岩土物理力学性质指标

合集下载

整理[物理]岩石、碎石土分类及其力学性质指标

整理[物理]岩石、碎石土分类及其力学性质指标

(一) 岩土工程地质分类按照GB 50007—2002《建筑地基基础设计规范》,作为建筑地基的岩土, 可分为岩石、碎石、砂土、粉土、黏性土和人工填土等。

1.岩石的分类岩石应为颗粒间牢固联结, 呈整体或具有节理裂隙的岩体。

岩石的分类有地质分类和工程分类。

地质分类主要根据岩石的成因, 矿物成分、结构构造和风化程度, 可用地质名称加风化程度表达, 如强风化花岗岩、微风化砂岩等。

岩石按成因的类型, 可分为岩浆岩(火成岩)、沉积岩(水成岩) 和变质岩三大类。

工程分类主要根据岩体的工程性状加以分类。

地质分类是一种基本分类, 工程分类是在岩石分类的基础上进行的。

(1)根据岩石的成因, 岩石可分为岩浆岩(火成岩)、沉积岩 (水成岩) 和变质岩三大类。

岩浆在向地表上升过程中, 由于热量散失逐渐经过分异等作用冷凝而成岩浆岩。

岩浆岩的分类见表Ⅰ-1。

表Ⅰ -1 岩浆岩的分类沉积岩是由岩石、矿物在内外力的作用下破碎成碎屑物质后,再经水流、风吹和冰川等的搬运、堆积在大陆低洼地带或海洋,再经胶结、压密等成岩作用而成的岩石。

沉积岩的分类见表Ⅰ-2。

表Ⅰ -2 沉积岩的分类变质岩是岩浆岩或沉积岩在高温、高压或其他因素作用下,经变质所形成的岩石。

变质岩的分类见表Ⅰ-3。

表Ⅰ -3 变质岩的分类(2)根据岩石的坚硬程度,岩石的分类见表Ⅰ-4。

表Ⅰ-4 岩石坚硬程度的划分(3)根据岩体完整程度的分类见表Ⅰ-5。

表Ⅰ -5 岩体完整程度划分注完整性指数为岩体纵波波速与岩块纵波波速之比的平方。

(4)根据岩体基本质量等级的分类见表Ⅰ-6。

表Ⅰ-6 岩体基本质量等级分类(5)根据风化程度,岩石的分类见表Ⅰ-7和表Ⅰ-8。

表Ⅰ -7 岩体风化带表Ⅰ-8 岩石按风化程度分类注 1.波速比Kv为风化岩石与新鲜岩石压缩波速度之比。

2.风化系数Kf为风化岩石与新鲜岩石饱和单轴抗压强度之比。

3.花岗岩类岩石,可采用标准贯入试验划分,N≥50为强风化;50>N≥30为全风化; N<30为残积土。

岩土工程指标

岩土工程指标

土层主要考虑的物理力学指标:岩土名称、年代、推荐承载力[σ。

] (kPa)、极限摩阻力τi(kPa)、含水量(W)、孔隙比(e)、液限(WL)、塑限(Wp)、塑性指数(IP)、液性指数、压缩系数(a1-2)(Mpa-1)、压缩模量(Es)(Mpa)、粘聚力C(kPa)、内摩擦角Φ(°)、湿密度(g/m3)、干密度(g/m3)、土粒比重(Gs)岩石主要考虑的力学指标有:岩石名称、年代、推荐承载力[σ。

]、极限摩阻力τi,可溶岩钻孔见洞率岩石的物理性质:岩体的块体密度――干密度(ρd ),天然密度(ρ)、饱和密度(ρsat);比重(Gs)。

岩石的空隙性:孔隙率。

岩石的吸水性:岩石的吸水率(wa ),岩石的饱和吸水率(wp),岩石的饱和系数Kw(一般为0.5~0.8)岩石的软化性:岩石的软化系数(KR)岩石的力学性质:岩石的单轴极限抗压强度:Rc(MPa)、岩石饱和单轴极限抗压强度:Rb(MPa)、岩石的抗剪强度:Rs(MPa)、岩石的抗拉强度:Rt(MPa),岩石的纵波波速Vpm(m/s),横波波速 V(m/s),弹性模量E(GPa),泊松比(ν),内聚力C(MPa),内摩擦角υ(°)典型特大桥:桥名、地层年代、岩土名称、物理力学指标(单轴极致限抗压强度Rc、推荐承载力[σ。

]、极限摩阻力τi)、基础形式、基础持力层隧道:隧道名称、起讫桩号、地质年代、地层岩性、围岩级别(长度)、单轴极致限抗压强度Rc、饱和抗压强度,纵波波速Vpm(m/s),岩石的粘聚力C、内摩擦角Φ。

水质成份:Ca2+,Mg2+,Cl-,SO42-,CO32-,NH4+,游离CO2,侵蚀性CO2 ,溶解性固体,OH-,NO3-,K++Na+(mg.L-1),HCO3-(mmol/L),pH 值。

岩土所考博复习资料岩石力学(个人总结)第二章 岩石的基本物理力学性质

岩土所考博复习资料岩石力学(个人总结)第二章 岩石的基本物理力学性质

第二章岩石的基本物理力学性质第一节概述第二节岩石的基本物理性质一岩石的密度指标1 岩石的密度:岩石试件的质量与试件的体积之比,即单位体积内岩石的质量。

(1)天然密度:是指岩石在自然条件下,单位体积的质量,即(2)饱和密度:是指岩石中的孔隙全部被水充填时单位体积的质量,即(3)干密度:是指岩石孔隙中液体全部被蒸发,试件中只有固体和气体的状态下,单位体积的质量,即(4)重力密度:单位体积中岩石的重量,简称重度。

2 岩石的颗粒密度:是指岩石固体物质的质量与固体的体积之比值。

公式二岩石的孔隙性1 岩石的孔隙比:是指岩石的孔隙体积与固体体积之比,公式2 岩石的孔隙率:是指岩石的孔隙体积与试件总体积的比值,以百分率表示,公式孔隙比和孔隙率的关系式:三岩体的水理性质1 岩石的含水性质(1)岩石的含水率:是指岩石孔隙中含水的质量与固体质量之比的百分数,即(2)岩石的吸水率:是指岩石吸入水的质量与试件固体的质量之比。

2 岩石的渗透性:是指岩石在一定的水力梯度作用下,水穿透岩石的能力。

它间接地反映了岩石中裂隙间相互连通的程度。

四岩体的抗风化指标1 软化系数:是指岩石饱和单轴抗压强度与干燥状态下的单轴抗压强度的比值。

它是岩石抗风化能力的一个指标,反映了岩石遇水强度降低的一个参数:2 岩石耐崩解性:岩石与水相互作用时失去粘结性并变成完全丧失强度的松散物质的性能。

岩石耐崩解性指数:是通过对岩石试件进行烘干,浸水循环试验所得的指数。

它直接反映了岩石在浸水和温度变化的环境下抵抗风化作用的能力。

3 岩石的膨胀性:岩石浸水后体积增大的性质。

(1)岩石的自由膨胀率:是指岩石试件在无任何约束的条件下浸水后所产生膨胀变形与试件原尺寸的比值。

(2)岩石的侧向约束膨胀率:是将具有侧向约束的试件浸入水中,使岩石试件仅产生轴向膨胀变形而求得膨胀率。

(3)膨胀压力:岩石试件浸水后,使试件保持原有体积所施加的最大压力。

五岩体的其他特性1 岩石的抗冻性:岩石抵抗冻融破坏的性能。

岩石物理力学性质一览表

岩石物理力学性质一览表
180~300
15~30
10~50
45~60
安山岩
2.3~2.7
1.1~4.5
0.3~4.5
0.81~0.91
8.3~12.0(具裂隙岩体)
100~250
10~20
10~40
45~50
玄武岩
2.5~3.1
0.5~7.2
0.3~2.8
0.3~0.95
83
180~300
15~36
10~50
50~55
注:未注明为岩体的数据,均为岩石试验数据。
0.1~0.2
0.53~0.69(绿泥石片岩)
44~72
10~100
1~10
1~20
26~65
千枚岩
0.4~3.6
0.5~1.8
0.67~0.96
10(石英千枚岩)
10~100
1~10
1~20
26~65
板岩
2.3~2.75
0.45左右
0.1~0.3
5.0(新鲜岩体)
60~200
7~15
2~20
45~60
岩土物理力学性质各项指标土类土类岩石密度gcm326527土粒密度液限塑限塑性指数变形模量mpa2040孔隙比抗拉强度内聚力c摩擦角备注碎石堆积类土0406一般假定0一般假定03642黄土类土干131523331520813新黄土具有湿陷性0811003006老0010033新1525老178284新含水率1025粘性土1820523551630725412压缩模量07100005006826含水率2040岩类岩类岩石密度gcm3孔隙率吸水率软化系数变形模量103mpa抗压强度抗拉强度内聚力c摩擦角泥岩003037粘土岩20759干粘土岩001004009粘土岩320231530粘土岩1530页岩23262041000532024074162010100123199干板岩210泥板岩232801050103039052粉砂岩10320071713寒武54震旦8402959石英砂岩262715458681025193075825似内摩擦角摩擦系数054寒武049震旦3550砂岩22271162800290065097174120200425砾岩24026608100032405009667162新鲜岩体1326新鲜岩体101502158503550泥灰岩2327101000530044054352040605020003142842520032新鲜岩体37新鲜岩体灰岩23277160520144507094353910503550白云岩2127032500130053069绿泥石片岩673280250152520503550片岩26929200218501024472101001101202665千枚岩0436051806709610石英千枚岩50新鲜岩体101001101202665板岩23275045左右0103602007152204560大理岩262701600110496770140204049裂隙较发育岩体1050145052裂隙较发育岩体50604560石英岩花岗岩242823280187054001150140094096072097657030371585具裂隙岩体83120具裂隙岩体1503501002501530725闪长岩252296025003500608100250102510505355辉长岩流纹岩25529825330340054018030018030015361530105010

岩土主要物理力学指标参考值

岩土主要物理力学指标参考值

岩土主要物理力学指标参考值(2)溢洪道工程地质条件坝址溢洪道位于左坝肩斜坡顶部,进口段至坡顶地形较平缓,坡顶至出口段为降坡段,斜坡坡度25~28°。

浅表层为全、强风化石英闪长岩,工程地质条件与大坝左坝肩基本一致,但全、强风化石英闪长岩风化严重,抗冲刷能力较弱。

(3)放水、冲沙洞工程地质条件①隧洞地质条件洞区地形、地质条件较简单,主要物理地质作用为自然风化、剥蚀,无滑坡、崩塌、泥石流等不良地质作用,未见断裂构造通过,整体稳定。

隧洞进口段为第四系冲洪积砾砂土覆盖层,结构松散,强度低,对洞口边坡需进行加固护坡。

隧洞洞身前段主要由弱风化石英闪长岩组成,岩体较破碎,岩体基本质量等级为Ⅳ级,自稳能力较差,成洞后稳定性差,隧洞开挖容易产生局部塌方、掉块等挤压形式变形破坏;隧洞中段主要由微风化石英闪长岩组成,岩体较完整,自稳能力较好,开挖后可基本稳定,局部可能会出现岩块位移错动掉块;隧洞出口段主要由弱风化石英闪长岩组成,岩体较破碎,自稳能力较差,隧洞开挖容易产生局部塌方、掉块等挤形式压变形破坏。

隧洞出口段该段地层为第四系冲洪积漂石土覆盖层,结构松散,强度低,开挖易产生塌方。

②隧洞岩土物理力学特性隧洞岩土物理力学特性主要物理力学指标参考前表。

工程岩体分级标准(上)2010-04-15 | 作者:| 来源:中国地质环境信息网| 【大中小】【打印】【关闭】1 总则1.0.1 为建立统一的评价工程岩体稳定性的分级方法;为岩石工程建设的勘察、设计、施工和编制定额提供必要的基本依据,制定本标准。

1.0.2 本标准适用于各类型岩石工程的岩体分级。

1.0.3 工程岩体分级,应采用定性与定量相结合的方法,并分两步进行,先确定岩体基本质量,再结合具体工程的特点确定岩体级别。

1.0.4 工程岩体分级所必需的地质调查和岩石试验,除应符合本标准外,尚应符合有关现行国家标准的规定。

2 术语、符号2.l 术语2.1.1 岩石工程rock engineering以岩体为工程建筑物地甚或环境,并对岩体进行开挖或加固的工程,包括地下工程和地面工程。

岩土主要物理力学指标参考值

岩土主要物理力学指标参考值

岩土主要物理力学指标参考值
1、稳定性指标参考值:
1.1压缩模量:水泥改良的砂、砾状粘结土的压缩模量一般在100-
500kPa,粉状粘结土的压缩模量在200-1000kPa,蠕变模量在101-500kPa。

1.2抗拉强度:水泥改良的砂、砾状粘结土的抗拉强度一般在0.1-
2.0kPa,粉状粘结土的抗拉强度在0.2-4.0kPa,蠕变强度在0.3-5.0kPa。

1.3抗剪强度:水泥改良的砂、砾状粘结土的抗剪强度一般在0.1-
2.5kPa,粉状粘结土的抗剪强度一般在0.2-7.0kPa,蠕变强度一般在
0.4-7.5kPa。

1.4抗冲击强度:水泥改良的砂、砾状粘结土的抗冲击强度一般在
0.1-2.5kPa,粉状粘结土的抗冲击强度一般在0.2-7.0kPa,蠕变强度一
般在0.3-8.0kPa。

2、抗损伤指标参考值:
2.1抗湿胀系数:水泥改良的砂、砾状粘结土的抗湿胀系数一般在
0.1-2.5,粉状粘结土的抗湿胀系数一般在0.2-5.0,蠕变系数一般在
0.3-6.0。

2.2抗冻结强度:水泥改良的砂、砾状粘结土的抗冻结强度一般在
0.1-2.5MPa,粉状粘结土的抗冻结强度一般在0.2-7.0MPa,蠕变强度一
般在0.4-7.5MPa。

2.3抗集水能力:水泥改良的砂、砾状粘结土的抗集水能力一般在
0.2-1.5kPa,粉状粘结土的抗集水能力一般在0.4-3.0kPa。

常用的岩土和岩石物理力学参数

常用的岩土和岩石物理力学参数

常用的岩土和岩石物理力学参数岩土和岩石物理力学参数是指描述岩土和岩石力学性质的一些重要参数,对于工程和地质领域的研究和实践具有重要意义。

以下是一些常用的岩土和岩石物理力学参数。

1.密度:岩土和岩石的密度是指单位体积的质量。

岩土和岩石的密度是其成分和结构的重要表征,常用单位是千克/立方米。

2.孔隙度:岩土和岩石内部的空隙或孔隙的体积与总体积的比值。

孔隙度是描述岩土和岩石中孔隙性质的重要参数,通常用百分比表示。

3.孔隙水压力:岩土和岩石中存在的地下水与孔隙水压力是一种重要的物理力学参数。

孔隙水压力对岩土和岩石的稳定性、渗透性和强度等产生重要影响。

4.饱和度:饱和度是指岩土和岩石中孔隙所含的水的含量与孔隙容量的比值。

饱和度是衡量岩土和岩石中含水情况的一项指标。

5.孔隙比:孔隙比是指岩土和岩石中孔隙体积与固体体积的比值。

孔隙比是岩土和岩石的一个重要参数,它关系到其渗透性、存储性以及力学性质等。

6.孔隙率:岩土和岩石中孔隙的比例,描述含孔岩体的空间特征的参数。

7.饱和度指数:饱和度指数是指岩土和岩石中各向同性材料,当孔隙度小于50%时,饱和度指数与孔隙度有关,其表征了岩土和岩石中孔隙数量和大小对其力学性质的影响。

8.波速:岩土和岩石中机械波传播的速度是一项重要的物理力学参数。

根据波速可以推算岩土和岩石的弹性模量和泊松比等力学参数。

9.阻尼比:用来描述岩土和岩石中振动能量的衰减情况,是衡量动力响应特性的一个重要参数。

10.岩石强度参数:包括抗拉强度、抗压强度、抗剪强度等,是衡量岩石材料抵抗各种力学载荷的重要参数。

11.几何参数:岩土和岩石中的几何参数包括颗粒形状、颗粒大小分布、颗粒间隙度等,对岩土和岩石的物理力学性质具有重要影响。

总之,岩土和岩石的物理力学参数是描述其物理性质和力学性质的重要参数,对于工程和地质领域的研究和实践具有重要意义。

不同的参数描述了岩土和岩石在不同方面的力学性质,研究者和工程师需要根据具体情况选择合适的参数进行分析和计算。

岩土主要物理力学指标参考值

岩土主要物理力学指标参考值

岩土主要物理力学指标参考值(2)溢洪道工程地质条件坝址溢洪道位于左坝肩斜坡顶部,进口段至坡顶地形较平缓,坡顶至出口段为降坡段,斜坡坡度25~28°。

浅表层为全、强风化石英闪长岩,工程地质条件与大坝左坝肩基本一致,但全、强风化石英闪长岩风化严重,抗冲刷能力较弱。

(3)放水、冲沙洞工程地质条件①隧洞地质条件洞区地形、地质条件较简单,主要物理地质作用为自然风化、剥蚀,无滑坡、崩塌、泥石流等不良地质作用,未见断裂构造通过,整体稳定。

隧洞进口段为第四系冲洪积砾砂土覆盖层,结构松散,强度低,对洞口边坡需进行加固护坡。

隧洞洞身前段主要由弱风化石英闪长岩组成,岩体较破碎,岩体基本质量等级为Ⅳ级,自稳能力较差,成洞后稳定性差,隧洞开挖容易产生局部塌方、掉块等挤压形式变形破坏;隧洞中段主要由微风化石英闪长岩组成,岩体较完整,自稳能力较好,开挖后可基本稳定,局部可能会出现岩块位移错动掉块;隧洞出口段主要由弱风化石英闪长岩组成,岩体较破碎,自稳能力较差,隧洞开挖容易产生局部塌方、掉块等挤形式压变形破坏。

隧洞出口段该段地层为第四系冲洪积漂石土覆盖层,结构松散,强度低,开挖易产生塌方。

②隧洞岩土物理力学特性隧洞岩土物理力学特性主要物理力学指标参考前表。

工程岩体分级标准(上)2010-04-15 | 作者:| 来源:中国地质环境信息网| 【大中小】【打印】【关闭】1 总则1.0.1 为建立统一的评价工程岩体稳定性的分级方法;为岩石工程建设的勘察、设计、施工和编制定额提供必要的基本依据,制定本标准。

1.0.2 本标准适用于各类型岩石工程的岩体分级。

1.0.3 工程岩体分级,应采用定性与定量相结合的方法,并分两步进行,先确定岩体基本质量,再结合具体工程的特点确定岩体级别。

1.0.4 工程岩体分级所必需的地质调查和岩石试验,除应符合本标准外,尚应符合有关现行国家标准的规定。

2 术语、符号2.l 术语2.1.1 岩石工程rock engineering以岩体为工程建筑物地甚或环境,并对岩体进行开挖或加固的工程,包括地下工程和地面工程。

岩土的物理力学性质参数

岩土的物理力学性质参数

岩土的物理力学性质指标
岩土的物理力学性质指标应根据工程地质划分的扇形区及各区的边坡变形破坏特点.选取与之有关的试样进行力学试验.测定岩石及软弱夹层物理力学性质指标。

岩石及软弱夹层的物理性质指标详见表1至表7。

表1 部分岩石的容重
表2 部分岩石的孔隙率与吸水率
表3 不同成因粘土的有关物理力学性质指标(一)
表4 不同成因粘土的有关物理力学性质指标(二)
表5 几种土的渗透系数表
表6 土的平均物理、力学性质指标(一)
表7 土的平均物理、力学性质指标(二)
注:1.平均比重取:砂为2.65;轻亚粘土为2.70;亚粘土为2.71;粘土2.74。

2.粗砂与中砂的Eo值适用于不均系数Cu=3时.当Cu>5时应按表中所列值减少2/3。

Cu为中间值时. Eo 值按内插法确定。

3.对于地基稳定计算.采用内摩擦角φ的计算值低于标准值2°。

岩石及软弱夹层的力学性质指标见表8至表25。

表8 岩石力学性质指标的经验数据(一)。

关于常用的岩土和岩石物理力学参数

关于常用的岩土和岩石物理力学参数

(E , ν) 与(K , G )的转换关系如下:)1(2ν+=EG ()当ν值接近的时候不能盲目的使用公式,因为计算的K 值将会非常的高,偏离实际值很多。

最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表和分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表土的弹性特性值(实验室值)(Das,1980) 表各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。

这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。

一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。

表给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。

纯净水在室温情况下的K f 值是2 Gpa 。

其取值依赖于分析的目的。

分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。

这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。

在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f k K nt ∝∆ () 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。

f'K n m k C +=νν ()其中其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。

常用岩土材料参数和岩石物理力学性质一览表

常用岩土材料参数和岩石物理力学性质一览表

(E, ν) 与(K, G)的转换关系如下:)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。

最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。

这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。

一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。

表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表7.3流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。

纯净水在室温情况下的K f 值是2 Gpa 。

其取值依赖于分析的目的。

分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。

这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。

在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f kK nt ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。

f'K nm k C +=νν (7.4)其中其中,'k ——FLAC 3D 使用的渗透系数k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。

岩土地物理力学性质全参数

岩土地物理力学性质全参数

岩土的物理力学性质指标
岩土的物理力学性质指标应根据工程地质划分的扇形区及各区的边坡变形破坏特点,选取与之有关的试样进行力学试验,测定岩石及软弱夹层物理力学性质指标。

岩石及软弱夹层的物理性质指标详见表1至表7。

表1部分岩石的容重
岩石名称
容重γ(g/cm3)
岩石名称
容重γ(g/cm3)
变化范围平均值变化范围平均值
花岗岩 2.25~2.80 2.65 泥质砂岩— 2.28 响岩——粘土质砂岩— 2.52 正长岩 2.50~3.00 2.79 页岩 2.3~2.6 2.50 流纹岩——砂质页岩 2.08~2.65 2.36 流纹斑岩 2.49~2.63 2.60 粘土质页岩 2.51~2.72 2.65
表2部分岩石的孔隙率与吸水率
表3不同成因粘土的有关物理力学性质指标(一)
表4不同成因粘土的有关物理力学性质指标(二)
表5几种土的渗透系数表
表6土的平均物理、力学性质指标(一)
表7土的平均物理、力学性质指标(二)
注:1.平均比重取:砂为2.65;轻亚粘土为2.70;亚粘土为2.71;粘土2.74。

2.粗砂与中砂的Eo值适用于不均系数Cu=3时,当Cu>5时应按表中所列值减少2/3。

Cu为中间值时, Eo 值按内插法确定。

3.对于地基稳定计算,采用内摩擦角φ的计算值低于标准值2°。

岩石及软弱夹层的力学性质指标见表8至表25。

表8岩石力学性质指标的经验数据(一)。

《岩土工程勘察规范》GB 50021-2001(2009版)学习-土的物理性质指标

《岩土工程勘察规范》GB 50021-2001(2009版)学习-土的物理性质指标

《岩土工程勘察规范》GB 50021-2001(2009版)学习-土的物理性质指标1 土的组成天然状态下的土的组成(一般分为三相)(1)固相:土颗粒--构成土的骨架。

决定土的性质--大小、形状、成分、组成、排列(2)液相:水和溶解于水中物质(3)气相:空气及其他气体(1)干土=固体+气体(二相)(2)湿土=固体+液体+气体(三相)(3)饱和土=固体+液体(二相)土的三相示意图2 土的颗粒级配2.1 基本概念自然界的土通常由大小不同的土粒组成,土中各个粒组重量(或质量)的相对含量百分比称为颗粒级配,土的颗粒级配曲线可通过土的颗粒分析试验测定。

工程上将各种不同的土粒按其粒径范围,划分为若干粒组,为了表示土粒的大小及组成情况,通常以土中各个粒组的相对含量(即各粒组占土粒总量的百分数)来表示,称为土的颗粒级配。

土中各粒组的相对含量称土的粒径级配,土的粒径级配是通过土的颗粒大小分析试验确定。

土粒含量的具体含义是指一个粒组中的土粒质量与干土总质量之比,一般用百分比表示。

土的粒径级配直接影响土的性质,如土的密实度、土的透水性、土的强度、土的压缩性等。

要确定各粒组的相对含量,需要将各粒组分离开,再分别称重。

这就是工程中常用的颗粒分析方法,实验室常用的有筛分法和密度计法。

土的粒径级配指的是土中各粒组的相对含量,用占总质量的百分数来表示。

这是无黏性土的重要指标,是粗粒土的分类定名的标准。

2.2 粒径级配累积曲线工程中常用粒径级配累积曲线(颗粒大小分布曲线)直接了解土的级配情况。

曲线的横坐标为土颗粒粒径的对数,单位为mm ;纵坐标为小于某粒径土颗粒的累积含量,用百分比(%)表示。

将筛分析和比重计试验的结果绘制在以土的粒径为横坐标,小于某粒径之土质量百分数为纵坐标,得到的曲线称土的粒径级配累积曲线。

级配曲线的特点:半对数坐标{量(%)小于某粒径的土质量含纵坐标)土粒粒径(对数坐标横坐标---mm几种土的粒径分布曲线从颗粒级配曲线中可直接求得各粒组的颗粒含量及粒径分布的均匀程度,进而估测土的工程性质。

岩土的物理力学性质指标

岩土的物理力学性质指标

岩土的物理力学性质指标岩土的物理力学性质指标是边坡的稳定性计算的基本参数和重要依据。

应根据工程地质划分的扇形区及各区的边坡变形破坏特点,选取与之有关的试样进行力学试验,测定岩石及软弱夹层物理力学性质指标。

岩石及软弱夹层的物理性质指标详见表1至表7。

表2 部分岩石的孔隙率与吸水率岩石名称孔隙率n (%)吸水率^(%)变化范围平均值H-R UJ-J U-J 花冈石流纹斑岩闪长岩正长岩安山岩玄武岩辉绿岩霏细岩凝灰岩火山角砾岩安山凝灰集块岩砾岩砂岩砂岩(第三纪)砂岩(白垩纪)砂岩(侏罗纪)砂岩(三迭纪)砂岩新鲜的风化的石英砂岩0.04 〜2.801.10 〜3.400.25 〜3.00—0.29 〜1.131.10 〜4.301.00 〜2.200.29 〜5.101.59 〜2.230.90 〜7.540.40 〜4.102.00 〜5.101.04 〜9.305.00 〜20.002.20〜42.007.20〜37.704.20〜24.600.60 〜27.70—0.952.001.252.540.702.301.702.201.803.202.103.205.0413.0015.3017.1013.2019.3021.112.260.10 〜1.700.14 〜1.650.18 〜1.000.48—0.20 〜1.000.30 〜0.800.20 〜1.000.18 〜0.350.34 〜2.120.14 〜4.000.40 〜1.000.14 〜4.101.00 〜9.00—————石英砂岩新鲜的风化的页岩砂质页岩泥质页岩煤质页岩泥灰岩石灰石石灰岩(第三纪)石灰岩(中生代)石灰岩(古生代)白垩石膏硬石膏片麻岩大理岩白云岩石英岩石英片岩角闪石片岩云母片岩绿泥石片岩千枚岩——0.70 〜7.000.80 〜4.15——1.00 〜52.000.53 〜27.00—1.20 〜26.500.80 〜27.005.00 〜58.000.10 〜4.000.63 〜6.260.30 〜2.400.10 〜6.000.30 〜25.000.00 〜8.701.53 〜2.80—1.714.91——1.35I.0318.0012.0020.00II.6512.0026.401.701.651.351.007.702.402.002.960.792.103.60——2.30 〜6.00———1.00—5.000.20 〜6.40——————0.14 〜0.30——0.02 〜0.280.10〜0.300.110.08 〜0.420.55〜1.12表3 不同成因粘土的有关物理力学性质指标(一)表4 不同成因粘土的有关物理力学性质指标(二)表5 几种土的渗透系数表表6 土的平均物理、力学性质指标(一)表7 土的平均物理、力学性质指标(二)注:1.平均比重取:砂为2.65;轻亚粘土为2.70;亚粘土为2.71 ;粘土2.74。

岩土物理力学参数表

岩土物理力学参数表

岩土物理力学参数表
岩土物理力学参数表是用于描述岩石和土壤等地质材料力学性质的一份表格。

这些参数可以用于建立地质力学模型或进行地震学研究等领域。

以下是一些常见的岩土物理力学参数及其解释:
1. 压缩模量(压缩弹性模量):是描述岩土材料在压缩载荷下的弹性变形特性的一种参数。

它的单位是帕斯卡(Pa)或兆帕(MPa)。

压缩模量越大,表示岩土材料的刚度越大。

2. 剪切模量(剪切弹性模量):是描述岩土材料在剪切载荷下的弹性变形特性的一种参数。

它的单位也是帕斯卡(Pa)或兆帕(MPa)。

剪切模量越大,表示岩土材料的抗剪强度越大。

3. 泊松比:是描述岩土材料在受力后沿垂直于力方向的横向收缩程度的参数。

它没有单位,通常用一个小数来表示。

泊松比越小,表示岩土材料的横向收缩程度越小,即更加刚性。

4. 内摩擦角:是描述岩土材料在受到剪切力时,自身内部出现抗阻力的一种参数。

它的单位是度数。

内摩擦角越大,表示岩土材料的抗剪能力越强。

5. 屈服强度:是描述岩土材料在受到载荷作用下出现塑性变形或破坏的一种参数。

它的单位是帕斯卡(Pa)或兆帕(MPa)。

屈服强度越大,表示岩土材料的抗压强度越大。

6. 杨氏模量:是描述岩土材料在受到拉伸载荷下的弹性变形特性的一种参数。

它的单位也是帕斯卡(Pa)或兆帕(MPa)。

杨氏模量越大,表示岩土材料的拉伸刚度越大。

以上是一些常见的岩土物理力学参数及其解释。

需要注意的是,不同的地质材料具有不同的力学性质,因此在实际应用中需要根据具体情况选择合适的参数。

一般岩土参数汇总

一般岩土参数汇总

一般岩土参数汇总岩土工程是土力学和岩石力学的综合应用,用于土壤和岩石的工程性质和行为的研究,以及基于这些特性的地下结构的设计和施工。

岩土参数是指描述土壤和岩石工程性质的一系列参数,包括物理性质、力学性质和水文性质等。

以下是一些常见的岩土参数的汇总:1.土壤物理性质-饱和度:表示土壤中孔隙空间被水饱和的程度。

-干度:表示土壤中的固体颗粒与孔隙的比例。

-孔隙度:表示土壤中空隙的体积比例,可以反映土壤的压缩性和渗流性能。

-孔隙比:孔隙总体积与固体总体积之比,反映土壤贮水能力。

-饱和导水率:表示水在饱和状态下通过土壤的能力。

2.土壤力学性质-压缩性指数:描述土壤的压缩性,反映了土壤孔隙结构变化的能力。

-剪切强度:表示土壤的抗剪切性能,通常包括剪切强度角、黏聚力和内摩擦角。

-体积重:土壤单位体积的重量。

-压缩模量:表示土壤的抗压缩性能。

-密度:土壤单位体积的质量。

-稠度:土壤颗粒排列的紧密程度。

3.土壤水文性质-渗透系数:描述土壤中水流通过的能力。

-吸力:表示土壤中的水分对负压的能力,反映土壤持水性能。

-比渗透率:表示单位负压条件下单位时间内通过单位面积的水分流量。

-饱和导水率:表示饱和状态下土壤中的水流速度。

4.岩石力学性质-抗压强度:岩石承受压力的抵抗能力。

-弹性模量:岩石在受力后恢复原状的能力。

-破坏韧度:岩石的破坏性能和抵抗破坏的能力。

-岩石饱和度:岩石孔隙中被水饱和的程度。

-岩石渗透系数:描述岩石中液体流动的能力。

除了上述的岩土参数,还有一些特殊的参数用于描述特定地质情况下的岩土性质:-风化程度:岩石的风化程度是指岩石中颗粒的破碎程度和颗粒之间的结合强度。

-腐殖质含量:描述土壤或岩石中有机物质的含量。

-土壤粒径分布:表示土壤颗粒的大小范围和分布情况。

这些岩土参数在工程设计、施工和监测中起到重要的作用,用于评估土壤和岩石的工程性质,指导地下结构的设计和施工,并评估地质灾害的潜在风险。

不同地区、不同类型的土壤和岩石具有不同的物理性质、力学性质和水文性质,因此在进行岩土参数的测定和分析时,需要充分考虑地质和地形条件的差异。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、塑性指数 plasticity index塑性指数是液限和塑限之差称为塑性指数,用不带百分号的小数表示,符号为IP。

概述塑性是表征细粒土物理性能一个重要特征,一般用塑性指数来表示;液限与塑限的差值称为塑性指数IP,即IP=WL-WP。

过去的研究表明,细粒土的许多力学特性和变形参数均与塑性指数有密切的关系。

特征塑性指数可塑性是粘性土区别于砂土的重要特征。

可塑性的大小用土处在塑性状态的含水量变化范围来衡量,粘性土由一种状态过渡到另一种状态的分界含水量叫作界限含水量,也称为阿太堡界限,有缩限含水量、塑限含水量、液(流)限含水量、粘限含水量、浮限含水量五种,在建筑工程中常用前三种含水量。

固态与半固态间的界限含水量称为缩限含水量,简称缩限,用ω表示。

半固态与可塑状态间的含水量称为塑限含水量,简称塑限,用ωp表示。

可塑状态与流动状态间的含水量称为液(流)限含水量,简称液限,用ωl表示。

含水量用百分数表示。

天然含水量大于液限时土体处于流动状态;天然含水量小于缩限时,土体处于固态;天然含水量大于缩限小于塑限时,土体处于半固态;天然含水量大于塑限小于液限时,土体处于可塑状态。

塑性指数习惯上用不带%的数值表示。

塑性指数是粘土的最基本、最重要的物理指标之一,它综合地反映了粘土的物质组成,广泛应用于土的分类和评价。

因素由于塑性指数在一定程度上综合反映了影响粘性土特征的各种重要因素。

塑性指数愈大,表明土的颗粒愈细,比表面积愈大,土的粘粒或亲水矿物(如蒙脱石)含量愈高,土处在可塑状态的含水量变化范围就愈大。

也就是说塑性指数能综合地反映土的矿物成分和颗粒大小的影响。

因此,在工程上常按塑性指数对黏性土进行分类。

粉土为塑性指数小于等于10且粒径大于0.075的颗粒含量不超过总质量50%的土;黏性土为塑性指数大于10且粒径大于0.075的颗粒含量不超过总质量50%的土,其中:Ip>17 黏土Ip>10 粉质黏土Ip<10或Ip=10 粉土2、液性指数liquid index对黏性土来说,有一个指标叫液性指数,是判断土的软硬状态,表示天然含水率与界限含水率相对关系的指标。

液性指数公式IL=(ω-ωp)/(ωL-ωp)。

ω:土的实际含水量ωp:塑性界限含水量,即粘性土处于塑性状态与半固体状态之间的界限含水量ωL:粘性土处于液态与塑性状态之间的界限含水量液性指数≤0 坚硬;0< 液性指数≤0.25 硬塑;0.25< 液性指数≤0.75 可塑;0.75<液性指数≤1 软塑;液性指数>1 流塑。

液性指数与土的类别及含水量有关,同一种土,含水量越大则液性指数越大,土质越软。

粘性土有缩限、塑限和液限等几个分界线,当含水量小于缩限时土体处于固态,且体积不再再发生变化,当处于缩限和塑限之间时土体体积随含水量减小体积变化,仍处于固态,当土体含水量处于塑限和液限之间时,土体具有可塑性,即可以塑造出各种形状,当土体含水量大于液限时,土体处于流动状态,即土体具有可流动性。

分别对应上面的坚硬、硬塑、可塑和软塑、流塑。

3、液限 wl概述土从流动状态转变为可塑状态的界限含水率称为液限,用wL表示,我国采用锥式液限仪来测定。

其工作过程是:将粘性土调成均匀的浓糊状,装满盛土杯,刮平杯口表面,将76克重圆锥体轻放在试样表面的中心,使其在自重作用下徐徐沉入试样,若圆锥体经5秒种恰好沉入10mm深度,这时杯内土样的含水量就是液限wL值。

为了避免放锥时的人为晃动影响,可采用电磁放锥的方法。

4、塑限wp搓滚法测塑限土从可塑状态转变为半固体状态的界限含水率称为塑限,用wp表示,用搓滚法测定。

即将土先调匀成硬塑状态,然后在毛玻璃板上再用手掌慢慢搓滚成细条,用力均匀,当土条搓成直径正好为3mm时产生横向裂缝并开始断裂,此时土条的率就是塑限wp值。

5、孔隙比void ratio;pore space ratio 定义:土体中空隙体积与固体颗粒体积之比值。

6、压缩系数(coefficient of compressibility)是描述物体压缩性大小的物理量。

通常可将常规压缩试验所得的e-p数据采用普通直角坐标绘制成e-p曲线,如图4-1所示。

设压力由p1增至p2,相应的孔隙比由e1减小到e2,当压力变化范围不大时,可将M1M2一小段曲线用割线来代替,用割线M1M2的斜率来表示土在这一段压力范围的压缩性,即:式中a 为压缩系数,MPa^(-1);压缩系数愈大,土的压缩性愈高。

从图4-1可以看出,压缩系数a值与土所受的荷载大小有关。

工程中一般采用100~200 kPa压力区间内对应的压缩系数a1-2来评价土的压缩性。

即a1-2<0.1 MPa^(-1)属低压缩性土;0.1 MPa^(-1)≤a1-2<0.5 MPa^(-1)属中压缩性土;a1-2≥0.5 MPa^(-1)属高压缩性土。

7、压缩模量压缩模量modulus of compressibility土试样在压缩试验条件下,竖向应力与竖向应变之比。

物体在受三轴压缩时应力与应变的比值。

实验上可由应力-应变曲线起压缩模量模型始段的斜率确定。

径向同性材料的压缩模量值常与其杨氏模量值近似相等。

土的压缩模量指在侧限条件下土的垂直向应力与应变之比,是通过室内试验得到的,是判断土的压缩性和计算地基压缩变形量的重要指标之一。

8、粘聚力cohesion粘聚力又叫内聚力,是在同种物质内部相邻各部分之间的相互吸引力,这种相互吸引力是同种物质分子之间存在分子力的表现。

只有在各分子十分接近时(小于10e-6厘米)才显示出来。

粘聚力能使物质聚集成液体或固体。

特别是在与固体接触的液体附着层中,由于粘聚力与附着力相对大小的不同,致使液体浸润固体或不浸润固体。

9、内摩擦角(angle of internal friction)岩体在垂直重力作用下发生剪切破坏时错动面的倾角概念作为岩(土)体的两个重要参数之一的内摩擦角,是土的抗剪强度指标,是工程设计的重要参数。

土的内摩擦角反映了土的摩擦特性,一般认为包含两个部分:土颗料的表面摩擦力,颗粒间的嵌入和联锁作用产生的咬合力。

内摩擦角是土力学上很重要的一个概念。

内摩擦角最早出现在库仑公式中,也就是土体强度决定于摩擦强度和粘聚力,摩擦强度又分为滑动摩擦和咬合摩擦,两者共同概化为摩擦角。

表达式经典的表达式就是库伦定律τ=σtanφ+c其中,对于黏性土,c不为0,对于砂土,c为0,φ、c可以通过三轴试验得出,(或直剪)。

在不同围压下,得到破坏时的最大主应力和最小主应力,做出应力圆,至少在三种不同的围压下,这样可以做出三个应力圆,作三个圆的公切线,斜率即为内摩擦角。

内摩擦角在力学上可以理解为块体在斜面上的临界自稳角,在这个角度内,块体是稳定的;大于这个角度,块体就会产生滑动。

利用这个原理,可以分析边坡的稳定性。

反映内容内摩擦角是反映散粒物料间摩擦特性和抗剪强度,它是确定物料仓仓壁压力以及设计重力流动的料仓和料斗的重要设计参数。

如果把散粒物料看成一个整体,在其内部任意处取出一单元体,此单元体单位面积上的法向压力可看作该面上的压应力,单位面积上的剪切力可看作该面上的剪应力。

物料沿剪切力方向发生滑动,可以认为整体在该处发生流动或屈服。

即散粒物料的流动可以看成与固体剪切流动破坏现象相类似。

这样,就可以应用莫尔强度理论来研究散粒物料的抗剪强度,进而得出确定内摩擦角的理论和方法。

计算方法根据莫尔理论,如果散粒物料在二向应力作用下沿着某一个平面产生破坏,则在这个平面内存在着一定的正应力σ和剪应力τ的组合。

破坏平面内的正应力σ和剪应力τ可由力平衡求出σ= σ1cosθ+σ3sinθτ= (σ1-σ3)cosθsinθ式中σ1——最大主应力;σ3——最小主应力;θ——破坏平面和最大主应力平面之间的夹角;对同一种物料在不同的σ3 情况下作试验,可得出散粒物料发生破坏时的一系列σ1 。

莫尔圆和莫尔包络线相切的点表示散粒物料产生破坏时的平面方位及平面上的应力状态,它表示了散粒物料的强度条件。

莫尔包络线可用下式表示为τ= c+σtanφi式中τ——散粒体抗剪强度;c——散粒体粘聚力;σ——破坏平面上的正应力;φi——内摩擦角。

莫尔包络线和水平线的夹角即为散粒物料的内摩擦角φi.莫尔包络线即表示散粒物料的剪切强度。

如果表示物料内某点应力状态的莫尔圆落到莫尔包络线以下,则这个点的剪切应力是小于剪切强度,散粒物料不可能产生破坏和流动。

莫尔包络线相切的任意莫尔圆表示一个非稳定状态。

在非稳定状态时,用切点表示的平面上可能出现破坏。

散粒体的剪切强度和内摩擦角可直接用图解法求出。

它们的数值也可用莫尔圆方程直接求出。

测定方法为了测定散粒物料的内摩擦角,必须首先通过试验确定这种物料的莫尔包络线。

目前,农业散粒物料的莫尔包络线可采用两种测定方法。

1.三轴压缩试验三轴压缩试验装置简图如图所示,它是利用研究土壤剪切特性的装置发展起来的。

采用此装置作散粒物料如谷粒的剪切试验时,将预先压实的谷粒控封闭在橡胶薄膜中,并放进压缩室。

压缩室内逐渐升压到预定的压力‘“轴向裁荷通过万能试验机或其它加裁装置施加到谷粒柱上。

这样,谷粒柱在径向受到空气压力σ3 的压缩,在铀向受压缩空气压力和轴向载荷的共同作用,破坏时的σ1 值可通过记录仪测得。

重复以上程序,即可得到不同的σ3 值时谷粒拄破坏的主应力σ1 值,从而得出了散粒物料在一定压实状态下的莫尔包络线。

2.直接剪切试验直接剪切试验可在图所示的剪切仪上进行。

剪切仪由剪切槽、加载装置和记录仪三个基本部分组成。

剪切槽包括底座、剪切环和顶盖。

法向压力利用垂直作用的压实裁荷,剪切作用力通过电或机械传动装置施加于剪切环。

传动装置上装有力传感器或测力计,用于测量作用在底座和剪切环间接触平面内的剪应力。

一些农业物料的内摩擦角的数值如下表。

最新数据参看《粮食平房仓设计规范》休止角与内摩擦角的区别与联系:(1)休止角和内摩擦角都反映了散粒物料的内摩擦特性;(2)休止角和内摩擦角两者概念不同。

内摩擦角反映散粒物料层间的摩擦特性,休止角则表示单粒物料在物料堆上的滚落能力,是内摩擦特性的外观表现;(3) 数值不同。

对质量和含水率近似的同类物料,休止角始终大于内摩擦角,且都大于滑动摩擦角。

对于缺乏粘聚力的散粒物料如砂子等,其休止角等于内摩擦角。

10、回弹指数swelling index土试样在压缩试验条件下,卸荷回弹所得的孔隙比与有效压力对数值关系曲线的斜率。

相关文档
最新文档