简单的逻辑联结词(且或)
(新课标人教A版)选修1-1数学同步课件:1-3-1《“且”与“或”》
[例4] 已知命题p:方程x2+mx+1=0有两个不相等 的负实数根,命题q:方程4x2+4(m-2)x+1=0无实数根,
若“p或q”为真命题,“p且q”为假命题,求m的取值范
围.
[解析] 若方程x2+mx+1=0有两个不等的负根,
若方程4x2+4(m-2)x+1=0无实根, 则Δ=16(m-2)2-16<0,即1<m<3,
2.由下列各组命题构成的新命题“p或q”“p且q”都
为真命题的是 ( A.p:4+4=9,q:7>4 B.p:a∈{a,b,c},q:{a} D.p:2是偶数,q:2不是质数 [答案] B [解析] “p或q”“p且q”都为真,则p真q真,故选B. {a,b,c} )
C.p:15是质数,q:8是12的约数
然语言中的“或者”有两种用法:一是“不可兼”的
“或”;二是“可兼”的“或”,而我们仅研究可兼“或” 在数学中的含义.
1.关于逻辑联结词“且”
(1)“且”的含义与日常语言中的“并且”、“及”、 “和”相当,是连词“既„„又„„”的意思,二者须同 时兼得. (2) 从如图所示串联开关电路上看,当两个开关 S1 、 S2
已知a>0且a≠1,设命题p:函数y=ax在R上单调递减, q:不等式:x+|x-2a|>1的解集为R,若p且q为假,p或q为 真,求a的取值范围.
[解析] p:0<a<1.
由函数 y=ax 在 R 上单调递减知 0<a<1, 所以
不等式:x+|x-2a|>1 的解集为 R,即 y=x+|x-2a| 在 R 上恒大于 1,又因为
[点评] 用逻辑联结词“且”“或”联结两个命题时,
关键是正确理解这些词语的意义及在日常生活中的同义词, 选择合适的联结词,有时为了语法的要求及语句的通顺也 可进行适当的省略和变形.
第12讲简单的逻辑联结词(且或非)讲义-高三艺考数学一轮复习
第12讲:简单的逻辑联结词(且或非)【课型】复习课【教学目标】1.了解逻辑联结词【预习清单】【基础知识梳理】1.常用的简单的逻辑联结词有“或”“且”“非”.23【引导清单】考向一:含有逻辑联结词的命题的真假判断例1:(1)命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( )A .p 或qB .p 且qC .qD .﹁p(2)记不等式组⎩⎨⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :存在(x ,y )∈D ,2x +y ≥9;命题q :对任意的(x ,y )∈D ,2x +y ≤①p 或q ②﹁p 或q ③p 且﹁q ④﹁p 且﹁q这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④【解析】(1)取x =π3,y =5π6,可知命题p 是假命题;由(x -y )2≥0恒成立,可知命题q 是真命题,故﹁p 为真命题,p 或q 是真命题,p 且q 是假命题.(2)在不等式组表示的平面区域D 内取点(7,0),点(7,0)满足不等式2x +y ≥9,所以命题p 正确;点(7,0)不满足不等式2x +y ≤12,所以命题q 不正确.所以命题p 或q 和p 且﹁q 正确.故选A.考向二:由命题的真假确定参数的取值范围例2:已知p :存在x ∈R ,mx 2+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 且q 为假,p 或q 为真,求实数m 的取值范围.【解析】若p 且q 为假,p 或q 为真,则p ,q 一真一假.当p 真q 假时⎩⎨⎧m <0,m ≥2或m ≤-2,所以m ≤-2;当p 假q 真时⎩⎨⎧m ≥0,-2<m <2,所以0≤m <2. 所以m 的取值范围是(-∞,-2]∪[0,2).【训练清单】【变式训练1】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题是________.(填序号)①p 1且p 4 ②p 1且p 2 ③﹁p 2或p 3 ④﹁p 3或﹁p 4【解析】对于p 1,由题意设直线l 1∩l 2=A ,l 2∩l 3=B ,l 1∩l 3=C ,则A ,B ,C三点不共线,所以此三点确定一个平面α,则A ∈α,B ∈α,C ∈α,所以AB ⊂α,BC ⊂α,CA ⊂α,即l 1⊂α,l 2⊂α,l 3⊂α,所以p 1是真命题.以下同方法一.答案:①③④【变式训练2】已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,则实数a 的取值范围是________.【解析】命题p 等价于Δ=a 2-16≥0,即a ≤-4或a ≥4;命题q 等价于-a 4≤3,即a ≥p 或q 是真命题,p 且q 是假命题知,命题p 和q 一真一假.若p 真q 假,则a <-12;若p 假q 真,则-4<aa 的取值范围是(-∞,-12)∪(-4,4).【巩固清单】1.已知命题p ,q ,则“﹁p 为假命题”是“p 且q 是真命题”的( )条件。
考点03 逻辑联结词及数学归纳法(解析版)
考点48 逻辑联结词及数学归纳法一.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词. (2)命题p 且q 、p 或q 、非p 的真假判断二.量词2.全称量词和存在量词(1)全称量词:“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词,用符号“∀”表示. (2)存在量词:“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,用符号“∃”表示.3.全称命题、存在性命题及含一个量词的命题的否定三.数学归纳法1.由一系列有限的特殊现象得出一般性的结论的推理方法,通常叫做归纳法. 2.用数学归纳法证明一个与正整数有关的命题时,其步骤如下: (1)归纳奠基:证明取第一个自然数n 0时命题成立;(2)归纳递推:假设n =k (k ∈N *,k ≥n 0)时命题成立,证明当n =k +1时,命题成立; (3)由(1)(2)得出结论.知识理解考向一 命题的否定【例1】(2021·四川成都市·高三二模(理))命题“0x ∀>,210x x ++>”的否定为( )A .00x ∃≤,20010x x ++≤ B .0x ∀≤,210x x ++≤ C .00x ∃>,20010x x ++≤D .0x ∀>,210x x ++≤【答案】C【解析】因为全称命题的否定是特称命题,所以,命题“0x ∀>,210x x ++>”的否定是:00x ∃>,20010x x ++≤.故选:C .【举一反三】1.(2021·全国高三月考(理))命题“0x R ∃∈,002ln 0x x +≤”的否定是( ) A .x R ∀∈,2ln 0x x+≥ B .x R ∀∈,2ln 0x x+> C .0x R ∃∈,002ln 0x x +≥ D .0002,0x R lnx x ∃∈+> 【答案】B【解析】命题“0x R ∃∈,002ln 0x x +≤”为特称命题,该命题的否定为“x R ∀∈,2ln 0x x+>”. 故选:B.2.(2021·湖南岳阳市)命题“()1,x ∀∈+∞,21x e x ≥+”的否定是( ) A .()1,x ∃∈+∞,21x e x ≥+ B .()1,x ∀∈+∞,21x e x <+ C .()1,x ∃∈+∞,21x e x <+ D .()1,x ∀∈+∞,21x e x ≥+【答案】C【解析】命题“()1,x ∀∈+∞,21x e x ≥+”为全称命题,该命题的否定为“()1,x ∃∈+∞,21x e x <+”. 故选:C.考向分析3.(2021·泰州市第二中学)巳知命题p :0x ∃>,10x e x --≤,则命题p 的否定为( ) A .0x ∀≤,10x e x --> B .0x ∀>,10x e x --> C .0x ∃>,10x e x --≥ D .0x ∃≤,10x e x -->【答案】B【解析】命题p :0x ∃>,10x e x --≤,则命题p 的否定为0x ∀>,10x e x -->. 故选:B考向二 逻辑连接词求参数【例2】(2021·全国高三专题练习)若命题“200[1,2],2x x a ∃∈--+”是假命题,则实数a 的范围是( ) A .2a > B .2a C .2a >- D .2a -【答案】A【解析】若命题“200[1,2],2x x a ∃∈--+”是假命题,则命题“2[1,2],2x x a ∀∈--+<”是真命题, 当0x =时,()2max22x -+=,所以2a >.故选:A. 【举一反三】1.(2021·天水市第一中学高三月考(理))已知命题():1,3p x ∃∈-,220x a --≤.若p 为假命题,则a 的取值范围为( ) A .(),2-∞- B .(),1-∞-C .(),7-∞D .(),0-∞【答案】A 【解析】p 为假命题,∴():1,3p x ⌝∀∈-,220x a -->为真命题,故22a x <-恒成立,22y x =-在()1,3x ∈-的最小值为2-,∴2a <-. 故选:A.2.(2020·北京人大附中高三月考)若命题“x R ∃∈,使得2210ax x ++<成立”为假命题,则实数a 的取值范围是( ) A .[1,+∞) B .[0,+∞)C .(-∞,1)D .(-∞,0]【答案】A 【解析】命题“x R ∃∈,使得2210ax x ++<成立”为假命题, 则它的否定命题: “x R ∀∈,2210ax x ++≥”为真命题所以0440a a >⎧⎨∆=-≤⎩ 解得1a ≥,所以实数a 的取值范围是[1,)+∞ 故选:A.3.(2020·江西高三期中(文))存在[1,1]x ∈-,使得230x mx m +-≥,则m 的最大值为( ) A .1 B .14C .12D .-1【答案】C【解析】由不等式230x mx m +-≥,可化为23x m x≤-,设()[]2,1,13x f x x x=∈--,则()()()2226(6)33x x x x f x x x ---'==--,当[1,0)x ∈-时,()0f x '<,()f x 单调递减; 当(0,1]x ∈时,()0f x '>,()f x 单调递增,又由()11(1),142f f -==,所以函数()f x 的最大值为()112f =, 要使得存在[1,1]x ∈-,使得230x mx m +-≥,则12m ≤,则m 的最大值为12. 故选:C.考向三 数学归纳法【例3-1】(2020·全国高三专题练习(理))用数学归纳法证明不等式“1+12+13+…+121n -<n (n ∴N *,n ≥2)”时,由n =k (k ≥2)时不等式成立,推证n =k +1时,左边应增加的项数是( ) A .2k -1 B .2k -1 C .2k D .2k +1【答案】C【解析】n k =时,左边=1111 (2321)k ++++-,而n =k +1时,左边=11111111 (232122121)k k k k +++++++++-+-,增加了1111 (22121)k k k +++++-,共(2k +1-1)-(2k -1)=2k 项, 故选:C.【例3-2】.(2020·全国高三专题练习)设等比数列{}n a 满足113,34n n a a a n +==-. (1)计算23,a a ,猜想{}n a 的通项公式并加以证明; (2)求数列{}2nn a 的前n 项和n S .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-+. 【解析】(1)由题意,等比数列{}n a 满足113,34n n a a a n +==-, 可得21345a a =-= ,323427a a =-⨯=,,猜想{}n a 的通项公式为21n a n =+,证明如下:(数学归纳法)当1,2,3n =时,显然成立; ∴ 假设n k =时,即21k a k =+成立;其中*(N )k ∈, 由134k k a a k +=-3(21)4k k =+-2(1)1k =++ ∴故假设成立,综上(1)(2),数列{}n a 的通项公式21n a n =+*()n N ∈.(2)令2(21)2n nn n b a n ==+,则前项和1212...3252...(21)2n n n S b b b n =+++=⨯+⨯+++ ∴由∴两边同乘以2得:23123252...(21)2(21)2n n n S n n +=⨯+⨯++-++ ∴由∴-∴的322112(12)3222...2(21)26(21)212n n n n n S n n -++--=⨯+⨯++-+=+-+-, 化简得1(21)22n n S n +=-+. 【举一反三】1.(2020·全国高三专题练习(理))用数学归纳法证明等式123(21)(1)(21)n n n +++++=++时,从n k=到1n k =+等式左边需增添的项是( ) A .22k + B .[]2(1)1k ++ C .[(22)(23)]k k +++ D .[][](1)12(1)1k k ++++ 【答案】C【解析】当n k =时,左边123(21)k =+++++,共21k +个连续自然数相加,当1n k =+时,左边123(21)(22)(23)k k k =+++++++++,所以从n k =到1n k =+,等式左边需增添的项是[(22)(23)]k k +++. 故选:C.2.(2021·全国高三专题练习)设集合T n ={1,2,3,…,n }(其中n ≥3,n ∴N *),将T n 的所有3元子集(含有3个元素的子集)中的最小元素的和记为S n . (1)求S 3,S 4,S 5的值; (2)试求S n 的表达式.【答案】(1)S 3=1,S 4=5,S 5=15;(2)41n C + .【解析】(1)当n =3时,T 3={1,2,3},3元子集有:{1,2,3},∴S 3=1;当n =4时,T 4={1,2,3,4},3元子集有:{1,2,3},{1,2,4},{1,3,4},{2,3,4},∴S 4=1×3+2=5;当n =5时,T 5={1,2,3,4,5},3元子集有:{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},222543212315S C C C ∴=⨯+⨯+⨯=.(2)由S 3=1,S 4=5,S 5=15,S 6=35…归纳猜想出41n n S C +=(n ≥3).下面用数学归纳法证明猜想:∴当n =3时,S 3=1=44C ,结论成立;∴假设n =k (k ≥3,k ∴N *)时,结论成立,即S k =41k C +,则当n =k +1时,T k +1={1,2,3,4,…,k ,k +1},()()1111111232123...21k k k k k S S C C C k C k C +---⎡⎤=+++++-+-⎣⎦()()()(){}411111122112...21k k k C k C k C k k C k k C +--=+-+-++--+--⎡⎤⎡⎤⎣⎦⎣⎦ ()(){}4111111111211231...23...1k k k C k C C C C C C k C +--⎡⎤=++++-++++-⎣⎦ ()422311k k k k C kC kC C ++⎡⎤=+--⎣⎦ ()4341111k k k C C C ++++=+=∴当n =k +1时,结论成立. 综上:由∴∴可得()413n n S C n +=≥.1.(2021·涡阳县育萃高级中学)已知命题:p x R ∀∈,2104x x -+,则p ⌝( ) A .21,04x x x ∃∈-+R B .21,04x x x ∃∈-+>R C .21,04x x x ∀∈-+>R D .21,04x x x ∀∈-+<R 【答案】B【解析】命题p 为全称命题,根据全称命题的否定为特称命题,可得:p ⌝: 21,04x x x ∃∈-+>R 故选:B2.(2021·漠河市高级中学高三月考(文))下列说法正确的是( ) A .若p q ∨为真命题,则p q ∧为真命题B .命题“若cos cos x y ≠,则x y ≠”的否命题是“若cos cos x y =,则x y ≠”C .“0x <”是“20x x ->”的充要条件强化练习D .若p :x ∀∈R ,2320x x --<,则p ⌝:0x ∃∈R ,200320x x --.【答案】D【解析】对于A 选项,若p q ∨为真命题,可能p 真q 假,则p q ∧为假,故A 选项错误.对于B 选项,命题“若cos cos x y ≠,则x y ≠”的否命题是“若cos cos x y =,则x y =”,故B 选项错误. 对于C 选项,当2x =时,20x x ->,所以“0x <”不是“20x x ->”的充要条件,C 选项错误. 根据全称量词命题的否定的知识可知,D 选项正确. 故选:D3.(2021·全国高三专题练习)下列关于命题的说法中正确的是( )∴对于命题P :x R ∃∈,使得210x x ++<,则:P x R ⌝∀∈,均有210x x ++≥ ∴“1x =”是“2320x x -+=”的充分不必要条件∴命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠” ∴若p q ∧为假命题,则p 、q 均为假命题 A .∴∴∴ B .∴∴∴ C .∴∴∴∴ D .∴∴【答案】A【解析】∴对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈均有210x x ++,故∴正确;∴由“1x =”可推得“2320x x -+=”,反之由“2320x x -+=”可能推出2x =,则“1x =”是“2320x x -+=”的充分不必要条件,故∴正确;∴命题“若2320x x -+=,则1x =”的逆否命题是“若1x ≠,则2320x x -+≠”,故∴正确; ∴若p q ∧为假命题,则p ,q 至少有一个为假命题,故∴错误. 则正确的命题的有∴∴∴. 故选:A4.(2021·河南高三其他模拟(文))命题:p “0,2sin 0x x x ∀≥-≥”的否定为( )A .0,2sin 0x x x ∀≥-<B .0,2sin 0x x x ∀<-<C .0000,2sin 0xx x ∃≥-< D .0000,2sin 0xx x ∃<-<【答案】C【解析】命题:p “0,2sin 0xx x ∀≥-≥”是全称命题,又全称命题的否定是特称命题,故“0x ∀≥,2sin 0x x -≥”的否定是“0000,2sin 0xx x ∃≥-<”.故选:C.5.(2021·山东菏泽市·高三一模)命题“2,0∈≥∀x R x ”的否定是( )A .2,0x R x ∃∈≥B .2,0x R x ∀∈<C .2,0x R x ∃∈<D .2,0x R x ∃∈≤【答案】C【解析】因为全称命题的否定是特称命题,所以命题:x R ∀∈,20x ≥的否定是:x R ∃∈,20x <.故选:C6.(2021·四川成都市·石室中学高三月考(理))设命题:0p x ∀≤x =-,则p ⌝为( ) A .0x ∀≤x ≠- B .00x ∃≤0x =- C .0x ∀>x =- D .00x ∃≤0x ≠-【答案】D【解析】命题p 为全称命题,该命题的否定为0:0p x ⌝∃≤0x ≠-. 故选:D.7.(2020·湖北武汉市·华中师大一附中高三期中)“0m >”是“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】由题意,命题“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题” 可得命题“x R ∀∈,2(1)2(1)30m x m x -+-+>是真命题” 当10m -=时,即1m =时,不等式30>恒成立;当10m -≠时,即1m ≠时,则满足()()210214130m m m ->⎧⎪⎨⎡⎤---⨯<⎪⎣⎦⎩,解得14m <<,综上可得,实数14m ≤<,即命题“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”时,实数m 的取值范围是[1,4),又由“0m >”是“14m ≤<”的必要不充分条件,所以“0m >”是“x R ∃∈,2(1)2(1)30m x m x -+-+≤是假命题”的必要不充分条件, 故选:B.8.(2021·全国高三专题练习)若命题“∀[]1,4x ∈时,240x x m --≠”是假命题,则m 的取值范围( ) A .[4,3]-- B .()-∞,-4 C .[4,)-+∞ D .[4,0]-【答案】D【解析】若命题“[1x ∀∈,4]时,240x x m --≠”是假命题, 则命题“[1x ∃∈,4]时,240x x m --=”是真命题, 则24m x x =-,设22()4(2)4f x x x x =-=--, 当14x 时,4()0f x -,则40m -. 故选:D .9.(2020·江苏海门市·高三月考)命题“[]21220x x a ∀∈-≤,,”为真命题的一个充分不必要条件是( )A .2a ≤B .2a ≥C .4a ≤D .4a ≥【答案】D【解析】“[]21220x x a ∀∈-≤,,”为真命题,可得2a ≥,因为[)[)4,2,+∞⊂+∞ , 故选:D .10.(2021·全国高三专题练习)已知命题“02x ∃>,20040ax ax --<”是假命题,则a 的取值范围是( )A .[)2,+∞B .()2,+∞C .(],2-∞D .(),2-∞【答案】A【解析】因为命题“02x ∃>,20040ax ax --<”是假命题,所以240ax ax --≥对2x >恒成立, 所以()242a x x x≥>-恒成立.因为2x >, 所以22x x ->,则242x x<-, 故2a ≥. 故选:A11.(2020·全国高三专题练习)用数学归纳法证明“(1)(2)()213(21)nn n n n n ++⋅⋅⋅⋅⋅+=⋅⋅⋅⋅⋅⋅⋅-”,从“k到1k +”左端需增乘的代数式为( ) A .21k + B .2(21)k +C .211k k ++ D .231k k ++ 【答案】B【解析】当n k =时,等式的左边(1)(2)()k k k k =++⋅⋅⋅⋅⋅+,当1n k =+时,等式的左边(11)(12)()(1)(2)k k k k k k k k =++++⋅⋅⋅⋅⋅+++++, 所以当从“k 到1k +”左端增乘的代数式为(1)(2)2(21)1k k k k k k ++++=++.故选:B.12.(多选)(2021·恩施市第一中学)下列命题正确的有( ) A .命题“x R ∀∈,20x ≥”的否定是“x R ∃∈,20x <”. B .函数()cos f x x =向右平移2π个单位得到函数解析式为()sin g x x =. C .函数()21f x x =-的零点为()1,0-,()1,0.D .1弧度角表示:在任意圆中,等于半径长的弦所对的圆心角. 【答案】AB【解析】对A ,根据全称命题的否定性质,A 为正确的; 对B ,()cos f x x =向右平移2π个单位得到函数()cos()sin 2g x x x π=-=;对C ,函数零点是数而不是点,故C 错误;对D ,1弧度角表示为在任意圆中,等于半径长的弧所对的圆心角,故D 错误; 故选:AB.13.(多选)(2021·全国高三专题练习)下列命题中正确的是( ) A .(0,)x ∃∈+∞,23x x >B .(0,1)x ∃∈,23log log x x <C .(0,)x ∀∈+∞,121()log 2xx >D .1(0,)3x ∀∈,131()log 2xx < 【答案】BD【解析】对于选项A :当0x >时,22133xx x ⎛⎫=< ⎪⎝⎭,所以23x x <恒成立,故选项A 不正确;对于选项B :当(0,1)x ∈时,23log lg lg 3lg 31log lg 2lg lg 2x x x x =⨯=>,且3log 0x <,所以23log log x x <,故选项B 正确;对于选项C :当12x =时,1211()()222x ==,11221log log 12x ==,则121log ()2x x >,故选项C 不正确; 对于选项D :当13x =时,131log 13=,由对数函数和指数函数的性质可知,当1(0,)3x ∈时,131()1log 2x x <<,故选项D 正确; 故选:BD14.(多选)(2021·全国高三专题练习)若01,22x ⎡⎤∃∈⎢⎥⎣⎦,使得200210x x λ-+<成立是假命题,则实数λ可能取值是( ) A .32B.C .3 D .92【答案】AB【解析】由条件可知1,22x ⎡⎤∀∈⎢⎥⎣⎦,2210x x λ-+≥是真命题, 即22112x x x xλ+≤=+,即min 112,,22x x x λ⎛⎫⎡⎤≤+∈ ⎪⎢⎥⎝⎭⎣⎦,设()112,22f x x x x ⎡⎤=+≥=∈⎢⎥⎣⎦等号成立的条件是112,222x x x ⎡⎤=⇒=∈⎢⎥⎣⎦,所以()f x的最小值是即λ≤AB. 故选:AB15.(2021·江西高三其他模拟(文))已知命题“存在x ∈R ,使220ax x -+≤”是假命题,则实数a 的取值范围是___________. 【答案】18a >【解析】因为命题“存在x ∈R ,使220ax x -+≤”是假命题, 所以命题“R x ∀∈,使得220ax x -+>”是真命题,当0a =时,得2x <,故命题“R x ∀∈,使得220ax x -+>”是假命题,不合题意;当0a ≠时,得0180a a >⎧⎨∆=-<⎩,解得18a >.故答案为:18a >16.(2021·全国高三专题练习)若“存在x ∴[﹣1,1],3210x x a ⋅++>成立”为真命题,则a 的取值范围是___.【答案】9(,)2-+∞【解析】存在x ∴[﹣1,1],3210xxa ⋅++>成立,即213x xa +-<在[1,1]x ∈-上有解, 设2121()333x xx xf x +⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,[1,1]x ∈-, 易得y =f (x )在[﹣1,1]为减函数, 所以()[(1),(1)]f x f f ∈-,即213()3332f x +≤≤+,即91()2f x ≤≤, 即92a -<,所以92a >-, 故答案为:9(,)2-+∞.17.(2020·江西高三其他模拟(文))若命题:p x R ∃∈,210x mx -+<为假命题,则m 的取值范围是______. 【答案】[]22-,【解析】命题:p x R ∃∈,210x mx -+<为假命题,p ∴⌝:x R ∀∈,210x mx -+≥为真命题,则240m ∆=-≤,解得22m -≤≤,即m 的取值范围是[]22-,. 故答案为:[]22-,. 18.(2020·北京密云区·高三期中)若“01x ∃>,使得11x a x +<-.”为假命题,则实数a 的最大值为___________. 【答案】3【解析】由“∴x 0>1,使得11x a x +<-.”为假命题,可知,“11,1x x a x ∀>+≥-”为真命题, 11a x x ∴≤+-恒成立,由11111311x x x x +=-++≥=--,当且仅当2x =时取等号, 即a 的最大值为3. 故答案为:3.19.(2021·湖南永州市·高三二模)若对[]1,2x ∀∈,都有20ax x -≤,则实数a 的取值范围是___________. 【答案】1,2⎛⎤-∞ ⎥⎝⎦【解析】解:因为[]1,2x ∀∈,都有20ax x -≤,所以[]1,2x ∀∈,都有1a x≤,令()1g x x =,[]1,2x ∈,因为()1g x x=,在[]1,2x ∈上单调递减,所以()()min 122g x g ==,所以12a ≤,即实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦;故答案为:1,2⎛⎤-∞ ⎥⎝⎦20.(2020·全国高三月考(文))已知命题():0,p x ∀∈+∞,2230x mx -+>,命题:q m a <;若p 是q 的充分不必要条件,则实数a 的取值范围为______.【答案】()+∞【解析】设命题():0,p x ∀∈+∞,2230x mx -+>成立对应的m 的范围为集合A ,{}|B m m a =<若()0,x ∀∈+∞,223x mx +>,则32x m x +>,所以min 32m x x ⎛⎫<+ ⎪⎝⎭而32x x +≥32x x =,即x =时等号成立,所以min32x x ⎛⎫+= ⎪⎝⎭m <{|A m m =<,因为p 是q 的充分不必要条件,所以A B,所以a > 即实数a的取值范围为()+∞.故选答案为:()+∞21.(2020·凌海市第二高级中学高三月考)命题“2,1x R x t ∀∈>+”为真命题,则实数t 的取值范围是__________. 【答案】(),1-∞- 【解析】命题“2,1x R x t ∀∈>+”为真命题,且20x ≥,10t ∴+<,则1t <-,故实数t 的取值范围是(),1-∞-.故答案为:(),1-∞-.22.(2020·上海徐汇区·高三一模)用数学归纳法证明()2511222n n N -*++++∈能被31整除时,从k 到1k +添加的项数共有__________________项(填多少项即可). 【答案】5【解析】当n k =时,原式为:251122...2k -++++,当1n k =+时,原式为251551525354122...222222k k k k k k -+++++++++++++, 比较后可知多了55152535422222k k k k k ++++++++,共5项. 故答案为:523.(2020·浙江高三其他模拟)用数学归纳法证明:111111111234212122n n n n n-+-++-=+++-++,第一步应验证的等式是__________;从“n k =”到“1n k =+”左边需增加的等式是_________.【答案】11122-=()()1121121k k -+-+ 【解析】当1n =时,应当验证的第一个式子是11122-=,从“n k =”到“1n k =+”左边需增加的式子是()()1121121k k -+-+24.(2021·全国高三专题练习)设数列{}n a 满足11a =,12(23)n n a a n +=--. (1)计算2a ,3a .猜想{}n a 的通项公式并利用数学归纳法加以证明; (2)记2n nn b a =⋅,求数列{}n b 的前n 项和n S .【答案】(1)23a =,35a =,21n a n =-;证明见解析;(2)1(23)26n n S n +=-⨯+.【解析】(1)由题意可得2121213a a =+=+=,3221615a a =-=-=, 由数列{}n a 的前三项可猜想数列{}n a 是以1为首项,2为公差的等差数列, 即21n a n =-, 证明如下:当1n =时,12111a =⨯-=成立; 假设n k =时,21k a k =-成立.那么1n k =+时,12(23)2(21)(23)212(1)1k k a a k k k k k +=--=---=+=+-也成立. 则对任意的*n ∈N ,都有21n a n =-成立;(2)因为(21)2n n b n =-.∴23123252(21)2n n S n =⨯+⨯+⨯++-⨯,∴ 23412123252(21)2n n S n +=⨯+⨯+⨯++-⨯,∴∴-∴得:2341222222222(21)2n n n S n +-=+⨯+⨯+⨯++⨯--⨯()211122122(21)26(23)212n n n n n -++⨯-=+--⨯=---⨯-.∴1(23)26n n S n +=-⨯+.25.(2020·全国高三专题练习)已知数列{}n a 满足:11a =,点()()*1,n n a a n +∈N 在直线21y x =+上.(1)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中你的猜想.【答案】(1)2343,7,15a a a ===,21n n a =-;(2)证明见解析.【解析】(1)因为点()()*1,n n a a n N +∈在直线21y x =+上所以121n n a a +=+, 因为11a =,故22113a =⨯+=,32317a =⨯+=, 427115a =⨯+=,由上述结果,猜想:21nn a =-.(2)1︒,当1n =时,1211a =-=成立,2︒,假设当()1,n k k k N =≥∈时,21kk a =-成立,那么,当1n k =+时,()1121221121kk k k a a ++=+=-+=-成立,由1︒,2︒可得21nn a =-.26.(2020·黑龙江哈尔滨市·高三月考(理))已知数列{}n a 满足1a m =,2n a ≠,11210n n n a a a ++-⋅-=. (1)求2a ,3a ,4a ;(2)猜想{}n a 的通项公式,并用数学归纳法加以证明. 【答案】(1)212a m =-,3232m a m -=-,43243ma m-=-;(2)()()()121n n n m a n n m ---=--;证明见解析.【解析】1)因为11210n n n a a a ++-⋅-=,2n a ≠,所以112n na a +=-,又因为1a m = 211122a a m ==--,3212232m a a m -==--,43132243ma a m-==-- (2)()()()121n n n ma n n m---=--证明:1n =时,()1011ma m --==,结论成立 假设n k =时,结论成立,即()()()121k k k ma k k m---=--当1n k =+时:()()()()()()()()()11111122211221211k kk k m a k k m k k m k k m a k km k k m k k m+--====-------+--+------ 结论成立.综上,数列通项为()()()121n n n m a n n m---=-- 27(2020·云南师大附中高三月考(理))设数列{}n a 满足11a =,23a =,当()11112n n n n n a a a n a a -+-+=+++.(1)计算3a ,4a ,猜想{}n a 的通项公式,并加以证明. (2)求证:()()()2221244474111n a a a +++<+++. 【答案】(1)35a =,47a =,21n a n =-,证明见解析;(2)证明见解析. 【解析】(1)解:由11a =,23a =, 所以()123121225a a a a a +=++=+,()234231327a a a a a +=++=+. 猜想:21n a n =-,证明:当2n =时,由11a =,23a =,故成立;假设n k =(2k ≥)时成立,即21k a k =-, 所以()()1111221211k k k k k a a a k k k a a -+-+=++=+=+-+,即当1n k =+时成立,综上所述,21n a n =-. (2)证明:由(1)知,()22411n n a =+, 所以()()()22212444111n a a a ++++++22222211111111221311n n =+++<++++--- ()()1111132411n n =++++⨯⨯-+111111111111232435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭11117112214n n ⎛⎫=++--< ⎪+⎝⎭,证毕.。
简单的逻辑联结词
简单的逻辑联结词逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫简单命题,由简单命题与逻辑联结词构成的命题叫复合命题.(2)复合命题的构成形式: ①p 或q ;②p 且q ;③非p (即命题p 的否定).(3)复合命题的真假判断(利用真值表):当p 、q 同时为假时,“p 或q ”为假,其它情况时为真,可简称为“一真必真”; 当p 、q 同时为真时,“p 且q ”为真,其它情况时为假,可简称为“一假必假”。
“非p ”与p 的真假相反.注意:对命题的否定只是否定命题的结论;否命题,既否定题设,又否定结论。
例如命题:“若0>a ,则02>a ”的否命题是_1.若命题p: 0是偶数,命题q: 2是3的约数.则下列命题中为真的是( )A.p 且qB.p 或qC.非pD.非p 且非q2.若命题“p 或q ”为真,“非p ”为真,则 ( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假 3.若“p q ∨”为真命题,则下列命题一定为假命题的是(A )p (B )q ⌝ (C )p q ∧ (D )p q ⌝⌝∧4.已知命题p :所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中是真命题的是A .()q p ∨⌝ B.q p ∧ C .()()q p ⌝∨⌝ D .()()q p ⌝∧⌝5.在下列结论中,正确的是 ( ) ①""q p ∧为真是""q p ∨为真的充分不必要条件②""q p ∧为假是""q p ∨为真的充分不必要条件③""q p ∨为真是""p ⌝为假的必要不充分条件④""p ⌝为真是""q p ∧为假的必要不充分条件A. ①②B. ①③C. ②④D. ③④6.已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是A.p q ∧B.p q ⌝∧⌝C.p q ⌝∧D.p q ∧⌝7.若命题“()p q ⌝∨”为真命题,则A.p ,q 均为假命题B.p ,q 中至多有一个为真命题C.p ,q 均为真命题D.p ,q 中至少有一个为真命题8.若命题“p q ∧”为假,且“p ⌝”为假,则A .“q p ∨”为假B q 假C .q 真D .不能判断q 的真假9.设命题p :函数cos 2y x =的最小正周期是2π 命题q :函数sin y x =的图象关于y 轴对称,则下列判断正确的是( )A .q p ∨为真B . q p ∧为假C .P 为真D .q ⌝为假10.已知命题p ::若x +y ≠3,则x ≠1或y ≠2;命题q :若b 2=ac ,则a,b,c 成等比数列,下列选项中为真命题的是 ( )A . pB . qC . p ∧qD .(⌝p )∨q 11.设命题p :函数2y sin x =的最小正周期为2π;命题q :函数122x xy =-是奇函数。
一轮复习-简单的逻辑联结词及全称量词与存在量词
x M , p( x)
读作:“对任意x属于M,有p(x)成
引入2:
(1)有些三角形是直角三角形; (2)如果两个数的和为正数,那么这两个数 中至少有一个是正数; (3)在素数中,有一个是偶数; 2 (4)存在实数x,使得x +x-1=0。
在以上命题中,“有些”“至少有一 个”“有一个”“存在”都有表示个别或一部 分的含义,这样的词叫作存在量词,并用符号
p 真 假
¬ p 假 真
总结
“且、或、非”真值表 p 真 真 假 假 q 真 假 真 假 p∧q 真 假 假 假 p∨q 真 真 真 假
概括为:
p
﹁
假 假 真 真
真“非”假,假“非” 真
有真“或”为真
两真“且”为真
变式2
如果p∧q为真命题,那么p∨q一定是真 命题吗?反之,如果p∨q为真命题,那么 p∧q一定是真命题吗? p∧q为真命题 p∨q是真命题
真
真 真 假 假
真 假 真 假
假 假
假
有些命题如含有“……和……”、
“……与……”、“既……,又…..”等词 的命题能用“且”改写成“p∧q”的形式, 例2:用逻辑联结词“且”改写下列命题,并 判断它们的真假. (1)1既是奇数,又是素数; (2)2和3都是素数.
解:(1) 1是奇数且1是素数 , 假命题 (2) 2是素数且3是素数,真命题
p : x0∈M, ﹁p(x0)
关键量词的否定
词语 词语的 否定
词语
是 不是
一定 是
都是 不都 是
大于
小于
且 或
一定 不是
小于或 大于或 等于 等于
至多 所有x成 所有x 必有 至少 有一 一个 有n个 立 不成立 个
简单的逻辑联结词(且或)
THANKS FOR WATCHING
感谢您的观看
(p∨q)∨r=p∨(q∨r)(“或”运算 满足结合律)
分配律
p∨(q∧r)=(p∨q)∧(p∨r)(“或” 运算满足分配律)
重写律
¬(p∨q)=¬p∧¬q(“或”运算 的否定满足重写律)
“或”在日常生活中的例子
天气情况
“今天下雨或阴天”(表示今天至少是其中一种天 气)。
交通方式
“你可以乘公交车或地铁去公司”(表示你可以选择 其中一种交通方式)。
简单的逻辑联结词(且或)
contents
目录
• 引言 • 逻辑联结词“且” • 逻辑联结词“或” • “且”与“或”的比较与联系 • 练习与思考
01 引言
主题简介
1
逻辑联结词是逻辑学中的基本概念,用于描述命 题之间的逻辑关系。其中,“且”和“或”是最 常用的两个逻辑联结词。
2
“且”表示命题之间的同时成立关系,即所有条 件都必须满足。
味的冰淇淋。
03 逻辑联结词“或”
“或”的定义
“或”是逻辑联结词的一种,表示两种情况中至 少有一种情况存在。
在逻辑学中,“或”可以表示为符号“∨”。
“或”的含义与日常用语中的“或者”相似,但 逻辑学中的“或”更为严格和精确。
“或”的逻辑运算规则
交换律
p∨q=q∨p(“或”运算满足交 换律)
结合律
“且”在日常生活中的例子
例子1
小明和小华都想去旅游,小明说 :“我想去海边。”小华说:“ 我也想去海边。” 于是他们决定
一起去海边旅游。
例子2
小李和小张都想去电影院看电影 ,小李说:“我想看科幻片。” 小张说:“我也想看科幻片。” 于是他们决定一起看科幻电影。
知识讲解_逻辑联接词“且”“或”“非”
简单的逻辑联结词【要点梳理】要点一:逻辑联结词“且”一般地,用逻辑联结词“且”把命题p 和q 联结起来得到一个新命题,记作:p q ∧,读作:“p 且q ”. 规定:当p ,q 两命题有一个命题是假命题时,p q ∧是假命题; 当p ,q 两命题都是真命题时,p q ∧是真命题. 要点诠释:p q ∧的真假判定的理解:1.与物理中的电路类比我们可以从串联电路理解联结词“且”的含义.若开关p ,q 的闭合与断开分别对应命题p ,q 的真与假,则整个电路的接通与断开分别对应命题p q ∧的真与假.2.与集合中的交集类比交集{|}A B x x A x B =∈∈I 且中的“且”与逻辑联结词的“且”含义一样,理解时可参考交集的概念. 要点二:逻辑联结词“或”一般地,用逻辑联结词“或”把命题p 和q 联结起来得到一个新命题,记作:p q ∨,读作:“p 或q ”. 规定:当p ,q 两命题有一个命题是真命题时,p q ∨是真命题; 当p ,q 两命题都是假命题时,p q ∨是假命题. 要点诠释:p q ∨的真假判定的理解:1.与物理中的电路类比我们可以从并联电路理解联结词“或”的含义.若开关p ,q 的闭合与断开对应命题的真与假,则整个电路的接通与断开分别对应命题的p q ∨的真与假.2.与集合中的并集类比并集{|}A B x x A x B =∈∈U 或中的“或”与逻辑联结词的“或”含义一样,理解时可参考并集的概念. 3.“或”有三层含义,以“p 或q ”为例:qp(1)p 成立且q 不成立; (2)p 不成立但q 成立; (3)p 成立且q 也成立.要点三:逻辑联结词“非”一般地,对一个命题p 全盘否定得到一个新命题,记作:p ⌝,读作:“非p ”或“p 的否定”. 规定:当p 是真命题时,p ⌝必定是假命题; 当p 是假命题时,p ⌝必定是真命题. 要点诠释:1.逻辑联结词中的“非”相当于集合中补集的概念,谈到补集必然要说全集,谈论 “非”时也应该弄清这件事是在一个什么样的范围中研究.2.下面是一些常用词的否定:注意:“一定”的否定不是“一定不”. 3.否命题与命题的否定之间的区别:否命题是对原命题的条件和结论分别做否定后得到的命题(否定二次);命题的否定是只对原命题的结论做否定(否定一次),即p ⌝.如:命题p : 若1x =,则(1)(1)0x x -+=. 命题p 的否命题:若1x =/,则(1)(1)0x x -+=/. 命题p 的否定p ⌝:若1x =,则(1)(1)0x x -+=/. 4.“或”、“且”联结的命题的否定形式: “p 或q ”的否定⇔p ⌝且q ⌝; “p 且q ”的否定⇔p ⌝或q ⌝. 要点四:简单命题与复合命题 1. 定义:简单命题:不含逻辑联结词的命题叫简单命题.复合命题:由简单命题与逻辑联结词“或” “且” “非”构成的命题叫做复合命题. 2. 复合命题的构成形式: (1)p 或q ;记作:p q ∨; (2)p 且q ;记作:p q ∧;(3)非p (即命题p 的否定);记作:p ⌝. 3.复合命题的真假判断要点诠释:1. 当p 、q 同时为假时,“p 或q ”为假,其它情况时为真,可简称为“一真必真”;2. 当p 、q 同时为真时,“p 且q ”为真,其它情况时为假,可简称为“一假必假”;3. “非p ”与p 的真假相反.【典型例题】类型一:复合命题的构成例1.分别指出下列复合命题的形式及构成的简单命题. (1)李明是老师,赵山也是老师; (2)1是合数或质数; (3)他是运动员兼教练员.【思路分析】观察命题结构,判断其中是否还有“或” “且” “非”等联结词或相似含义的联结词,利用“或” “且” “非”的概念对复合命题进行结构分解. 【解析】(1)这个命题是“p 且q ”形式,其中p :李明是老师,q :赵山是老师. (2)这个命题是“p 或q ”形式,其中p :1是合数, q :1是质数. (3)这个命题是“p 且q ”形式,其中p :他是运动员,q :他是教练员.【总结升华】正确理解逻辑联结词“或”、 “且”、 “非”的含义是解题的关键.根据上述各复合命题中出现的逻辑联结词或语句的意义确定复合命题的形式.举一反三:【高清课堂:简单的逻辑联结词395484例1】 【变式1】将下列各组命题用“且”联结组成新命题: (1)p : 平行四边形的对角线互相平分, q :平行四边形的对角线相等; (2)p : 集合A 是A B I 的子集, q :集合A 是A B U 的子集; (3)p : 211x +≥, q :34>. 【答案】(1)p q ∧:平行四边形的对角线互相平分且相等; (2)p q ∧:集合A 是A I B 的子集,且是A U B 的子集; (3)p q ∧:211x +≥,且34>.【变式2】判断下列复合命题的形式,并写出构成其的简单命题 (1)1是奇数或偶数; (2)梯形不是平行四边形; (3)2是偶数也是质数. 【答案】(1)p 或q 的形式,其中p :1是奇数, q :1是偶数; (2)非p 的形式, 其中p :梯形是平行四边形;(3)p 且q 的形式,其中p :2是偶数, q :2是质数.例2.判断下列命题中是否含有逻辑联结词“或” “且” “非”,若含有,请指出其中p q 、的基本命题. (1)正方形的对角线垂直相等; (2)2是4和6的约数;(3)不等式2560x x -+>的解为32x x ><或; (4)平行四边形的对角线不一定相等. 【解析】(1)是“p 且q ”形式的命题,其中p :正方形的对角线互相垂直;q :正方形的对角线相等. (2)是“p 且q ”形式的命题,其中p :2是4的约数; q :2是6的约数. (3)是简单命题,而不是用“或” “且” “非”联结的复合命题; (3)是“非p ”形式的命题,其中p :平行四边形的对角线一定相等.【总结升华】对于用逻辑联结词“或” “且” “非”联结的新命题的结构特点不能仅从字面上看它是否含有“或”、“且”、“非”等逻辑联结词,而应从命题的结构来看是否用逻辑联结词联结两个命题.举一反三:【变式】指出下列复合命题的结构,写出构成其的简单命题. (1) 菱形的对角线互相垂直平分;(3)6是12或18的约数. 【答案】(1)p 且q 的形式,其中p :菱形的对角线互相垂直,q :菱形对角线互相平分;(2)非p 的形式,其中p(3)p 或q 的形式,其中p :6是12的约数,q :6是18的约数. 类型二:复合命题真假的判定例3.分别指出下列复合命题的形式及构成它的简单命题,并指出复合命题的真假. (1)8或6都是30的约数; (2)矩形的对角线互相垂直平分; (3)方程210x x ++=无实根.【思路点拨】将复合命题写成“p 或q ”、“p 且q ”、“非p ”的形式,并一一判断p ,q 的真假,再由真值表判断复合命题的真假.【解析】(1)“p 或q ”形式.其中p :8是30的约数, q :6是30的约数, ∵p 假q 真,∴该复合命题为真.(2)“p 且q ”形式.其中p :矩形的对角线互相垂直,q :矩形的对角线互相平分, ∵p 假q 真,∴该复合命题为假.(3)“非p ”形式.其中p : 方程210x x ++=有实根,∵p 假,∴该复合命题为真.【总结升华】 先判断各简单命题的真假,再依据复合命题的构成形式写出复合命题,最后判断复合命题的真假.举一反三:【变式1】已知命题p 、q ,试写出p 或q 、p 且q 、非p 的形式的命题并判断真假. (1)p :平行四边形的一组对边平行, q :平行四边形的一组对边相等; (2)p :2{1,3,5,7}∈, q :2{2,4,6,8}∈; (3)p :1{12}∈,, q :{1}⊆{12},; (4)p :2{|1}x x ∅=<, q :∅◊2{|1}x x <; (5)p :34<, q :34=. 【答案】(1) p 或q :平行四边形的一组对边平行或相等(真命题);p 且q :平行四边形的一组对边平行且相等(真命题); 非p : 平行四边形的一组对边不平行(假命题).(2) p 或q :2{1,3,5,7}∈或2{2,4,6,8}∈,即2{1,2,3,4,5,6,7,8}∈(真命题);p 且q :2{1,3,5,7}∈且2{2,4,6,8}∈(假命题); 非p : 2{1,3,5,7}∈/(真命题). (3) p 或q :1{12}∈,或{1}⊆{12},(真命题); p 且q :1{12}∈,且{1}⊆{12},(真命题); 非p : 1{12}∈/,(假命题). (4) p 或q :2{|1}x x ∅=<或∅◊2{|1}x x <,即2{|1}x x ∅⊆< (真命题);p 且q :2{|1}x x ∅=<且∅◊2{|1}x x <(假命题); 非p : 2{|1}x x ∅=</(真命题).(5) p 或q :34<或34=,即34≤(真命题);p 且q :34<且34=(假命题); 非p : 34</,即34≥(假命题). 【变式2】已知命题p :33ß; q :3>4,则下列判断正确的是( ) A .p q ∨为真,p q ∧为真,p ⌝为假 B .p q ∨为真,p q ∧为假,p ⌝为真 C .p q ∨为假,p q ∧为假,p ⌝为假 D .p q ∨为真,p q ∧为假,p ⌝为假 【答案】D【解析】 p :33ß,是真命题, q :3>4是假命题,根据真值表:p q ∨为真,p q ∧为假,p ⌝为假,所以选D .【变式3】已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题为真命题的是( )A .()p q ⌝∨B .p q ∧C .()()p q ⌝∨⌝D .()()p q ⌝∧⌝ 【答案】C【变式2】以下判断中正确的是( )A .命题p 是真命题时,命题“p q ∧”一定是真命题B .命题“p q ∧”为真命题时,命题p 一定是真命题C .命题“p q ∧”为假命题时,命题p 一定是假命题D .命题p 是假命题时,命题“p q ∧”不一定是假命题 【答案】B例4. 如果命题“p 且q ”是假命题,“非p ”是真命题,那么 ( ) A .命题p 一定是真命题 B .命题q 一定是真命题 C .命题q 一定是假命题D .命题q 可以是真命题也可以是假命题【思路点拨】由“非p 是真命题”入手,可判断p 的真假性,再由“p 且q 是假命题”可知q 的真假. 【答案】D【解析】∵“非p ”是真命题, ∴p 是假命题,∵“p 且q ”是假命题,∴q 可以是真命题也可以是假命题, ∴选项为D.【总结升华】含逻辑联结词命题的真假情况,利用真值表逆向思考,从而推断出组成命题的真值情况,再进行判断.【变式】如果命题“()p q ⌝∨”为假命题,则( ) A. p q ,均为假命题 B. p q ,均为真命题C. p q ,中至少有一个为真命题D. p q ,中至多有一个为真命题 【答案】C类型三:命题的否定与否命题例5.写出下列命题的否定和否命题,并判定其真假. (1)p :在整数范围内,a 、b 都是偶数,则a b +是偶数; (2)p :若0x ß且0y ß,则0x y +ß. 【解析】(1) p ⌝:在整数范围内,a 、b 都是偶数,则a b +不是偶数(假命题);p 的否命题是:在整数范围内,若a 、b 不都是偶数,则a b +不是偶数(假命题); (2) p ⌝:若0x ≥且0y ≥,则0x y +<(假命题); p 的否命题是:若0x <或0y <,则0x y +<(假命题). 【总结升华】1. “0x ß且0y ß”的否定是“0x <或0y < ”;“a 、b 都是偶数”的否定为“a 、b 不都是偶数”.2. 命题的否定和否命题是不一样的.举一反三:【变式1】命题 “ABC ∆是直角三角形或等腰三角形”的否定是 ; 【答案】ABC ∆既不是直角三角形,也不是等腰三角形. 【变式2】写出下列命题的否定和否命题,并判定其真假. (1)p :若220x y +=,则x ,y 全为零; (2)p :若3x =且5y =,则8x y +=. 【答案】(1) p 的否定:若220x y +=,则x ,y 不全为零 (假命题);p 的否命题:若220x y +=/,则x ,y 不全为零 (真命题); (2) p 的否定:若3x =且5y =,则8x y +=/ (假命题); p 的否命题:若3x =/或5y =/,则8x y +=/ (假命题). 【变式3】 “220x y +=/”是指 (填出符合条件的所有选项) A .0x ≠且0y ≠ B .0x ≠或0y ≠C .x ,y 至少有一个不是0D .x ,y 都不是0E .x ,y 不都是0 【答案】B 、C 、E【解析】220x y +=/是指x ,y 不同时为零,即x ,y 至少有一个不是0,亦即x ,y 不都是0,0x ≠或0y ≠. 类型四:复合命题的应用例6.已知命题2560p x x +:-ß;命题04q x <<:.若p 是真命题,q 是假命题,求实数x 的取值范围.【解析】 由2560x x +-ß得x ≥3或x ≤2. ∵命题q 为假,∴x ≤0或x ≥4.则{x |x ≥3或x ≤2}∩{x |x ≤0或x ≥4}={x |x ≤0或x ≥4}. ∴满足条件的实数x 的范围为(-∞,0]∪[4,+∞).【总结升华】解答这类问题,应先由每个简单命题为真,确定参数的取值范围,再由复合命题的真值,得参数所满足的条件,进而确定参数的取值范围.举一反三:【变式】已知命题p :方程210x +mx+=有两个不等的负实数根;命题q :方程244(2)10x +m x+-=无实数根.若“p 或q ”为真命题,“p ⌝”为真命题,求m 的取值范围.【解析】∵方程210x +mx+=有两个不等的负实数根, ∴2m >, ∵方程244(2)10x +m x+-=无实数根,∴13m << 由条件可知,p 假q 真,。
简单的逻辑联结词或(or)且(and)非(not)
简单的逻辑联结词或(or)且(and)非(not) 教学目标1.理解逻辑联结词“且”“或”“非”的含义.(重点)2.会判断命题“p∧q”“p∨q”“﹁p”的真假.(难点)3.掌握命题的否定与否命题的区别.(易混点)教材整理1 “且”“或”“非”的含义阅读教材P14第1段~第6段,P15“思考”~第3段,P16“思考”~第2段,完成下列问题.1..用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q,读作“p且q”.2.用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”.3.对一个命题p全盘否定,就得到一个新命题,记作﹁p,读作“非p”或“p的否定”.课堂练习1.命题:“菱形的对角线互相垂直平分”,使用的逻辑联结词的情况是()A.没有使用逻辑联结词B.使用了逻辑联结词“且”C.使用了逻辑联结词“或”D.使用了逻辑联结词“非”【解析】菱形的对角线互相垂直且互相平分.∴使用逻辑联结词“且”.【答案】 B2.若p:正数的平方大于0,q:负数的平方大于0,则p∨q:________.(用文字语言表述)【答案】正数或负数的平方大于0教材整理2 含有逻辑联结词的命题的真假判断阅读教材P14第7,8段,P15最后两行,P17第3,4段,完成下列问题.课堂练习1.已知命题p:5≤5,q:5>6,则下列说法正确的是()A.p∧q为真,p∨q为真,﹁p为真B.p∧q为假,p∨q为假,﹁p为假C.p∧q为假,p∨q为真,﹁p为假D.p∧q为真,p∨q为真,﹁p为假【解析】易知p为真命题,q为假命题,由真值表可得:p∧q为假,p∨q为真,﹁p为假.【答案】 C2.若命题p:常数列是等差数列,则﹁p:________.【解析】只否定命题的结论:常数列不是等差数列.【答案】常数列不是等差数列例题分析(1)用适当的逻辑联结词填空(填“且”“或”“非”):①若a2+b2=0,则a=0________b=0;②若ab=0,则a=0________b=0;③平行四边形的一组对边平行________相等.【解析】①若a2+b2=0,则a=0且b=0,故填且.②若ab=0,则a=0或b=0,故填或.③平行四边形的一组对边平行且相等,故填且.【答案】①且②或③且(2)将下列命题写成“p∧q”“p∨q”和“﹁p”的形式:①p:6是自然数,q:6是偶数;②p:∅⊆{0},q:∅={0};③p:甲是运动员,q:甲是教练员.【解】①p∧q:6是自然数且6是偶数.p∨q:6是自然数或6是偶数. ﹁p:6不是自然数.②p∧q:∅⊆{0}且∅={0}.p∨q:∅⊆{0}或∅={0}. ﹁p:∅⃘{0}.③p∧q:甲是运动员且甲是教练员.p∨q:甲是运动员或甲是教练员.﹁p:甲不是运动员.小结1.判断一个命题的构成形式时,不能仅从命题的字面上找逻辑联结词,而应当从命题的结构特征进行分析判断.2.用逻辑联结词构造新命题的两个步骤3.常见词语的否定形式:[再练一题]1.(1)判断下列命题的形式(从“p∨q”“p∧q”和“﹁p”中选填一种):①π不是整数:______;②6≤8:______;③2是偶数且2是素数:_______.(2)分别写出由下列命题构成的“p∨q”“p∧q”“﹁p”形式的命题:①p:方程x2+2x+1=0有两个相等的实数根,q:方程x2+2x+1=0的两根的绝对值相等;②p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任何一个内角.【解析】(1)①﹁p②p∨q③p∧q(2)①“p∨q”:方程x2+2x+1=0有两个相等的实数根或两根的绝对值相等;“p∧q”:方程x2+2x+1=0有两个相等的实数根且两根的绝对值相等;“﹁p”:方程x2+2x+1=0没有两个相等的实数根.②“p∨q”:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任何一个内角;“p∧q”:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任何一个内角;“﹁p”:三角形的外角不等于与它不相邻的两个内角的和.指出下列命题的真假:(1)命题:“不等式|x+2|≤0没有实数解”;(2)命题:“-1是偶数或奇数”;(3)命题:“2属于集合Q,也属于集合R”.【精彩点拨】本题主要考查判断复合命题的真假,关键是搞清每个简单命题的构成形式.【自主解答】(1)此命题是“﹁p”的形式,其中p:不等式|x+2|≤0有实数解.∵x=-2是该不等式的一个解,∴命题p为真命题,即﹁p为假命题,故原命题为假命题.(2)此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数. ∵命题p为假命题,命题q为真命题,∴“p∨q”为真命题,故原命题为真命题.(3)此命题为“p∧q”的形式,其中p:2∈Q,q:2∈R.∵命题p为假命题,命题q为真命题.∴命题“p∧q”为假命题,故原命题为假命题.小结判断含逻辑联结词的命题的真假时,首先确定该命题的构成,再确定其中简单命题的真假,最后由真值表进行判断.[再练一题]2.分别写出由下列各组命题构成的“p∧q”“p∨q”“﹁p”形式的命题,并判断其真假.(1)p :等腰梯形的对角线相等,q :等腰梯形的对角线互相平分; (2)p :函数y =x 2-2x +2没有零点,q :不等式x 2-2x +1>0恒成立. 【解】 (1)p ∧q :等腰梯形的对角线相等且互相平分,假命题. p ∨q :等腰梯形的对角线相等或互相平分,真命题. ﹁p :等腰梯形的对角线不相等,假命题.(2)p ∧q :函数y =x 2-2x +2没有零点且不等式x 2-2x +1>0恒成立,假命题. p ∨q :函数y =x 2-2x +2没有零点或不等式x 2-2x +1>0恒成立,真命题. ﹁p :函数y =x 2-2x +2有零点,假命题.探究 对涉及命题的真假且含参数的问题,参数范围怎样确定?【提示】 已知命题p ∧q 、p ∨q 、﹁p 的真假,可以通过真值表判断命题p 、q 的真假,然后将命题间的关系转化为集合间的关系,利用解不等式求参数的范围,要注意分各种情况进行讨论.已知命题p :方程x 2+2ax +1=0有两个大于-1的实数根,命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,若“p 或q ”与“﹁q ”同时为真命题,求实数a 的取值范围. 【精彩点拨】分别解出p ,q 中a 的范围→由条件得出p ,q 的真假→求出a 的取值范围 【自主解答】 命题p :方程x 2+2ax +1=0有两个大于-1的实数根,等价于⎩⎨⎧Δ=4a 2-4≥0,x 1+x 2>-2,(x 1+1)(x 2+1)>0⇔⎩⎨⎧a 2-1≥0,-2a >-2,2-2a >0,解得a ≤-1.命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,等价于a =0或⎩⎨⎧a >0,Δ<0,由于⎩⎨⎧ a >0,Δ<0⇔⎩⎨⎧a >0,a 2-4a <0,解得0<a <4,∴0≤a <4.因为“p 或q ”与“﹁q ”同时为真命题,即p 真且q 假,所以⎩⎨⎧a ≤-1,a <0或a ≥4,解得a ≤-1.故实数a 的取值范围是(-∞,-1].小结应用逻辑联结词求参数范围的四个步骤1.分别求出命题p,q为真时对应的参数集合A,B.2.由“p且q”“p或q”的真假讨论p,q的真假.3.由p,q的真假转化为相应的集合的运算.4.求解不等式或不等式组得到参数的取值范围.[再练一题]3.已知命题p:方程2x2+ax-a2=0在[-1,1]上有解;命题q:只有一个实数x0满足不等式x20+2ax0+2a≤0.若命题“p或q”是假命题,求a的取值范围. 【解】由2x2+ax-a2=0,得(2x-a)(x+a)=0,∴x=a2或x=-a,∴当命题p为真命题时,⎪⎪⎪⎪⎪⎪a2≤1或|-a|≤1,∴|a|≤2. 又“只有一个实数x0满足不等式x20+2ax0+2a≤0”,即抛物线y=x2+2ax+2a与x轴只有一个交点,∴Δ=4a2-8a=0,∴a=0或a=2,∴当命题q为真命题时,a=0或a=2,∴命题“p或q”为真命题时,|a|≤2.∵命题“p或q”为假命题,∴a>2或a<-2.即a的取值范围为(-∞,-2)∪(2,+∞).1.已知命题p:3≥3,q:3>4,则下列判断正确的是()A.p∨q为真,p∧q为真,﹁p为假B.p∨q为真,p∧q为假,﹁p为真C.p∨q为假,p∧q为假,﹁p为假D.p∨q为真,p∧q为假,﹁p为假【解析】p为真,q为假,故选D. 【答案】 D2.已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是()A.p∧qB.﹁p∧﹁qC.﹁p∧qD.p∧﹁q【解析】因为指数函数的值域为(0,+∞),所以对任意x∈R,y=2x>0恒成立,故p为真命题;因为当x>1时,x>2不一定成立,反之当x>2时,一定有x>1成立,故“x>1”是“x>2”的必要不充分条件,故q为假命题,则p∧q、﹁p 为假命题,﹁q为真命题,﹁p∧﹁q、﹁p∧q为假命题,p∧﹁q为真命题,故选D.【答案】 D3.命题“若x>0,则x2>0”的否定是________.【答案】若x>0,则x2≤04.命题p:x=π是y=|sin x|的一条对称轴;q:2π是y=|sin x|的最小正周期.下列命题:①p∨q;②p∧q;③﹁p;④﹁q.其中真命题的序号是________.【解析】∵π是y=|sin x|的最小正周期,∴q为假.又∵p为真,∴p∨q为真,p∧q为假,﹁p为假,﹁q为真.【答案】①④5.判断下列命题的真假:(1)函数y=cos x是周期函数并且是单调函数;(2)x=2或x=-2是方程x2-4=0的解.【解】(1)由p:“函数y=cos x是周期函数”,q:“函数y=cos x是单调函数”,用联结词“且”联结后构成命题p∧q.因为p是真命题,q是假命题,所以p∧q是假命题.(2)由p:“x=2是方程x2-4=0的解”,q:“x=-2是方程x2-4=0的解”,用“或”联结后构成命题p∨q.因为p,q都是真命题,所以p∨q是真命题.。
1.3简单的逻辑联结词
q:2是奇数..
全假才假, 有真即真.
p∨q : 1是偶数或2是奇数
一真必真
3种复合命题的真值表
真 真 假 假 真 假 真 假
∟ ∟
p
q
pp∧Leabharlann qp∨ q假 假 真 真
真 假 假 假
真假相反 一假必假 一真必真
真 真 真 假
非p( p ) p且q( p∧q ) p或q( p∨q )
一真必真
课外作业:课本习题1.3 A组第3题和B组第1题。(要抄题)
综合运用:
4:已知p:关于x的方程 x mx 1 0 有两个不等的负实数根。 q:关于x的方程4 x 2 4(m 2) x 1 0 无实数根。 若p或q为真,p且q为假,求实数m的取值 范围。
2
hq
(1) p:正方形是矩形 q:正方形是菱形. (2) p: 3是奇数 q: 3是正数.
3.复合命题真假性的判断
p 形式的命题的真假
∟ ∟ ∟ ∟
(1) p: 3是正数;
p 真
p
p :3不是正数.
假 真
(2) p:1是偶数.
假
p :1不是偶数.
真假相反
“非p”的真假与p相反
p∧q 的形式的命题的真假
(通常用小写拉丁字母p、q、r、s等表示简单命题)
复合命题有以下三种形式: (1)P且q. (2)P或q. (3)非p.
观察下列命题: 或 (1)6是2的倍数或6是3的倍数; ① 且 (2)6是2的倍数且6是3的倍数; ② (3) 2 不 不是有理数. ③
这些命题的构成各有什么特点?都是复合命题
p或q p∨ q
例3(08广东高考6):已知命题p:所有有理数 都是实数;命题q:正数的对数都是正数, 则下列命题中为真命题的是( A.(p) q C.(p)(q) B.p q D.(p)(q) )
1.3.1逻辑联结词“且”或“‘非’
分析:
因为p 和 q都是假命题, 所以p ∨ q一定是假命题, 而 A 的表述明显是真命题, 因此正确答案是 B .
课堂小结
“或”的概念 : 逻辑联结词 “或” : p ∨ q 读作:p或 q
“或”的判断方法 :
当p,q 两个命题中有一个 命题是真命题时 p ∨ q 是真命题;
•当p,q 两个命题中都是 命题是假命题时, p ∨ q是假命题.
1.分别用“p或q”、“p且q”、“非p”填空: 命题“非空集A∪B中的元素是A中的 元素或B中的元素” 是__p_或__q___的形式.
2. p:菱形的对角线互相垂直, q:菱形的对角线互相平分 p或q形式的复合命题是
菱__形__的__对__角__线__互__相__垂__直__或__互__相__平__分__.
例1
判断下列命题的真假: (1) 2≤2; (2) 集合A是 A∩B的子集或A∪B
的子集; (3) 周长相等的两个三角形全等或
面积相等的两个三角形全等.
(1) 2≤2;
解:
(1)命题“2≤2”是由命题:
p:2=2;q:2 < 2
用“或”联结后构成的新命题,即 p∨q. 因为p是真命题,所以p ∨ q 是真
这句话中p为真,q为真, 就说明这句话是对的.
下列三个命题间有什么关系?
(1) 12能被3整除; (2) 12能被4整除; (3) 12能被3整除且能被4整除.
可以看出… 命题(3)是由 命题(1)和(2)用 联结词“且”连接起来的.
一般地,用逻辑联结词 “且” 把命题 p 和命题 q 联结起来.就得到 一个新命题,记作:
命题,所以原命题为真命题.
(2) 集合A是 A∩B的子集或A∪B的子
2023年高考数学总复习第一章 集合与常用逻辑用语 第3节:简单的逻辑联结词 (教师版)
2023年高考数学总复习第一章集合与常用逻辑用语第3节全称量词与存在量词、逻辑联结词“且”“或”“非”考试要求 1.了解逻辑联结词、“且”、“或”、“非”的含义;2.理解全称量词与存在量词的意义;3.能正确地对含有一个量词的命题进行否定.1.简单的逻辑联结词(1)命题中的且、或、非叫作逻辑联结词.(2)命题p且q,p或q,非p的真假判断p q p且q p或q非p真真真真假真假假真假假真假真真假假假假真2.全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题和特称命题名称全称命题特称命题结构对M中的任意一个x,有p(x)成立存在M中的一个x0,使p(x0)成立简记任意x∈M,p(x)存在x0∈M,p(x0)否定存在x0∈M,非p(x0)任意x∈M,非p(x)1.含有逻辑联结词的命题真假判断口诀:p或q→见真即真,p且q→见假即假,p 与非p→真假相反.2.含有一个量词的命题的否定规律是“改量词,否结论”.3.“p或q”的否定是“(非p)且(非q)”,“p且q”的否定是“(非p)或(非q)”.4.逻辑联结词“或”“且”“非”对应集合运算中的“并”“交”“补”,可借助集合运算处理含逻辑联结词的命题.1.思考辨析(在括号内打“√”或“×”)(1)命题“5>6或5>2”是假命题.()(2)命题非(p且q)是假命题,则命题p,q中至少有一个是假命题.()(3)“长方形的对角线相等”是特称命题.()(4)存在x0∈M,p(x0)与任意x∈M,非p(x)的真假性相反.()答案(1)×(2)×(3)×(4)√解析(1)错误.命题p或q中,p,q有一真则真.(2)错误.p且q是真命题,则p,q都是真命题.(3)错误.命题“长方形的对角线相等”是全称命题.2.(2021·全国乙卷)已知命题p:存在x∈R,sin x<1;命题q:任意x∈R,e|x|≥1,则下列命题中为真命题的是()A.p且qB.(非p)且qC.p且(非q)D.非(p或q)答案A解析由正弦函数的图象及性质可知,存在x∈R,使得sin x<1,所以命题p为真命题.对任意的x∈R,均有e|x|≥e0=1成立,故命题q为真命题,所以命题p 且q为真命题,故选A.3.(2017·山东卷)已知命题p:任意x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p且qB.p且(非q)C.(非p)且qD.(非p)且(非q)答案B解析由已知得p真,q假,故非q真,所以p且(非q)真,故选B.4.(易错题)命题p:“有些三角形是等腰三角形”,则非p是________.答案所有三角形都不是等腰三角形5.(易错题)命题“任意x∈R,ax2-ax+1>0”为真命题,则实数a的取值范围为________.答案[0,4)解析①当a=0时,1>0恒成立;②当a≠0a>0,Δ=a2-4a<0,∴0<a<4.综上0≤a<4.6.(2021·合肥调研)能说明命题“任意x∈R且x≠0,x+1x≥2”是假命题的x的值可以是________(写出一个即可).答案-1(任意负数)解析当x>0时,x+1x≥2,当且仅当x=1时取等号,当x<0时,x+1x≤-2,当且仅当x=-1时取等号,∴x的取值为负数即可,例如x=-1.考点一含有逻辑联结词的命题1.(2021·成都调研)已知命题p:函数y=2sin x+sin x,x∈(0,π)的最小值为22;命题q:若a·b=0,b·c=0,则a·c=0.下列命题为真命题的是()A.(非p)且qB.p或qC.p且(非q)D.(非p)且(非q)答案D解析命题p:函数y=2sin x+sin x,x∈(0,π),由基本不等式成立的条件可知,y>22sin x·sin x=22,等号取不到,所以命题p是假命题.命题q:取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a·c=1≠0,所以命题q是假命题.所以非p为真,非q为真.因此,只有(非p)且(非q)为真命题.2.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(非p)或(非q)B.p且(非q)C.(非p)且(非q)D.p或q答案A解析命题p是“甲降落在指定范围”,则非p是“甲没降落在指定范围”,q 是“乙降落在指定范围”,则非q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”“甲没降落在指定范围,乙降落在指定范围”“甲没降落在指定范围,乙没降落在指定范围”.所以命题“至少有一位学员没有降落在指定范围”可表示为(非p)或(非q).3.(2022·洛阳质检)设a,b,c均为非零向量,已知命题p:a=b是a·c=b·c的必要不充分条件,命题q:x>1是|x|>1的充分不必要条件.则下列命题中为真命题的是()A.p且qB.p或qC.(非p)且(非q)D.p或(非q)答案B解析由a=b⇒a·c=b·c,但a·c=b·c⇒/a=b,故p为假命题.命题q:∵|x|>1,∴x>1或x<-1,∴由x>1⇒|x|>1,但|x|>1⇒/x>1,故q为真命题.故选B.4.(2020·全国Ⅱ卷)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是________.①p1且p4②p1且p2③(非p2)或p3④(非p3)或(非p4)答案①③④解析p1是真命题,两两相交不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p1为真命题;p2是假命题,因为空间三点在一条直线上时,有无数个平面过这三个点;p3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知非p2,非p3,非p4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.感悟提升 1.“p或q”,“p且q”,“非p”形式命题真假的判断关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:(1)明确其构成形式;(2)判断其中命题p,q的真假;(3)确定“p或q”“p且q”“非p”形式命题的真假.2.p且q形式是“一假必假,全真才真”,p或q形式是“一真必真,全假才假”,非p与p的真假性相反.考点二全称量词与存在量词例1(1)(2021·江南十校联考)已知f(x)=sin x-tan x,命题p:存在x0∈0,π2f(x0)<0,则()A.p是假命题,非p:任意x 0π2,f(x)≥0B.p是假命题,非p:存在x0∈0,π2f(x0)≥0C.p是真命题,非p:任意x 0,π2,f(x)≥0D.p是真命题,非p:存在x0∈0,π2f(x0)≥0(2)已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.任意x∈R,f(-x)≠f(x)B.任意x∈R,f(-x)≠-f(x)C.存在x0∈R,f(-x0)≠f(x0)D.存在x0∈R,f(-x0)≠-f(x0)答案(1)C(2)C解析(1)当x π4,π2sin x<1,tan x>1.此时sin x-tan x<0,故命题p为真命题.由于命题p为特称命题,所以命题p 的否定为全称命题,则非p 为:任意x f (x )≥0.(2)∵定义域为R 的函数f (x )不是偶函数,∴任意x ∈R ,f (-x )=f (x )为假命题,∴存在x 0∈R ,f (-x 0)≠f (x 0)为真命题.感悟提升1.全称命题与特称命题的否定与一般命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.2.判定全称命题“任意x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立即可.训练1(1)设命题p :所有正方形都是平行四边形,则非p 为()A.所有正方形都不是平行四边形B.有的平行四边形不是正方形C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形(2)下列四个命题:p 1:存在x 0∈(0,+∞)00;p 2:存在x 0∈(0,π),sin x 0<cos x 0;p 3:任意x ∈R ,e x >x +1;p 4:任意x <log 13x .其中真命题是()A.p 1,p 3B.p 1,p 4C.p 2,p 3D.p 2,p 4答案(1)C(2)D解析(1)“所有”改为“存在”(或“有的”),“都是”改为“不都是”(或“不是”),即非p 为有的正方形不是平行四边形.(2)对于p 1,当x 0∈(0,+∞)00成立,故p 1是假命题;对于p 2,当x0=π6时,sin x0<cos x0,故p2为真命题;对于p3,当x=0时,e x=x+1,故p3为假命题;对于p4,结合指数函数y=12与对数函数y=log13x0,13上的图象(图略)可以判断p4为真命题.考点三由命题的真假求参数例2(1)已知命题p:任意x∈[1,2],x2-a≥0;q:存在x0∈R,x20+2ax0+2-a =0,若(非p)且q是真命题,则实数a的取值范围是________________.(2)(经典母题)已知f(x)=ln(x2+1),g(x)12-m,若对任意x1∈[0,3],存在x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是________________.答案(1)(1,+∞)(2)14,+∞解析(1)∵(非p)且q是真命题,∴p假q真.p:任意x∈[1,2],x2-a≥0为假命题,∴存在x∈[1,2],x2-a<0为真命题,即a>x2成立,∴a>1.q:存在x0∈R,x20+2ax0+2-a=0为真命题,所以Δ=(2a)2-4(2-a)≥0,∴a≥1或a≤-2.综上,a>1.(2)当x∈[0,3]时,f(x)min=f(0)=0,当x∈[1,2]时,g(x)min=g(2)=14-m,由f(x)min≥g(x)min,得0≥14-m,所以m≥14.迁移本例(2)中,若将“存在x2∈[1,2]”改为“任意x2∈[1,2]”,其他条件不变,则实数m的取值范围是________________.答案12,+∞解析当x∈[1,2]时,g(x)max=g(1)=12-m,对任意x1∈[0,3],任意x2∈[1,2]使得f(x1)≥g(x2)等价于f(x)min≥g(x)max,得0≥1 2-m,∴m≥1 2 .感悟提升 1.由含逻辑联结词的命题真假求参数的方法步骤:(1)求出每个命题是真命题时参数的取值范围;(2)根据每个命题的真假情况,求出参数的取值范围.2.全称命题可转化为恒成立问题.3.含量词的命题中参数的取值范围,可根据命题的含义,利用函数的最值解决.训练2(2022·许昌质检)已知p:关于x的方程e x-a=0在(-∞,0)上有解;q:函数y=lg(ax2-x+a)的定义域为R,若p或q为真命题,p且q为假命题,则实数a的取值范围是________.答案,12∪[1,+∞)解析p真:a=e x在(-∞,0)上有解,∴0<a<1.q真:ax2-x+a>0在R上恒成立,当a=0时,显然不成立;当a≠0>0,=(-1)2-4a2<0,∴a>12.又p或q为真,p且q为假,∴p真q假或p假q真.当p真qa<1,≤12,∴0<a≤12,当p假q≤0或a≥1,>12,∴a≥1.∴0<a≤12或a≥1.1.(2021·成都诊断)已知命题p:对任意的x∈R,2x-x2≥1,则非p为()A.对任意的x∉R,2x-x2<1B.存在x∉R,2x-x2<1C.对任意的x∈R,2x-x2<1D.存在x∈R,2x-x2<1答案D解析p:任意x∈R,2x-x2≥1,∴非p:存在x∈R,2x-x2<1.2.“p且q是真命题”是“p或q是真命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A3.下列命题的否定是真命题的是()A.有些实数的绝对值是正数B.所有平行四边形都不是菱形C.任意两个等边三角形都是相似的D.3是方程x2-9=0的一个根答案B4.命题“任意x∈R,f(x)·g(x)≠0”的否定是()A.任意x∈R,f(x)=0且g(x)=0B.任意x∈R,f(x)=0或g(x)=0C.存在x0∈R,f(x0)=0且g(x0)=0D.存在x0∈R,f(x0)=0或g(x0)=0答案D解析根据全称命题与特称命题的互为否定的关系可得:命题“任意x∈R,f(x)g(x)≠0”的否定是“存在x0∈R,f(x0)=0或g(x0)=0”.故选D.5.命题p:甲的数学成绩不低于100分,命题q:乙的数学成绩低于100分,则p 或(非q)表示()A.甲、乙两人的数学成绩都低于100分B.甲、乙两人至少有一人的数学成绩低于100分C.甲、乙两人的数学成绩都不低于100分D.甲、乙两人至少有一人的数学成绩不低于100分答案D解析由于命题q:乙的数学成绩低于100分,因此非q:乙的数学成绩不低于100分,所以p或(非q)表示甲、乙两人至少有一人的数学成绩不低于100分. 6.已知命题“存在x∈R,4x2+(a-2)x+14≤0”是假命题,则实数a的取值范围为()A.(-∞,0)B.[0,4]C.[4,+∞)D.(0,4)答案D解析因为命题“存在x∈R,4x2+(a-2)x+14≤0”是假命题,所以其否定为“任意x∈R,4x2+(a-2)x+14>0”是真命题.则Δ=(a-2)2-4×4×14=a2-4a<0,解得0<a<4.7.(2021·衡水检测)命题p:若向量a·b<0,则a与b的夹角为钝角;命题q:若cosα·cosβ=1,则sin(α+β)=0.下列命题为真命题的是()A.pB.非qC.p且qD.p或q答案D解析当a,b方向相反时,a·b<0,但夹角是180°,不是钝角,命题p是假命题;若cosαcosβ=1,则cosα=cosβ=1或cosα=cosβ=-1,所以sinα=sinβ=0,从而sin(α+β)=0,命题q是真命题,所以p或q是真命题.8.已知命题p:“任意x∈[0,1],a≥e x”;命题q:“存在x0∈R,使得x20+4x0+a=0”.若命题“p且q”是真命题,则实数a的取值范围为()A.[e,4]B.(-∞,e]C.[e,4)D.[4,+∞)答案A解析若命题“p且q”是真命题,那么命题p,q都是真命题.由任意x∈[0,1],a≥e x,得a≥e;由存在x0∈R,使x20+4x0+a=0,得Δ=16-4a≥0,则a≤4,因此e≤a≤4.9.命题:存在x0∈R,1<f(x0)<2的否定是________________________.答案任意x∈R,f(x)≤1或f(x)≥210.若“任意x∈0,π4,tan x≤m”是真命题,则实数m的最小值为________.答案1解析∵函数y=tan x在0,π4上是增函数,∴y max=tan π4=1,依题意,m≥y max,即m≥1.∴m的最小值为1.11.下列命题为真命题的是________(填序号).①存在x0∈R,x20+x0+1≤0;②任意a∈R,f(x)=log(a2+2)x在定义域内是增函数;③若f(x)=2x-2-x,则任意x∈R,f(-x)=-f(x);④若f(x)=x+1x,则∃x0∈(0,+∞),f(x0)=1.答案②③解析x20+x0+10+34>0,故①错误;∵a2+2≥2>1,∴f(x)=log(a2+2)x在(0,+∞)上是增函数,故②正确;f(x)为奇函数,所以任意x∈R,都有f(-x)=-f(x),故③正确;x0∈(0,+∞)时,f(x0)=x0+1x0≥2,当且仅当x0=1时取“=”,故④错误.综上有②③正确.12.(2022·周口调研)已知p:函数f(x)=x2-(2a+4)x+6在(1,+∞)上是增函数,q:任意x∈R,x2+ax+2a-3>0,若p且(非q)是真命题,则实数a的取值范围为________.答案(-∞,-1]解析依题意,p为真命题,非q为真命题.若p为真命题,则2a+42≤1,解得a≤-1.①若非q为真命题,则存在x0∈R,x20+ax0+2a-3≤0成立.∴a2-4(2a-3)≥0,解之得a≥6或a≤2.②结合①②,知a≤-1,即实数a的取值范围是(-∞,-1].13.已知命题p:任意x>0,e x>x+1,命题q:存在x∈(0,+∞),ln x≥x,则下列命题为真命题的是()A.p且qB.(非p)且qC.p且(非q)D.(非p)且(非q)答案C解析令f(x)=e x-x-1,则f′(x)=e x-1,当x>0时,f′(x)>0,所以f(x)在(0,+∞)上单调递增,∴f(x)>f(0)=0,即e x>x+1,则命题p真;令g(x)=ln x-x,x>0,则g′(x)=1x-1=1-xx,当x∈(0,1)时,g′(x)>0;当x∈(1,+∞)时,g′(x)<0,即当x=1时,g(x)取得极大值,也是最大值,所以g(x)max=g(1)=-1<0,∴g(x)<0在(0,+∞)上恒成立,则命题q假,因此非q为真,故p且(非q)为真.14.(2019·全国Ⅲ卷)+y≥6,x-y≥0表示的平面区域为D.命题p:存在(x,y)∈D,2x+y≥9;命题q:任意(x,y)∈D,2x+y≤12.下面给出了四个命题①p或q;②(非p)或q;③p且(非q);④(非p)且(非q).这四个命题中,所有真命题的编号是()A.①③B.①②C.②③D.③④答案A 解析由不等式组画出平面区域D ,如图阴影部分所示,在图中画出直线2x +y =9,可知p 为真命题,非p 为假命题,作出直线2x +y =12,2x +y ≤12表示直线及其下方区域,易知命题q 为假命题;命题非q 为真命题;∴p 或q 为真,(非p )或q 为假,p 且(非q )为真,(非p )且(非q )为假.故真命题的编号为①③.15.已知函数f (x )的定义域为(a ,b ),若“存在x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则f (a +b )=________.答案0解析“存在x ∈(a ,b ),f (x )+f (-x )≠0”的否定是任意x ∈(a ,b ),f (x )+f (-x )=0,依题意:命题任意x ∈(a ,b ),f (x )+f (-x )=0为真命题,故函数y =f (x ),x ∈(a ,b )为奇函数,∴a +b =0,∴f (a +b )=f (0)=0.16.若f (x )=x 2-2x ,g (x )=ax +2(a >0),任意x 1∈[-1,2],存在x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.答案,12解析设f (x )=x 2-2x ,g (x )=ax +2(a >0)在[-1,2]上的值域分别为A ,B ,则A =[-1,3],B =[-a +2,2a +2],a +2≥-1,a +2≤3,∴a ≤12,又∵a >0,∴0<a ≤12.。
§1.3 简单的逻辑联结词且与或
命题p∨q的真假判断方法:
一般地,我们规定:当p,q两个命题中 有 一 个命题是真命题时,p∨q是 真 命题; 当p,q两个命题都是假命题时,p∨q 是 假 命题.
一句话概括: 一真则真, 全假才假.
p 真 真 假 q 真 假 真 p∨q 真
真 真
假
假
假
活动探究
探究:逻辑联结词“或”的含义与集 合中学过的哪个概念的意义相同呢?
探究新知,巩固练习
★★ 1. 且 (and)
1.问题1: 思考: 下列命题中,命题间有什么关系?
(1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除;
命题(3)是由命题(1)(2)使用联结词“且”联结得 到的新命题. 一般地,用联结词“且”把命题p和命题q联结起 来,就得到一个新命题,记作p∧q,读作“p且q”
解: (1)p∧q:平行四边形的对角线互相平分且
(2)p∧q :菱形的对角线互相垂直且平分. 相等.∵q是假命题,∴p∧q是假命题. p、q都是真命题, ∴ p∧q是真命题 (3)∵ p∧q : 24是8的倍数且是 6的倍数. . ∵ p和q都是真命题, ∴ p∧q是真命题
有些命题如含有“……和……”、
§1.3
简单的逻辑联结词
“且”与“或”
学习目标
1、会用联结词“且”和“或”联结所给命题, 构成新命题。 2、会判断用“且”和“或”联结成的新命题 的真假。
前面学过与“且”与“或”有关的知 识 x y 1 0
方程组 的解 2 x y 7 方程x 2 1 0的根
A B x x A且x B A B x x A或x B
思考:命题 p∨q的真假如何确定? 观察下列三组命题,命题p∨q的真假与p、q 的真假有什么联系? P:27是7的倍数; q:27是9的倍数; p∨q :27是7的倍数或是9的倍数. P:等腰梯形对角线垂直; q:等腰梯形对角线平分; p∨q:等腰梯形对角线垂直或平分.
2020版高中数学新人教版A版选修2-1课件第1章1.3简单的逻辑联结词第1课时“且”与“或”
数学
选修2-1 ·人教A版
第一章 常用逻辑用语
1.3 简单的逻辑联结词
第1课时 “且”与“或”
1
自主预习学案
2
互动探究学案
3
课时作业学案
自主预习学案
• 要在某居民楼一楼与二楼的楼梯间安一盏灯,一楼和二 楼各有一个开关,使得任意一个开关都能独立控制这盏灯,你 能运用“或”“且”的方法解决吗?
• A.p:4+4=9,q:7>4
(B )
• B.p:a∈{a,b,c},q:{a} {a,b,c}
• C.p:15是质数,q:8是12的约数
• D.p:2是偶数,q:2不是质数
• [解析] “p或q”“p且q”都为真,则p真q真,故选B.
• 5.给出下列条件: • (1)“p成立,q不成立”; • (2)“p不成立,q成立”; • (3)“p与q都成立”; • (4)“p与q都不成立”. • 其中能使“p或q”成立的条件是______(1_)_(2_)(_3_) ____(填序 号).
• 〔跟踪练习1〕
• 指出下列命题的形式及构成它的简单命题:
• (1)有两个内角是45°的三角形是等腰直角三角形;
• (2)±1是方程x3+x2-x-1=0的根.
• [思路分析] 要根据语句所表过的含义及逻辑联结词的 意义来进行分析和判断. • [解析] (1)这个命题是“p且q”形式的命题,其中p:有两 个内角是45°的三角形是等腰三角形,q:有两个内角是45°的 三角形是直角三角形. • (2)这个命题是“p或q”形式的命题,其中p:1是方程x3+ x2-x-1=0的根,q:-1是方程x3+x2-x-1=0的根.
• (2)这个命题是“p或q”的形式,其中,p:1是合数;q:1是质 数.
1.2.1 逻辑联结词“非”、“且”、“或”
“”与“”类似
例如:p:a>3 q:a<5
p q:a 3且a 5, 即:3 a 5
q
p
p q的真值表如下:
p q p q
真真真
类似于串联电路, 真 假 假 一假“且”即假
当且仅当开关p与 开关q都闭合时,
假
真
假
灯才会亮
假假假
例2:书本P15(详见书本)
补例 用逻辑连结词"且"改写下列命题,并判断 它们的真假:
1.2 简单的逻辑联结词
1.2.1 逻辑联结词“非”、“且”、“或”
联结词“非”
我们学习了命题的否命题,知道“若p则q”的否命题为 “若﹁p则﹁q”,其中“﹁p”是p的否定“﹁q”是q的否定。
“非” 否定
﹁p:排除p以外的所有事实
(概率中,即为求对立事件)
例如:p:a是大于5的实数,则﹁p:a是不大于5的实数
真
(4)﹁p:方程至少有三个解
假
(5)﹁p:小王和小李不都是一中的学生 假
即:小王或小李不是一中的学生
常用否定词语如下:
正面词语 = >
否定词语
是
不是
全是不全是至多有源自个至少有两个至少有一个
一个也没有
至多有n个
至少有n+1个
至少有k个
至多有k-1个
任意(每一个) 存在(某一个)
所有
存在某一些
a且b
11既是奇数,又是素数; 22和3都是素数.
解 1命题"1既是奇数,也是素数"可以改写
为"1是奇数且1是素数"因为"1是素数"是假命 题, 所以这个命题是假命题.
2命题" 2和3都是素数"可以改写为"2是素数
简单的逻辑联结词-且、或 课件
应角相等;
(3)p:函数 y= cos x是周期函数,q:函数y=cos x是奇函数.
解析:(1)因为 p是真命题,q是真命题,所以 “ p∨q”和“ p∧q”都是真命题.
(2)因为p是假命题,q是真命题,所以“p∨q”是真 命题,“ p∧q”是假命题.
∴p或q是真命题,p且q是假命题.
点评:有些命题表面上不含逻辑联结词,可以通过
改写化为“p∨q”或“p∧q”形式的命题,然后通过p、 q
的真假判断命题的真假.
或命题“p∨q”的真假特点是“一真即真,要假全 假”,且命题“p∧q”的真假特点是“一假即假,要真全
真”.
变式 训练
3.指出下列“p∨q”,“p∧q”命题的真假. (1)p: 当x∈R时,x2+1≥2x,q:当 x∈R时, |x|≥0;
点评:(1)当一个复合命题不是用“且”或“或”连 接时,可以将其改为用“且”或“或”连接的复合命题, 改写时要注意不能改变原命题的意思,这就要仔细考虑到 底是用“且”还是用“或”.
(2)在用“且”、“或”联结两个命题 p、 q时, 在不引起歧义的情况下,可将 p、 q中的条件或结论合
并,使叙述更通顺.
变式 训练
2.用“且 ”、“或”改写下列命题: (1)等腰三角形的顶角平分线平分底边,也垂直底边; (2)45 既能被 5 整除又能被 9 整除;
(3) x2-2=0 的根是± 2;
(4)3≥3.
解析:(1)等腰三角形的顶角平分线平分底边且垂直底边; (2)45 能被 5 整除且能被 9 整除;
(3)x2-2=0 的根是 2或- 2;
个相等的实数根且两根的绝对值相等.
(3)“p∨q”:三角形的外角等于与它不相邻的两个内 角的和或大于与它不相邻的任何一个内角;“p∧q”:三 角形的外角等于与它不相邻的两个内角的和且大于与它不 相邻的任何一个内角.
高三数学简单的逻辑联结词
基础知识梳理
2.全称量词和存在量词 (1)全称量词有:所有的,任意一个, 任给,用符号“ ∀ ”表示. 存在量词有:存在一个,至少有一个, 有些,用符号“ ∃ ”表示. (2)含有全称量词的命题,叫做 全称命题 ;“对M中任意一个x,有p(x) 成立”,可用符号简记为 ∀x∈M,p(x) , 读作“对任意x属于M,有p(x)成立”.
答案:p∨q, ¬p p∧q, ¬q
课堂互动讲练
考点一 命题真假的判断
“p∨q”、“p∧q”、“¬p”形式命 题真假的判断步骤:
(1)确定命题的构成形式; (2)判断其中命题p、q的真假; (3)确定“p∨q”、“p∧q”、“¬p” 形式命题的真假.
课堂互动讲练
例1 写出由下列各组命题构成的“p或 q”、“p且q”、“非p”形式的复合命题, 并判断真假. (1)p:1是素数;q:1是方程x2+2 x-3=0的根; (2)p:平行四边形的对角线相等; q:平行四边形的对角线互相垂直; (3)p:方程x2+x-1=0的两实根 符号相同;q:方程x2+x-1=0的两实 根的绝对值相等.
三基能力强化
4.(教材习题改编)“矩形的对角 线互相平分或互相垂直”是________ 命题.
答案:真
三基能力强化
5.命题p:“-2不是偶数”,q:π是 无理数,则在“p∧q”,“p∨q”,“¬p”,“ ¬q”中,真命题有________,假命题有___ _____.
解析:易判断知p假,q真,故真命题 有p∨q, ¬p;假命题有p∧q, ¬q.
课堂互动讲练
【思路点拨】 (1)利用“或”、 “且”、“非”把两个命题联结成新 命题;
(2)根据命题p和命题q的真假 判断复合命题的真假.
课堂互动讲练
简单的逻辑联结词(第一课时)“且”“或”“非” 课件
正面词语 否定词语 正面词语
等于 不等于
都是
大于(>) 不大于
(≤) 任意的
是 不是 至多有一个
否定词语 不都是 某一个 至少有两个
正面词语 否定词语
至少有一个 一个也没有
ቤተ መጻሕፍቲ ባይዱ
3.判断含有逻辑联结词“或”、“且”、“非”的命题 的真假
(1)弄清构成命题的p,q的真假; (2)弄清结构形式; (3)用真值表判别命题的真假.
题型二 判断命题的真假 例2 分别指出下列命题的形式及构成它的命题,并判 断真假: (1)相似三角形周长相等或对应角相等; (2)9的算术平方根不是-3; (3)垂直于弦的直径平分这条弦,并且平分弦所对的两段 弧.
分析 根据组成上述各命题的语句中所出现的逻辑联结 词,并用真值表判断真假.
解 (1)这个命题是 p∨q 的形式,其中 p:相似三角形周 长相等;q:相似三角形对应角相等,因为 p 假 q 真,所以 p ∨q 为真.
答案 1.“且”、“或”、“非” 2.真 真 假 假 真 假 假 真 真 假 假 真
1.对逻辑联结词“或”的理解 (1)“或”与日常生活用语中的“或”意义不同.日常生 活用语中的“或”带有“不可兼有”的意思,如工作或休 息,而逻辑联结词“或”含有“同时兼有”的意思,如x<- 1,或x>2.
(2)“或”与集合A∪B有关系,A∪B={x|x∈A,或x∈ B}.集合的并集是用“或”来定义的.
规律技巧 一个命题“若 p,则 q”的否定是:“若 p, 则﹁q”;否命题为:“若﹁p,则﹁q”.
4.命题的否定与否命题 (1)一个命题的否定(非)只否定结论,而一个命题的否命 题是对条件和结论都否定.
如:命题 p:空集是集合 A 的子集.綈 p:空集不是集合 A 的子集.否命题:若集合不是空集,则它不是集合 A 的子集.因 此,一个命题的否定与它的否命题是有区别的.
简单的逻辑联结词
[解] (1)∵p是真命题,q是真命题,
∴p∨q是真命题,p∧q是真命题,綈p是假命题.
(2)∵p是假命题,q是真命题, ∴p∨q是真命题,p∧q是假命题,綈p是真命题. (3)∵p是假命题,q是真命题, ∴p∨q是真命题,p∧q是假命题,綈p是真命题.
[点评与警示]
判断含有逻辑联结词 “或”“且”“非”
(1) 全( 特 ) 称命题的否定与命题的否定有
着一定的区别,全 (特 ) 称命题的否定是将其全称量词改为存 在量词( 或存在量词改为全称量词 ),并把结论否定;而命题 的否定,则直接否定结论即可. (2)要判断“綈p”的真假,可以直接判断,也可以判断p
的真假,利用p与綈p的真假相反判断.
写出下列命题的否定,并判断命题的否定的真假,指出 命题的否定属全称命题还是特称命题: (1)所有的有理数是实数; (2)有的三角形是直角三角形;
1.如命题“p∨q”为真命题则 ( A.p、q均为真命题 B.p、q均为假命题 )
C.p、q中至少有一个为真命题
D.p、q中至多有一个为真命题 [答案] C
2.(2010·湖南卷)下列命题中的假命题是
(
A.∃x∈R,lgx=0 B.∃x∈R,tanx=1 C.∀x∈R,x2>0 D.∀x∈R,2x>0
”在
逻辑中通常叫做全称量词,用“ ∀ ”表示,常用的全称量词 还有“ ”等. 的命题叫全称命题. (2)全称命题:含 全称量词
(3)存在量词:短语“ 存在一个 ”、“ 至少一个 ” 在
逻辑中通常叫存在量词,用“∃ ”表示,常见的存在量词还
有“ 有些、有一个、某个 ”等. (4)特称命题:含有 存在量词 的命题叫特称命题.
的命题的真假:①必须弄清构成它的命题的真假;②弄清结 构形式;③根据真值表判断其真假.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于p是假命题,q是真命题, p ∨ q所以是真命题。
解: (3)p ∨ q:“周长相等的两个三角形全
等或面积相等的两个三角形全等”.
由于p是假命题,q是假命题, p ∨ q所以是假命题。
练习2: 用逻辑联结词“或”改写下列命题,并 判断真假。 (1)P:25>27; q:y=lgx是增函数 真 (2)p:9是奇数;q:4是12的约数. 真 (3)p:2是合数; q:12是4的约数 假
解: (1)p∧q:平行平行四边形的对 角线互相平分且相等 由于p是真命题,q是假命题, p∧q所以是假命题。
(2)p:菱形的对角线互相垂直, q:菱形的对角线互相平分
解: (2)p∧q:菱形的对角线互相垂 直且平分
由于p是真命题,q是真命题, p∧q所以是真命题。
(3)p:35是15的倍数, q: 35是7的倍数
二、由“或”构成的复合命题
定义:一般地,用联结词“或”把命题p 和命题q联结起来,就得到一个新命题,记 作p ∨ q,读作“p或q”
思考:命题 p ∨ q的真假如何确定?
一般地,我们规定:
当p,q两个命题中有一个命题是真命 题时,p∨q是真命题;当p,q两个命题都 是假命题时,p∨q是假命题。p
复合命题的真假可用如下真值表来表示: p q p∧q p ∨q 真真真真 真假假真 假真假真 假假假假
记忆 口诀
“全真才真,有假即假.”
有真即真, 全假才假.
记忆口诀:
q
有真即真, 全假才假.
例2 判断下列命题的真假:
(1)2≤2 (2)集合A是A∩B的子集或是A∪B的子 集. (3)周长相等的两个三角形全等或面积相 等的两个三角形全等.
解:
(1)p ∨ q:“2 2”,是“2>2或2=2”
由于p是假命题,q是真命题, p ∨ ห้องสมุดไป่ตู้所以是真命题。
解: (2)p ∨ q:“集合A是A∩B的子集或是
假(2)p:N Z,q:{0} N;
假 (3) p : x2 1 x 4,q : x2 1 x 4
二、由“或”构成的复合命题
下列三个命题间有什么关系? 思考: (1)27是7的倍数;
(2)27是9的倍数; (3)27是7的倍数或是9的倍数.
可以看到命题(3)是由命题(1)(2)使用联 结词“或”联结得到的新命题。
复合命题的含义你懂吗?
思考: 下列三个命题间有什么关系? (1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除.
可以看到命题(3)是由命题(1)(2)使用联 结词“且”联结得到的新命题.
一、由“且”构成的复合命题
定义:一般地,用联结词“且”把命 题p和命题q联结起来,就得到一个新命题, 记作 p∧q,读作“p且q”
思考:命题 p∧q的真假如何确定?
一般地,我们规定: 当p,q都是真命题时,p∧q是真命题;
当p,q 两个命题中有一个命题是假命题时, p∧q是假命题。
pq
记忆口诀:
“全真才真,有假即假.”
例1:将下列命题用“且”联结成新 命题,并判断它们的真假:
(1)p:平行四边形的对角线互相平分, q:平行四边形的对角线相等
解: (3)p∧q: 35是15的倍数且是7 的倍数
由于p是假命题,q是真命题, p∧q所以是假命题。
(4)p:5>3, q: 5=3
解: (4)p∧q: 5>3 且5=3
由于p是真命题,q是假命题, p∧q所以是假命题。
练习1:将下列命题用“且”联结成新命题, 并判断真假。
真(1)p: 2 是无理数,q: 2 大于1;
15.1.3简单的逻辑联结词
在数学中常常要使用逻辑联结词 “或”、“且”、“非”,它们与日 常生活中这些词语所表达的含义和用 法是不尽相同的,下面我们就分别介 绍数学中使用联结词“或”、“且”、 “非”联结命题时的含义与用法。
为了叙述简便,今后常用小写字母 p,q,r,s,…表示命题。
一、由“且”构成的复合命题