沸腾炉的设计 年产6万吨锌冶炼沸腾焙烧炉设计
锌冶炼工艺介绍
锌冶炼工艺介绍锌冶炼工艺介绍-火法工艺\湿法工艺:《锌冶炼论文全集》征订我国第一部锌冶炼大型专著30年总结:技术与经验设备与装备国内与国外历史与未来《锌冶炼论文全集》是我国第一部全面介绍锌冶炼技术、设备的论文集。
本全集收集了《中国有色冶金》近30年来所有锌冶炼方面的论文,包括锌冶炼的全部工艺:1.火法工艺ISP法、竖罐炼锌法、电炉炼锌法等;2.湿法工艺常规法,高酸浸出法(磺钾/钠/铵铁钒法、低污染磺钾/钠/铵铁钒法、喷淋除铁法),直接浸出法(高压浸出法、常压浸出法)等。
本全集分十大部分:外文译丛、综述、焙烧、制酸、火法炼锌、湿法炼锌(浸出、净液、电解、熔铸、锌基合金)、综合回收与利用、污酸污水处理、低浓度烟气处理、设备与装备等。
从中可以全面了解我国锌冶炼近30年来的技术进步、设备和装备更新、大型项目建设、以及大型设备引进及其国产化的历程和全貌;从外文译丛中可以领略到世界先进技术的应用进程,以及国外大型企业30年的发展历程,还可以了解近五年最新技术应用情况和未来技术的发展趋势,是一部集技术与经验、设备与装备、国内与国外、历史与未来、过程与结果于一体的珍贵的技术论文全集,值得珍藏!电话:***** 联系人:周伟Email:zhouwei*****@《锌冶炼论文全集》目次1 我国锌冶炼现状近近年来的技术发展2 葫芦岛锌厂竖罐炼锌70年回望3 我国冶炼烟气制酸进展及展望4 铅锌密闭鼓风炉熔炼技术10年来进展5 当代竖罐炼锌技术评述6 八十年代铅锌的技术发展前景7 国内外锌冶炼技术的进步8 株洲冶炼集团有限责任公司的技术研发前景9 株洲冶炼厂的技术进步的方向及措施10 株冶技术创新实践11 我国铟产业现状及发展12 西北铅锌冶炼厂锌系统投产10周年回顾与展望13 株洲冶炼厂10万t锌扩建工程浅析14 比利时老山公司湿法炼锌技术评价15 我国的氧化锌工业16 高级氧化锌提取工艺的进展17 贵州含锗氧化铅锌矿资源的开发状况及前景18 沈冶湿法炼锌的三十年第2篇沸腾焙烧1 我国锌精矿沸腾焙烧技术的进展2 沸腾炉还原连续炼锌法3 锌焙砂还原焙烧工艺的试验研究4 锌精矿富氧鼓风沸腾焙烧5 锌精矿沸腾焙烧和浸出渣的处理6 新法熔炼锌焙砂的热力学研究与基础实验7 锌精矿沸腾焙烧与氧化锌生产新工艺8 RPC硫酸化焙烧工艺9 焙烧、制酸车间的近期改进10 株冶109O沸腾炉及硫酸系统生产述评11 微富氧技术在沸腾焙烧炉的应用12 避免锌精矿沸腾焙烧炉开炉过程中SO2烟气排空污染的生产实践13 锌冶金企业原料配料系统的优化方法的探讨与实践第3篇火法炼锌ISP法、竖罐炼锌法、电炉炼锌法、其它火法炼锌)3.1 ISP法1 韶冶铅锌密闭鼓风炉I系统技术改造2 铅锌密闭鼓风炉风口喷吹技术应用探讨3 浅析韶关冶炼厂ISP工艺的现状与发展4 密闭鼓风炉炼锌法在韶关冶炼厂的生产实践5 谈铅锌密闭鼓风炉的金属回收率6 韶关冶炼厂二系统烧结工艺的改造7 延长ISP工艺大修周期的生产实践8 延长铅锌密闭鼓风炉系统清扫周期的生产实践9 氧化锌生产的质量控制10 精馏冷凝锌粉的生产与分级11 韶冶铅锌密闭鼓风炉熔炼砷的分布及行为3.2 竖罐炼锌12 竖罐蒸馏炼锌法的展望13 特大型竖罐蒸馏炉的生产实践14 竖罐炼锌工艺中焙砂与二次焙砂混合比的探讨15 竖罐炼锌生产的强化途径分析16 长沙锌厂双竖罐蒸馏炉改造工程生产实践17 竖罐炼锌用还原煤配煤技术的探讨18 西德奥克厂竖罐炼锌技术19 锌精馏塔生产高级氧化锌20 精锌生产实践3.3电炉炼锌21 电炉炼锌工艺实践与探讨22 电炉炼锌的生产实践及技术改进23 防止炼锌电炉炉底积铁的生产实践24 锌电热蒸馏炉的生产过程分析25 2500KVA炼锌电炉的开发和应用26 炼锌电炉飞溅式冷凝器的改进实践27 延长炼锌电炉炉龄的生产实践3.4 其它方法28 氧化锌矿火法处理新工艺―铁浴熔融还原法29 锌锭反射炉法生产锌粉实践30 浅析超细高活性锌粉的制备和用途31 利用尾矿生产氧化锌微粉的试验研究32 直接法生产氧化锌产品灰份控制的探讨33 喷吹炼锌热力学平衡计算34 喷射炼锌法的改进35 精馏法生产氧化锌的几个问题36 年产一万吨氧化锌―精锌的精馏工艺改造37 用碳与石灰直接还原硫化矿38 锌精炼过程中锌液面的覆盖措施39 锌火法精炼加铝除铁的工业试验40 采用精馏法提高氧化锌产品档次41 兴城市冶化厂高级氧化锌生产实践42 超细锌粉的生产实践43 细锌粉的生产44 氧化锌焙粉工艺的改进45 锌精馏塔煤气供应中断15小时恢复生产过程46 粉镀(渗)锌技术及应用第4篇湿法炼锌4.1 浸出4.1.1 常规浸出法1 湿法炼锌中酸平衡的分析与对策2 湿法处理高硅氧化锌矿3 絮凝剂对电锌生产的影响研究4 高硅锌精矿的处理方法5 高硅氧化锌矿浸出脱硅工艺研究6 新建电锌厂浸出工序的试生产7 论电解锌两段中性间断浸出工艺的改进8 锌焙砂浸出的生产实践及技术改进9 一次浸出渣过滤效率的提高10 株洲冶炼厂氧化锌炼锌系统技术改造11 株冶湿法炼锌中铁的行为和作用12 高锗锌原料湿法冶炼的实践4.1.2 高酸浸出法13 喷淋沉淀除铁工艺的应用14 降低浸出渣含锌的生产实践15 西北铅锌冶炼厂浸出车间处理高硅原料的实践16 湿法炼锌中用氧化锌矿代替部分焙砂的工艺的研究17 热酸浸出黄钾铁矾工艺的生产实践18 热酸浸出―黄钾铁矾工艺的改进与实践19 采用热酸浸出处理烟尘的技术发展20 采用低污染黄铁矾提高金属回收率21 从冷却塔结晶看低污染沉矾22 杂质在黄钾铁矾法炼锌过程中的行为23 湿法炼锌除铁新工艺研究24 针铁矿法除铁工艺的氧化技术25 硫酸锌溶液中针铁矿法沉铁的氧化过程4.1.3 直接浸出法26 铜锌混合矿加压浸出的试验研究27 高铁闪锌矿加压浸出过程中Fe的动力学研究4.1.4 其它方法28 锌浮渣酸浸液过氧化氢除铁方法研究29 铅烟化路次氧化锌生产电锌的工艺研究30 氧化锌湿法处理过程中除氟的综述31 尾矿氧化锌脱氯试验研究32 硫酸锌生产工艺的改造33 用碳酸氢铵转型剂制备活性氧化锌的生产实践34 锌焙砂氨法生产高纯锌35 优级一水硫酸锌的生产实践36 用离子交换法制备超纯硫酸锌4.2 净液37 两段高温锑盐工艺在伊朗亚兹德锌冶炼厂的应用38 锌粉置换除钴的研究及运用39 硫酸锌溶液的净化40 硫酸锌溶液净化工艺改造实践41 硫酸锌溶液净化流程的选择42 硫酸锌净化工艺的改进实践43 高钴硫酸锌溶液两段高温锑盐净化除钴的生产实践44 电锌生产中锑盐除钴工艺的改造45 西北铅锌冶炼厂两段逆锑连续净化的制约因素及其对策46 硫酸锌溶液锑盐净化存在的问题及改进措施47 株冶锌溶液净化与锌粉节约途径48 湿法炼锌锑盐锌粉除钴的生产实践49 两段空气氧化中和除砷、锑在湿法炼锌中的生产实践50 三段净化工艺在我厂湿法炼锌中的应用51 湿法炼锌过程中钴的分布与控制52 从硫酸锌溶液中脱砷的工业实践53 控制杂质和水平衡的新优先沉锌法54 净化过程锌水解的控制55 硫酸锌溶液的振动净化法56 湿法炼锌β-奈酚除钴试验与生产57 提高湿法炼锌除铜镉后液固液分离效果的实践58 硫酸锌溶液净化除钴锌粉粒度对单耗的影响59 湿法炼锌过程中贫镉液除钴的研究60 几种锑盐净化法的应用实践4.3 电积61 现代锌电解车间的设计理论与实践62 锌电解车间的最佳化63 锌电积时锌阴极的使用64 锌电解过程的电能节约65 锌电解降低电单耗提高锌品级率的探索与实践66 锌电解工序的合理化67 锌电解液质量的自动检测方法与装置68 在高电流效率下同时电积MnO2和锌69 锌电积阳极析出MnO2电流效率的探讨70 株冶锌电解液循环及冷却系统的改造71 锌电解液的闪蒸冷却72 锌电积酸雾治理的工业试验73 提高电锌一级品率的生产实践74 某些杂质对锌电解沉积的影响75 锑对锌电解沉积的影响特征76 有机物对锌电积的影响和有机添加剂的选择77 骨胶添加剂对锌电解影响的研究78 锰在锌电解中的作用79 锌电积过程中锗的危害及预防措施80 试生产期间的锌电解车间组织与技术管理81 用传统电解槽进行氯化锌电积的小型试验82 锌电解车间硅整流所设计中的几个值得注意的问题83 低银铅钙合金阳极在锌电解工业中的应用84 锌电解搭接法电积能耗高的原因探讨及阴极导电头的改进研制4.4 熔铸85 提高锌锭底面质量的研究和生产实践86 锌锭浇铸现代化87 圆盘铸锭机锌锭模的改进88 10万t锌熔铸车间的炉型选择89 锌熔铸车间的工艺设计90 热镀用大锭锌合金生产实践91 热镀锌生产实践92 金属镉的熔化与浇铸第5篇制酸1 改善冶炼厂硫酸质量的研究2 焙烧锌精矿烟气制酸生产实践3 36Kt冶炼烟气制酸装置的运行实践4 浅谈白银公司冶炼厂制酸系统技术改造5 干吸工段酸浓度控制方法的探讨6 波利顿法控制硫酸中的汞7 西北铅锌冶炼厂除汞工艺改造实践8 硫酸厂处理高浓度SO2冶炼烟气的一种创新方法9 硫酸厂的热量回收10 焙烧制酸过程的余热利用11 关于硫酸厂节电12 韶关铅锌烧结机低浓度烟气两转两吸制酸工艺改造13 锌精矿沸腾焙烧尾气制酸系统开车防止SO2污染的实践第6篇收尘与环保1 葫芦岛锌厂硫酸生产现状和发展前景2 净化污酸综合利用实践3 锌浸出渣挥发窑处理烟气收尘4 株洲冶炼厂锌粉制造收粉系统改造5 锌精矿沸腾焙烧烟气收尘设计与实践6 锌挥发窑袋式收尘清灰技术的研究7 锌系统烟气制酸污水的治理第7篇综合回收与利用1 竖罐炼锌残渣为燃料采用Ausmelt技术处理锌浸出渣的工艺探讨2 用浮选法从锌浸出渣富集银的试验3 湿法炼锌流程中银的行为4 矮鼓风炉法处理湿法炼锌浸出渣5 砷汞烟尘的富集回收新方法6 由复杂多变的锌原料生产1号电锌7 从锌浸出渣回收银的改进8 火法炼锌蒸馏残渣综合回收利用9 用赤铁矿法改造现有大型电锌厂浸出渣的处理流程10 湿法炼锌净化钴渣处理工艺的改进11 炼锌厂稀酸的合理利用12 用溶剂萃取法从氧化锌矿浸出渣中回收锌13 从锌浸出渣中回收贵金属14 从高镉锌中回收镉15 葫芦岛锌厂粗镉精馏生产实践16 粗镉真空蒸馏制取优质镉的工业试验17 旋涡炉熔炼蒸馏残渣的生产实践18 密闭鼓风炉炼锌铅过程中贵金属的回收问题19 采用半鼓风炉法处理锌浸出渣、竖罐渣及其他含锌物料提取金银20 从制药醋酸锌废渣中回收锌21 烟尘中锌的回收利用22 用湿法冶金的方法从锌灰和烟尘中回收锌23 锌渣烟化炉连续吹炼的生产实践24 从湿法炼锌的铜镉渣中回收七水硫酸锌25 进一步改善镉的回收现状26 光敏硫化镉的生产方法27 株冶镉生产工艺的改进28 低品位海绵镉生产电镉29 提高粗镉质量的措施30 用高锌镉生产精镉工艺的改进27 从锌精矿焙烧电尘中提取镉28 株州冶炼厂银和稀散元素的回收29 对提高我厂铟回收率的初步探讨30 浅谈烟灰综合利用中铟的回收31 我厂铟回收方法及工艺改进32 提高精铟质量的研究33 浅谈离心萃铟过程中结晶乳化和有机相老化问题及处理34 超细氧化铟粉的研制35 锌精馏系统中铟的富集36 从竖罐炼锌焦结烟尘中回收铟工艺条件的优化37 从硫酸锌溶液中富集铟两种工艺的比较38 从锌渣浸渣中综合回收铟锗铅银的试验研究39 萃取法回收锗的新工艺40 株冶回收锗技术的变革与展望41 炼锌过程中锗作为副产品回收42 溶剂萃取锗过程中的乳化及其消除43 韶关锗综合回收技术的发展44 精馏塔回收锗的生产实践45 用锌精矿沸腾焙烧SO2烟气制取焦亚硫酸钠46 锌铸型浮渣除氟的研究第8篇相关设备8.1 各类冶炼炉与窑1 铅锌鼓风烧结机的现状及其密封结构2 韶冶铅锌鼓风炉炉壳的改造3 韶冶铅锌密闭鼓风炉技术改造4 沸腾焙烧炉改造实践5 沸腾焙烧设备的生产技术改造6 109O沸腾焙烧炉空气分布板制作与焊接的问题探讨7 铅锌密闭鼓风炉浮渣处理设备的改造8 铅锌密闭鼓风炉的加料装置的改造实践9 铅锌密闭鼓风炉系统设备内衬砌体的改造实践10 锌竖罐蒸馏炉夏延部砖套改进实践11 锌精馏炉平口塔盘的研制与应用12 提高锌精馏炉砌筑质量的有效措施13 韶冶塔式锌蒸馏炉燃烧室的改进14 小型锌蒸馏炉的设计计算15 两段煤气发生炉在竖罐炼锌中的应用16 熔炼电炉用可伸缩电极密封装置的开发17 炼锌电弧炉耐火材料使用寿命探讨18 工频熔锌电炉冻炉事故的处理19 锌合金加工用感应电炉及应用20 工频感应电炉改造方案的探讨21 工频有芯熔锌电炉感应器耐火材料的研究与应用22 延长锌浸出渣挥发窑寿命的实践24 锌浸出渣挥发窑处理系统的优化25 回转窑处理浸出渣操作的改进26 锌浸出渣挥发窑内衬砖的选择和实践8.2 收尘与制酸设备27 管式除尘雾器的改造实践28 我国第一台13O四电场针管式电收尘器在赤峰冶炼厂投入运行29 13O针管式电收尘器技术及应用30 二氧化硫鼓风机进出口管道的改进31 电除尘器绝缘子的设计与选择32 孟山都动力波洗涤技术在有色金属冶炼厂烟气制酸净化工序的应用33 耐HF酸胶泥在冶炼制酸空塔上的应用8.3 精馏设备(4篇)34 锌精馏塔的几项技术改造35 检测锌精馏塔盘质量新方法的研究36 锌精馏塔压力的自释放37 大型精馏塔盘的研制与应用8.4 反应器(釜)与电解槽38 用于针铁矿法处理锌浸出渣的氧化反应器39 采用沸腾反应器净化锌电解液40 湿法冶金中的高压釜选型41 使用振动反应器净液除镉42 湿法炼锌中防腐技术及电解槽掏槽的机械化43 锌电解槽边母线的优化设计8.5 浓密搅拌与过滤设备44 关于搅拌作业的比例放大问题45 株冶锌冶炼浸出渣过滤设备评述46 锌浸出渣用全自动挤压式压滤机脱水47 关于湿法冶金过滤设备的选择48 湿法炼锌渣过滤工艺设备改进与压滤机产品研究开发49 高效浓密机50 浓密机使用故障分析及对策51 PF-25翻盘式真空过滤机在湿法氧化锌工业中的应用8.6 剥离机53 新剥锌机的开发54 阴极锌剥离实践―剥锌机和极板的搬运8.7 锅炉55 锌焙烧余热锅炉的技术改造56 余热锅炉在锌精矿沸腾焙烧余热回收中的应用57 日本川崎和芬兰奥斯龙锌焙烧余热锅炉比较8.8 冷却塔58 YBF-X锌电解液冷却塔59 电解车间空气冷却塔改造设想60 锌电解液空气冷却塔节能显著8.9 其它设备62 株洲冶炼厂机电设备技术改造主要成果汇总简介63 润式球磨机的研制与应用64 配料仓改用振动电机放矿的效果65 四元合金阳极板在湿法炼锌中的应用66 锌电积铅基四元合金阳极的研究与应用67 粘度计量在湿法炼锌中的应用第9篇国外文献9.1 综述1 现代锌处理技术的最新经验2 国外氧化锌矿的冶炼3 比利时老山公司巴伦锌厂十年来的发展4 秋田锌精炼厂生产近况5 秋田冶炼厂的锌冶炼6 饭岛精炼厂应用计算机操作的过去、现在和将来7 神冈矿业股份公司的铅锌冶炼8 三井矿冶公司的锌生产现状9 八户冶炼厂的锌、铅冶炼改造10 小名滨冶炼厂的焙烧、硫酸设备及氧化锌生产现状11 日本矿业锌公司的锌冶炼改造12 日本铅锌冶炼厂的技术改造13 日本铅锌冶炼厂的技术改造(续)14 南澳大利亚皮里港罗肯希尔联合冶炼有限公司锌的生产15 哈德逊湾采矿与熔炼公司锌厂的最新发展16 加拿大特累尔铅锌冶炼厂的现代化扩建17 奇得克里克(梯敏斯)以最新技术扩建锌厂18 现代化锌生产中能源消耗的比较19 科明科公司特雷尔锌系统和铅冶炼的现代化改造20 科明科特雷尔厂问题仍未解决9.2 沸腾焙烧21 科科拉锌焙烧炉最近的工艺改进22 澳大利亚里斯顿厂锌精矿的沸腾焙烧23 比利时老山公司锌精矿沸腾焙烧与烟气制酸9.3 火法炼锌24 氧化物料在炼锌鼓风炉的直接熔炼25 美国熔炼与精炼公司锌的电积法26 火法炼锌的沃纳工艺(英)27 沃特炼锌法28 澳大利亚硫化物公司柯克尔克里克铅锌冶炼厂29 美国蒙纳卡电热炼锌厂的现代化改造30 关于喷射炼锌的研究31 秋田锌精炼厂生产各种锌合金32 氧化物料在炼锌鼓风炉的直接熔炼33 锌精馏过程的研究34 锌渣电热熔炼蒸馏法制取锌粉35 精馏法生产氧化锌36 葫芦岛锌厂高级氧化锌的生产实践37 氯化锌生产38 精馏法生产氧化锌的几个问题9.4 湿法炼锌39 老山公司巴伦锌厂的锌电解车间40 南非锌公司冶炼厂生产近况41 达特伦电锌厂改造42 比利时老山公司溶液净化43 比利时老山公司锌电积44 鲁尔锌公司电锌厂浸出渣利用的经验45 电解锌厂用选择沉淀锌法进行水平衡和控制镁46 秋田冶炼厂锌电解工序几项改进47 饭岛冶炼厂锌电解工序的节能48 饭岛冶炼厂浸出工序的进展49 神冈冶炼厂锌电解的改造50 神冈锌电解车间最近的改进51 奥托昆普科科拉锌厂净液工艺52 科明科公司新的电锌厂53 经互会国家湿法炼锌的技术改造54 南澳大利亚皮里港的电解锌55 澳大利亚电锌公司里斯登厂的锌生产56 意大利维斯麦港新电解锌厂57 科明科公司特累尔锌加压浸出生产实践58 科明科特累尔锌厂的浸出和净化59 哈德逊湾舍利特锌加压浸出工艺试车投产60 锌精矿的加压氧化浸出61 谢里特锌家加压浸出法生产实践及其发展趋势62 锌精矿的加压浸出流程63 对锌精矿加压浸出流程的分析64 用溶剂萃取―电解法制取锌65 用热沉淀法从硫酸溶液中除铁66 湿法炼锌中沉铁的作用68 鲁奇公司在湿法冶金中的技术发展9.5 综合利用69 比利时老山公司浸出渣的处理70 塔斯马尼亚澳大利亚电锌公司里斯登厂的镉生产71 从硫酸锌系统的高铜溶液中溶剂萃取除铜72 硫化物有限公司新南威尔士州柯克尔.克里克厂镉的生产73 西德诺尔登线锌厂的镉真空蒸馏精炼电话:***** 联系人:周伟9.6 其它74 饭岛冶炼厂的锌冶炼75 饭岛锌精炼厂最近的生产76 比利时老山公司锌成品加工77 谢里特炼锌工艺的能源需要量78 水力雾化法生产锌粉79 喷射炼锌法的特点及问题80 喷射炼锌法的特点及问题81 喷射法制取电池锌粉及汞齐化锌粉的生产82 彦岛电锌厂的节能。
沸腾炉的设计
沸腾炉的设计----设计内容之三第三章沸腾焙烧炉的设计计算由于热平衡计算中,在计算炉子的热损失时需要知道沸腾全部炉壁与炉顶的总表面积。
所以在热平衡计算之前应先沸腾炉主要尺寸的计算。
3.1、沸腾焙烧炉主体尺寸的计算(一)沸腾焙烧炉单位生产率的计算在计算沸腾炉炉床面积时,本例题所采用的炉子单位生产率不按生产实践数字选取而是按理论公式(6-2-1)进行计算。
单位生产率A= (6-2-1)式中:1440——一天的分钟数;——系数,介于0.93-0.97之间;——单位炉料空气消耗量,;——最佳鼓风强度,。
(6-2-1)式中只有不知道,根据研究结果=(1.2~1.4)k (6-2-2)式中,k——最低鼓风强度,,根据理论(6-2-3)式中:——物料间自由通道断面占总沸腾层断面的比率,一般介于0.15-0.22,对硫化物取0.15,对粒状物料如球粒取0.22;0.15——单位体积的鼓风量在炉内生成的炉气量,——炉料的比重,4000 ;——炉气重度, = =1.429 ;——通过料层炉气的算术平均温度,= =460℃;——物料粒子平均粒度,米。
根据已知精矿的粒度组成,精矿中大粒部分:粒度 0.323㎜ 10%(33%)0.192㎜ 20%(67%)共计 30%(100%)=0.9=0.9(0.67×0.192+0.33×0.323)=0.212㎜精矿中细粒部分:粒度 0.081㎜ 35%(50%)0.068㎜ 35%(50%)共计 70%(100%)=0.9=0.9(0.50×0.068+0.50×0.081)=0.067㎜对全部精矿:大粒部分 0.212㎜ 30%细粒部分 0.067㎜ 70%= × =0.32物料粒子平均粒度按经验公式计算,对混合料,≤0.415 时,平均粒度根据小粒体积含量按下式计算:=5% +95%=0.05×0.212+0.95×0.067=0.074㎜=74×把上述数字代入(6-2-3)式:=(1.2~1.4)k,选用系数1.2,则最佳鼓风强度 =1.2k=1.2×7.403=8.884现在就可以计算炉子的单位生产率:A= =6.925沸腾炉的单位生产率(床能力)与操作气流速度有关,因此也可按以下公式计算求得:A= (6-2-4)式中:——操作气流速度,米/秒。
重金属冶金学-锌冶金-课件ppt.ppt
图3-8 锌焙砂浸出一般流程图
硫化锌精矿的焙烧大都采用沸腾炉焙烧,有的还采用 多膛炉焙烧或悬浮焙烧。沸腾炉焙烧是在焙烧过程中使空 气自下而上地吹过固体炉料层,使固体颗粒相互分离,不 停地翻动,有效地进行硫化物氧化反应的强化焙烧过程。 沸腾炉所用设备简单,易于实现自动化控制。沸腾焙烧的 应用是在1944年开始,首先用于硫铁矿的焙烧,1952年才 应用到炼锌工业中。我国于1957年末建成第一座工业沸腾 焙烧炉并投入生产,且在后来新建的炼锌厂都采用了沸腾 焙烧。
1673K时显著升华。ZnO可被C、CO和H2还原,其中被 CO还原的反应在1073K下十分激烈:
ZnO + CO = Zn(g) + CO2 在823K以上,与Fe2O3形成铁酸锌。 3. ZnSO4
无天然矿物。易溶于水,比重为3.474,受热分解, 在1123K左右温度下分解压达到10132.5Pa,
3.1.4 炼锌原料
锌矿物的种类: 较常见的有:闪锌矿(ZnS);磁闪锌矿(nZnSmFeS); 菱锌矿(ZnCO3);硅锌矿(Zn2SiO4);异极矿(ZnSiO4·H2O) 等。 自然界中较多的为硫化矿。锌的单金属硫化物非常少 见,多与铜铅共生。其中最常见的有铅锌矿,其次为锌铜 矿和铜铅锌矿。
图3-6 锌精矿流态化酸化焙烧流程图
图3-7 高温氧化流态化焙烧工艺流程图
3.3 湿法炼锌
湿法炼锌包括焙烧、浸出、净液、电解和熔铸5个工序。
锌冶炼项目控制方案
锌冶炼项目控制方案:工艺简介湿法炼锌的实质是以稀硫酸溶剂溶解锌矿中的锌,使锌尽可能全部地溶入溶液中,生成硫酸锌溶液;此溶液进行净化以除去溶液中的杂质;然后从硫酸锌溶液中电解析出锌;电解析出的阴极锌再熔铸成为湿法炼锌的成品。
从上述可知,湿法炼锌过程可分为浸出、净液、电解、和熔铸四个阶段。
该项目锌冶炼包括火法和湿法两大部分:主要工艺流程如下::控制要求1.焙烧控制的重点和难点:沸腾焙烧的控制对生产过程来说,是三稳定:稳定的风量、稳定的料量和稳定的温度。
控制系统也是三稳定,来控制的。
有以下主要控制回路:1、炉膛温度控制调节回路;2、鼓风量控制调节回路;3、加料控制调节回路;4、沸腾炉微负压控制调节回路;5、炉底鼓风静压。
沸腾焙烧余热锅炉是利用沸腾炉的余热产生蒸气的过程,有以下主要控制回路:1 强制循环泵产生的沸腾炉埋管和沸腾炉烟道埋管的流量;2 余热锅炉汽包水位控制调节;3 饱和蒸气压力控制调节;4 除氧器温度控制调节;5 除氧器水位调节。
焙烧工段主要检测回路:沸腾焙烧:1. 焙烧炉沸腾层上中下部温度检测,并根据中部温度调节炉顶喷水装置。
2.炉顶温度,烟气出口,流态化冷却器及高效圆筒冷却器出水温度以及焙砂,及流态化冷却器温度检3.精矿贮仓料位检测及报警。
4.炉顶烟气压力,风箱压力,烧嘴油压,压缩空气,燃烧风压力及流态冷却器压缩空气冷却水压力及圆筒冷却器冷却水压力检测。
5.鼓风流量,烧嘴流量,燃烧风空气流量,及流态冷却器压缩空气流量冷却水流量及高效圆筒冷却器水流量检测。
6.精矿给料量控制。
焙烧炉炉膛负压控制。
焙烧炉鼓风量控制。
7.鼓风机,刮板输送机,流态化冷却器,高效圆筒冷却器冷却水回水温度,断流检测报警。
余热锅炉:1. 锅炉汽包的水位,压力检测,除氧器除氧水箱水位检测。
2. 锅炉蒸汽出口温度,压力和流量检测。
3. 减压后蒸汽温度,压力检测。
4. 给水泵,循环泵进出口压力检测。
5. 余热锅炉进出口及对流区温度,压力检测等6. 汽包,除氧水箱水位自动调节。
锌精矿焙烧课计
1、设计任务设计一个年产10000吨电锌厂焙烧车间〔初步设计〕1.1、原始数据电锌年产量:10000吨锌精矿的化学成分〔%〕1.2、技术条件选择沸腾层高度:1.5m左右空气过剩系数:沸腾层温度:850~900C炉顶温度:820~870炉顶负压:-10~30Pa直线速度:~出炉烟气量、温度:9001.3、技术经济指标年处理锌精矿:年工作日:300天沸腾炉炉床面积:28m2沸腾炉炉床能力:5.2t/(m2d)焙烧矿产出率〔包括烟尘和焙砂〕:88%〔占锌精矿的〕烟尘含锌量:54.89%焙砂含锌量:1%焙烧料含锌量:48%脱硫率:93.6%焙烧锌直收率:52%冶炼总回收率:95%出炉烟尘含量:35%〔占焙烧矿的〕量:9365%〔体积百分数〕出炉烟气SO2烟尘含Ss量:1.73%焙砂含Ss量:0.4%2-量:2.14%烟尘含Sso42-量:1.10%焙砂含Sso42、原始资料、锌矿的分布及品位截至2002年,全世界查明锌储量为20000万吨,储量根底为45000万吨,现有储量和储量根底的静态保证年限为23年和51年。
锌储量和储量根底占锌资源量的%和%。
中国锌的储量和储量根底均居世界首位,已成为世界最大的铅锌资源国家。
根据统计资料,在我国铅锌储量中铅锌平均品位只有 4.66%,而根据目前铅锌价格水平和本钱水平,只有铅锌(1:2.5)合计地质品位在7%~8%以上的地质储量才是能经济利用的储量,目前我国能经济利用的铅锌合计储量只有万吨,仅占总储量的 42.6%。
锌在自然界多以硫化物的状态存在,主要矿物是闪锌矿〔ZnS〕,但这种硫化矿的形成过程中有FeS固溶体,成为铁闪锌矿〔nZnSmFeS〕.含铁高的闪锌矿会使提取冶炼过程复杂化。
流化床的地表部位还常有一部打分被氧化的氧化矿,如菱锌矿〔ZnCO3〕、硅锌矿〔Zn2SiO4〕、导极矿〔H2Zn2SiO5〕等。
我国铅锌储量较多的省(区)主要是云南、广东、甘肃、四川、广西、内蒙古、湖南和青海等八省(区),其铅锌储量占全国总储量的80.7%。
湿法炼锌中沸腾焙烧过程的研究进展
少 加 料 量 , 相 应 提 高 过 剩 空 气 系数 , 长停 留时 使 延 间 ,b的脱 除 有 所 降 低 , 时 S脱 除效 果 亦 有 明 显 P 同
腾焙烧 技术 。
沸腾焙烧又称流态化焙烧 , 是众 多焙烧方 法 中 的一种 。所谓 的沸腾焙 烧是 指将 所 要 处理 的 固体破
国内应 用较 成熟 的焙烧 技 术是 硫 化锌 精 矿 的粉 状 沸
究, 重点分析 了制粒粘合剂 的选择和制粒焙砂质量 控制 。在沸腾焙烧试验 中, 针对焙砂质量及其影响 因素 诸如焙 烧 温度 、 原料粒 度 、 剩空 气 系 数 和物 料 过
在 炉 内 的停 留 时 间等 进 行 了 研究 ; 另外 通过 适 当减
第 6期
许
冬 , : 法炼锌 中沸 腾焙 烧过 程 的研 究进展 等 湿
2 1
要取决于焙烧强度 的高低。焙烧强度越 高 , 炉子产 量越大 ; 焙烧 强度 越低 , 子产 量 越 小 。而 焙烧 强度 炉
取决 于单位 时 间内从 炉 内沸腾 层 移走 热 量 的 多少 和
物 料反应 速度 的快 慢 。在 原料 成 分 、 理规 格 、 烧 物 焙
碎, 研磨 成细 粉 , 加 固体 与 气 体 的接 触 面 积 , 短 增 缩 颗粒 内部 的传递 和反应距 离 。 自下 而上 流 经 这 些粉 料 的气体 , 在达 到 一定速 度 时 , 将 固体 颗 粒悬 浮起 会 来 , 之 不 断 运 动 , 如 沸 腾 的水 , 称 沸 腾 焙 烧 。 使 犹 故 沸腾 焙 烧 的基 础是 固体 流 态 化 , 沸 腾焙 烧 炉 焙 烧 用 锌精矿 , 内 热容 量 大且 均 匀 , 炉 温差 小 , 粒 与 空 气 料
中图分类 号:T 8 3 F 1
锌精矿制粒沸腾焙烧
2.1 制粒 效果 及影 响因素 (1)纸浆废 液 做为 粘合 剂 ,制粒 效 果 较 为 理想 。
试验平 均成 球率 73%(粒 度 0.5~4.7mm 冷态 ),转 鼓强 度 46.5% ~83.35%。然 而 纸 浆 来 源 困难 ,价
1 实验 方 法
1.1 试 验设备 参 考 国 内外 经验 ,结合 某 锌 业 股份 有 限 公 司具
Vo1.59. No.1 February 2 0 0 7
锌精矿制 粒沸腾焙 烧
李 芳 ,张建彬 ,张起梅 ,刘 伟
(葫芦 岛有 色金属 集 团有 限公 司 ,辽 宁葫芦 岛 125003)
摘 要 :研究锌精矿制粒沸腾 焙烧的制粒 和焙烧过程。结果表 明。选用圆筒制粒机 为制粒设备 ,成球率可通过 配料水份 、制 粒机倾角和转速来控制 ,硫酸加返 回物为合适的粘合剂 。制粒沸腾焙烧 提高了炉子 的处理能力 。床处理能力 达到 3O.4t/m d。炉 温控制得当,风量 均匀 。焙 砂质 量可 以达 到 Pb<1.O%,Cd<O.05%,S<1% 的控 制要 求。沸腾 炉 操作 温 度可 控制 在 1140~ 1180℃ ,比现有粉 状物料焙烧操作温度提高 6O~8O℃
固
图 1 试 验流 程
Fig.1 Flowsheet of experiment
(Pb,Fe,Sio2)及熔点要求严格 ,限制部分锌精矿的
使用 。
2 试验 结果 与分 析
随着原料供应 日趋紧张、精矿质量下降 ,发展沸 腾焙 烧技 术 。提 高 金 属 回收率 具 有 重 要 的意 义。为 此 ,进行 了锌精矿 制 粒焙 烧 的试验 研究 ,重点 是制粒 粘合 剂 的选 择 和制 粒焙砂 质量 分 析 。
年产8万吨锌精矿硫酸化沸腾焙烧炉设计
《锌精矿硫酸化沸腾焙烧炉》设计说明书指导教师:万林生姓名:朱健玲班级学号:084班09 号专业:冶金工程完成日期:自2011年12月26号至2012年1月5号江西理工大学冶金与化工工程学院二○一一年十二月设计任务书一、设计题目:年产8万吨锌精矿硫酸化沸腾焙烧炉设计二、原始资料:1、生产规模:电锌年产量80000吨2、精矿成分:本次设计处理的原料锌精矿成分如下表所示(%,质量百分数):3、精矿矿物形态:闪锌矿、黄铜矿、黄铁矿、磁流铁矿、方铅矿、硫镉矿、石灰石、菱美矿三、设计说明书内容:(1)设计概述(2)沸腾焙烧专题概述(3)物料衡算及热平衡计算(4)沸腾焙烧炉的选型计算(5)沸腾炉辅助设备计算选择(6)沸腾炉主要技术经济四、绘制的图纸沸腾焙烧结构总图(1#图纸:纵剖面和一个横剖面)五、设计开始及完成时间自2011年12月26号至2012年1月5号目录第一章设计概述 (1)1.1设计依据 (1)1.2设计原则和指导思想 (1)1.3设计任务 (1)第二章沸腾焙烧专题概述 (2)2.1沸腾焙烧炉的应用和发展 (2)2.2沸腾炉炉型概述 (2)2.3锌精矿硫化沸腾焙烧工艺及主要设备的选择 (3)2.3.1锌精矿硫化沸腾焙烧原理 (3)2.3.2锌精矿硫酸化沸腾焙烧炉炉型选择 (4)2.3.3气体分布板及风箱 (6)2.3.4流态化床层排热装置 (7)2.3.5排料口 (7)2.3.6烟气出口 (8)第三章物料衡算及热平衡计算 (9)3.1锌精矿流态化焙烧物料平衡计算 (9)3.1.1锌精矿硫态化焙烧冶金计算 (9)3.1.2烟尘产出率及其化学和物相组成计算 (11)3.1.3焙砂产出率及其化学与物相组成计算 (13)3.1.4焙烧要求的空气量及产出烟气量与组成的计算 (17)3.1.5 沸腾炉排出烟气量和组成 (18)3.1.6 沸腾焙烧物料平衡 (20)3.2热平衡计算 (20)3.2.1热收入 (20)3.2.2热支出 (24)第四章沸腾焙烧炉的选型计算 (28)4.1床面积 (28)4.2前室面积 (28)4.3流态化床断面尺寸: (28)4.4流态化床高度(沸腾层高度H) (29)4.5炉膛面积和直径 (29)4.6炉膛有效高度 (30)的确定 (30)4.7炉膛空间体积V炉膛4.8气体分布板及风帽 (30)4.8.1气体分布板孔眼率 (31)4.8.2风帽 (31) (31)4.9确定沸腾层冷却面积F冷却4.10水套中循环水的消耗量 (32)4.11风箱的容积V (32)风箱 (32)4.12加料管面积F加料4.13 溢流排料口 (33)4.14 排烟口的面积F的计算 (33)排烟第五章沸腾炉辅助设备的选择计算 (34)第六章沸腾炉主要技术经济指标 (36)参考文献 (38)设计心得体会 (39)第一章设计概述1.1设计依据根据冶金专业工程《沸腾焙烧炉设计》(万林生编)下达的课程设计指导书任务。
影响硫化锌精矿沸腾炉炉期因素及应对措施分析
影响硫化锌精矿沸腾炉炉期因素及应对措施分析作者:尹亚平来源:《科技风》2019年第24期摘要:硫化锌精矿沸腾炉炉期,对提高系统产量,降低生产成本影响比较大,延长硫化锌精矿沸腾炉炉期一直是冶炼企业的重要工作。
本文针对影响硫化锌精矿沸腾炉炉期的因素进行分析,探讨延长硫化锌精矿沸腾炉炉期的应对措施。
关键词:锌精矿;焙烧湿法炼锌工艺一般都是先用沸腾焙烧炉脱出硫化锌精矿中的硫,沸腾焙烧过程产出的二氧化硫烟气送制酸系统生产硫酸,焙矿送湿法浸出系统。
沸腾焙烧过程主要化学反应如下:ZnS+3/2O2=ZnO+SO2↑湿法炼锌沸腾炉焙烧温度通常控制920-960℃,要求得到含少量硫酸盐的氧化物焙矿,以减少浸出过程硫酸的补充。
1 影响沸腾焙烧炉炉期的因素沸腾焙烧炉炉期是指新开炉到停炉清理炉床的时间,少则2个月,多则到1年,通常情况焙烧和硫酸生产设备每年需要进行一次停产大修,清理系统及设备维护。
沸腾炉炉期的长短,直接影响到系统作业率及生产任务的完成。
因此,延长沸腾炉炉期意义重大。
影响沸腾炉炉期的因素很多,其主要的影响因素如下:1.1 硫化锌精矿化学成分大部分冶炼厂所用的硫化锌精矿都是由多个矿山供给的,点多面广,成分复杂,入炉前都需要配矿,以确保进入沸腾炉的硫化锌精矿成分稳定。
但是配矿过程很难保证入炉料成分混合均匀,甚至存在进入到沸腾炉的入炉料仍然存在多种化学成分超标的情况。
对沸腾焙烧影响比较大的化学成分和指标主要有Fe、S、SiO2、Pb 和精矿粒度。
1.1.1 高铁硫化锌精矿对沸腾炉炉期的影响高铁硫化锌精矿中的铁通常以黄铁矿FeS2和铁闪锌矿FeS形态存在。
如果硫化锌精矿含铁高,由于高铁矿产出的焙砂含铁酸锌的量增大,焙砂比重增加近20%,沸腾层压强增大,致使风箱压力由正常的13—14kpa增加到15—16kpa,流态化床沸腾状况恶化,沸腾炉炉期缩短。
1.1.2 铅和二氧化硅对沸腾炉炉期的影响进入到沸腾炉的硫化锌精矿Pb和SiO2含量较高时,易形成低熔点物,造成炉床、埋管、烟气系统粘结。
汉中锌业:科技创新助力企业高质量发展
近年来,汉中锌业有限责任公司(以下简称“汉中锌业”)以党建为引领,以科技创新为第一驱动力,不断完善创新工作机制,搭建科技创新平台,提高广大科技工作者热情,激发全员创新创效活力,把科技创新和生产经营深度融合,努力实现降本增效,为汉中锌业高质量发展奠定了坚实基础。
科技创新提升核心竞争力2021年9月,由省科协、省工信厅和省国资委主办的2021年陕西省“三新三小”科技创新大赛中陕西有色集团共有84个项目获奖,其中汉中锌业获奖项目27个,一等奖1项,二等奖7项,三等奖19项。
2项成果荣获2021年陕西省创新方法大赛优胜奖。
2018年以来,公司连续四年获得陕西有色集团科技进步奖13项,一等奖1项,二等奖6项,三等奖6项;获得“科技创新标兵”荣誉称号1项。
荣获全国“2021有色金属冶金矿产固废资源化匠心团队”荣誉称号。
截至目前,公司累计授权专利21件,其中发明专利16件,累计发布企业标准12项,取得软件著作权2项。
这些荣誉充分体现了汉中锌业科技创新战斗力,也充分展示了公司科技进步创新实力。
“十四五”,公司将坚定不移地继续实施科技创新战略,加大人才培养力度,创新人才引进和培养模式。
通过科技创新、技术升级,不断推进科技进步,激发企业活力。
科技创新突破环保瓶颈2018年初,汉中锌业新一届领导班子临危受命,迎难而上,勇挑重担,在党委书记、董事长何学斌,副书记、总经理王正民带领下,站在长远发展的战略高度,科学谋划布局。
从解决锌冶炼废渣出路入手,突破制约公司生产的环保瓶颈。
经考察调研反复论证,2018年11月,开工建设总投资4.6亿元的汉中锌业渣综合利用无害化处理项目。
2020年9月,汉中锌业“十年磨一剑”,国内第一家拥有自主知识产权,“富氧侧吹熔炼+烟化+烟气一转一吸制酸”锌冶炼渣综合利用无害化处理项目建成投产,实现了废渣无害化处理、资源综合利用,真正做到“吃干榨净”。
该生产线年可处理38万吨锌冶炼湿渣,回收锌+铅2.1万吨金属量、白银35吨、黄汉中锌业:科技创新助力企业高质量发展2018年初,汉中锌业新一届领导班子临危受命,勇挑重担,迎难而上,站在长远发展的战略高度,审时度势,真抓实干,蹄疾步稳谋新篇,勇毅笃行开新局。
铅锌冶炼节能减排的研究与探讨
铅锌冶炼节能减排的研究与探讨长沙有色冶金设计研究院张乐如【摘要】本文在阐述我国铅锌冶炼节能减排的现状基础上,论述了铅锌冶炼节能减排的影响因素,提出了铅锌冶炼节能减排有效措施。
1 概述随着世界气温变暖、温室效应日趋严重,环境状况的不断恶化,以及能源价格的迅猛上涨,节能减排已经引起世界各国的普遍关注。
铅锌冶炼属于高能耗高污染的行业,提高节能减排技术水平和管理水平犹为重要,节能减排水平将体现整个行业的技术水平,决定整个行业的生存发展命运。
由于世界发达国家对环境保护日益重视,铅锌冶炼生产受到环境保护政策约束日益增加,发达国家铅锌产量逐年减少,铅锌消费量却逐年增加,导致铅锌价格不断上涨。
我国铅锌冶炼行业抓住机遇,产能和产量迅速增长,成为世界第一大铅锌生产国。
2007年我国铅、锌产量分别为276万吨和 371万吨,分别占世界铅、锌产量的34.1%和32.5%。
然而,我国铅锌冶炼行业技术装备水平并没有与其产能得到同步提高,高能耗高污染的状况没有得到根本改善。
不仅与世界铅锌冶炼行业有较大差距,与我国铜铝冶炼行业也有一定差距。
主要表现在产能集中度较差,企业数量多,技术水平不平衡,整体技术装备水平比较落后,自动化控制水平低。
2 我国铅锌冶炼及其节能减排的现状2.1铅冶炼目前我国粗铅生产能力大约220万吨,烧结机烧结-鼓风炉熔炼工艺约为60万吨,氧气底吹熔炼-鼓风炉还原工艺约为70万吨,氧气顶吹熔炼-鼓风炉还原工艺约为8万吨,ISP工艺约为20万吨,卡尔多炉工艺约为5万吨,其余约60万吨则采用烧结锅或烧结盘烧结-鼓风炉熔炼工艺。
根据有色金属工业年鉴统计,过去10年我国铅冶炼综合能耗平均为660kg标准煤/t,粗铅冶炼焦耗413kg/t,电解铅的直流电耗平均为132kWh/t。
株冶、韶冶、豫光金铅等大型冶炼企业的炼铅能耗较低,约高出世界水平10%左右。
但是一些中小型冶炼企业的炼铅能耗较高。
铅冶炼主要采用火法冶炼,废水经过处理可以循环利用;火法冶炼渣经过水淬后属于一般固体废物,可以循环利用或安全堆放;主要污染是烟气污染。
沸腾焙烧炉的生产工艺探索
转一 吸及 尾气碱 吸收工 艺进行 制 酸 , 可使 污染物 达
标 排放 。
较大 , 为使 炉 内物料 正常 沸腾 , 风 量必 须加 大 , 送 由于
沸 腾焙烧 炉是 固体 流 态 化 技术 在 硫 酸 工 业 上 的 设 计制 酸 系统生 产能 力 的制约 ( 常说 的要受 到 系统 通 具 体应 用 , 它利 用矿 粒在炉 内一定 流 速 的空气作 用 下 抽 气量 的限制) 送 风 量 超 过 制 酸 系统 的 能力 则 炉 子 , 的一 种激 烈焙烧 反应 , 介于 静止 的 固定 床 和气 流输送 产 生正 压 , 从下 料 口向外 冒烟 或喷 火 。 会
维普资讯
20 0 8年
新
疆
有
色
金
属
6 1
沸 腾 焙 烧 炉 的生 产 工 艺探 索
洪振 江 杨 维 俊
( 疆新 鑫矿 业股份 有 限公 司阜 康 冶炼厂 阜康 8 1 0 ) 新 3 5 0
摘 要 沸腾焙烧炉 中常见的操作事故有冷灰, 结疤, 塌灰 . 处堆积, 下料 炉子加料 口正压 冒烟等。针对我厂 沸腾焙烧 炉在运行 过程 中
产生 的 自热 , 无需 添 加燃 料 即可 进 行生 产 , 过 程无 阜 康 冶炼 厂沸 腾 焙 烧 炉 开 炉生 产 时 间 已可 达到 1 3 全 1 压力 容器 , 投资规 模小 , 备维 护 简单 , 设 达产 期短 等特 d 次 , 得 了很好 的成绩 。造成 沸腾 炉生产 不 正常原 / 取 点 , 先进 的湿法 冶炼技 术 。 属
黑镍 除钴 一 电积流 程从 水 淬 高 冰镍 中生 产 金 属 镍 的 高 , 应 速 度 快 ;3 焙 烧 较 完 全 , 的 烧 出率 高 ; ) 反 () 硫 ( 4 工 厂 , 工艺具 有流程 短 、 属 回收率 高 、 该 金 投资 省等 优 容易 得到 高浓度 的二 氧 化 硫 气 体 ; ) 用 的原 料 范 ( 运 5 点 。 电解 镍生产 在加 压浸 出过滤 过程 中 , 淬 高冰 镍 围广 ; ) 构 简 单 ; )便 于 实 现 机 械 化 、 水 ( 结 6 ( 7 自动 化 操
株冶锌精矿沸腾焙烧炉焙砂可溶锌率下降的原因分析
要: 文章从沸腾焙烧 原理分析出发 , 细分 析了获得高质量焙烧产物和减少铁酸锌 生成 的各种 详
因素 , 以及传统湿 法工 艺条件对提高可溶锌率 的影 响 , 理论和实践两方面对株 冶焙砂 可溶锌率下 从 降提高焙砂可溶锌率作 了全 面的探讨 。
关键词 : 沸腾 炉 ; 烧 ; 溶 锌 率 焙 可 中图 分 类 号 : F 1 T 83 文献标识码 : A 文 章 编 号 :0 3—54 (0 7 0 —0 1 —0 10 5 0 2 0 )6 0 1 3
降 的原 因进 行 分 析 , 继 续 研 究 探讨 更 好 的方 法 来 并 提 高焙砂 可溶 锌率 。
根据 以上 沸 腾 焙 烧 原 理 可 知 , 提 高焙 砂 可溶 要 锌率 , 主要 方法 就是 要 获 得 高 Z O焙 烧 产 物 和 减少 n
铁 酸锌 的生成 。
2 焙砂可溶锌率的影响因素和提高途径
20 0 6年株 洲冶 炼集 团锌 焙烧 厂两 系统 焙砂 可溶
2Zn + 302= 2 0 + 2 S Zn 802 ZnS + 2 02= ZnS 04 2802+ 02= 2S 03 3 ZnS Od+ Zn = 4 O + 4S02 S Zn ZnO + S O3= ZnS 04 X・ ZnO + Y ・  ̄03= X Zn ‘Y Fe 03 Fe O  ̄
年 针对 焙砂 可 溶 锌 率 做 了 大量 工 作 , 如通 过 工 艺 参 数 调 整 摸 索 最 佳 操 作 条 件 , 氧 试 验 , 溶 锌 率 竞 富 可 赛 , 温竞 赛等 等 。种种 工作 证 明 , 有 原料 无 法 完 标 现 成公 司下 达 的指 标 。因此 , 要 对 焙砂 可溶 锌 率 下 需
有一 定气流 速度 的空气 自下 而 上通 过 沸 腾炉 炉 内矿
锌精矿沸腾焙烧的特点
2014年第8期内蒙古石油化工29锌精矿沸腾焙烧的特点薛炳福(黑龙江中盟龙新化m有限公司,黑龙江安达151400)摘要:锌精矿沸腾焙烧的首要任务是提供合格的半成品供生产金属锌及其化合物用。
沸腾炉一般为圆形,但也有长方形,炉腹角的大小直接影响到焙烧质量及正常生产。
焙烧工艺分氧化焙烧和酸化焙烧。
中温氧化焙烧的温度控制在1080~1120℃,焙砂用于竖罐炼锌;高温氧化焙烧的温度控制在1140 1200℃,焙砂用于直接法氧化锌的生产。
酸化焙烧温度一般为900~950℃,关键是减少铁酸锌、硅酸锌的形成,确保电解锌的漫出和过滤。
沸腾炉进料常用皮带或田盘加料机。
焙砂冷却主要有三种方式:外淋式或漫没式冷却圆筒、沸腾冷却或高效冷却转筒。
烟气冷却有夹套冷却或余热锅炉两种方式。
关量词l硫化锌;矿物;流态化;焙烧,工艺;设备中圈分类号:T F806文献标识码:A文章编号l1006--7981(2014)08~0029一02锌精矿又称闪锌矿,其含硫28%~31%,含锌50%左右,并伴生有铅、镉、铜等重金属。
锌精矿中的锌主要以硫化锌状态存在。
锌精矿沸腾焙烧的首要任务是为火(湿)法冶金提供合格的焙砂(尘)半成品,供生产金属锌及其化合物。
这点与硫铁矿焙烧是截然不同的。
根据所生产的产品不同,锌精矿的焙烧作业各异,这就决定了锌精矿沸腾焙烧具有自己的特点。
1炉型及其结构特点1.1沸腾炉沸腾炉一般为圆形炉,但也有长方形炉。
圆形炉有长形炉不可比拟的优点,如强度好,使用寿命长,沸腾均匀等,因此被广泛应用。
但当炉床面积较小而且是进行氧化焙烧时,则以长方形炉较优。
比如6m2的沸腾炉,圆形炉的直径2.76m,但长方形炉则可设计为3m X2m,这样,焙砂停留时间延长,有利于焙砂质量的提高。
因此,一些小厂仍使用着长方形炉子。
根据生产实践,设计长方形沸腾炉考虑的主要问题是强度和气体分布装置。
要采取适当的措施减少炉壳变形I把风室分成若干个小风室,每室的压力根据生产情况可调。
年产15吨硫酸沸腾焙烧工段初步设计——毕业设计
年产15吨硫酸沸腾焙烧工段初步设计——毕业设计四川理工学院毕业设计年产15万吨硫酸沸腾焙烧工段初步设计学生:马柯学号:07032080114专业:精细化学品生产技术班级:精细化学品生产技术07.1指导教师:谢云涛四川理工学院材料与化学工程学院二O一O年六月摘要硫酸是一种高沸点难挥发的强酸,易溶于水,能以任意比与水混溶,作为一个国家强大的标志,在国民生产中起着不可忽视的作用。
本设计采用接触法和硝化法来生产硫酸,接触法采用接触物质—触媒,而硝化法则采用含硝硫酸,即是氧化氮的硫酸溶液。
两法均以制备二氧化硫为起点,而后再用不同的方法制成硫酸。
本设计用硫铁矿为最初原料,在沸腾焙烧炉中进行高温煅烧,再进入电除尘器,旋风除尘器,最后进入废热锅炉产生初始硫酸,再经处理得到所需硫酸。
通过物料衡算与热量衡算得出本次设计符合要求。
关键词:硫铁矿,生产,硫酸,沸腾炉ABSTRACTSulfuric acid is a high boiling point volatile acid difficult to dissolve in water, miscible with water in any ratio, as a powerful symbol of a country, in the national production and plays an essential role. The design method and nitration by exposure to produce sulfuric acid, using the contact material contact method - catalyst, and with nitric acid were used for nitrification, which is nitric oxide sulfuric acid solution. Preparation of sulfur dioxide is the two laws as a starting point, and then re-use made of sulfuric acid in different ways. The design for the initial raw material with pyrite, in the boiling baking in high temperature calcination, re-entering the electrostatic precipitator, cyclone, and finally into the waste heat boiler to create the initial sulfuric acid, sulfuric acid and then processed to obtain the required. Through the material balance and heat balance obtained to meet the requirements of this design.Keywords:Pyrite, Production, Sulfuric acid, Boiling furnace.目录摘要。
锌精矿焙烧——精选推荐
锌精矿焙烧设计任务书电锌⼚焙烧车间⼯艺设计及计算⼀.原始数据⼆.技术条件选择1.沸腾层⾼度2.空⽓过剩系数3.沸腾层温度4.炉顶温度5.炉顶负压6.直线速度7.出炉烟⽓量三.技术经济指标1.焙烧矿产出率(包括烟尘和焙砂)2.烟尘含锌量3.焙砂含锌量4.焙烧料含锌量5.脱硫率6.焙烧锌直收率7.出炉烟⽓含尘量8.出炉烟⽓SO2量9.烟尘含S S量10.焙砂含S S量11.烟尘含S so42-量12.焙砂含S so42-量四.冶⾦计算(1)选取计算的有关主要指标(各种成分进⼊烟⽓的⽐例)(2)锌精矿的物相组成计算(3)烟⽓产出率及其化学成分和五项组成计算(4)焙砂产出率及其化学成分和五项组成计算(5)焙烧需要的空⽓量及产出烟尘量与组成计算(6)沸腾炉焙烧物料平衡计算(7)热平衡计算五.参考书⽬1.铜铅锌设计参考资料铜铅锌冶炼设计参考资料编写组19782.有⾊冶⾦⼯⼚设计基础陈枫19893.重⾦属冶⾦学赵天从编1987 第⼆版4.锌冶⾦学冶⾦⼯业出版社5.冶⾦原理冶⾦⼯业出版社6.锌冶⾦彭荣秋中南⼤学出版社7.湿法炼锌学梅光贵等中南⼤学出版社绪论锌精矿来源较⼴,成分复杂,为了使焙烧有⼀个相对稳定的⼯艺条件,必须对锌精矿进⾏配料以使精矿成分控制在焙烧操作允许的范围内,这关系到整个锌冶⾦过程中的稳定性。
本次设计的主要内容是锌精矿的沸腾焙烧,沸腾焙烧是现代焙烧昨业的新技术,也是强化焙烧的⼀种新⽅法。
其实质是:使空⽓⾃下⽽上地吹过固体料层,吹风速度达到使固体粒⼦相互分离,并做不停地复杂运动,运动的粒⼦处于悬浮状态,其外状如同⽔的沸腾翻动不已。
由于粒⼦可以较长时间处于悬浮状态,就构成了氧化各个矿粒最有利的条件,故使焙烧⼤⼤强化。
沸腾焙烧的基本原理是利⽤流态化技术,使参与反应或热、质传递的⽓体和固体充分接触,实现它们之间最快的传质,传热和动量传递速度,获得最⼤设备的⽣产能⼒。
在此次设计中,我们充分运⽤了现有的专业知识,加上⾃⼰⼤量查阅资料。
提高焙烧沸腾炉床能力生产实践
( 河南豫光金铅集 团有限责任公司, 河南 济源 4 90 ) 50 0
摘
要 :介绍 了河 南豫 光金铅 集 团有 限责 任公 司锌业 一厂 在 3年 多的 生产 实践 中, 通过 对 焙烧 炉
产能机理 的分析 , 炉物料成份 搭 配、 艺设 备优 化 等方 面 , 从 工 经过 技 术 改造 , 19 沸腾 焙烧 炉床 能 把 0m
2 n 3 2 2 n 2 O +Q Z S+ 0 = Z O+ S 2 () 1
能合理 搭配使用 , 就会 造成 炉况 波 动等 较 大 的负
面影响, 如炉底沉积 、 炉内烧结 、 盘管结渣……因
此 合理搭 配物料 是提 高床能力 的首要 条件 。锌业
一
式 ( ) 放 热 反应 , 精 矿在 炉 内可 形 成 自 1为 锌 燃 反应 。通过焙 烧 炉 热收 入 和支 出平衡 计 算 , 可
化硫 烟气用 于制 酸 , 烟气 带走 的热 量被 余 热 锅炉
吸 收生产蒸 汽 , 于发 电。 用
炉投料 的主要 影 响 因素 , 其它 杂 质成 份 也会 影 但 响到投 料 量 , : 硅 矿 、 如 高 高铁 矿 、 高铅 矿 等 , 不 若
二 、 高焙烧 炉产能 的机理 提 人 焙烧 炉锌精 矿的主要 化学反 应式为 ¨ :
、
生产 工艺流 程 :
锌精 矿 经过 合理 搭 配后 , 沸腾 焙烧 炉 氧 化 经
焙烧, 反应 生成焙砂 ( 括烟 尘砂 和溢 流 砂 ) 包 和二 氧 化硫烟气 。焙 砂送 至 浸 出用 于 生产 锌 液 , 氧 二
炉 热 量 的 收 入
1保 障入 炉物料 成份 合理 .
原 料 进入 料场 后 , 根据 物料 成 份进 行 细致 应 划分 , 合理堆存 , 方便 使用 。虽然 原料含硫 是焙烧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沸腾焙烧炉设计题目年产6万吨锌冶炼沸腾焙烧炉设计专业冶金工程班级冶金093姓名华仔学号31指导教师万林生目录第一章设计概述 (1)1.1设计依据 (1)1.2设计原则和指导思想 (1)1.3毕业设计任务 (1)第二章工艺流程的选择与论证 (1)2.1原料组成及特点 (1)2.2沸腾焙烧工艺及主要设备的选择 (1)第三章物料衡算及热平衡计算 (3)3.1锌精矿流态化焙烧物料平衡计算 (3)3.1.1锌精矿硫态化焙烧冶金计算 (3)3.1.2烟尘产出率及其化学和物相组成计算 (4)3.1.3焙砂产出率及其化学与物相组成计算 (6)3.1.4焙烧要求的空气量及产出烟气量与组成的计算 (7)3.2热平衡计算 (9)3.2.1热收入 (9)3.2.2热支出 (11)第四章沸腾焙烧炉的选型计算 (13)4.1床面积 (13)4.2前室面积 (13)4.3炉膛面积和直径 (13)4.4炉膛高度 (14)4.5气体分布板及风帽 (14)4.5.1气体分布板孔眼率 (14)4.5.2风帽 (14)4.6沸腾冷却层面积 (14)4.7水套中循环水的消耗量 (14)4.8风箱容积 (15)4.9加料管面积 (15)4.10溢流排料口 (15)4.11排烟口面积 (15)参考文献 (15)- I -第一章设计概述1.1设计依据根据《冶金工程专业课程设计指导书》。
1.2设计原则和指导思想对设计的总要求是技术先进;工艺上可行;经济上合理,所以,设计应遵循的原则和指导思想为:1、遵守国家法律、法规,执行行业设计有关标准、规范和规定,严格把关,精心设计;2、设计中对主要工艺流程进行多方案比较,以确定最佳方案;3、设计中应充分采用各项国内外成熟技术,因某种原因暂时不上的新技术要预留充分的可能性。
所采用的新工艺、新设备、新材料必须遵循经过工业性试验或通过技术鉴定的原则;4、要按照国家有关劳动安全工业卫生及消防的标准及行业设计规定进行设计;5、在学习、总结国内外有关厂家的生产经验的基础上,移动试用可行的先进技术;6、设计中应充分考虑节约能源、节约用地,实行自愿的综合利用,改善劳动条件以及保护生态环境。
1.3毕业设计任务一、沸腾焙烧炉专题概述二、沸腾焙烧三、沸腾焙烧热平衡计算四、主要设备(沸腾炉和鼓风炉)设计计算五、沸腾炉主要经济技术指标第二章工艺流程的选择与论证2.1原料组成及特点本次设计处理的原料锌精矿成分如下表所示。
2.2沸腾焙烧工艺及主要设备的选择金属锌的生产,无论是用火法还是湿法,90%以上都是以硫化锌精矿为原料。
硫化锌不能被廉价的、最容易获得的碳质还原剂还原,也不容易被廉价的,并且在浸出—电积湿法炼锌生产流程中可以再生的硫酸稀溶液(废电解液)所浸出,因此对硫化锌精矿氧化焙烧使之转变成氧化锌是很有必要的。
焙烧就是通常采用的完成化合物形态转变的化学过程,是冶炼前对矿石或精矿进行预处理的一种高温作业。
硫化物的焙烧过程是一个发生气固反应的过程,将大量的空气(或富氧空气)通入硫化矿物料层,在高温下发生反应,氧与硫化物中的硫化合产生气体SO2,有价金属则变成为氧化物或硫酸盐。
同时去掉砷、锑等杂质,硫生成二氧化硫进入烟气,作为制硫酸的原料。
焙烧过程得到的固体产物就被称为焙砂或焙烧矿。
焙烧过程是复杂的,生成的产物不尽一致,可能有多种化合物并存。
一般来说,硫化物的氧化反应主要有:1)硫化物氧化生成硫酸盐MeS + 2 O2 = MeSO42)硫化物氧化生成氧化物MeS + 1.5 O2 = MeO + SO23)金属硫化物直接氧化生成金属MeS + 2 O2 = MeO + SO24)硫酸盐离解MeSO4 = MeO + SO3SO3 = SO2+ 0.5 O2此外,在硫化锌精矿中,通常还有多种化合价的金属硫化物,其高价硫化物的离解压一般都比较高,故极不稳定,焙烧时高价态硫化物离解成低价态的硫化物,然后再继续进行其焙烧氧化反应过程。
在焙烧过程中,精矿中某种金属硫化物和它的硫酸盐在焙烧条件下都是不稳定的化合物时,也可能相互反应,如:FeS + 3FeSO4 = 4FeO + 4SO2由上述各种反应可知,锌精矿中各种金属硫化物焙烧的主要产物是MeO、MeSO4以及SO2、SO3和O2。
此外还可能有MeO·Fe2O3,MeO·SiO2等。
沸腾焙烧炉炉体(下图)为钢壳内衬保温砖再衬耐火砖构成。
为防止冷凝酸腐蚀,钢壳外面有保温层。
炉子的最下部是风室,设有空气进口管,其上是空气分布板。
空气分布板上是耐火混凝土炉床,埋设有许多侧面开小孔的风帽。
炉膛中部为向上扩大的圆锥体,上部焙烧空间的截面积比沸腾层的截面积大,以减少固体粒子吹出。
沸腾层中装有的冷却管,炉体还设有加料口、矿渣溢流口、炉气出口、二次空气进口、点火口等接管。
炉顶有防爆孔。
操作指标和条件主要有焙烧强度、沸腾层高度、沸腾层温度、炉气成分等。
①焙烧强度习惯上以单位沸腾层截面积一日处理含硫35%矿石的吨数计算。
焙烧强度与沸腾层操作气速成正比。
气速是沸腾层中固体粒子大小的函数,一般在 1~3m/s 范围内。
一般浮选矿的焙烧强度为15~20t/(d m ⋅);对于通过3×3mm 的筛孔的破碎块矿,焙烧强度为30t/(d m ⋅)。
② 沸腾层高度 即炉内排渣溢流堰离风帽的高度,一般为0.9~1.5m 。
③ 沸腾层温度 随硫化矿物、焙烧方法等不同而异。
例如:锌精矿氧化焙烧为1070~1100℃,而硫酸化焙烧为900~930℃;硫铁矿的氧化焙烧温度为850~950℃。
④ 炉气成分 硫铁矿氧化焙烧时,炉气中二氧化硫13%~13.5%,三氧化硫≤0.1%。
硫酸化焙烧,空气过剩系数大,故炉气中二氧化硫浓度低而三氧化硫含量增加。
特点:①焙烧强度高;②矿渣残硫低;③可以焙烧低品位矿;④炉气中二氧化硫浓度高、三氧化硫含量少;⑤可以较多地回收热能产生中压蒸汽,焙烧过程产生的蒸汽通常有35%~45%是通过沸腾层中的冷却管获得;⑥炉床温度均匀;⑦结构简单,无转动部件,且投资省,维修费用少;⑧操作人员少,自动化程度高,操作费用低;⑨开车迅速而方便,停车引起的空气污染少。
但沸腾炉炉气带矿尘较多,空气鼓风机动力消耗较大。
第三章 物料衡算及热平衡计算3.1锌精矿流态化焙烧物料平衡计算3.1.1锌精矿硫态化焙烧冶金计算根据精矿的物相组成分析,精矿中各元素呈下列化合物形态Zn 、Cd 、Pb 、Cu 、Fe 分别呈ZnS 、CdS 、PbS 、2CuFeS 、87S Fe 2FeS ;脉石中的Ca 、Mg 、Si 分别呈3CaCO 、3MgCO 、2SiO 形态存在。
以100kg 锌精矿(干量)进行计算。
1.ZnS 量 :kg 02.744.654.977.49=⨯ 其中Zn :49.7kg S :24.32kg2.CdS 量:kg 28.04.1124.14422.0=⨯ 其中 Cd :0.22kg S :0.06kg3.PbS 量:kg 60.12.2072.23939.1=⨯ 其中:Pb :1.39kg S :0.21kg4.2CuFeS 量:kg 81.05.6335.18328.0=⨯ 其中:Cu :0.28kg Fe :0.25kg S :0.28kg5. 2FeS 和87S Fe 量:除去2CuFeS 中Fe 的含量,余下的Fe 为8.22kg 0.25-8.47=,除去ZnS 、CdS 、PbS 、2CuFeS 中S 的含量,余下的S 量为Kg 74.5)28.021.006.032.24(61.30=+++-。
此S 量全部分布在2FeS 和87S Fe 中,设2FeS 中Fe 为x kg ,S 量为y kg ,则872S Fe FeS ⎪⎪⎩⎪⎪⎨⎧⨯-=⨯-⨯=83274.5785.5522.823285.55yx y x解得:x =0.72kg ,y =0.83kg即2FeS 中:Fe=0.72kg 、S=0.83kg 、2FeS =1.55kg 。
87S Fe 中:Fe :8.22-0.72=7.5kg S :5.74-0.83=4.91kg 87S Fe :12.41kg6. 3CaCO 量:kg 87.11.561.10005.1=⨯ 其中CaO :1.05kg 2CO :0.82kg7. 3MgCO 量:kg 75.03.403.8436.0=⨯ 其中MgO :0.36kg 2CO :0.39kg表3-1 混合精矿物相组成,kg3.1.2烟尘产出率及其化学和物相组成计算焙烧矿产出率一般为锌精矿的88%,烟尘产出率取50%,则烟尘量为:44公斤。
镉60%进入烟尘,锌48%进入烟尘,其它组分在烟尘中的分配率假定为50%,空气过剩系数 1.25。
烟尘产出率及烟尘物相组成计算: Zn kg 856.2348.007.49=⨯ Cd kg 132.060.022.0=⨯ Pb kg 695.050.039.1=⨯ Cu kg 14.050.028.0=⨯ Fe kg 235.450.047.8=⨯ CaO kg 525.0.050.005.1=⨯ MgO kg 18.050.036.0=⨯2SiO kg 605.250.021.5=⨯ s S 0.761x kg4SO S 0.942x kg其他 kg 355.150.071.2=⨯各组分化合物进入烟尘的数量为:1.ZnS 量:xkg 316.2324.97761.0=⨯ 其中:Zn 1.555kg S 0.761kg2.4ZnSO 量:kg 751.4324.161942.0=⨯ 其中:Zn 1.925kg S 0.942kg O 1.884kg3.32O Fe ZnO ⋅量:烟尘中Fe 先生成32O Fe ,其量为:kg 055.67.1117.159235.4=⨯,32O Fe 有31与ZnO 结合成32O Fe ZnO ⋅,其量为:kg 018.231055.6=⨯。
32O Fe ZnO ⋅量为kg 046.37.1591.241018.2=⨯ 其中:Zn0.82kg Fe 1.411kg O 0.815kg 余下的32O Fe 的量:6.055-2.018=4.037kg 其中:Fe 2.824 kg O 1.213kg 4.ZnO 量:Zn 23.856-(1.555+1.925+0.82)=19.556kg ZnO kg 34.244.654.81556.19=⨯ O 24.34-19.556=4.784kg5.CdO 量:kg 151.04.1124.128132.0=⨯ 其中:Cd 0.132kg O 0.019kg6.CuO 量:kg 175.0.05.635.7914.0=⨯ 其中:Cu 0.14kg O 0.035kg7.2SiO PbO ⋅量:PbO ,kg 749.02.2072.223695.0=⨯ 其中:Pb 0.695kg O 0.054kg与PbO 结合的2SiO 量:kg 201.0.02.22360749.0=⨯剩余的2SiO 量:2.605-0.201=2.404kg表3-2烟尘产出率及其化学和物相组成,kg3.1.3焙砂产出率及其化学与物相组成计算焙砂中S SO4取1.10%,S S 取0.4%,S SO4和S S 全部与Zn 结合;PbO 与SiO 2结合成 PbO ˙SiO 2;其他金属以氧化物形态存在。