光电效应测普朗克常数实验报告书

合集下载

光电效应测普朗克常数_实验报告

光电效应测普朗克常数_实验报告

光电效应测普朗克常数_实验报告实验报告:光电效应测普朗克常数1.引言光电效应是指当光照射到金属表面时,金属中的自由电子被激发并脱离金属表面的现象。

根据经典电磁理论,根据能量守恒定律,只要光的能量超过金属的结合能,光子就能将电子打出金属。

然而根据经典电磁理论,预测出来的结果与实际测量的结果存在一定差异,这就需要引入量子理论,而普朗克常数即是量子理论中的重要常数之一2.实验目的通过测量光电效应中的截止电压,利用一条直线拟合求得斜率,以及其他相关数据,计算出普朗克常数。

3.实验仪器与材料实验仪器:光电效应测普朗克常数实验装置;实验材料:金属板、导线、光源等。

4.实验过程1)搭建光电效应测普朗克常数实验装置,将金属板连接到电压表上,并利用可调电源对金属板进行加热,使其达到一定温度。

2)调节电源的电压使电流达到零,记录此时的电压,即为截止电压。

3)逐渐增加电源的电压,记录相应的电流和电压值,并绘制出电流对电压的关系图。

4)利用线性拟合方法,求出电流对电压的斜率。

5)根据理论公式,使用线性拟合得出的斜率,结合相关数据,计算普朗克常数。

5.实验结果与分析通过实验测量得到的数据,可以绘制出电流与电压的关系图。

利用线性拟合方法,求出电流对电压的斜率。

斜率即为普朗克常数的近似值。

同时,还可以将实验得到的截止电压、金属板的材料参数等数据代入普朗克常数的计算公式,得到更为准确的普朗克常数。

6.结果分析与讨论通过实验测定得到普朗克常数的值与实际值进行比较,验证了量子力学理论的正确性,并验证了光电效应现象与量子理论的一致性。

实验结果与理论值偏差的原因可能是实验仪器的误差以及实验过程中的不确定因素。

进一步提高实验精度可以采取减小仪器误差,改进实验方法等措施。

7.实验总结本实验通过测量光电效应中的截止电压,并采用线性拟合方法,求得电流对电压的斜率即为普朗克常数的近似值。

通过与理论值进行比较,验证了量子力学理论的正确性。

实验中存在的误差可能是由实验仪器的误差和其他不确定因素引起的。

测量普朗克常数实验报告

测量普朗克常数实验报告

一、实验目的1. 理解光电效应的基本原理,验证爱因斯坦光电效应方程。

2. 通过实验测量,精确测定普朗克常数。

3. 掌握光电效应实验的操作方法和数据处理技巧。

二、实验原理光电效应是指当光照射到金属表面时,金属表面会释放出电子的现象。

根据爱因斯坦的光电效应方程,光电子的动能Ek与入射光的频率ν、金属的逸出功W和普朗克常数h有关,即Ek = hν - W。

其中,Ek为光电子的最大动能,h为普朗克常数,ν为入射光的频率,W为金属的逸出功。

通过改变入射光的频率,测量对应的截止电压U0,即可得到一系列Ek和ν的数据。

根据Ek = eU0,其中e为电子电量,将Ek和ν的关系图化后,斜率即为普朗克常数h/e。

三、实验仪器与设备1. 光电效应测试仪2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)5. 光电管6. 测量显微镜7. 直尺8. 计算器四、实验步骤1. 将光电管安装到光电效应测试仪上,调整光电管的位置,使其与汞灯的出光口平行。

2. 选择合适的滤色片,调整光阑,使光束照射到光电管上。

3. 打开汞灯及电源,调节电压,使光电管工作在饱和状态。

4. 改变滤色片的颜色,分别测量不同频率的光照射到光电管上时的截止电压U0。

5. 记录实验数据,包括入射光的频率ν、截止电压U0和对应的金属材料。

五、实验数据与处理1. 根据实验数据,绘制Ek~ν的关系图。

2. 利用线性回归方法,计算Ek~ν关系的斜率k。

3. 根据公式k = h/e,计算普朗克常数h的值。

六、实验结果与分析1. 根据实验数据,绘制Ek~ν的关系图,得到斜率k的值为x。

2. 根据公式k = h/e,计算普朗克常数h的值为y。

3. 将计算得到的普朗克常数h与理论值进行比较,分析误差产生的原因。

七、实验结论通过本次实验,我们成功验证了爱因斯坦光电效应方程,并精确测量了普朗克常数。

实验结果表明,普朗克常数h的测量值与理论值较为接近,说明实验方法可靠,数据处理方法正确。

光电效应测普朗克常量实验报告-普朗克常量-光电

光电效应测普朗克常量实验报告-普朗克常量-光电

光电效应测普朗克常量实验报告一、实验题目光电效应测普朗克常数二、实验目的1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;"2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

三、仪器用具ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪四、实验原理1、光电效应与爱因斯坦方程用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。

为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为式中,为普朗克常数,它的公认值是= 。

按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。

爱因斯坦提出了著名的光电方程:》(1)式中, 为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初速度,为被光线照射的金属材料的逸出功,221mv 为从金属逸出的光电子的最大初动能。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。

这个相对于阴极为负值的阳极电位0U 被称为光电效应的截止电压。

显然,有(2)代入(1)式,即有(3)由上式可知,若光电子能量W h <γ,则不能产生光电子。

产生光电效应的最低频率是h W=0γ,通常称为光电效应的截止频率。

不同材料有不同的逸出功,因而0γ也不同。

由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。

又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为(4)上式表明,截止电压0U 是入射光频率γ的线性函数,如图2,当入射光的频率0γγ=时,截止电压00=U ,没有光电子逸出。

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告实验目的:本实验旨在通过测量光电效应中光电流随光强和光频率的变化关系,以及通过测量截止电压来确定普朗克常数h的值。

实验原理:光电效应是指当光线照射到金属上时,金属中的自由电子受到光的激发后被抛出,形成电子流。

光电流I与光强度I、光频率f、截止电压V 和金属材料的性质有关。

根据光电效应的基本方程可以得到以下关系式:1.光电流I与光强度I的关系:I=K*I2.光电流I与光频率f的关系:I∝f^α3.光电流I与截止电压V的关系:I=K*(V-V_0)^2其中,K为比例常数,α为指数,V_0为截止电压。

根据以上关系,可以通过测量光强度I和光频率f的变化关系,以及测量截止电压V来确定普朗克常数h的值。

实验器材与步骤:实验器材:1.光源:使用一个可调节光强的白光灯。

2.光电管:选择一个金属光电效应管,如氢光电管。

3.电路:搭建一个用于测量光电流和截止电压的电路。

实验步骤:1.搭建电路:将光电管与光电效应电路连接,使之与电流计、电压源和截止电压测量仪连接。

2.测量截止电压:调节光源的光强,并逐渐增加电压源的电压,直到电流开始出现明显的变化,记录此时的电压作为截止电压V_0。

3.测量光强度和光频率:固定电压源的电压为截止电压V_0,并调节光源的光强,在每个光强下使用光频计测量光源的光频率f,并使用电流计测量光电流I。

4.数据处理:根据测得的光强度和光频率的数据,绘制光电流I与光频率f的曲线,并利用最小二乘法拟合得到指数α。

利用测得的截止电压V_0,计算光电流I与截止电压V的关系,并利用最小二乘法拟合得到常数K。

5.计算普朗克常数h:根据关系式I=K*I和I∝f^α,利用得到的K 和α,可以计算出普朗克常数h的估计值。

实验结果与讨论:通过实验测得的光电流与光频率的关系曲线,我们可以得到指数α的值。

利用测得的截止电压V_0,可以得到K的值。

将α和K代入关系式I=K*I和I∝f^α中,即可计算得到普朗克常数h的估计值。

光电效应测普朗克常量实验报告-普朗克常量 光电

光电效应测普朗克常量实验报告-普朗克常量 光电

光电效应测普朗克常量实验报告一、实验题目光电效应测普朗克常数二、实验目的1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

三、仪器用具ZKY—GD—3光电效应测试仪、汞灯及电源、滤色片(五个)、光阑(两个)、光电管、测试仪四、实验原理1、光电效应与爱因斯坦方程用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。

为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为的光波,每个光子的能量为式中,为普朗克常数,它的公认值是=6.626 。

按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。

爱因斯坦提出了著名的光电方程:(1)式中, 为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初速度,为被光线照射的金属材料的逸出功,221mv 为从金属逸出的光电子的最大初动能。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。

这个相对于阴极为负值的阳极电位0U 被称为光电效应的截止电压。

显然,有(2)代入(1)式,即有(3)由上式可知,若光电子能量W h <γ,则不能产生光电子。

产生光电效应的最低频率是h W=0γ,通常称为光电效应的截止频率。

不同材料有不同的逸出功,因而0γ也不同。

由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。

又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为(4)上式表明,截止电压0U 是入射光频率γ的线性函数,如图2,当入射光的频率0γγ=时,截止电压00=U ,没有光电子逸出。

光电效应法测普朗克常量_实验报告

光电效应法测普朗克常量_实验报告

光电效应法测普朗克常量_实验报告实验报告:光电效应法测普朗克常量摘要:本实验利用光电效应法测量普朗克常量h的值。

通过改变入射光的频率和测量光电管中光电子的最大动能,可以获得普朗克常量的近似值。

实验结果表明,测量得到的普朗克常量与理论值较为接近,验证了实验的有效性。

引言:光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。

光电效应现象的解释需要引入普朗克常量h,它是描述光的微粒特性的重要物理常数。

本实验旨在通过测量光电子的最大动能以及入射光的频率,获得普朗克常量的近似值。

实验仪器:1.光电效应仪器:包括光电管、反射板、反射镜等。

2.光源:使用可调频率的单色光源。

3.测量仪器:包括电压表、电流表等。

实验步骤:1.将光电管固定在光电效应仪器上,并连接电路,确保仪器正常工作。

2.将入射光源照射到光电管上,调节光源的频率,使光电管中的电流表读数稳定在其中一值。

3.记录下光源的频率和对应的电压、电流值。

4.重复步骤2和3,分别获得不同频率下的电压、电流值。

5. 根据光电效应的基本公式E=hf-φ,其中E为光电子的最大动能,h为普朗克常量,f为入射光的频率,φ为金属的逸出功,通过不同频率下的电压、电流值,计算出对应的光电子的最大动能E。

6.利用计算得到的E值和相应的频率,可以绘制出E随频率的变化曲线。

通过该曲线的斜率即可得到普朗克常量h的近似值。

结果与分析:根据实验步骤中获得的电压、电流值,可以计算出相应的光电子的最大动能E。

通过将E与频率f绘制成散点图,可以得到E随频率的变化曲线。

通过拟合曲线得到的斜率即为普朗克常量h的近似值。

根据实验数据的处理结果和相应的拟合曲线,得到的普朗克常量的近似值为h=6.63×10^-34J·s,与理论值相比较接近。

由此可验证实验的有效性。

结论:本实验利用光电效应法成功测量了普朗克常量h的近似值,并与理论值进行了比较。

实验结果表明,光电效应法能够准确测量普朗克常量的值,验证了实验的有效性。

普朗克常量的测定实验报告

普朗克常量的测定实验报告

普朗克常量的测定实验报告实验报告:普朗克常量的测定摘要:本实验通过使用光电效应测量普朗克常量,利用加样法测定光电子最大动能,进而计算出普朗克常量的数值。

实验结果表明,普朗克常量的测量值为6.64×10-34 J·s,与参考值6.626×10-34 J·s 相近,证明本实验的可行性和准确性。

引言:普朗克常量是描述量子力学中各种现象的基本物理常数之一,具有重要的科学意义和应用价值。

本实验旨在通过光电效应测量普朗克常量,并学习和掌握量子力学中重要的概念和技术。

实验装置和原理:本实验采用的光电效应测量装置包括光源、反射器、准直器、光阑、光电管、测量仪器等部分。

光源采用紫外线灯,产生波长为255nm的光线;反射器和准直器用于将光线聚焦到光电管的阴极面上;光阑用于限制光线进入光电管的范围。

光电管是用来检测光电效应的组件,其环境中必须保持真空且有一定的加速电压,以使光电子在电场作用下克服金属的束缚力,跃出金属表面。

根据光电效应的原理,当光线照射到金属表面时,激发金属内部的电子跃出,产生电子-空穴对。

如果电子能量高于金属工作函数,电子将被吸引到阴极,形成电流信号。

当光强和光电管和电压一定时,光电子的最大动能和光强成正比,与电压无关。

实验步骤和结果分析:1. 将实验装置接好,并保证光电管工作环境为真空状态。

2. 首先,将准直器聚焦到光电管的阴极面上,并测量出阴阳极间的距离。

3. 接下来,根据入射光线的波长和测得的电压,计算出测得的光电子最大动能。

4. 通过加重原子吸收仪器,在反射器上加样,使入射光线的强度发生变化,重复上述步骤,测量不同光强下的光电子最大动能。

5. 对实验数据进行处理,拟合出电压和光强之间的线性关系,从而计算普朗克常量的数值。

实验结果表明,普朗克常量的测量值为6.64×10-34 J·s,与参考值6.626×10-34 J·s相近,证明本实验的可行性和准确性。

用光电效应测普朗克常数实验报告

用光电效应测普朗克常数实验报告

用光电效应测普朗克常数实验报告一、实验目的本实验旨在通过光电效应测量普朗克常数。

二、实验原理光电效应是指当金属表面受到光照射时,会发射出电子的现象。

根据经典物理学,当金属表面受到光照射时,电子会吸收能量而获得动能,直到能量大于或等于逸出功时才能从金属表面逸出。

但实际上,在某些情况下,即使光的频率很低,也会有电子发射的现象。

这一现象无法用经典物理学解释,只有引入量子理论才能解释。

根据量子理论,当金属表面受到光照射时,光子与金属中的电子相互作用,并将一部分能量转移给了电子。

如果这部分能量大于逸出功,则电子可以从金属表面逸出。

此时,逸出的电子所具有的最大动能为:Kmax = hf - φ其中h为普朗克常数,f为入射光的频率,φ为金属的逸出功。

因此,在已知入射光频率和逸出功的情况下,可以通过测量逸出电子的最大动能来确定普朗克常数。

三、实验器材1. 光电效应实验装置2. 单色光源3. 金属样品(锌或铜)4. 电子学计数器四、实验步骤1. 将金属样品安装在光电效应实验装置上,并将单色光源对准金属表面。

2. 调整单色光源的频率,使得逸出电子的最大动能可以被测量。

3. 测量逸出电子的最大动能,并记录下入射光的频率和金属的逸出功。

4. 重复以上步骤,测量多组数据。

5. 根据测得的数据,计算普朗克常数。

五、实验注意事项1. 实验过程中要注意安全,避免直接观察强烈的单色光源。

2. 测量逸出电子最大动能时,要保证其他条件不变,如入射光强度和逸出功等。

3. 测量多组数据可以提高结果的准确性。

六、实验结果与分析根据测得的数据,可以计算出普朗克常数。

假设入射光频率为f,逸出功为φ,逸出电子的最大动能为Kmax,则普朗克常数为:h = Kmax / (f - φ)通过多次实验可以得到多组数据,计算出的普朗克常数应该是相近的。

如果存在较大偏差,则需要重新检查实验步骤和仪器是否有问题。

七、实验结论本实验通过光电效应测量了普朗克常数。

光电效应法测量普郎克常数实验报告

光电效应法测量普郎克常数实验报告

光电效应法测量普郎克常数实验报告实验报告:光电效应法测量普朗克常数一、实验目的1.学习光电效应现象及其基本原理。

2.了解并掌握光电电流与入射光强、入射光频率、阳极电压等因素之间的关系。

3.通过测量光电流与入射光频率的变化关系,确定普朗克常数的数值。

二、实验仪器与材料1.光电效应测量装置:包括光电池、透镜、滤光片、锁相放大器等。

2.微电流放大器3.光源4.不同频率的滤光片5.示波器6.高阻电表三、实验原理光电效应:当光照射到金属表面时,如果入射的光子能量大于金属材料的束缚能,光子会与电子碰撞并将能量传递给电子,使其脱离原子从而形成电子流。

这种现象被称为光电效应。

普朗克常数:光电效应的理论基础是普朗克的量子理论。

普朗克常数h表示光的能量量子,定义为一个光子的能量E与它的频率f的乘积,即h=E/f。

通过实验测量光电流与入射光频率的关系,可以利用普朗克常数确定光子的能量。

实验步骤:1.接通实验装置,将透镜调节至焦距为f的位置。

2.将滤光片依次插入光源光路中,为了测得不同波长的光电流,需要用具有不同波长的滤光片,将光线调至单光束。

3. 调节锁相放大器使其谐振频率f_0接近光电效应的阴阳极系统阻抗特性的谐振频率f_res。

4. 调节滤光片使入射光频率f与f_res相等。

5.将阳极电压U逐渐增加,记录相应的光电流I。

6.重复上述步骤5次,取平均值。

四、实验数据与处理测量数据如下表:U(V),I(A)------,------1.0,1.32.0,2.53.0,3.84.0,5.15.0,6.5根据测量数据可以得到以下图像:[讲解数据与图像]根据实验原理,根据入射光频率f与与光电流I的关系,可以得到h的数值。

五、误差分析1.光电池的指示误差:由于光电池原件的生产和使用过程中都会存在误差,所以测量结果会受到其指示误差的影响。

2.透镜和滤光片的误差:透镜和滤光片的使用寿命有限,会因为使用时间的长短产生一定的光失真,从而带来误差。

光电效应实验的实验报告(3篇)

光电效应实验的实验报告(3篇)

第1篇一、实验目的1. 了解光电效应的基本规律。

2. 验证爱因斯坦光电效应方程。

3. 掌握用光电效应法测定普朗克常量的方法。

4. 学会用作图法处理实验数据。

二、实验原理光电效应是指当光照射在金属表面时,金属表面会发射出电子的现象。

这一现象揭示了光的粒子性,即光子具有能量和动量。

爱因斯坦在1905年提出了光量子假说,认为光是由光子组成的,每个光子的能量与其频率成正比。

光电效应方程为:\(E = h\nu - W_0\),其中 \(E\) 为光电子的最大动能,\(h\) 为普朗克常量,\(\nu\) 为入射光的频率,\(W_0\) 为金属的逸出功。

三、实验仪器与材料1. 光电效应实验仪2. 汞灯3. 干涉滤光片4. 光阑5. 高压灯6. 微电流计7. 电压表8. 滑线变阻器9. 专用连接线10. 坐标纸四、实验步骤1. 将实验仪及灯电源接通,预热20分钟。

2. 调整光电管与灯的距离为约40cm,并保持不变。

3. 用专用连接线将光电管暗箱电压输入端与实验仪电压输出端连接起来。

4. 将电流量程选择开关置于所选档位(-2V-30V),进行测试前调零。

5. 调节好后,用专用电缆将电流输入连接起来,系统进入测试状态。

6. 将伏安特性测试/遏止电压测试状态键切换到伏安特性测试档位。

7. 调节电压调节的范围为-2~30V,步长自定。

8. 记录所测UAK及I的数据,在坐标纸上绘制UAK-I曲线。

9. 重复以上步骤,改变入射光的频率,记录不同频率下的UAK-I曲线。

10. 根据UAK-I曲线,计算不同频率下的饱和电流和截止电压。

11. 利用爱因斯坦光电效应方程,计算普朗克常量。

五、实验数据整理与归纳1. 不同频率下的UAK-I曲线(附图)2. 不同频率下的饱和电流和截止电压3. 计算得到的普朗克常量六、实验结果与分析1. 根据实验数据,绘制不同频率下的UAK-I曲线,可以看出随着入射光频率的增加,饱和电流逐渐增大,但增速逐渐减小。

普朗克常数测定实验报告

普朗克常数测定实验报告

一、实验目的1. 理解光电效应的基本原理,验证爱因斯坦光电效应方程。

2. 掌握使用光电管进行光电效应实验的方法。

3. 学习处理光电管的伏安特性曲线,并利用其测定普朗克常数。

二、实验原理光电效应是指当光照射到某些金属表面时,会有电子从金属表面逸出的现象。

爱因斯坦提出的光电效应方程为:\[ E_k = h\nu - W_0 \]其中,\( E_k \) 为光电子的最大初动能,\( h \) 为普朗克常数,\( \nu \) 为入射光的频率,\( W_0 \) 为金属的逸出功。

根据实验原理,我们可以通过测量入射光的频率 \( \nu \) 和对应的反向截止电压 \( U_0 \),根据公式 \( E_k = eU_0 \) 计算光电子的最大初动能 \( E_k \)。

然后,利用光电效应方程,我们可以通过绘制 \( U_0 \) 与 \( \nu \) 的关系曲线,求出普朗克常数 \( h \)。

三、实验仪器与材料1. 光电管2. 水银灯3. 滤光片4. 光阑5. 光电效应测试仪6. 直流电源7. 电压表8. 电流表四、实验步骤1. 将光电管连接到测试仪上,确保连接正确无误。

2. 使用水银灯作为光源,通过滤光片选择合适的入射光频率。

3. 调节光阑,控制入射光的强度。

4. 逐步增加反向截止电压 \( U_0 \),记录不同电压下电流表和电压表的读数。

5. 重复步骤 2-4,使用不同频率的入射光进行实验。

6. 根据实验数据,绘制 \( U_0 \) 与 \( \nu \) 的关系曲线。

五、实验结果与分析根据实验数据,我们绘制了 \( U_0 \) 与 \( \nu \) 的关系曲线。

从曲线中可以看出,\( U_0 \) 与 \( \nu \) 之间存在线性关系,证明了爱因斯坦光电效应方程的正确性。

根据实验数据,我们计算了普朗克常数 \( h \) 的值。

计算结果为:\[ h = \frac{e}{\text{斜率}} \]其中,斜率为 \( U_0 \) 与 \( \nu \) 的关系曲线的斜率,\( e \) 为电子电量。

用光电效应测普朗克常数实验报告

用光电效应测普朗克常数实验报告

一、实验目的1. 深入理解光电效应的基本规律和爱因斯坦的光电效应理论。

2. 掌握利用光电管进行光电效应研究的方法。

3. 学习对光电管伏安特性曲线的处理方法,并以此测定普朗克常数。

二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。

根据爱因斯坦的光电效应理论,光子的能量与其频率成正比,每个光子的能量为 \( E = hv \),其中 \( h \) 为普朗克常数,\( v \) 为光的频率。

当光子的能量大于金属的逸出功 \( W \) 时,光子会将能量传递给金属表面的电子,使其逸出金属表面。

实验中,我们通过测量不同频率的光照射到光电管上时产生的光电流,根据光电效应方程 \( E = hv - W \) 和光电子的最大初动能 \( E_k = eU_0 \),可以计算出普朗克常数 \( h \)。

三、实验仪器1. YGD-1 普朗克常量测定仪(内有 75W 卤钨灯、小型光栅单色仪、光电管和微电流测量放大器、A/D 转换器、物镜一套)2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)5. 光电管6. 测试仪四、实验步骤1. 将光电管和微电流测量放大器连接到测试仪上,调整测试仪至合适的电压和电流范围。

2. 将滤色片插入光栅单色仪,选择不同频率的光源。

3. 调节光阑,使光线照射到光电管上。

4. 测量不同频率的光照射到光电管上时产生的光电流,记录数据。

5. 根据光电效应方程和光电子的最大初动能,计算普朗克常数 \( h \)。

五、实验数据及结果1. 波长(nm):365, 405, 436, 546, 5772. 频率(\( 10^{14} \) Hz):8.214, 7.408, 6.879, 5.490, 5.1963. 截止电压(V):1.724, 1.408, 1.183, 0.624, 0.504根据实验数据,利用线性回归方法计算得到斜率 \( k \) 的值为 0.001819,根据公式 \( k = \frac{h}{e} \) 计算得到普朗克常数 \( h \) 的值为6.523×\( 10^{-34} \) J·s。

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告光电效应测普朗克常量实验报告引言:光电效应是指当光照射到金属表面时,光子的能量被电子吸收后,电子从金属中逸出的现象。

这一现象的发现和研究对于量子力学的发展起到了重要的推动作用。

本实验旨在通过测量光电流与入射光强度、频率之间的关系,来验证光电效应的基本原理,并测量普朗克常量。

实验装置与原理:实验装置主要由光源、光电管、电流计、电压源等组成。

光源产生可调节的光强度和频率的光束,光束照射到光电管的光敏表面上,产生光电效应。

光电管内部的电子被激发后,逸出金属表面,并形成光电流。

光电流通过电流计测量,进而得到与光强度和频率的关系。

实验步骤:1. 将实验装置连接好,并调整光源的光强度和频率。

2. 将光电管的光敏表面置于光源的照射下,打开电流计,记录下此时的光电流值。

3. 保持光强度不变,逐渐调整光源的频率,记录下对应的光电流值。

4. 保持光源的频率不变,逐渐调整光源的光强度,记录下对应的光电流值。

5. 根据测得的数据,绘制光电流与光强度、频率之间的关系曲线。

实验结果与分析:根据实验数据,我们可以得到光电流与光强度、频率之间的关系曲线。

在实验中,我们发现当光强度较小时,光电流随光强度的增加而线性增加;当光强度较大时,光电流趋于饱和,不再随光强度的增加而明显增加。

这一现象可以解释为,当光强度较小时,入射光子的能量不足以将电子从金属中逸出,因此光电流与光强度成正比;而当光强度较大时,入射光子的能量足以将电子逸出,此时光电流主要受到金属中自由电子的数量和能级分布的影响,因此光电流趋于饱和。

另外,我们还观察到光电流与光源频率之间的关系。

实验结果显示,光电流随着频率的增加而增加,并在某一频率达到峰值后逐渐减小。

这一现象可以通过光子能量与金属中电子能级之间的关系来解释。

根据普朗克的量子假设,光子的能量与其频率成正比,而金属中的电子只有在能级满足一定条件时才能被激发。

因此,当光源频率较小时,光子的能量不足以激发金属中的电子,导致光电流较小;而当光源频率逐渐增大时,光子的能量足以激发金属中的电子,光电流逐渐增大,并在某一频率达到峰值后逐渐减小,这是因为金属中电子能级的分布情况导致的。

用光电效应测普朗克常数实验报告

用光电效应测普朗克常数实验报告

用光电效应测普朗克常数实验报告一、实验目的1、了解光电效应的基本规律。

2、掌握用光电效应法测量普朗克常数的方法。

3、学习使用数字式检流计和微电流测试仪。

二、实验原理1、光电效应当一定频率的光照射到某些金属表面上时,会有电子从金属表面逸出,这种现象称为光电效应。

逸出的电子称为光电子。

2、爱因斯坦光电效应方程根据爱因斯坦的理论,光电子的最大初动能$E_{k}$与入射光的频率$ν$ 和金属的逸出功$W$ 之间的关系为:$E_{k} =hν W$其中,$h$ 为普朗克常数。

当光电子的初动能为零时,对应的入射光频率为截止频率$ν_{0}$,则有:$hν_{0} = W$3、光电流与光强的关系在一定的光频率和光强下,光电流与光强成正比。

4、测量普朗克常数通过测量不同频率光照射下的截止电压$U_{0}$,可以得到:$eU_{0} =hν W$整理可得:$h =\frac{eU_{0}ν}{ν ν_{0}}$其中,$e$ 为电子电荷量。

三、实验仪器1、光电效应实验仪包括汞灯、滤光片、光电管、遮光筒等。

2、数字式检流计用于测量光电流。

3、微电流测试仪提供电源和测量电压。

四、实验步骤1、仪器连接与预热将光电管暗箱与微电流测试仪连接好,打开电源预热 20 分钟。

2、调整仪器(1)调整光电管与汞灯的距离,使入射光均匀照射在光电管阴极上。

(2)旋转遮光筒,使光能够通过狭缝照到光电管上。

3、测量截止电压(1)依次换上不同波长的滤光片,分别测量对应波长光的截止电压。

(2)从低频率光开始,缓慢调节电压,直到光电流为零,此时的电压即为截止电压。

记录下不同波长光对应的截止电压。

4、数据记录与处理(1)记录不同波长光的频率和对应的截止电压。

(2)根据实验数据,作出截止电压与频率的关系曲线。

(3)通过直线拟合,求出斜率,进而计算普朗克常数。

五、实验数据记录与处理|波长(nm)|频率(×10^14 Hz)|截止电压(V)|||||| 365 | 821 |-185 || 405 | 741 |-147 || 436 | 688 |-118 || 546 | 549 |-073 || 577 | 519 |-061 |以频率为横坐标,截止电压为纵坐标,作出截止电压与频率的关系曲线。

光电效应法测量普郎克常数 实验报告含数据

光电效应法测量普郎克常数 实验报告含数据

4光电效应法测普朗克常量PB05007204 李东永实验目的:了解光电效应的基本规律,并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。

实验原理:1.光电效应实验原理如右图所示。

其中S 为 真空光电管,K 为阴极,A 为阳极。

2.光电流与入射光强度的关系光电流随加速电位差U 的增加而增加,加 速电位差增加到一定量值后,光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。

当U= U A -U K 变成负值时,光电流迅速减小。

实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。

3. 光电子的初动能与入射频率之间的关系 由爱因斯坦光电效应方程A mv hv +=221可见:光电子的初动能与入射光频率ν呈线性关系,而与入射光的强度无关。

4. 光电效应有光电阈存在实验指出,当光的频率0v v <时,不论用多强的光照射到物质都不会产生光电效应,根据爱因斯坦光电效应方程可知:hAv =0,ν0称为红限。

爱因斯坦光电效应方程同时提供了测普朗克常量的一种方法:ji j i v v U U e h --=)(实验仪器:光电管、单色仪(或滤波片)、水银灯、检流计(或微电流计)、直流电源、直流电压计等,接线电路如右图所示。

实验内容:1.在365nm 、405nm 、436nm 、546nm 、577nm 五种单色光下分别测出光电管的伏安特性曲线,并根据此曲线确定遏止电位差值,计算普朗克常量h 。

2.作a U v -的关系曲线,用一元线形回归法计算光电管阴极材料的红限频率、逸出功及h 值,并与公认值比较。

3.在波长为577nm 的单色光,电压为20V 的情况下,分别在透光率为25%、50%、75%时的电流,进而研究饱和光电流与照射光强度的关系原始数据:1.波长为365nm:2. 波长为405nm:3.波长为436nm:4.波长为546nm:5. 波长为577nm:6. 波长为577nm,电压为20V:数据处理:一 . 做出五个U-I 1.波长为 1.425-2246810121416I / u A2.波长为3.波长为2468I /u A4.波长为-0.8865.波长为Y = A + B * XParameter Value Error------------------------------------------------------------A-0.173550.61919 B 0.176260.08758------------------------------------------------------------R SDN P------------------------------------------------------------ 0.8182 0.17408 4 0.1818 ------------------------------------------------------------3.由上面线性拟合可得: 普朗克常量为3414191082.210176.0106.1)(---⨯=⨯⨯⨯=--=ji j i v v U U e h红限为 Hz h A v 13341901084.91082.2106.1174.0⨯=⨯⨯⨯==-- 三. 饱和光电流和光强的关系(λ=577nm,U=20V )20304050607080901001100.40.60.81.01.21.41.6I / u A%Y = A + B * XParameterValueError------------------------------------------------------------A 0.10.09487 B0.01440.00139------------------------------------------------------------RSDNP------------------------------------------------------------ 0.990870.0774640.00913得出结论:1. 实验测得的普朗克常量为341082.2-⨯=h ;单位? 2. 实验测得的红限为Hz v 1301084.9⨯=;3. 饱和光电流和光强基本上成线性关系;误差分析:实验结果中的误差是很大的.经分析,出现误差的最主要原因应该是遏止电位差测量的不精确.. 由于存在阳极光电效应所引起的反向电流和暗电流(即无光照射时的电流),所以测得的电流值,实际上包括上述两种电流和由阴极光电效应所产生的正向电流三个部分,所以伏安曲线并不与U 轴相切,进而使得遏止电位差的判断较为困难.因此,实验的成败取决于电位差是否精确.为了减小实验的误差, 确定遏止电位差值,本实验中采取了交点法测量遏止电位差,但是实验的结果中的误差仍然很大,因此要在实验的同时注意以下一些注意事项以尽量减小误差。

光电效应法测量普郎克常数实验报告含数据

光电效应法测量普郎克常数实验报告含数据

光电效应法测量普郎克常数实验报告含数据实验目的:本实验通过光电效应测量普朗克常数h,并研究各实验因素对测量结果的影响。

实验器材:1.光电效应实验装置:包括光源、光电池、偏光片、红外滤光片、准直透镜、样品室等。

2.数字电压表:用于测量光电池产生的电压。

实验原理:根据光电效应原理,当光照射到物质表面时,如果光的能量大于物质的电离能,则光子能将电子从物质中解离出来,使光电池产生电压。

光电效应的变量包括光在物质中的波长、光强和光电池的电压。

根据普朗克常数h的定义,可以将光电效应表达式化简为V=A(λ-λ0),其中V是光电池产生的电压,A为一常数,λ为光的波长,λ0是光电池对应的截止波长。

实验步骤:1.将实验装置搭建好,并保证光源、光电池和偏光片的位置固定。

2.调节光源强度,使得光电池产生的电压在可测范围内。

3.通过调节样品室中的光强,测得光电池在不同光强下的电压值。

4.保持光强不变,通过调节偏光片的角度,测得光电池在不同偏振光条件下的电压值。

5.根据测量数据,绘制光电池电压与光强、偏振光的关系曲线,并通过曲线拟合求得普朗克常数h的值。

实验结果:实验中我们测得光电池在不同光强下的电压值如下表所示:光强(W/m^2)电压(V)10.4520.8031.1541.6552.20实验讨论:根据实验结果,我们绘制了光电池电压与光强的关系曲线,发现二者呈线性关系。

根据曲线拟合结果,我们得到普朗克常数h的值为6.62×10^-34J·s。

实验中我们还测试了光电效应在不同偏振光条件下的变化。

我们发现,在平行于偏光片方向的光照射下,光电池电压最大;而在垂直于偏光片方向的光照射下,光电池电压最小。

这与光电效应理论一致。

实验结论:通过光电效应测量普朗克常数h的实验,我们得到了h的值为6.62×10^-34J·s。

实验结果与理论值相符,证实了普朗克常数的存在,并说明光电效应是光子性质的重要实验证据。

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告一、实验目的1、了解光电效应的基本规律。

2、掌握用光电效应法测量普朗克常量。

3、学习测量截止电压的方法,并通过数据处理得出普朗克常量。

二、实验原理1、光电效应当光照射到金属表面时,金属中的电子会吸收光子的能量。

如果光子的能量足够大,电子就能克服金属表面的束缚而逸出,形成光电子。

2、爱因斯坦光电方程根据爱因斯坦的理论,光电子的最大初动能$E_{k}$与入射光的频率$ν$ 之间的关系可以表示为:\E_{k} =hν W\其中,$h$ 为普朗克常量,$W$ 为金属的逸出功。

3、截止电压当光电流为零时,所加的反向电压称为截止电压$U_{0}$。

此时有:\eU_{0} = E_{k}\结合上述两式可得:\U_{0} =\frac{hν}{e} \frac{W}{e}\当入射光的频率不变时,截止电压$U_{0}$与入射光的频率$ν$ 呈线性关系。

通过测量不同频率下的截止电压,作$U_{0} ν$ 图,其斜率$k =\frac{h}{e}$,从而可以求出普朗克常量$h$ 。

三、实验仪器光电管、汞灯、滤光片、直流电源、电压表、电流表、滑动变阻器等。

四、实验步骤1、仪器连接将光电管与直流电源、电压表、电流表等按电路图连接好。

2、预热打开汞灯预热 15 20 分钟,使其发光稳定。

3、测量暗电流在无光照的情况下,测量光电管的暗电流,调节滑动变阻器,使电流表的示数为零。

4、测量截止电压(1)依次换上不同波长的滤光片,使汞灯发出不同频率的单色光照射光电管。

(2)调节滑动变阻器,逐渐增大反向电压,直到电流表示数为零,此时的电压即为截止电压。

记录不同频率光对应的截止电压。

5、数据记录将测量得到的数据记录在表格中,包括光的频率和对应的截止电压。

五、实验数据|波长(nm)|频率(×10^14 Hz)|截止电压(V)|||||| 365 | 821 |-128 || 405 | 741 |-102 || 436 | 688 |-087 || 546 | 549 |-058 || 577 | 519 |-048 |六、数据处理1、以频率$ν$ 为横坐标,截止电压$U_{0}$为纵坐标,绘制$U_{0} ν$ 曲线。

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告

光电效应测普朗克常数实验报告光电效应测普朗克常数实验报告系别:电气学院实验日期 20xx年11月19日专业班级:电气15班姓名:王菁学号:2110401127一. 实验简介当光照在物体上时,光的能量仅部分的以热的形式为物体吸收,而另一部分则转换为物体中某些电子的能量,使电子溢出物体表面,这种效应称为光电效应,溢出的电子称为光电子。

根据爱因斯坦理论,每个光子的能量为其中h为普朗克常数,是近代量子物理中的重要常数。

而本实验就是利用光电效应法来测得普朗克常数。

二.实验内容1.了解光电效应的基本规律。

2.熟悉普朗克常数测定仪的操作比并用光电效应方法测量普朗克常数。

三.实验原理光电效应实验———实验原理根据爱因斯坦理论,光能是以光电子的形式一份一份地向外传递,每个光子的能量为,式中焦耳·秒,称为普朗克常数,是近代量子理论的重要常数,v是光的频率。

在光电效应中,光子的能量一次全部传给金属中的电子。

这电子所获得的能量一部分用来使它从金属中逸出所必须的共A,另一部分能量变转化为光电子的最大初动能。

于是有式中m是电子质量,V是电子最大初速度,这就是著名的爱因斯坦光电效应方程式。

由这个方程式可知光电效应的规律为:1. 当hv ≥ A,v ≥ A/h = v0时,才能使光电子逸出金属表面。

v0称为截止频率,取决于金属材料。

2. 光电子的初动能只取决于光的频率。

3. 光子多少,决定光的强弱,光强增加,光子数增加,逸出的电子数也多。

为了测出光电子的初动能,采用如下图的实验电路。

在光电管两端加上反向电压,当单色光照射到光电管阴极K时,由阴极逸出的光电子具有初动能,在反向电压下逆着电场力方向由阴极K向阳极A运动,随着反向电压的增大,光电流逐渐减小,当反向电压增加到V0时,光电流降为0,此时光电子做的功等于逸出的初动能,即因此,在试验中只要改变入射光的频率,可求得普朗克常数。

四.实验仪器包括GD-5光电管、单色仪、水银灯、检流计、直流电源、直流电压表、滑线变阻器、临界电阻箱。

测定普朗克常数实验报告

测定普朗克常数实验报告

一、实验目的1. 通过光电效应实验,验证爱因斯坦的光电效应理论。

2. 掌握光电效应实验的基本操作和数据处理方法。

3. 测定普朗克常数,并了解实验误差及其来源。

二、实验原理光电效应是指当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出的现象。

爱因斯坦提出的光电效应方程为:\[ E_k = h\nu - W \]其中,\( E_k \) 为光电子的最大初动能,\( h \) 为普朗克常数,\( \nu \) 为入射光的频率,\( W \) 为金属的逸出功。

当光电子逸出金属表面后,在反向电压 \( U_0 \) 下,光电子会受到电场力的作用,最终达到平衡。

此时,光电子的动能等于电场力做的功,即:\[ E_k = eU_0 \]其中,\( e \) 为电子电量。

将上述两个公式联立,得到:\[ eU_0 = h\nu - W \]通过改变入射光的频率 \( \nu \),测量对应的反向截止电压 \( U_0 \),即可得到一系列 \( U_0 - \nu \) 数据。

将 \( U_0 \) 作为因变量,\( \nu \) 作为自变量,作出 \( U_0 - \nu \) 关系曲线。

若该曲线呈线性关系,则斜率 \( k \) 即为 \( \frac{h}{e} \),从而可以求出普朗克常数 \( h \)。

三、实验仪器与材料1. 光电效应测试仪2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)6. 电压表7. 频率计8. 计算器四、实验步骤1. 将光电管接入测试仪,并调整测试仪至合适的工作状态。

2. 使用滤色片和光阑调节入射光的频率和强度。

3. 测量不同频率下光电管的反向截止电压 \( U_0 \)。

4. 将测量数据记录在表格中。

5. 根据实验数据,绘制 \( U_0 - \nu \) 关系曲线。

6. 计算普朗克常数 \( h \)。

五、实验结果与分析1. 根据实验数据,绘制 \( U_0 - \nu \) 关系曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电效应测普朗克常数实验报告
【实验目的】 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;
2、掌握用光电管进行光电效应研究的方法;
3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

【仪器用具】
高压汞灯及电源、滤色片(五个)、光阑(两个)、光电管、微电流放大器、光电管
【实验原理】
1、光电效应与爱因斯坦方程
用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。

为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为 的光波,每个光子的能量

式中, 为普朗克常数,它的公认值是 =6.626 。

按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。

爱因斯坦提出了著名的光电方程:
(1)
式中, 为入射光的频率,m 为电子的质量,v 为光电子逸出金属表面的初
速度,
为被光线照射的金属材料的逸出功,221mv 为从金属逸出的光电子的最大初动能。

由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。

这个相对于阴极为负值的阳极电位0U 被称为
光电效应的截止电压。

显然,有
(2)
代入(1)式,即有
(3)
由上式可知,若光电子能量W h <γ,则不能产生光电子。

产生光电效应的最低频率是h W =0γ,通常称为光电效应的截止频率。

不同材料有不同的逸出功,因而0γ也不同。

由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。

又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子γ的频率成正比,,将(3)式改写为
(4)
上式表明,截止电压0U 是入射光频率γ的线性函数,如图2,当入射光的频
率0γγ=时,截止电压00=U ,没有光电子逸出。

图中的直线的斜率
e h
k =是一个正的常数:
(5)
由此可见,只要用实验方法作出不同频率下的γ-0U 曲线,并求出此曲线的
斜率,就可以通过式(5)求出普朗克常数h 。

其中
是电子的电量。

U
-v直线
2、光电效应的伏安特性曲线
下图是利用光电管进行光电效应实验的原理图。

频率为、强度为的光线照射到光电管阴极上,即有光电子从阴极逸出。

如在阴极K和阳极A之间加正向
U,它使K、A之间建立起的电场对从光电管阴极逸出的光电子起加速作电压AK
U的增加,到达阳极的光电子将逐渐增多。

当正向电压增加用,随着电压AK
U时,光电流达到最大,不再增加,此时即称为饱和状态,对应的光电流即到m
称为饱和光电流。

光电效应原理图
由于光电子从阴极表面逸出时具有一定的初速度,所以当两极间电位差为零时,仍有光电流I存在,若在两极间施加一反向电压,光电流随之减少;当反向电压达到截止电压时,光电流为零。

爱因斯坦方程是在同种金属做阴极和阳极,且阳极很小的理想状态下导出的。

实际上做阴极的金属逸出功比作阳极的金属逸出功小,所以实验中存在着如下问题:
(1)暗电流和本底电流存在,可利用此,测出截止电压(补偿法)。

(2)阳极电流。

制作光电管阴极时,阳极上也会被溅射有阴极材料,所以光入射到阳极上或由阴极反射到阳极上,阳极上也有光电子发射,就形成阳极电流。

由于它们的存在,使得I~U曲线较理论曲线下移,如下图所示。

伏安特性曲线
【实验步骤】
1、调整仪器
(1)连接仪器;接好电源,打开电源开关,充分预热(不少于20分钟)。

(2)在测量电路连接完毕后,没有给测量信号时,旋转“调零”旋钮调零。

每换一次量程,必须重新调零。

(3)取下暗盒光窗口遮光罩,换上365.0nm滤光片,取下汞灯出光窗口的遮光罩,装好遮光筒,调节好暗盒与汞灯距离。

2、测量普朗克常数h
(1)将电压选择按键开关置于–2~+2V档,将“电流量程”选择开关置于A档。

将测试仪电流输入电缆断开,调零后重新接上。

(2)将直径为4mm的光阑和365.0nm的滤色片装在光电管电暗箱输入口上。

U,并数据记录。

(3)从高到低调节电压,用“零电流法”测量该波长对应的
0(4)依次换上404.7nm、435.8nm、546.1nm、577.0nm的滤色片,重复步骤(1)、(2)、(3)。

(5)测量三组数据你,然后对h取平均值。

[实验数据及处理]
【实验分析讨论】
五、误差分析
对于普朗克常量的确定,是通过测不同频率下的截止电压的大小来得到的。

而其主要误差也就是在这一测量过程中产生的。

查阅有关资料知为了能准确测定普朗克常数, 实验中所用的光电管必须具备下列条件:
(1)对可见光区域内所有谱线都较灵敏;
(2) 阳极包围阴极, 这样当阴极有负电位时, 大部分光电子都能到达阳极;
(3) 阳极没有光电效应, 不会产生反向电流;
(4) 光电管的暗电流很小;
(5) 减小或避免杂散光的影响。

综合其它的影响可知,在实验中的主要误差有:
1.光电管中暗电流的影响;
2.滤色片产生的滤色光并不完全单一;
3.实验汞灯受交变电压影响而不能完全稳定;
4.仪器读数微小跳动的读数误差;
5.暗箱封闭不严而受杂质光的影响。

6.测量过程中产生的反向电流的影响;
对于以上各种误差,分析可知,由于实验中产生的暗电流很小(低于实验测量的精度)故1暗电流的影响可忽略不计;而对于2、5的影响可通过仪器采购途径实现;而对于3个人认为可以通过在装置前加稳压器来实现微小电压扰动对实验的影响;对4完全可通过操作者本人的良好的实验习惯来实现。

最后,对于6中反向电压的影响,查阅有关资料知:光电管在制造的过程中,很难保证阳极不被阴极材料所污染(即阴极表面的低逸出功材料溅射到阳极上)。

而且查知这种污染会在光电管的反复使用过程中日趋加重,造成被污染后的阳极逸出功降低。

当从阴极反射过来的散射光照到它时便会发射出光电子而形成阳极光电流-----反向电流。

使得实验结果产生一定的偏差。

而对此我们可通过切断阴极反射过来的散射光与阳极间的联系从而避免反向电流的影响。

7.实验者自身的影响:
(1)从不同频率的伏安特性曲线读到的“抬头电压”(截止电压),不同人读得的不一样,经过处理后的到U s____ v曲线也不一样,测出的数值就不一样;(2)调零时,可能会出现误差,及在测量时恐怕也会使原来调零的系统不再准确。

8.参考值本身就具有一定的精确度,本身就有一定的误差。

9.理论本身就有一定的误差,例如,1963年Ready等人用激光作光电发射
实验时,发现了与爱因斯坦方程偏离的奇异光电发射。

1968年Teich 和
Wolga用GaAs激光器发射的hn=1.48eV的光子照射逸出功为A=2.3eV的
钠金属时,发现光电流与光强的平方成正比。

按爱因斯坦方程,光子的
频率处于钠的阀频率以下,不会有光电子发射,然而新现象却发生了,
不但有光电子发射,而且光电流不是与光强成正比,而是与光强的平方
成正比。

于是,人们设想光子间进行了“合作”,两个光子同时被电子
吸收得以跃过表面能垒,称为双光子光电发射。

后来,进一步的实验表
明,可以三个、多个、甚至40个光子同时被电子吸收而发射光电子,称
为多光子光电发射。

人们推断,n光子的光电发射过程的光电流似乎应
与光强的n次方成正比。

【实验改进方案】
a.针对本底电流产生的原因,可设计一个遮光罩,罩住从汞灯到光电管这
段测量线路,来减少周围杂散光对实验的影响。

相关文档
最新文档