七年级数学上册导学案
冀教版2024新版七年级数学上册《4.2.2 合并同类项的应用》导学案

4.2 合并同类项(2)【学习目标】1.掌握合并同类项的法则,会正确合并同类项;2.正确进行化简后再求代数式的值的计算;3.通过对比去体会化简后再求值的简便性.【重点】合并同类项及化简求值.【难点】合并同类项及化简求值.【自学指导】一、知识链接1.在多项式8x 3-3x 2+5+3x 2+4-x 3中,8x 3和______是同类项, -3x 2和________是同类项, 5和_____是同类项.2.如果两个同类项的系数互为相反数,那么合并同类项后,结果是 .比如:2255a b a b -+= .3.先标出下列各多项式的同类项,再合并同类项.(1)22325325x x x x -++--(2)322223a a b ab a b ab b ++---二、自主学习1.阅读课本P 139 完成下列问题:(1)先合并同类项,再求多项式的值:23322545568,x x x x x x ---++-+其中x = -2.(2)求多项式2x 2-5x +x 2+4x -3x 2-2的值,其中x =2.【课堂练习】1.a +b +2(b +a )-4(a +b )合并同类项等于( )A .a +bB .-(a +b )C .-a +bD .a -b2.将多项式222954ab a ab a +--中的同类项分别结合在一起应为( )A.22(94)(52)a a ab ab -+--B.22(94)(25)a a ab ab ---C.22(94)(25)a a ab ab -+-D.22(94)(25)a a ab ab --+3.判断下列说法是否正确:(1) ab ab 52-与是同类项 (2)22313yx y x -与是同类项 (3) c ab ab 2225-与是同类项 (4)2332与是同类项4.下列合并同类项不正确的是( )A.333246x x x +=B.33242x x -=-C.333242x x x -+=D.333242x x x -=-5.求下列多项式的值:(1)222732256,x x x x x ---++其中x =3.(2)5234 1.a b b a -+--其中1, 2.a b =-=(3)222232252 1.x xy y xy x xy y -+--+-+其中22, 1.7x y ==- (4)56345522-+-+-a a a a ,其中1-=a .【拓展延伸】6.已知-5x m y 3与4x 3y n 能合并同类项,则m n = .7.(1) 如果23k x y x y -与是同类项,那么k = .(2) 如果3423x y a b a b -与是同类项,那么x = , y = .8.先化简,再求值.2x 3+3x 2y -xy 2-3x 2y +xy 2+y 3,其中x =1, y = -2.9.试说明多项式5.5x 3-0.25x +0.2x 2-5x 3+x -0.5 x 3-0.2x 2 的值与x 无关.10.要使多项式m x 3+3nxy 2+2x 3-xy 2+y 不含三次项,求m +3n 的值.【总结反思】1.本节课我学会了: 还有些疑惑:2.做错的题目有: 原因:。
七年级数学上册导学案(全集)

七年级数学上册导学案第1章基本的几何图形1.1我们身边的图形世界一、导入激学:满天星斗的夜空,形形色色的建筑群,各式各样的交通工具和道路,五彩缤纷的自然界……只要你注意观察,就会发现我们生活在一个丰富多彩的图形世界里。
二、导标引学学习目标:1.认识不同的几何体,初步体会几何研究的对象、方法、并感悟抽象的数学思想。
2.了解从物体抽象出来的几何体、平面、曲面等概念的定义。
3.知道正方体、圆柱、圆锥、球等都是几何体,能认识表示它们的图形。
三、学习过程(一)导预疑学请你利用10分钟,自学课本第4页至第6页,并完成以下问题:1.说出下列立体图形的名称。
①②③④⑤⑥⑦2.上题中棱柱有:,棱锥有。
(填序号)3._____、_____、_____、_____、_____、______、______等都是几何体,几何体简称_____。
4.观察下列实物图片,它们的形状分别类似于哪种几何体?①②③④⑤(二)导问互学问题:棱柱与圆柱、棱锥与圆锥的区别与联系:顶点棱侧面底面棱柱圆柱棱锥圆锥解决问题评价:(三)导根典学在下图中的三幅图案中,你分别看到了哪些图形?它们是怎样组合而成的?(四)导标达学1.下列几何体,是由一个曲面和两个平面围成的是_____。
A B C D2. 一个以下说法中正确的是。
A.正方体是棱柱。
B.电视机的形状类似于球体。
C.生活中应用的六角螺母的形状类似于圆柱。
D.鸡蛋的形状类似于圆锥。
3.一个七棱柱共有个面,条棱,个顶点,形状和面积完全相同的只有个面.4.图中的的几何体由几个面围成,面与面相交成几条线?它们是直的还是曲的?5.下列几何体中不是多面体的是( )A、立方体B、长方体C、三棱锥D、圆柱6.下列几何体没有曲面的是()A、圆柱B、圆锥C、球D、棱柱7.下列图案是由哪些简单的几何图形组成的?8.请你用两个圆、两个三角形和两条线段组合几幅新奇、有趣的图形,并给出文字说明。
反馈评价:四、导法慧学1.将所学知识纳入知识体系.2.本节解决问题的具体方法是怎样的?据此请总结此类问题的解题思路.3.还有没有更好的解法?你还有疑问吗?设计人:王望中学王志海1.2 几何图形一、导入激学:我们学过的长方体有几个面?几个顶点?几条棱?二、导标引学学习目标:1.认识点、线、面、体,初步感受“点动成线、线动成面、面动成体”的生活实例。
人教版七年级数学上册5.2.4 一元一次方程的解法 去分母(导学案)

5.2.4 一元一次方程的解法去分母导学案一、学习目标:1.掌握含有分数系数的一元一次方程的解法.2.熟练利用解一元一次方程的步骤解各种类型的方程.重点:含有分数系数的一元一次方程的解法.难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程解决.二、学习过程:自学导航英国伦敦博物馆保存着一部极其珍贵的文物--纸草书.这是古代埃及人用象形文字写在一种用纸莎草压制成的草片上的著作,它于公元前1700年左右写成.这部书中记载了许多有关数学的问题,下面的问题就是书中一道著名的求未知数的问题.问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.你能解出这道方程吗?把你的解法与其他同学交流一下,看谁的解法好.尝试解一解:解方程:3132232. 2105+-+-=-x x x思考:1. 若使方程的系数变成整系数方程,方程两边应该同乘以什么数?2. 去分母时要注意什么问题?学习笔记【归纳】解一元一次方程的一般步骤包括:___________、___________、__________、________________、_____________等.通过这些步骤可以使以x 为未知数的方程逐步向着x=a 的形式转化,这个过程主要依据等式的基本性质和运算律等.考点解析考点1:利用去分母解一元一次方程★★★例1.解下列方程:【迁移应用】1.在解方程3y−14-1=2y+76时,为了去分母,最好将方程两边同乘( )A.4B.6C.12D.162.将方程x 2-x+14=1去分母,下列变形正确的是( )A.2x -x+1=1B.2x -(x+1)=1C.2x -x+1=4D.2x -(x+1)=43.解下列方程:(1)3x−12=4x+25; (2)1-3x−14=3+x 2; (3)2x−13-x=2x+14; (4)3x−22-(2-x)=x.考点2:构造一元一次方程求值★★例2.已知式子x+33-1与2x−17,当3x 取何值时,它们的值互为相反数.【迁移应用】1.如果13a+1与2a−73的值互为相反数,那么a 的值为( )A.43B.10C.-43D.-102.若式子x+13与2−x 2的值的和等于2,则x 的值为______.3.已知a+34比2a−37的值大1,求2-a 的值.考点3:解分母含小数的一元一次方程★★★例3.解方程:0.4x+10.5=0.02x+0.030.03+2.【迁移应用】依据下列解方程0.3x+0.50.2 = 2x−13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x+52=2x−13.(______________)去分母,得3(3x+5)=2(2x -1)(_____________)去括号,得9x+15=4x -2(_________).(______),得9x -4x=-2-15(_______________).合并同类项,得5x=-17(________________). (___________),得x=-175.(_______________) 考点4:利用整体思想解一元一次方程★★★★例4.阅读下列材料:请参照这种方法解方程3(x+1)-13(x -1)= 2(x -1)-12(x+1).【迁移应用】解下列方程:(1)3(7x -5)-13(5-7x)+17(7x -5)=7(5-7x); (2)5(2x+3)-34(x -2)=2 (x -2)-12(2x+3).考点5:一元一次方程的错解问题★★★★例5.下面是小贝同学解方程x−13-3x−24=1的过程,请认真阅读并完成相应问题.解:去分母,得4(x -1)-3(3x -2)=12.………第一步去括号,得4x -4-9x+6=12. ………………第二步移项,得4x -9x=12+6-4.……………………第三步合并同类项,得-5x=14.……………………第四步系数化为1,得x=-145…………………………第五步 (1)以上解题过程中,第一步是依据____________进行变形的; 第二步是依据________进行变形的;(2)第______步开始出现错误,这一步错误的原因是_______________;(3)请写出该方程的正确解答过程.【迁移应用】王老师给同学们出了一道解方程的题目:x+13-x−16=1.小明同学的解题过程如下:去分母,得2(x+1)-x -1=6. ①去括号,得2x+1-x -1=6. ①移项,得2x -x=6-1+1. ①合并同类项,得x=6. ① 请你指出小明的解题过程从哪步开始出现错误?并将正确的解题过程写下来.。
七年级数学上册导学案全册

七年级数学上册导学案全册导学案-七年级数学上册注意:本导学案旨在帮助学生预习和复习七年级数学上册的内容,提供课前准备和课后巩固的指导,请密切配合教材使用。
第一章分数一、概念引入1.1 了解分数的定义和常用表示方法;1.2 掌握分数在数轴上的位置及其大小关系。
二、分数的基本运算2.1 分数的加法和减法:同分母、异分母情境下的计算;2.2 分数的乘法:分数乘以整数的计算;2.3 分数的除法:计算除法表达式,化简答案。
三、混合运算3.1 掌握混合数的概念及相互转化;3.2 掌握带分数的加减法运算;3.3 灵活运用所学知识解决实际问题。
第二章代数式一、代数式的概念1.1 了解代数式的定义和构成要素;1.2 了解代数式的计算方法。
二、代数表达式的分解和合并2.1 分解代数式为因式的乘积;2.2 合并同类项简化代数式。
三、代数式的应用3.1 运用代数式解决实际问题;3.2 利用代数式建立数学模型。
第三章图形的初步认识一、几何基本概念1.1 了解点、线、面的概念,认识线段、射线、直线、角等基本几何要素;1.2 掌握正方形、矩形、三角形、圆的定义和性质。
二、图形的相似和全等2.1 了解相似和全等的概念;2.2 掌握判断图形相似和全等的条件;2.3 运用相似和全等的性质解决实际问题。
三、平面镶嵌3.1 了解平面镶嵌的概念和方法;3.2 探索平面镶嵌的规律。
第四章线性方程一、方程的概念1.1 了解方程的定义及解的概念;1.2 掌握等式的性质。
二、解一元一次方程2.1 书写一元一次方程;2.2 运用等式性质解一元一次方程。
三、实际问题与方程3.1 将实际问题转化为方程;3.2 运用方程解决实际问题。
第五章数据与概率一、统计图与数据1.1 了解条形图、折线图的表示方法;1.2 能够读取和分析各类统计图。
二、概率初步2.1 了解概率的定义和常用表示方式;2.2 进行简单事件的概率计算;2.3 利用概率解决实际问题。
三、收集与处理数据3.1 学会收集和整理数据;3.2 运用统计学方法分析数据。
七年级上册数学导学案答案

七年级上册数学导学案答案在七年级上册的数学学习中,导学案是帮助同学们理解和掌握知识的重要工具。
而答案则是检验学习成果、纠正错误和加深理解的关键。
以下是对七年级上册数学导学案中常见题型的答案及解析。
一、有理数1、正数和负数像 5,12,1/2 这样大于 0 的数叫做正数。
像-3,-25,-1/3 这样在正数前面加上“”号的数叫做负数。
0 既不是正数也不是负数。
练习:指出下列各数哪些是正数,哪些是负数。
7,-925,-301, 3125, 0,-20,-314答案:正数有 7,3125;负数有-925,-301,-20,-314;0 既不是正数也不是负数。
2、有理数正整数、0、负整数统称为整数;正分数、负分数统称为分数。
整数和分数统称为有理数。
练习:把下列各数填入相应的集合内。
15,-5/9, 0, 015,-30, 12, 52,-65答案:整数集合{-15,0,-30,12};分数集合{-5/9,015,52,-65};有理数集合{-15,-5/9,0,015,-30,12,52,-65}二、数轴1、数轴的定义规定了原点、正方向和单位长度的直线叫做数轴。
练习:画出数轴,并在数轴上表示出下列各数。
3,-15, 0, 25, 4答案:(数轴略)2、利用数轴比较大小在数轴上,右边的数总比左边的数大。
练习:比较下列各组数的大小。
(1)-3 和 0 (2)-15 和-2 (3)25 和 4答案:(1)-3 < 0 (2)-15 >-2 (3)25 < 4三、相反数1、相反数的定义只有符号不同的两个数叫做互为相反数。
0 的相反数是 0。
练习:写出下列各数的相反数。
5,-075, 1/3, 0答案:5 的相反数是-5;-075 的相反数是 075;1/3 的相反数是-1/3;0 的相反数是 0。
2、相反数的性质互为相反数的两个数的和为 0。
练习:若 a,b 互为相反数,且 a =-7,则 b = 7。
四、绝对值1、绝对值的定义一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。
七年级上册数学导学案全册

七年级上册数学导学案全册一、整数的概念和运算在本节课中,我们将学习整数的概念和运算。
整数包括正整数、负整数和零。
在进行整数运算时,我们需要掌握加法、减法、乘法和除法的规则,并注意运算的顺序。
下面是一些例题来帮助我们理解整数的概念和运算。
例题1:计算下列各式的值:1) 5 + (-3)2) (-4) - 73) 6 × (-2)4) (-12) ÷ 3例题2:先计算括号内的值,再计算整体的值:1) 3 × (4 + (-2))2) (-5) × (-3 + 7) ÷ 2二、分数的运算与表示在本节课中,我们将学习分数的概念、运算与表示。
分数由分子和分母组成,表示了部分与整体的关系。
我们需要掌握分数的加法、减法、乘法和除法的规则,并能灵活地运用它们。
例题1:计算下列各式的值:1) 1/2 + 2/32) 5/6 - 1/33) 3/4 × 2/54) 3/5 ÷ 1/4例题2:化简分数:1) 4/8化简为最简分数2) 12/15化简为最简分数三、代数表达式在本节课中,我们将学习代数表达式的概念和运算。
代数表达式由变量、常数和运算符组成,用来表示数与数之间的关系。
我们需要掌握代数表达式的加法、减法、乘法和除法的规则,并能灵活地运用它们。
例题1:计算下列各式的值,其中a=2,b=-3,c=5:1) 2a + b - c2) a × (b + c) - 3b3) c ÷ (a + b)例题2:根据题意写出代数表达式:1) 一个数加上3的两倍2) 七的3倍减去4四、平方根与立方根在本节课中,我们将学习平方根与立方根的概念和运算。
平方根是指一个数的平方等于给定数的非负实数解,立方根则是指一个数的立方等于给定数的解。
我们需要掌握平方根和立方根的计算方法,并能应用到实际问题中。
例题1:计算下列各式的值:1) √162) ∛273) √(4 × 9)4) ∛64 ÷ 2例题2:根据题意写出平方根与立方根的表达式:1) 一个数的平方根减去32) 八的立方根加上2五、四边形的特征与性质在本节课中,我们将学习四边形的特征与性质。
七年级上册数学导学案【精选5篇】

七年级上册数学导学案【精选5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!七年级上册数学导学案【精选5篇】在平日里,心中难免会有一些新的想法,通常就可以写一篇心得体会将其记下来,这样能够培养人思考的习惯。
6.3.3 余角和补角 导学案(含答案) 2024—2025学年人教版数学七年级上册

第六章几何图形初步6.3 角6.3.3 余角和补角学习目标:1. 了解余角、补角的概念,掌握余角和补角的性质,并能利用余角、补角的知识解决相关问题.2. 了解方位角的概念,并能用方位角知识解决一些简单的实际问题.重点:了解余角、补角的概念及性质,了解方位角的概念和表达方式.难点:运用余角、补角和方位角的相关知识解题.一、复习导入如图,∠1+∠2= .当∠AOB = 90°时,∠3 +∠4 = . 当∠AOB = 180°时,∠5 +∠6 = .一、要点探究知识点1:余角知识要点余角:如果两个角的和等于90° (直角),就说这两个角互为余角,简称这两个角互余.∠3 与∠4 互余;∠3 是∠4 的余角;∠4 是∠3 的余角.讨论1:此时∠3 与∠4 还互余吗?自主学习课堂探究讨论2:钝角有余角吗?几何语言:因为∠3 与∠4 互余,所以∠3 +∠4 = 90°或∠3 = 90° -∠4,或∠4 = 90° -∠3.因为∠3 +∠4 = 90°,所以∠3 与∠4 互余.知识点2:补角探究1:你能猜猜∠1 与∠2 的数量关系吗?知识要点补角:如果两个角的和等于180°(平角),就说这两个角互为补角,简称这两个角互补.几何语言:因为∠1 与∠2 互补,所以∠1 +∠2 = 180°.或∠1 = 180° -∠2,或∠2 = 180° -∠1.因为∠1 + ∠2 = 180°,所以∠1 与∠2 互补.判断:下列论述是否正确?∠∠1 +∠2 +∠3 = 90°,则∠1、∠2、∠3互余;∠∠1 = 20°,∠2 = 100°,∠3 = 180°,则∠1、∠2、∠3 互补;∠∠1 +∠2 = 90°,则∠1 是余角;∠3 +∠4 = 180°,则∠3 是∠4 的补角;∠如图,∠A 不是∠B 的余角;∠如图,∠C 是∠A 的补角.比一比:看看谁计算得又快又好!∠α 是锐角,则它的余角可以表示为,补角可以表示为.∠α5°62°23′x°(0<x<90)(20 - x)°(0<x<20)余角60°补角110°知识点3:余角与补角的性质探究2:∠1 与∠2,∠3都互为补角,∠2 与∠3 的大小有什么关系?知识要点补角的性质:同角(等角) 的补角相等.探究3:类比探究2,∠1 与∠2,∠3 都互为余角,∠2 与∠3 的大小有什么关系?知识要点余角的性质:同角(等角) 的余角相等.典例精讲例 1 如图,点A,O,B 在同一条直线上,射线OD 和射线OE 分别平分∠AOC 和∠BOC,图中哪些角互为余角?练一练1. 已知∠1 与∠2 互余,∠2 与∠3 互补,∠1 = 65°,则∠3 =.2. 一个角是它的余角的1.5倍,则这个角的补角是.二、课堂小结当堂检测1. 如果∠AOB +∠BOC = 90°,∠BOC +∠COD = 90°,那么∠AOB与∠COD的关系是()A. 互余B. 互补C. 相等D. 不能确定2. 如图,下列说法中错误的是()A. OA的方向是北偏东30°B. OB的方向是北偏西20°C. OC的方向是西南方向D. OD的方向是南偏东50°参考答案复习导入∠AOB 90°180°课堂探究一、要点探究判断:①×②×③×④×⑤√【比一比】90° -∠α 180°-∠α探究2:因为∠1 与∠2,∠3 都互为补角,所以∠2 = 180° - ∠1,∠3 = 180° - ∠1.所以∠2 =∠3.探究3:因为∠1 与∠2,∠3 都互为余角,所以∠2 = 90° - ∠1,∠3 = 90° - ∠1.所以∠2 = ∠3 .解:因为点 A,O,B 在同一条直线上,所以∠AOC 和∠BOC 互为补角.又因为射线OD 和射线OE 分别平分∠AOC 和∠BOC,所以∠COD +∠COE = 12∠AOC + 12∠BOC= 12(∠AOC +∠BOC ) = 90°所以∠COD 和∠COE 互为余角,同理,∠AOD 和∠BOE,∠AOD 和∠COE,∠COD 和∠BOE 互为余角.【练一练】1.155° 126°当堂检测1. C2.A。
人教版七年级上册数学全册导学案精心整理版 131页

§2.5 有理数的乘法与除法(2)...................................... 27 § 2.5 有理数的乘法与除法(3)..................................... 30 §2.6 有理数的乘方(1).............................................. 32 §2.6 有理数的乘方(2)................................................ 33 §2.7 有理数的混合运算(1)........................................ 36 §2.7 有理数的混合运算(2).......................................... 37 数学活动 算“24” ............................................................... 39 §2.8 小结与思考(1).................................................... 42 §2.8 小结与思考(2).................................................... 43 第二章参考答案................................................................... 45 第三章......................................................................................... 53 §3.1 字母表示数 ..................................................................... 53 §3.2 代数式........................................................................ 55 §3.3 代数式的值(1)...................................................... 57 §3.3 代数式的值(2)...................................................... 58 §3.4 合并同类项(1)...................................................... 60 §3.4 合并同类项(2)...................................................... 62 §3.5 去括号(1).............................................................. 64 §3.5 去括号(2).............................................................. 65 小结与思考(1)................................................................. 67 第四章......................................................................................... 69 4.1 从问题到方程(1).................................................. 69
2023年部编本人教版七年级数学上册导学案(全册)

2023年部编本人教版七年级数学上册导学案(全册)第一单元:数学与你我他1. 观察身边的事物,描述它们与数学的关系。
2. 研究数学的重要性和在生活中的应用。
- 探索数学在日常生活中的应用场景。
- 分享身边有趣的数学事例。
3. 研究数学基本概念。
- 了解自然数和整数。
- 掌握数轴上的整数表示方法和比较大小。
- 研究如何用数轴解决实际问题。
第二单元:数的整数运算1. 回顾正整数的加减运算。
2. 研究关于正整数的乘法和除法运算。
- 掌握乘法的运算法则。
- 了解除法的基本概念和运算法则。
3. 练运用整数运算解决实际问题。
- 运用正整数的运算进行计算。
第三单元:图形的认识1. 研究图形相关术语和概念。
- 了解点、线、面的定义。
- 掌握不同类型的线段和角的特征。
2. 研究如何绘制简单的几何图形。
- 利用尺规画直线和圆。
- 绘制多边形和正方形。
3. 在实际情境中运用图形知识。
- 识别和描述身边的图形。
第四单元:一次函数1. 研究函数的概念。
- 了解函数的基本特点。
- 掌握自变量、因变量和函数关系的概念。
2. 认识一次函数。
- 研究一次函数的定义和表示方法。
- 探索一次函数的图象和性质。
3. 运用一次函数解决实际问题。
- 利用一次函数的性质进行计算和推理。
第五单元:平方根与立方根1. 研究平方数和立方数的概念。
- 掌握平方数和立方数的定义。
- 记忆一些常见的平方数和立方数。
2. 研究平方根和立方根的概念和性质。
- 了解平方根和立方根的定义。
- 掌握平方根和立方根的计算方法。
3. 运用平方根和立方根解决实际问题。
- 运用平方根和立方根进行计算和推理。
第六单元:既约分数和倍数1. 复分数的概念和分数的计算。
2. 了解既约分数的概念和性质。
- 掌握既约分数的计算方法。
- 理解既约分数的意义和应用。
3. 研究倍数的概念和计算方法。
- 探索倍数的性质和规律。
- 利用倍数进行计算和推理。
4. 运用既约分数和倍数解决实际问题。
人教版七年级数学上册6.1.1.2 从不同方向看立体图形与立体图形的展开图(导学案)

学习笔记6.1.1.2 从不同方向看立体图形与立体图形的展开图导学案一、学习目标:1.初步体会从不同的方向观察同一个物体可能会看到不同的平面图形,能识别简单物体从正面看、从左面看、从上面看的平面图形.2.知道一些简单的立体图形的展开图.3.在平面图形和立体图形互相转换的过程中,初步建立空间观念.重点:认识几何体与众不同方向看它所得的平面图形之间的关系;了解一些简单的立体图形和它的展开图之间的关系.难点:从平面图形和立体图形的互相转换过程中,培养空间想象力.二、学习过程:自学导航小华和小颖看到的图像一样吗?下面四幅图中,你认为哪幅是小华看到的?哪幅是小颖看到的?如果你想看到所有的物体,那么你应该站在什么位置?思考:下面的五幅图分别是从什么方向看到的?【归纳】我们从不同的方向观察一物体时,可能看到不同的图形. 其中,把从正面看到的图叫做_________,把从左面看到的图叫做_________,从上面看到的图叫做__________.思考:下图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么平面图形.考点解析考点1:从不同方向看立体图形★★★例 1.如图是由4个大小相同的小正方体拼成的立体图形,分别从正面、左面、上面观察这个图形,不可能得到的平面图形是( )【迁移应用】1.从上面看如图所示的圆柱体,得到的平面图形可能是( )2.如图是由5个完全相同的小正方体组成的立体图形,从左面看这个立体图形得到的平面图形是( )3.从正面、左面、上面看下列立体图形,得到的平面图形完全相同的是( )合作探究这些精美的包装盒是怎么制成的?要设计、制作一个包装盒,除了美术设计以外,还要了解它展开后的形状,好根据它来准备材料,这就是我们今天学习的立体图形的展开图.有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展成平面图形. 这样的平面图形称为相应立体图形的展开图.探究:用剪刀把桌上的正方体纸盒按任意方式展开,你能得到哪些不同的展开图?思考:这些正方体展开图可以分为几种?观察上面的11种正方体的展开图有没有什么规律?哪几号展开图可以分为一类,为什么?考点解析考点2:立体图形的展开图(转化思想)★★★例2.下列四个图形中,不是正方体表面展开图的是( )【迁移应用】1.下列图形中,可能是圆锥侧面展开图的是( )2.下列平面图形中,经过折叠能围成一个正方体的是( )3.下列不是三棱柱展开图的是( )4.如图是一些立体图形的展开图,请写出这些立体图形的名称.(1)___________; (2)___________; (3)___________;(4)___________; (5)___________; (6)___________.考点3:从不同方向看立体图形★★★例3.如图是一个立体图形,从正面看它得到的平面图形是( )【迁移应用】1.如图是一个圆柱和一个正方体,从上面看这组立体图形得到的平面图形是( )2.如图是一个由多个相同小正方体搭成的立体图形从上面看得到的平面图形,图中所标数字为该位置小正方体的个数,则这个立体图形从左面看得到的平面图形是( )考点4:正方体相对面的确定★★★例 4.如图是一个正方体的展开图,则原正方体中与“武”字所在的面相对的面上标的字是( )A.文B.明C.城D.市【迁移应用】1.如图是一个正方体的表面展开图,把展开图折叠成正方体后,“有”字一面相对面上的字是( )A.者B.事C.竟D.成2.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是( )A.文B.羲C.弘D.化3.如图是一个x正方体的展开图,若正方体中各相对2面上的数的和均相等,则-x y的值为_______.考点5:通过从不同方向看物体求图形的表面积★★★★例5.【转化思想】图6.1-7是一个由9个大小相同的正方体组成的立体图形,分别从前面、左面、上面观察这个图形,各能得到什么平面图形?【迁移应用】1.从棱长为2cm的正方体钢坯的一角挖去一个棱长为1cm的小正方体,得到一个如图所示的零件,则这个零件的表面积是_______cm2.2.由7个棱长为1cm的小正方体搭成的立体图形如图所示,它的表面积为______cm2.。
初中七年级数学上册导学案含答案

初中数学七年级上册导学案及答案第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子:。
(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。
正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。
2)正数是大于0的数,负数是的数,0既不是正数也不是负数。
【课堂练习】:1. P3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:51-,432-,3.14,+3065,0,-239; 则正数有_____________________;负数有____________________。
人教版七年级数学上册5.3.3 实际问题(球赛积分问题)(导学案)

学习笔记5.3.3 实际问题与一元一次方程(三)球赛积分问题 导学案一、学习目标:1. 通过对实际问题的探究,认识到生活中数据信息 传递形式的多样性.2. 会阅读、理解表格,并从表格中提取关键信息.3. 掌握解决“球赛积分表问题”的一般思路,并会根据方程的解的情况对实际问题作出判断.重点:列一元一次方程解决球赛积分问题.难点:将实际问题抽象为方程的过程中,如何找等量关系.二、学习过程:合作探究问题1:你能从表格中了解到哪些信息?问题2:你能从表格中看出负一场积多少分吗?问题3:你能进一步算出胜一场积多少分吗?问题4:用式子表示总积分与胜、负场数之间的数量关系.解:如果一个队胜m场,则负_______场,胜场积分为_____,负场积分为_______. 总积分为:____________________.问题5:某队的胜场总积分能等于它的负场总积分吗?思考:x表示什么量?它可以是分数吗?问题6:某队的胜场总积分能等于它的负场总积分的2倍吗?问题7:如果删去积分榜的最后一行,你还能求出胜一场和负一场的得分吗?解:设胜一场得x分,则东方队负场总积分为______分,由此可知负一场得_____分.光明队负场总积分为_____分,由此可知负一场得_____分.总结提升球赛积分问题的解题要点:1.解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.2.用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义. 考点解析考点1:积分问题★★★例1.某市中学生足球联赛共8轮(即每队需要比赛8场),胜一场得3分,平一场得1分,负一场不得分.某校中学生足球代表队的平场数是负场数的2倍,共得17分,该队胜了多少场?【迁移应用】1.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队比赛14场得到23分,则该队胜了_____场.2.一张试卷共有25道选择题,做对一道题得4分,不做或做错一道题倒扣1分.某同学做了全部的试题,共得了70分,则他做对的题数为______.3.在一次有12个队参加的足球循环赛(每队需要赛11场)中,规定胜一场记3分,平一场记1分,负一场记0分.某队在这次循环赛中,所胜场数比所负场数多2场,结果共积18分,该队胜、负、平各几场?考点2:积分问题中可能性的探究★★★★★例2.学校组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录的是5名参赛者的得分情况:(1)由表格知,答对一题得____分,答错一题得____分.(2)参赛者F得了82分,他答对了几道题?(3)参赛者G说他得了90分,你认为可能吗?为什么?【迁移应用】爷爷和小明下了12盘棋,未出现和棋,两人得分相同,爷爷赢一盘得1分,小明赢一盘得3分.(1)爷爷赢了多少盘?(2)会出现爷爷的得分是小明得分的2倍的情况吗?(3)会出现爷爷的得分比小明多4分的情况吗?请说明理由.。
人教版七年级数学上册5.3.1 实际问题( 配套问题和工程问题) (导学案)

学习笔记5.3.1实际问题与一元一次方程(一)配套问题和工程问题导学案一、学习目标:1.理解配套问题和工程问题的背景.2.掌握用一元一次方程解决实际问题的基本过程.3.分清有关数量关系,能正确找出作为列方程依据的主要等量关系.重点:掌握用一元一次方程解决实际问题的基本过程.难点:将实际问题抽象为方程的过程中,如何找等量关系.二、学习过程:自学导航1.一个三角形的三边长度的比是3:4:5,最短的边比最长边短4,则三边各是多少?解:设最短边为3x,则最长边为____,根据题意,列得方程____________.2.铅笔每支1元,钢笔每支8元. 小明买回铅笔钢笔共8支,用了22元. 问小明买了铅笔钢笔各多少支?解:设小明买了x支铅笔,则买了_______支钢笔,根据题意,列得方程______________.3.甲队有32人,乙队有40人,现在从乙队抽调 x 人到甲队,使得甲队的人数是乙队人数的2倍,根据题意,列得方程_________________.考点解析考点1:配套问题★★★★例1.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母. 1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?提示:这类问题中配套的物品之间具有一定的数量关系,这可以作为列方程的依据.分析:每天生产的螺母数量是螺钉数量的____倍时,它们刚好配套.关系式:_________________________列表分析:尝试解决:思考:如果设x名工人生产螺母,怎样列方程?思考:本题还有其他做法吗?列表分析:【方法归纳】解决配套问题的思路:1._______________________________________________________;2._______________________________________________________.例2. (新教材例题)整理一批图书,由1人整理需要40h完成.现计划由一部分人先整理4h,然后增加2人与他们一起整理8h,完成这项工作.假设这些人的工作效率相同,应先安排多少人进行整理?【迁移应用】1.某防护服厂有54人,每人每天可加工防护服8件或防护面罩10个,已知一件防护服配一个防护面罩,为了使每天生产的防护服与防护面罩正好配套,需要安排多少人生产防护服?2.一张方桌由1个桌面、4条桌腿组成,如果1m3木料可以做50个桌面或300条桌腿,现有5m3木料,要使做出的桌面和桌腿恰好配成方桌,应用多少木料来做桌面?能配成多少张方桌?自学导航做某件工作,甲单独做要8时才能完成,乙单独做要12时才能完成,问:①甲做1时完成全部工作量的几分之几?_______.①乙做1时完成全部工作量的几分之几?_______.①甲、乙合做1时完成全部工作量的几分之几?_______.①甲做x时完成全部工作量的几分之几?_______.①甲、乙合做x时完成全部工作量的几分之几?_______.①甲先做2时完成全部工作量的几分之几?_______;乙后做3时完成全部工作量的几分之几?_______;甲、乙再合做x时完成全部工作量的几分之几?_______;三次共完成全部工作量的几分之几?______________;结果完成了工作,则可列出方程:________________.考点解析考点2:工程问题★★★★例3.整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?分析:这里可以把总工作量看作1;工作量=人均效率×人数×时间.人均效率(一人做1h完成工作量)为( )x人1h完成的工作量( )x人4h完成的工作量( )增加2人后再做8h,完成工作量为( )这两个工作量之和为( ).尝试解决:【总结提升】解决工程问题的基本思路:1.三个基本量:____________________________.它们之间的关系是:____________________________.2.相等关系:工作总量=各部分工作量之和.(1) 按工作时间,工作总量=_________________________;(2) 按工作者,工作总量=___________________________.3.通常在没有具体数值的情况下,把工作总量看作“1”.类型1:总工作量已知例4.某村经济合作社决定把22t竹笋加工后再上市销售,刚开始每天加工3t,后来在乡村振兴工作队的指导下改进加工方法,每天加工5t,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?【迁移应用】1.将一段长为1.2km的河道的整治任务交由甲、乙两个工程队接力完成,共用时60天.已知甲队每天整治24m,乙队每天整治16m,则甲队整治河道_______m,乙队整治河道_______m.2.有一段长为146m的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26m.已知甲工程队每天比乙工程队多掘进2m,按此速度施工,甲、乙两个工程队还需联合工作______天.类型2:总工作量未知例5.有一批零件加工任务,甲单独做要40h完成,乙单独做要30h完成.甲做了几小时后另有任务,剩下的量由乙单独完成,最终完成时乙比甲多做了2h.甲做了多少小时?【迁移应用】1.一项工程,甲单独做10天可以完成,乙单独做15天可以完成,现甲队先做2天,余下的工程由两队共同做x天刚好可以完成,则由题意可列出的方程是___________________.2.加工一批零件,由一个人做要100h完成,现计划由若干人先做2h,再增加5人与他们.假设这些人50的工作效率相同,先做2h的有多少人?一起做9h,可完成这项工作的3950考点3:工程问题中的方案选择问题★★★★例6.【分类讨论思想】某玩具公司要生产若干件高级玩具,现有甲、乙两个加工厂都想加工这批玩具,已知甲厂单独加工这批玩具比乙厂单独加工这批玩具多用20天,甲厂每天可加工16 件玩具,乙厂每天可加工24件玩具,玩具公司每天需付给甲厂800元加工费,每天需付给乙厂1200元加工费.(1)这个玩具公司要生产多少件高级玩具?(2)在加工过程中(无论单独加工,还是两厂合作),玩具公司需派一名技术员每天给加工厂提供指导,并为该技术员提供每天20元的额外补助,玩具公司制订玩具加工方案如下:可由一个厂单独加工完成,也可由两厂合作完成请你帮助玩具公司选择一种既省钱又省时的加工方案.【迁移应用】为推进我国“碳达峰、碳中和”双碳目标的实现,各地大力推广分布式光伏发电项目.某公司计划建设一座光伏发电站,若由甲工程队单独施工需要3周,每周耗资8万元,若由乙工程队单独施工需要6周,每周耗资3万元.(1)若甲、乙两工程队合作施工,需要几周完成?共需耗资多少万元?(2)若需要最迟4周完成工程,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整周计算)。
初一七年级数学上册导学案含答案

初一七年级数学上册导学案含答案初一七年级数学上册导学案含答案记住永远要信自己初一数学上册学习资料目录正数和负数 1 2 正数和负数 2 3 有理数 5 数轴 7 相反数 8 绝对值 10 有理数加法 112 有理数加法 2 14 有理数减法 1 16 有理数减法 2 18 有理数乘法 1 19 有理数乘法 2 21 有理数乘法 3 23 有理数除法 124 有理数除法 2 26 有理数乘方 1 29 有理数乘方2 29 科学记数法30 近似数32 有理数 33 有理数检测试卷 37 单项式 39 多项式 41 同类项43 合并月类项 44 去括号 46 整式的加减 48 整式的复习 50 整式的测试卷54 从算式到方程 56 一元一次方程 58 等式的性质 60 解一元一次方程 1 62 解一元一次方程 2 64 解一元一次方程 3 66 解一元一次方程 4 67 解一元一次方程去括号一 69 解一元一次方程去括号二 71 解一元一次方程去分母三 73 解一元一次方程去分母四 75 实际问题与一元一次方程一77 实际问题与一元一次方程二79 实际问题与一元一次方程三 81 一元一次方程复习 83 一元一次方程检测试题 87 认识几何图形一89 认识几何图形二 91 认识几何图形三92 点浅面体94 直线射线线段一96 直线射线线段二 98 角 100 解的比较与运算102 余角和补角一 104 余角和补角二 106 图形认识复习 108 图形认识检测试卷 111 / 1初一七年级数学上册导学案含答案第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念; 2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。
2、阅读课本P和P三幅图(重点是三个例子,边阅读边思考)12回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
七年级数学导学案上册人教版

七年级数学导学案上册人教版一、有理数。
1. 正数和负数。
- 同学们!咱们先来说说正数和负数。
你看啊,生活里有好多东西得用正数和负数来表示呢。
比如说温度,零上的温度就是正数,像+5℃,这表示比0℃高5度呢;零下的温度就是负数,比如 -3℃,就是比0℃低3度。
还有海拔高度,高于海平面的是正数,低于海平面的就是负数。
就像吐鲁番盆地的海拔是 -155米,这就表示它比海平面低155米。
- 在数学里,我们规定了0既不是正数也不是负数。
这就像一个分界点,正数在0的右边,负数在0的左边。
正数前面的“+”号有时候可以省略不写,但是负数前面的“ - ”号可不能省哦。
2. 有理数的分类。
- 有理数就像一个大家庭,它可以分成整数和分数这两大帮派。
整数又包括正整数、0和负整数。
像1、2、3这些是正整数, -1、 -2、 -3就是负整数啦。
而分数呢,也有正分数和负分数。
比如1/2、3/4就是正分数, -1/3、 -2/5就是负分数。
还有一种特殊的分数叫有限小数和无限循环小数,它们也属于分数哦。
比如说0.25(它其实就是1/4),0.333…(它就是1/3)。
二、整式的加减。
1. 单项式。
- 单项式啊,就像是数学里的小单元。
它是由数字和字母的积组成的式子,单独的一个数或者一个字母也叫单项式呢。
比如说3x,这就是一个单项式,其中3是系数,x是字母部分。
再比如说 -5,它也是单项式,它的系数就是 -5。
这里要注意哦,如果字母前面没有数字,那这个字母的系数就是1,像x的系数就是1, -y的系数就是 -1。
2. 多项式。
- 多项式就像是单项式组成的小团队。
几个单项式的和就叫做多项式。
比如说2x+3y,这就是一个多项式,它由单项式2x和3y组成。
在多项式里,每个单项式叫做多项式的项。
像2x+3y这个多项式里,2x和3y就是它的项。
其中不含字母的项叫做常数项,要是多项式是x² - 2x+3,这里的3就是常数项。
- 多项式还有次数呢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 一元一次方程3.1.1 一元一次方程1.能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列出方程;2.理解什么是一元一次方程;3.理解什么是方程的解及解方程,学会检验一个数的值是不是方程的解.找等量关系,会用方程表示简单的实际问题,能验证一个数是否是一个方程的解.一、温故知新1.前面学过有关方程的一些知识,同学们能说出什么是方程吗?答:含有未知数的等式叫做方程.2.判断下列是不是方程,是打“√”,不是打“×”①x +3;( × ) ②3+4=7;( × )③2x +13=6-y ;( √ ) ④1x=6;( √ ) ⑤2x -8>-10;( × ) ⑥-2x +3≠1.( × )二、自主学习例1 根据下面实际问题中的数量关系,设未知数列出方程:(1)用一根长为24 cm 的铁丝围成一个正方形,正方形的边长为多少?解:设正方形的边长为x cm ,列方程,得4x =24.(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?解:设x 月后这台计算机的使用时间达到规定的检修时间2450小时,列方程得1700+150x =2450.(3)某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?解:设这个学校的学生数为x ,则女生数为__0.52x__,男生数为(1-0.52)x ,依题意,得0.52x -(1-0.52)x =80.1.一元一次方程的概念观察下面方程的特点:(1)4x =24;(2)1700+150x =2450;(3)0.52x -(1-0.52)x =80.小结:上面的方程,它们都只含有__一__个未知数(元),未知数的次数都是__1__,等号两边都是整式,这样的方程叫做一元一次方程.(即方程的一边或两边含有未知数)2.方程的解如何求出使方程左右两边相等的未知数的值?如方程x +3=4中,x =?方程-2x +3=1中的x 呢?请用小学所学过的逆运算解决上面的问题.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解. 例 检验2和-3是否为方程2x +3=3x +1的解.解:当x =2时,左边=2×2+3=__7__, 右边=3×2+1=__7__,∵左边__=__右边,(填=或≠)∴x =2__是__方程的解.(填是或不是)当x =-3时,左边=2×(-3)+3=-3,右边=3×(-3)+1=-8,∵左边≠右边,(填=或≠)∴x =3不是方程的解.(填是或不是)1.判断下列式子是不是一元一次方程,是打“√”,不是打“×”.①x +3=4;( √ ) ②-2x +3=1;( √ )③2x +13=6-y ;( × ) ④x 2=0;( √ ) ⑤2x -8>-10;( × ) ⑥3+4x =7x ;( √ )2.x =1是下列方程( B )的解.A .1-x =2B .2x -1=4-3xC .3-(x -1)=4D .x -4=5x -23.已知方程(1-a)x 2+2x -3=2是关于x 的一元一次方程,则a =__1__.4.课本P 80练习.5.练习本每本0.8元,小明拿了10元钱买了若干本,还找回4.4元.问:小明买了几本练习本?解:设小明买了x 本练习本,列方程得0.8x +4.4=10.6.长方形的周长为24 cm ,长比宽多2 cm ,求长和宽分别是多少?解:设长方形的宽为x cm ,则长为(x +2)cm .(x +x +2)×2=24.上面的分析过程可以表示如下:实际问题――→设未知数 列方程一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.3.1.2 等式的性质掌握等式的两条性质,并能运用这两条性质解方程.运用等式的两条性质解方程.一、温故知新1.什么是等式?用等号来表示相等关系的式子叫等式.例如:m +n =n +m ,x +2x =3x ,3×3+1=5×2,3x +1=5y 这样的式子,都是等式.2.方程是含有未知数的等式,为了讨论解方程,我们先来研究等式有什么性质?二、自主学习1.探索等式性质.(1)观察课本P81图3.1-1,你能发现什么规律? 从左往右看,发现如果在平衡的天平的两边都加上同样的量,天平还保持平衡; 从右往左看,是在平衡的天平的两边都减去同样的量,结果天平还是保持平衡; 等式就像平衡的天平,它具有与上面的事实同样的性质. 等式的性质1 等式两边都加(或减)同一个数(或式子),结果仍相等; 怎样用式子的形式表示这个性质? 如果a =b ,那么a±c=b ±c.注:运用性质1时,应注意等号两边都加上(或减去)同一个数或同一个整式,才能保持所得结果仍是等式,否则就会破坏相等关系.(2)观察课本图3.1-2,由它你能发现什么规律?可以发现,如果在平衡的天平的两边都乘以(或除以)同样的量,天平还保持平衡. 等式的性质2 等式两边乘同一个数,或除以同一个不等于0的数,结果仍相等. 怎样用式子的形式表示这个性质?如果a =b ,那么ac =bc ;如果a =b(c≠0),那么a c =b c. 注:运用性质2时,应注意等式两边都乘以(或除以)同一个数,才能保持所得结果仍是等式,但不能除以0,因为0不能作除数.2.等式的性质应用例2 利用等式的性质解下列方程:(1)x +7=26;(2)-5x =20;(3)-13x -5=4. 解:(1)根据等式性质__1__,两边同减7,得x +7-7=26-7,x =19.(2)分析:-5x =20中-5x 表示-5乘x ,其中-5是式子-5x 的系数,如何把方程-5x =20转化为x =a 的形式呢?即把-5x 的系数变为1,应把方程两边同除以-5.解:根据等式的性质__2__,两边都除以-5,得-5x -5=20-5,于是x =-4. (3)分析:方程-13x -5=4左边的-5要去掉,同时还要把-13x 的系数化为1,如何去掉-5呢?根据两个互为相反数的和为__0__,所以应在方程两边都加上__5__.解:根据等式性质__1__,两边都加上__5__,得-13x -5+5=4+5 化简,得-13x =9 再根据等式的性质__2__,两边同除以-13(即乘以-3),得-13x·(-3)=9×(-3), 于是x =-27.请同学们自己代入原方程检验.1.课本P83练习.1.根据等式的两条性质,对等式进行变形必须等式两边同时进行,即同时加或减,同时乘或除,不能漏掉一边;2.等式变形时,两边加、减、乘、除的数或式必须相同;3.利用性质2进行等式变形时,须注意除以的同一个数不能是0.3.2 解一元一次方程(一)——合并同类项会列一元一次方程解决实际问题,并会用合并同类项解一元一次方程.重点:合并同类项解一元一次方程;难点:会列一元一次方程解决实际问题.一、温故知新1.等式性质1:____________________________;等式性质2:____________________________.2.解方程:(1)x -9=8; (2)3x +1=4.解:x =17; 解:x =1.二、自主探究1.问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x 台计算机,已知去年购买数量是前年的2倍,那么去年购买__2x__台,又知今年购买数量是去年的2倍,则今年购买了2×2x (即__4x__)台.题目中的相等关系为:前年购买量+去年购买量+今年购买量=140,列方程x +2x +4x =140.如何解这个方程呢?根据分配律,x +2x +4x =(1+2+4)x =7x.这样就可以把含x 的项合并为一项,得7x =140.下面的框图表示了解这个方程的具体过程:错误!↓系数化为1x =20K由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax =b 的形式,其中a ,b 是常数.2.自己试着完成例1解方程:(1)2x -52x =6-8; (2)7x -2.5x +3x -1.5x =-15×4-6×3.例2有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?引导学生观察这列数有什么规律?(从符号和绝对值两方面)学生讨论后发现:后面一个数是前一个数的-3倍.师生共同分析,完成解答过程:解:设这三个相邻数中的第一个数为x,则第2个数为-3x,第3个数为-3×(-3x)=9x.根据这三个数的和是-1701,得x-3x+9x=-1701.合并同类项,得7x=-1701.系数化为1,得x=-243所以-3x=729,9x=-2187.答:这三个数是-243,729,-2187.引导学生讨论以上列方程解决实际问题的关键.学生讨论、分析:探索规律,找出相等关系.如有学生提出不同的设未知数的方法,同样给予鼓励.1.课本P88练习.2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60人分成10份,甲组人数占__2__份,乙组人数占__3__份,丙组人数占__5__份,如果知道每一份是多少,那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.关键:本题中相等关系是什么?三个小组的总人数为60人.解:设每一份为x人,则甲组人数为2x人,乙组人数为3x人,丙组为5x人,列方程:2x+3x+5x=60.合并,得10x=60.系数化为1,得x=__6__.所以2x=__12__,3x=__18__,5x=__30__.答:甲组12人,乙组18人,丙组30人.请同学们检验一下,答案是否合理,即这三组人数的比是否是2∶3∶5,且这三组人数之和是否等于__60__.3.三个连续偶数的和是30,求这三个偶数.设:第二个偶数为x,则第一个偶数为x-2,第三个偶数为x+2,列方程,得x-2+x +x+2=30,3x=30,x=10.∴这三个偶数为8,10,12.1.列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”,这是一个基本的相等关系;2.合并就是把类型相同的项系数相加合并为一项,也就是反用分配律,合并时,注意x或-x的系数分别是1,-1,而不是0.3.2 解一元一次方程(一)——移项运用方程解决实际问题,会用移项法则解方程.重点:运用方程解决实际问题,会用移项法则解方程;难点:理解“移项法则”的依据,以及寻找问题中的等量关系.一、温故知新解方程:(1)3x-2x=7;解:x=7;(2)x+x=8.解:x=4.二、自主探究1.问题2 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?分析:设这个班有x名学生.(1)每人分3本,那么共分出__3x__本,加上剩余的20本,可知道这批书共有(3x+20)本.(2)每人分4本,那么需要分出__4x__本,减去缺的25本,那么这批书共有(4x-25)本.这批书的总数是一个定值(不变量),表示它的两个式子应相等,根据这一相等关系,列方程3x+20=4x-25.本题还可以画示意图,帮助我们分析:注意变化中的不变量,寻找隐含的相等关系,从本题列方程的过程,可以发现:“表示同一个量的两个不同式子相等”.分析:方程3x+20=4x-25的两边都含有x的项(3x与4x),也都含有不含字母的常数项(20与-25),怎样才能使它转化为x=a(常数)的形式呢?要使方程右边不含x的项,根据等式性质1,两边都减去4x,同样,把方程两边都减去20,方程左边就不含常数项20,即3x+20-4x-20=4x-25-4x-20.即3x-4x=-25-20.将它与原来方程比较,相当于把原方程左边的+20变为-20后移到方程右边,把原方程右边的4x变为-4x后移到左边.像上面那样,把等式一边的某项变号后移到另一边,叫做移项.方程中的任何一项都可以在改变符号后,从方程的一边移到另一边,即可以把方程等号右边的项改变符号后移到等号的左边,也可以把方程左边的项改变符号后移到方程的右边,注意要先变号后移项,别忘了变号.下面的框图表示了解这个方程的具体过程.错误!↓合并同类项 -x =-45↓系数化为1x =45K由此可知,这个班共有45个学生.2.例3 解方程:(1)3x +7=32-2x ;解:移项,得3x +2x =32-7.合并同类项,得5x =25.系数化为1,得x =5.(2)x -3=32x +1.(自己动手做一做) 解:x =-8.1.解方程:(1)6x -7=4x -5;解:x =1;(2)12x -6=34x ; 解:x =-24;(3)3x +5=4x +1;解:x =+4;(4)9-3y =5y +5.解:y =12.上面解方程中“移项”的作用很重要:“移项”使方程中含x 的项归到方程的同一边(左边),不含x 的项即常数项归到方程的另一边(右边),这样就可以通过“合并”把方程转化为x =a 形式.在解方程时,要弄清什么时候要移项,移哪些项,目的是什么?解方程时经常要“合并同类项”和“移项”,前面提到的古老的代数书中的“对消”和“还原”,指的就是“合并”和“移项”.3.3 解一元一次方程(二)——去分母1.会运用等式的性质2正确去分母解一元一次方程;2.会运用方程解决实际问题.重点:去分母解方程;难点:去分母时,不含分母的项会漏乘公分母,及没有对分子加括号.一、温故知新1.解方程:(1)4-3(2-x)=5x ;解:x =-1;(2)x 2=3x -1. 解:x =25. 2.求下列各数的最小公倍数:(1)2,3,4;解:12; (2)3,6,8;解:24;(3)3,4,18;解:36.在上面的1.(2)中,可以保留分母,也可以去掉分母,得到整数系数,这样做比较简便.所以若方程中含有分母,则应先去掉分母,这样比较简便.二、自主学习1.解方程:2x -13=x -34. 解:两边都乘以__12__,去分母,得4(2x -1)=3(x -3).去括号,得8x -4=3x -9.移项,得8x -3x =-9+4.合并同类项,得5x =-5.系数化为1,得x =-1.练习:解方程:4x -13=5x +56.例3 解方程:(1)3x +x -12=3-2x -13; (2)x +12-1=2+2-x 4. 解:(1)两边都乘以__6__,去分母,得18x +3(x -1)=18-2(2x -1).去括号.得18x +3x -3=18-4x +2.移项,得18x +3x +4x =18+2+3.合并同类项,得25x =23.系数化为1,得x =2325. (2)学生按上述格式自己写出解答过程.(老师点拨:去分母时不要漏乘每一项,去分母后分子是多项式的要用括号括起来.)1.小明是个“小马虎”,下面是他做的题目,我们看看对不对?如果不对,请帮他改正.(1)方程x 2-x -14=0.去分母,得2x -x +1=4;(错,应为2x -x +1=0.) (2)方程1+x -13=x 6.去分母,得1+2x -2=x ;(错,6+2x -2=x.) (3)方程x 2-x -16=13.去分母,得3x -x -1=2; (错,3x -x +1=2.)(4)方程12-x 3=x +1.去分母,得3-2x =6x +1. (错,3-2x =6x +6.)2.课本P98练习.1.解一元一次方程的一般步骤为:①去分母,②去括号,③移项,④合并同类项,⑤系数化为1.2.去分母时要注意什么?(两点:去分母时不要漏乘每一项,去分母后分子是多项式的要用括号括起来)3.3 解一元一次方程(二)——去括号1.了解“去括号”是解方程的重要步骤;2.准确而熟练地运用去括号法则解带有括号的方程;3.列一元一次方程解应用题时,关键是找出条件中的相等关系.重点:了解“去括号”是解方程的重要步骤;难点:括号前是“-”号的,去括号时,括号内的各项要改变符号,乘数应乘遍括号内的各项.一、温故知新1.叙述去括号法则,化简下列各式:(1)4x +2(x -2)=4x +2x -4;(2)12-(x -4)=12-x +4;(3)3x -7(x -1)=3x -7x +7.2.解方程:2x +5=5x -7.解:移项,得2x -5x =-7-5合并同类项,得-3x =-12系数化为1,得x =4前几节学习的是不带括号的一类方程的解法,本节课是学习带有括号的方程的解法,如果去掉括号,就与前面的方程一样了,所以我们要先去括号.要去括号,就要根据去括号法则,及分配律,特别是当括号前是“-”号,去括号时,各项都要变号,若括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号.二、自主学习1.问题:你会解方程4x +2(x -2)=8吗?这个方程有什么特点? 解:去括号,得4x +2x -4=8, 移项,得4x +2x =8+4, 合并同类项,得6x =12, 系数化为1,得x =2. 例1 解方程:(1)3x -7(x -1)=3-2(x +3); (2)2x -(x +10)=5x +2(x -1).注意:1.当括号前是“-”号,去括号时,各项都要变号.2.括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号. 解:去括号,得3x -7x +7=3-2x -6, 移项,得3x -7x +2x =3-6-7, 合并同类项,得-2x =-10, 系数化为1,得x =5.学生学着完成第(2)题.(指导学生书写正确格式)例2一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的平均速度.(教师引导学生寻找相等关系,列出方程.) 顺水行速=船速度+水流速度 逆水行速=船速度-水流速度 船速度指水不动(静水中)的速度.一般情况下可以认为这艘船往返的路程相等 ,由此可填空: 顺流速度__×__顺流时间__=__逆流速度__×__逆流时间解:设船在静水中的平均速度为x 千米/时,则顺流行驶的速度为(x +3)千米/时,逆流行驶的速度为(x -3)千米/时.根据往返路程相等,得方程2(x +3)=2.5(x -3). 去括号,得2x +6=2.5x -7.5. 移项,得2x -2.5x =-7.5-6. 合并同类项,得-0.5x =-13.5. 系数化为1,得x =27.答:船在静水中的平均速度为__27__千米/时.1.解方程:(1)2(x -2)=-(x +3); 解:x =13;(2)2(x -4)+2x =7-(x -1). 解:x =165.2.课本P95练习.去括号时要注意什么?3.4 实际问题与一元一次方程 ——产品配套问题与工程问题1.进一步熟悉一元一次方程的解法;2.会用一元一次方程解决配套问题和工程问题.能准确熟练地解一元一次方程,能根据题意设未知数,列出一元一次方程.一、温故知新解一元一次方程的一般步骤为:①去分母,②去括号,③移项,④合并同类项,⑤系数化为1.二、自主学习1.老师引导学生学习课本中例1,例2.列一元一次方程,解决实际问题的一般步骤:1、审题,弄清题意,找出数量关系;2、设适当的未知数,根据题中的数量关系表示出另一个未知量;3、列方程,根据题意中的另一个数量关系,列出一元一次方程;4、解方程,依据解方程的步骤解出未知数的值.5、作答.1.课本P101练习1,2题.2.某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖的土及时运走?解:设挖土x 人,由题意得5x =3(48-x),解得 x =18.48-x =48-18=30(人). 答:挖土18人,运土30人.3.某工程要按时完工,甲队独做6天可以完工,乙队独做12天可以完工,现由两队合作2天后,余下的由乙队独做,刚好按期完工,问该工程的工期几天?解:设工程的工期x 天,由题意,得2(16+112)+112(x -2)=1.解得,x =8.答:该工程的工期8天.1.解配套问题的关键是找出参加配套的两个量之间的比例关系进而列方程求解; 2.解决工程问题的关键:(1)把总的工作量看作“1”;(2)工作量=人均效率×人数×时间;(3)三者之间的关系:工作总量=工作效率×工作时间.1.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁片,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?解:设x 张做盒身,由题意,得16x∶48(100-x)=1∶2.解得x =60.100-x =100-60=40(张).答:用60张制盒身,40张制盒底.2.一本稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成,现在由两人合打7小时,余下部分由乙完成,还需多少小时?解:设还需x小时,由题意,得112×7+(112-120)x=1.解得x=12.5.答:还需12.5小时.3.4 实际问题与一元一次方程——电话计费问题1.会从实际问题中抽象出数学模型,会用一元一次方程解决电话计费等有关方案决策的问题;2.体验建立方程模型来解决问题的一般过程;3.体会模型转化和方程思想,增强应用意识和应用能力.重点:由实际问题抽象出数学模型;难点:建立方程模型来解决电话计费问题.一、情境导入1.现在电话和手机基本普及到家,你家里有几部手机?你知道手机的收费标准吗?手机(移动、联通、电信)的各种收费方式吗?2.两种移动电话计费方式(课本P104,展示探究3)月使用费/元主叫限定时间/分主叫超时费/(元/分)被叫方式一581500.25免费方式二883500.19免费二、自主学习老师提出下列问题:(1)你能从表中获得哪些信息,试用自己的话说说.(2)猜一猜,使用哪一种计费方式合算?跟什么有关?(3)从表格数据中,你能把主叫时间分为几部分?(4)你能分别把主叫时间不同时的话费情况用含t的代数式表示出来吗?(5)一个月内在本地通话200分和300分,按两种计费方式各需交费多少元?小组探讨:1.对于某个本地通话时间,会出现两种计费方式的收费一样的情况吗?如果有这一时间,那么如何分别表示收费表达式呢?(等量关系“收费相等”)2.你能根据表格判断两种收费方式哪种更合算吗?3.你的父母各有一部手机,父亲业务繁忙,通话时间比较长,母亲家庭主妇,通话时间短,你能帮助你的父母设计一个省钱的方案吗?三、解决问题1.学生充分讨论后完成表格.主叫时间t/min 方式一计费/元方式二计费/元t<150 58 88 t=150 58 88 150<t<350 58+0.25(t-150) 88t=350 58+0.25(350-150)=10888t>350 58+0.25(t-150) 88+0.19 (t-350)观察完成后的表格,可以看出,主叫时间超出限定时间越长,计费越多,并且随着主叫时间的变化,按哪种方式的计费少也会变化.①当t≤150,按方式一的计费少.②当t从150增加到350时,按方式一的计费由58元增加到108元,而方式二一直是88元,所以方式一在变化过程中,可能在某一主叫时间,两种方式的计费相等.列方程58+0.25(t-150)=88,解得t=270.故当t=270时,两种计费方式相同,都是88元;当150<t<270时,按方式一计费少于按方式二计费;当270<t<350时,按方式一计费多于按方式二计费.③当t=350时,按方式二的计费少.④当t>350时,可以看出,按方式一的计费为108元加上超出350分钟的部分的超时费0.25(t-350),按方式二的计费为88元加上超时费0.19(t-350),故按方式二的计费少.综合以上的分析,可以发现:当t<270_min时,选择方式一省钱;当t>270_min时,选择方式二省钱.1.大明估计自己每月通话大约300分钟,小李每月通话大约200分钟,那么针对以上两种计费方式他们选择哪一种移动通信通话费才最省呢?你能帮助他们出个主意吗?解:大明选择上面的方式二省钱,小李选择方式一省钱.2.P106练习第2题.解:依题意列表得:复印页数x 誊印社复印费用/元图书馆复印费用/元x小于20 0.12x 0.1xx等于20 0.12×20=2.4 0.1×20=2x大于20 2.4+0.09(x-20) 0.1x(1)当x小于20时,0.12大于0.1恒成立,图书馆价格便宜;(2)当x等于20时,2.4大于2,图书馆价格便宜;(3)当x大于20时,依题意得2.4+0.09(x-20)=0.1x,解得x=60.∴当x大于20且小于60时,图书馆价格便宜;当x大于60时,誊印社价格便宜.综上所述:当x小于60页时,图书馆价格便宜;当x大于60时,誊印社价格便宜.请回顾电话计费问题的探究过程,并回答以下问题:(1)电话计费问题的核心问题是什么? (2)探究解题的过程大致包含哪几个步骤?(3)我们在探究过程中用到了哪些方法,你有哪些收获?3.4 实际问题与一元一次方程——球赛积分类问题1.通过对实际问题的分析,掌握用方程计算球赛积分一类的问题; 2.培养学生分析问题、解决问题的能力.重点:审清题意,分析实际问题中的数量关系,找出解决问题的等量关系; 难点:把生活中的实际问题抽象成数学问题.一、温故知新1.你知道篮球比赛时是如何计算积分的吗?2.如果不知道记分规则,你能从比赛后的积分表中得出来吗? 请同学们尝试解决下面的问题. 二、自主学习探究2:球赛积分问题:某次篮球联赛积分榜队名 比赛场次 胜场 负场 积分 前进 14 10 4 24 东方 14 10 4 24 光明 14 9 5 23 蓝天 14 9 5 23 雄鹰 14 7 7 21 远大 14 7 7 21 卫星 14 4 10 18 钢铁141414(1)探究某球队总积分与胜、负场数之间的数量关系:若某球队总积分为M ,胜场为n ,则用含n 的式子表示M :M =2n +(14-n)(2)有人说:在这个联赛中,有一个队的胜场总积分等于它的负场总积分.你认为这个说法正确吗?请说明理由.解:2n =14-n.n =143.∵n 应为非负整数,∴不正确.分析:对于问题(1)要弄清积分与胜负场数的关系,必须清楚胜一场得几分,负一场得几分?表中哪个信息最特别?能马上解决上面哪个问题? 另一个问题又如何解决呢?若一球队胜了m 场,则负了几场?总积分的代数式如何表示? 对于问题(2)能否应用方程知识来说明吗?1.七年级进行法律知识竞赛,共有30题,答对一题得4分,不答或答错一题倒扣2分.(1)小明同学参加了竞赛,成绩是96分.请问小明在竞赛中答对了多少题?(2)小王也参加了竞赛,考完后他说:“这次竞赛我一定能拿到100分.”请问小王有没有可能拿到100分?试用方程的知识来说明理由.解:(1)设小明答对了x 道题,则不答或答错(30-x)道题. 4x -2(30-x)=96. x =26.答:小明在竞赛中答对了26道题. (2)4x -2(30-x)=100. 6x =160.x =803.∵x 应为整数,∴小王不可能拿到100分.1.列方程解应用题的关键是什么? 2.解应用题步骤是什么?3.球赛积分问题的等量关系是什么?4.列方程解应用题除正确列出方程求出解外,还要注意什么?1.在一次足球循环赛中(每两队必须赛一场),规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,共参加了12场比赛,那么该队胜了几场?解:设这个队胜了x 场,则负了(x -2)场,平了(12-x -x +2)场,列方程得 3x +(12-x -x +2)=18. x =4. 答:这个队胜了4场.3.4 实际问题与一元一次方程——销售中的盈亏问题1.使学生能根据商品销售问题中的数量关系找出等量关系,列出方程,掌握商品盈亏的求法;2.培养学生分析问题,解决实际问题的能力; 3.让学生在实际生活问题中,感受到数学的价值.重点:用列方程的方法解决打折销售问题;难点:准确理解打折销售问题中的利润(利润率)、成本、销售价之间的关系.一、温故知新随着市场经济的不断发展,商品交易成了人们日常生活中最为普遍的一种社会现象,反应在数学上,商品销售问题也成了一类非常重要的实际问题,在商品销售问题中,首先理解几个概念:(1)成本价:有时也称进价,是商家进货时的价格; (2)标价:商家在出售时,标注的价格; (3)售价:消费者购买时真正花的钱数; (4)利润:商品出售后,商家所赚的部分; (5)利润率:商品出售后利润与成本的比值;(6)打折:商家为了促销所采用的一种销售手段,打折就是以标价为基础,按一定比例降价出售,如:打8折,就是按标价的80%出售.其次掌握几个等量关系式:(1)利润=售价-进价;(2)利润率=利润进价×100%;(3)实际售价=标价×打折率.尝试练习:1.进价为90元的篮球,卖了120元,利润是__30__元 ,利润率是__33.3%__元; 2.原价100元的商品打9折后价格为__90__元;3.原价100元的商品提价40%后的价格为__140__元;4.一件衬衣进价为100元,利润率为20%,这件衬衣售价为__120__元;5.一台电视机售价为1100元,利润率为10%,则这台电视的进价为__1000__元; 6.一件商品按原定价八五折出售,卖价是17元,那么原定价是__20__元. 二、自主学习自学课本P 102探究1 1.提问:①如何判定是盈还是亏?②盈利率、亏损率指的是什么?③这一问题情境中哪些是已知量?哪些是未知量?如何设未知数?相等关系是什么?如何列方程?2.写出正确的、完整的解题过程.1.两件商品都卖84元,其中一件亏本20%,另一件盈利40%,则两件商品卖后( C ) A .盈利16.8元 B .亏本3元 C .盈利3元 D .不盈不亏2.一批校服按八折出售,每件为x 元,则这批校服每件的原价为( B )A .80%x 元B .x 80%元C .20%x 元D .x 20%元 3.一家三人(父、母、女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,女儿按半价优惠”,乙旅行社告知:“家庭旅游可按团体票计价,即每人均按8折优惠收费.”若这两家旅行社每人的原票价相同,那么( B )A .甲比乙更优惠B .乙比甲更优惠C .甲与乙相同D .与原票价有关。