桩身截面增大实测波形图
(3)桩身发生断裂 如图6所示,桩身在L1处完全断开,Z2相当于空气的 波阻抗, Z2 趋于0。可得: 可得结论:应力波在断开处发生反射,由于透射波
Z1 1C1 A1 n Z 2 2 C 2 A2
2.2 应力波在阻抗界 面处的反射与透射
如图2所示,应 力波在阻抗界面处产 生反射与透射。
图2应力波的反射与透射
根据应力波理论,由连续条件、牛顿第三定律以 及波阵面动量守恒条件,得
U R FU I U T TU I
射波、反射波、透射波, T 为反射系数, F 为透射系 数,其中
U 为应力波的速度,下标 R 、I 、T 分别表示入
2 T 1 n
1 n F 1 n
3 试验步骤
3.1测试步骤
测试前须收集土层断面图、桩横截面积、长度、总体布 置和打桩工程的一般性能等资料。测试前消除海绵状的突出 部分和松散混凝土,使桩的表面干净平整,使桩头上有压贴 加速度计和用锤敲击的表面。测试步骤如下: (1)连接仪器和电源,打开电源开关,预热数分钟,调 测试仪器至待命工作状态; (2)将加速度传感器安装在桩头的平整部位; (3)用小锤短促而有力的锤击桩头数次,采集锤击所得 信 号; (4)从微机屏幕上选区满意的波形曲线并存盘; (5)根据波的反射特性,对记录曲线进行分析、计算, 评价桩身质量及完整性。
(b)夹泥
Z C n1 1 1 1 1 Z 2 2C2

桩基完整性检测方法.doc

桩基完整性检测方法.doc

桩基完整性检测方法
桩基完整性检测方法?以下带来关于桩基完整性检测方法有哪些,相关内容供以参考。

1 条件允许时,宜采用孔内摄像或将低压灯泡放入管桩内腔对桩身完整性进行检查。

2 符合下列条件之一的预制桩工程,应采用低应变法进行桩身完整性检测和静载试验进行单桩竖向抗压承载力检测,完整性检测数量不应少于总桩数的20%,静载试验抽检数量不少于总桩数的1%,且不少于
3 根,当总桩数在50 根以内时,不得少于2 根。

1)场地地质条件为岩溶的桩基工程。

2)非岩溶地区上覆土层为淤泥等软弱土层,其下直接为中风化岩、或微风化岩、或中风化岩面上只有较薄的强风化岩。

3)桩端持力层为遇水易软化的风化岩层。

4)采用引孔法施工的桩基工程。

3 对本条第2 款规定以外的预制桩工程,应采用高应变法同时进行桩身完整性检测和单桩竖向抗压承载力检测,抽检桩数不应少于同条件下总桩数的8%,且不得少于10 根。

地基基础设计等级为甲级和地质条件较为复杂的乙级管桩基础工程,抽检桩数应增加一个百分点。

其中符合下列条件之一的桩基工程,抽检桩数可减少一个百分点:
1)已按有关规范的规定对焊接接缝进行了抽检的桩基工程。

2)对于已采用孔内摄像或低压灯泡进行桩身完整性检查、检查桩数超过工程桩总数的80%且未发现明显质量缺陷的预应力管桩工程。

3)采用机械接头的预应力管桩工程。

4)施工过程中采用打桩自动记录设备进行施工记录的桩基工程。

注:当不采用高应变法进行抽检时,检测方法和抽检桩数应符合本条第2 款的规定。

以上是下面为建筑人士收集整理的关于“桩基完整性检测方法”等建筑相关的知识可以登入建设通进行查询。

桩基完整性的检测

桩基完整性的检测

浅谈桩基完整性的检测摘要:本文浅述了在桩基检测中几点方法,探讨了在当前形势下如何做好桩基检测工作,以确保工程质量。

关键词:完整性检测检测标准问题方法一、桩基完整性的检测方法1.1静载检测法在动测技术未能取得突破性进展之前,静载试验仍是承载力检测最为可靠的评定标准,如何改进静载试验测试、分析方法,提高静载试验的可靠度,一直以来都是工程界所关心的课题。

1.2低应变反射波法低应变反射波法又叫应力波法,是以手锤或力棒敲击桩顶,给桩一定的能量,产生一纵向应力波,该应力波沿桩身向下传播,由传感器(速度型或加速度型)拾取桩身缺陷及不同界面的反射信号,通过检测和分析应力波在桩身中的传播历程。

便可分析出桩基的完整性,并根据桩身突然变化界面时(如:桩底沉渣过厚、桩身夹泥、断裂、扩径或缩径等)所产生的反射和透射波,来确定桩身缺陷性质,估算桩长或缺陷位置,且根据应力波在桩身中的传播速度来推断混凝土的强度。

1.3高应变反射波法又叫高应变动力试桩法,是一种利用高能量的动力荷载确定单桩承载力的方法。

这种方法在国际上已经有了近30年的发展历程。

随着我国基础建设事业的发展,桩基工程的日益增多,各种类型混凝土灌注桩的大量应用,又出现了许多新的质量问题,因此桩的检测工作量很大。

传统的检测方法是桩的静载荷试验,由于其费用高、时间长,通常检测数量只能达到总桩数的1%左右。

因此,高应变动力检测以其技术相对先进、操作较为简便,近年来得到了广泛的推广和应用。

1.4反射波法反射波法的基本原理是在桩身顶部进行竖向激振,弹性波沿着桩身向下传播,当桩身存在明显波阻抗差异的界面(如桩底、断桩和严重离析等部位)或桩身截面面积变化(如缩径或扩径)部位将产生反射波。

经接受放大、滤波和数据处理。

可识别来自桩身不同部位的反射信息,据此计算桩身波速以判断桩身完整性及估计混凝土强度等级。

还可根据视波速和桩底反射波到达时间对桩的实际长度加以核对。

二、桩基完整性检测的标准目前对桩基完整性质量检测尚无明确定义,近年来不少专家提出了桩基完整性类别的划分方法,即把桩基划分为ⅰ类桩、ⅱ类桩和ⅲ类桩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三桥梁桩基完整性超声测试试验
一、实验目的
1.掌握混凝土超声波测试方法。

2.测试桥梁桩基的缺陷,并用简图描绘出来。

二、实验仪器
桩基完整性检测仪PIT-V
或PIT-FV。

它可检测各种灌注桩
和打入桩的桩身完整性,判定桩
身缺陷的程度及位置。

PIT-V只
测速度。

PIT-FV(图一)可测力
和速度,也可测两个加速度。

图一检测仪PIT-FV 三、试件模型
图二桩基模型图
四、实验原理
超声波探伤是利用超声波能在弹性介质中传播时,会在界面上产生反射、折射等特性来探测材料内部或表面缺陷的探伤方法,简称UT。

超声波在弹性介质中单位时间内传播的距离,称为超声波在这种介质中的传播速度。

简称超声波速,用C表示。

超声波速与介质的性质(密度、弹性模量等)和波的类型有关。

在超声波探伤中,超声波的发射和接收是通过探头来实现的。

超声波探伤仪的种类很多,可按显示方式、发射波连续性、声波通道等进行分类。

超声波探伤不但检测厚度大,而且灵敏度高、速度快、成本低、能对缺陷定位和定量,同时对人体无害。

然而,超声波探伤缺陷显示不直观,探伤技术难度大,易受主、客观条件的影响,探伤结果不便保存。

超声波探伤方法很多,若按原理分类,可分为脉冲反射法、穿透法和共振法,下面分别介绍脉冲反射法和穿透法。

1.脉冲反射法
1)脉冲反射法原理
图一所示为用单探头(一个探头兼作反射和接收)探伤的原理图。

图三 脉冲反射法探伤原理图
图一中脉冲发生器所产生的高频电脉冲激励探头的压电晶片振动,使之产生超声波。

超声波垂直入射到工作中,当通过界面A 、缺陷F 和底面B 时,均有部分超声波反射回来,这些反射波各自经历了不同的往返路程回到探头上,探头又重新将其转变为电脉冲,经接收放大器放大后,即可在荧光屏上显现出来。

其对应各点的波型分别称为始波(A ')、缺陷波(F ')和底波(B ')。

当被测工件中无缺陷存在时,则在荧光屏上只能见到始波A '和底波B '。

缺陷的位置(深度AF)可根据各波型之间的间距之比等于所对应的工件中的长度之比求出,即
F A B A AB AF ''⨯'
'= 其中AB 是工件的厚度.可以测出;B A ''和F A '',可从荧光屏上读出。

缺陷的大小可用当量法确定。

这种探伤方法叫纵波探伤或直探头探伤。

振动方向与传播方向相同的波称纵波;振动方向与传播方向相垂直的波称横波。

2)横波脉冲反射法
当入射角不等于零的超声波入射到固体介质中,且超声波在此介
质中的纵波和横波的传播速度均大于在入射介质中的传播速度时,则同时产生纵波和横波。

又由于材料的弹性模量总是大于剪切模量G,因而纵波传播速度总是大于横波的传播速度。

根据几何光学的折射规律,纵波折射角也总是大于横波折射角。

当人射角取得足够大时,可以使纵波折射角等于或大于90°,从而使纵波在工作中消失,这时工件中就得到了单一的横波。

图二表示单探头横波探伤的情况。

横波入射工件后,遇到缺陷时便有一部分被反射回来,即可以从荧光屏上见到脉冲信号,如图二(a)所示;若探头离工件端面很近,会有端面反射,如图二(b)所示,因此应该注意与缺陷区分;若探头离工件端面很远且横波又没有遇到缺陷,有可能由于过渡衰减而出现图二(c)的情况超声波在传播中存在衰减。

图四横波脉冲发射法波型示意图
横波探伤的定位在生产中采用标准试块调节或三角试块比较法。

缺陷的大小同样用当量法确定。

钢结构构件焊缝的超声波探伤,必须由持证专业人员按CB 1152进行,并根据图纸技术要求和行业标准确定验收。

2.穿透法
穿透法是根据超声波能量变化情况来判断工件内部状况的。

它是将发射探头和接收探头分别置于工件的两相对表面。

发射探头发射的超声波能量是一定的,在工件不存在缺陷时,超声波穿透一定工件厚度后,在接收探头上所收到的能量也是一定的。

而工件存在缺陷时,由于缺陷的反射使接收到的能量减小,从而断定工件存在缺陷。

根据发射波的不同种类,穿透法有脉冲波探伤法和连续波探伤法两种,如图三和图四所示。

脉冲波高
频发生器
工件缺陷
放大器连续波高
频发生器
缺陷
工件
放大器
图五脉冲波穿透探伤法示意图图六连续波穿透法探伤示意图穿透法探伤的灵敏度不如脉冲反射法高,且受工件形状的影响较大,但较适宜检查成批生产的工件。

如板材一类的工件,可以通过接收能量的精确对比而得到较高的精度,宜实现自动化。

五、实验步骤
1.把试件准备好。

2.在试件的顶部安装发射及接受应变片。

3.在发射应变片上轻敲一下,使其产生机械波往下传,并发射回来。

4.接受应变片接受反射回来的信号,将其转换成电信号展示在显示屏上。

5.完成数据采集,进行数据的分析和缺陷的定性判断。

敲击并接受波
图七试件工作图。

相关文档
最新文档