高中数学 模块综合测试卷 新人教A版必修4 (2)
2020-2021学年数学人教A版必修4模块综合测试
模块综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知角α的终边过点P (sin(-30°),cos(-30°)),则角α的一个值为( D )A .30°B .-30°C .-60°D .120°解析:P ⎝ ⎛⎭⎪⎫-12,32,点P 在第二象限,sin α=32,cos α=-12,∴120°为角α的一个值.2.已知sin α=23,则cos(π-2α)等于( B ) A .-53 B .-19 C .19D .53解析:cos(π-2α)=-cos2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.3.对于函数f (x )=2sin x cos x ,下列选项中正确的是( B )A .f (x )在⎝ ⎛⎭⎪⎫π4,π2上是递增的B .f (x )的图象关于原点对称C .f (x )的最小正周期为2πD .f (x )的最大值为2解析:f (x )=2sin x cos x =sin2x ,它在(π4,π2)上是单调递减的,图象关于原点对称,最小正周期是π,最大值为1,故B 是正确的.4.已知▱ABCD 中,AD →=(-3,7),AB →=(4,3),对角线AC 、BD 交于点O ,则CO→的坐标为( C ) A .⎝ ⎛⎭⎪⎫-12,5 B .⎝ ⎛⎭⎪⎫12,5 C .⎝ ⎛⎭⎪⎫-12,-5D .⎝ ⎛⎭⎪⎫12,-5解析:由AD→+AB →=(-3,7)+(4,3)=(1,10). ∵AD→+AB →=AC →.∴AC →=(1,10). ∴CO →=-12AC →=⎝ ⎛⎭⎪⎫-12,-5.故应选C .5.已知e 1,e 2是夹角为60°的两个单位向量,若a =e 1+e 2,b =-4e 1+2e 2,则a 与b 的夹角为( C )A .30°B .60°C .120°D .150°解析:依据题意a ·b =-3,|a |·|b |=3×23=6, cos 〈a ,b 〉=-12,故a 与b 的夹角为120°.6.设α∈(0,π),sin α+cos α=13,则cos2α的值是( C ) A .179 B .-223 C .-179D .179或-179解析:∵sin α+cos α=13,∴1+2sin αcos α=19,即2sin αcos α=-89.∵α∈(0,π),∴sin α>0,cos α<0,∴cos α-sin α<0,∴cos α-sin α=-(cos α-sin α)2=-1-2sin αcos α=-173,∴cos2α=(cos α-sin α)(cos α+sin α)=-179.7.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( B )A .3π4B .π4C .0D .-π4解析:y =sin(2x +φ)――→向左平移π8个单位y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+φ =sin ⎝ ⎛⎭⎪⎫2x +π4+φ.当φ=3π4时,y =sin(2x +π)=-sin2x ,为奇函数; 当φ=π4时,y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos2x ,为偶函数;当φ=0时,y =sin ⎝ ⎛⎭⎪⎫2x +π4,为非奇非偶函数; 当φ=-π4时,y =sin2x ,为奇函数.故选B .8.已知sin(α-β)=35,cos(α+β)=-35,且α-β∈(π2,π),α+β∈(π2,π),则cos2β的值为( C )A .1B .-1C .2425D .-45解析:由题意知cos(α-β)=-45,sin(α+β)=45, 所以cos2β=cos[α+β-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β) =(-35)×(-45)+45×35=2425.9.已知tan ⎝ ⎛⎭⎪⎫α+π4=12,且-π2<α<0,则2sin 2α+sin2αcos ⎝ ⎛⎭⎪⎫α-π4等于( A ) A .-255 B .-3510 C .-31010D .255解析:由tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=12,得tan α=-13. 又-π2<α<0,∴sin α=-1010. 故2sin 2α+sin2αcos ⎝ ⎛⎭⎪⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α) =22sin α=-255.10.已知向量a =⎝ ⎛⎭⎪⎫2cos x ,22sin x ,b =⎝ ⎛⎭⎪⎫22sin x ,2cos x ,f (x )=a ·b ,要得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将f (x )的图象( C )A .向左平移π3个单位 B .向右平移π3个单位 C .向左平移π6个单位 D .向右平移π6个单位解析:f (x )=a ·b =sin x cos x +sin x cos x =sin2x .而y =sin ⎝⎛⎭⎪⎫2x +π3=sin2⎝ ⎛⎭⎪⎫x +π6, 于是只需将f (x )的图象向左平移π6个单位.故选C .11.将函数y =sin ωx (ω>0)的图象向左平移π6个单位,平移后的图象如图所示,则平移后的图象所对应的函数解析式是( C )A .y =sin ⎝ ⎛⎭⎪⎫x +π6B .y =sin ⎝ ⎛⎭⎪⎫x -π-π6 C .y =sin ⎝ ⎛⎭⎪⎫2x +π3D .y =sin ⎝ ⎛⎭⎪⎫2x -π3解析:将函数y =sin ωx (ω>0)的图象向左平移π6个单位,平移后的图象所对应的解析式为y =sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π6.由题图象知,⎝ ⎛⎭⎪⎫7π12+π6ω=3π2,所以ω=2.所以平移后的图象所对应的函数解析式是y =sin ⎝ ⎛⎭⎪⎫2x +π3. 12.点O 在△ABC 所在平面内,给出下列关系式: ①OA→+OB →+OC →=0; ②OA →·⎝ ⎛⎭⎪⎪⎫AC →|AC →|-AB →|AB →|=OB →·⎝ ⎛⎭⎪⎪⎫BC →|BC →|-BA →|BA →|=0; ③(OA →+OB →)·AB →=(OB →+OC →)·BC →=0. 则点O 依次为△ABC 的( C ) A .内心、重心、垂心 B .重心、内心、垂心 C .重心、内心、外心D .外心、垂心、重心解析:①由于OA →=-(OB →+OC →)=-2OD →,其中D 为BC 的中点,可知O 为BC 边上中线的三等分点(靠近线段BC ),所以O 为△ABC 的重心;②向量AC →|AC →|,AB →|AB →|分别表示在AC 和AB 上的单位向量AC ′→和AB ′→,它们的差是向量B ′C ′→,当OA →·⎝ ⎛⎭⎪⎪⎫AC →|AC →|-AB →|AB →|=0,即OA ⊥B ′C ′时,则点O 在∠BAC 的平分线上,同理由OB →·⎝ ⎛⎭⎪⎪⎫BC →|BC →|-BA →|BA →|=0,知点O 在∠ABC 的平分线上,故O 为△ABC 的内心;③OA →+OB →是以OA →,OB →为边的平行四边形的一条对角线,而AB →是该四边形的另一条对角线,AB →·(OA →+OB →)=0表示这个平行四边形是菱形,即|OA→|=|OB →|,同理有|OB →|=|OC →|,于是O 为△ABC 的外心. 第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,把★★答案★★填在题中横线上)13.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=43.解析:设BC→=b ,BA →=a , 则AF →=12b -a ,AE →=b -12a ,AC →=b -A . 代入条件得λ=μ=23,∴λ+μ=43.14.已知tan ⎝ ⎛⎭⎪⎫α-π4=12,则sin α+cos αsin α-cos α的值为2 .解析:由tan ⎝ ⎛⎭⎪⎫α-π4=tan α-11+tan α=12,解得tan α=3,所以sin α+cos αsin α-cos α=tan α+1tan α-1=42=2.15.已知函数f (x )=A cos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y 轴交点坐标为(0,2),其相邻的两条对称轴的距离为2,则f (1)+f (2)+…+f (2 015)=4 030 .解析:由最大值为3知A =2,f (x )=2cos 2(ωx +φ)+1=cos(2ωx +2φ)+2,由交点(0,2)及0<φ<π2知φ=π4. ∴f (x )=2-sin2ωx . 又周期为4,∴ω=π4.∴f (x )=2-sin π2x ,f (1)+f (2)+f (3)+f (4)=8.∴f (1)+f (2)+…+f (2 015)=503[f (1)+f (2)+f (3)+f (4)]+f (1)+f (2)+f (3)=503×8+6=4 030.16.给出下列四个命题:①函数y =tan x 的图象关于点(k π+π2,0)(k ∈Z )对称;②函数f (x )=sin|x |是最小正周期为π的周期函数;③设θ为第二象限的角,则tan θ2>cos θ2,且sin θ2>cos θ2;④函数y =cos 2x +sin x 的最小值为-1.其中正确的命题是①④.解析:①由正切曲线,知点(k π,0),(k π+π2,0)是正切函数图象的对称中心,∴①对;②f (x )=sin|x |不是周期函数,②错; ③∵θ∈(2k π+π2,2k π+π),k ∈Z , ∴θ2∈(k π+π4,k π+π2),k ∈Z .当k =2n +1,n ∈Z 时,sin θ2<cos θ2.∴③错; ④y =1-sin 2x +sin x =-(sin x -12)2+54, ∴当sin x =-1时,y min =1-(-1)2+(-1)=-1. ∴④对.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)计算:(1)cos π5+cos 2π5+cos 3π5+cos 4π5; (2)tan10°+tan170°+sin1 866°-sin(-606°). 解:(1)原式=⎝⎛⎭⎪⎫cos π5+cos 4π5+⎝⎛⎭⎪⎫cos 2π5+cos 3π5=⎣⎢⎡⎦⎥⎤cos π5+cos ⎝ ⎛⎭⎪⎫π-π5+⎣⎢⎡⎦⎥⎤cos 2π5+cos ⎝ ⎛⎭⎪⎫π-2π5 =⎝⎛⎭⎪⎫cos π5-cos π5+⎝ ⎛⎭⎪⎫cos 2π5-cos 2π5=0. (2)原式=tan10°+tan(180°-10°)+sin(5×360°+66°)-sin[(-2)×360°+114°]=tan10°-tan10°+sin66°-sin(180°-66°)=sin66°-sin66°=0.18.(12分)已知|a |=2|b |=2,且向量a 在向量b 的方向上的投影为-1,求:(1)a 与b 的夹角θ; (2)(a -2b )·B .解:(1)由题意知,|a |=2,|b |=1,|a |cos θ=-1, ∴a ·b =|a ||b |cos θ=-|b |=-1, ∴cos θ=a ·b |a ||b |=-12.由于θ∈[0,π], ∴θ=2π3即为所求.(2)(a -2b )·b =a ·b -2b 2=-1-2=-3.19.(12分)已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示.(1)求函数的解析式;(2)求这个函数的单调递增区间.解:(1)由题图象可知A =2,T 2=3π8-(-π8)=π2, ∴T =π,ω=2, ∴y =2sin(2x +φ),将点(-π8,2)代入得-π4+φ=2k π+π2(k ∈Z ), ∵|φ|<π,∴φ=34π.∴函数的解析式为y =2sin(2x +3π4). (2)由2k π-π2≤2x +3π4≤2k π+π2(k ∈Z ), 得k π-5π8≤x ≤k π-π8(k ∈Z ).∴函数y =2sin(2x +3π4)的单调递增区间为 [k π-5π8,k π-π8](k ∈Z ).20.(12分)已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝ ⎛⎭⎪⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝ ⎛⎭⎪⎫α4=-25,α∈⎝ ⎛⎭⎪⎫π2,π,求sin ⎝ ⎛⎭⎪⎫α+π3的值. 解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数, 又θ∈(0,π),得θ=π2, 所以f (x )=-sin2x ·(a +2cos 2x ),由f ⎝ ⎛⎭⎪⎫π4=0得-(a +1)=0.即a =-1.(2)由(1)得,f (x )=-12sin4x ,因为f ⎝ ⎛⎭⎪⎫α4=-12sin α=-25.即sin α=45,又α∈⎝ ⎛⎭⎪⎫π2,π,从而cos α=-35. 所以sin ⎝⎛⎭⎪⎫α+π3=sin αcos π3+cos αsin π3=4-3310.21.(12分)如图,在△ABC 中,已知AB =2,AC =6,∠BAC =60°,点D ,E 分别在边AB ,AC 上,且AB→=2AD →,AC →=5AE →,(1)若BF →=-34AB →+110AC →,求证:点F 为DE 的中点. (2)在(1)的条件下,求BA →·EF →的值. 解:(1)证明:因为BF →=-34AB →+110AC →, 所以AF →=BF →-BA →=14AB →+110AC →, 又AB→=2AD →,AC →=5AE →, 所以AF →=12AD →+12A E →,所以F 为DE 的中点.(2)由(1)可得EF →=12ED →=12(AD →-AE →),因为AB→=2AD →,AC →=5AE →, 所以EF →=14AB →-110AC →, 所以BA →·EF →=-AB →·⎝ ⎛⎭⎪⎫14AB →-110AC → =-14AB →2+110AB →·AC →=-14×4+110×2×6×cos60°=-25.22.(12分)已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ),设函数f (x )=a ·b +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈(12,1).(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点(π4,0),求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,3π5上的取值范围.解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos2ωx +3sin2ωx +λ=2sin(2ωx -π6)+λ.由直线x =π是y =f (x )图象的一条对称轴,可得sin(2ωπ-π6)=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈(12,1),k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点(π4,0),得f (π4)=0,即λ=-2sin(56×π2-π6)=-2sin π4=-2,即λ=- 2.故f (x )=2sin(53x -π6)-2,由0≤x ≤3π5,有-π6≤53x -π6≤5π6, 所以-12≤sin(53x -π6)≤1, 得-1-2≤2sin(53x -π6)-2≤2-2,故函数f (x )在[0,3π5]上的取值范围为[-1-2,2-2].感谢您的下载!快乐分享,知识无限!由Ruize收集整理!感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
高中数学 模块综合检测(二)(含解析)新人教A版必修4
模块综合检测(二)(时间:120分钟,满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(全国卷Ⅱ)向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1D .2解析:选C 法一:∵a =(1,-1),b =(-1,2), ∴a 2=2,a ·b =-3,从而(2a +b )·a =2a 2+a ·b =4-3=1. 法二:∵a =(1,-1),b =(-1,2), ∴2a +b =(2,-2)+(-1,2)=(1,0), 从而(2a +b )·a =(1,0)·(1,-1)=1,故选C. 2.点M (2,tan 300°)位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D ∵tan 300°=tan(360°-60°)=-tan 60°=-3, ∴M (2,-3).故点M (2,tan 300°)位于第四象限.3.已知OA =(2,3),OB =(-3,y ),且OA ⊥OB ,则y 等于( ) A .2 B .-2 C.12D .-12解析:选A ∵OA ⊥OB ,∴OA ·OB =-6+3y =0,∴y =2. 4.已知cos ⎝ ⎛⎭⎪⎫π2-φ=32,且|φ|<π2,则tan φ=( )A .-33 B.33C .- 3 D. 3解析:选D cos ⎝ ⎛⎭⎪⎫π2-φ=sin φ=32,又|φ|<π2,则cos φ=12,所以tan φ= 3.5.2sin 2α1+cos 2α·cos 2αcos 2α等于( ) A .tan αB .tan 2αC .1 D.12解析:选B 2sin 2α1+cos 2α·cos 2αcos 2α=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α. 6.设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ) A .-3 B .-1 C .1D .3解析:选A 由题意可知tan α+tan β=3, tan α·tan β=2,则tan(α+β)=tan α+tan β1-tan αtan β=-3.7.已知函数f (x )=2sin x ,对任意的x ∈R 都有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值为( )A.π4 B.π2C .πD .2π解析:选C ∵f (x )=2sin x 的周期为2π, ∴|x 1-x 2|的最小值为π.8.已知a =(1,sin 2x ),b =(2,sin 2x ),其中x ∈(0,π).若|a ·b |=|a ||b |,则tanx 的值等于( )A .1B .-1C. 3D.22解析:选A 由|a ·b |=|a ||b |知a ∥b .所以sin 2x =2sin 2x ,即2sin x cos x =2sin 2x .而x ∈(0,π),所以sin x =cos x ,即x =π4,故tan x =1.9.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin ⎝ ⎛⎭⎪⎫2x -π10B .y =sin ⎝⎛⎭⎪⎫2x -π5 C .y =sin ⎝ ⎛⎭⎪⎫12x -π10 D .y =sin ⎝ ⎛⎭⎪⎫12x -π20解析:选C 函数y =sin x 的图象上的点向右平移π10个单位长度可得函数y =sin ⎝ ⎛⎭⎪⎫x -π10的图象;再把各点的横坐标伸长到原来的2倍(纵坐标不变)可得函数y =sin ⎝ ⎛⎭⎪⎫12x -π10的图象,所以所得函数的解析式是y =sin ⎝ ⎛⎭⎪⎫12x -π10. 10.(全国甲卷)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A .4 B .5 C .6D .7解:选B ∵f (x )=cos 2x +6cos ⎝⎛⎭⎪⎫π2-x =cos 2x +6sin x =1-2sin 2x +6sin x =-2⎝⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],∴当sin x =1时,f (x )取得最大值5.故选B.11.如图,在△ABC 中,AD ⊥AB ,BC =3BD ,|AD |=1,则AC ·AD =( )A .2 3B .3 3 C.32D. 3解析:选D 建系如图. 设B (x B,0),D (0,1),C (x C ,y C ),BC =(x C -x B ,y C ),BD =(-x B,1).∵BC = 3 BD ,∴x C -x B =-3x B ⇒x C =(1-3)x B ,y C = 3.AC =((1-3)x B ,3),AD =(0,1),AC ·AD = 3.12.已知向量a ,b 不共线,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为( )A .3B .-3C .0D .2解析:选A 由原式可得⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3.所以x -y =3.二、填空题(本题共4小题,每小题5分,共20分)13.(全国乙卷)设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 解析:∵|a +b |2=|a |2+|b |2+2a ·b =|a |2+|b |2,∴a ·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2. 答案:-214.已知非零向量m ,n 满足4|m|=3|n|,cos 〈m ,n 〉=13,若n ⊥(t m +n ),则实数t的值为________.解析:∵n ⊥(t m +n ),∴n·(t m +n )=0, 即t m·n +|n |2=0,∴t|m||n|cos 〈m ,n 〉+|n |2=0. 又4|m |=3|n |,∴t ×34|n|2×13+|n |2=0,解得t =-4. 答案:-415.(山东高考)函数y =32sin 2x +cos 2x 的最小正周期为________. 解析:y =32sin 2x +12cos 2x +12=sin2x +π6+12,所以其最小正周期为2π2=π. 答案:π16.化简:sin 2⎝ ⎛⎭⎪⎫α-π6+sin 2⎝ ⎛⎭⎪⎫α+π6-sin 2α的结果是________.解析:原式=1-cos ⎝ ⎛⎭⎪⎫2α-π32+1-cos ⎝ ⎛⎭⎪⎫2α+π32-sin 2α=1-12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2α-π3+cos ⎝ ⎛⎭⎪⎫2α+π3-sin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.答案:12三、解答题(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)设a =(1+cos x,1+sin x ),b =(1,0),c =(1,2). (1)求证:(a -b )⊥(a -c );(2)求|a |的最大值,并求此时x 的值. 解:(1)证明:a -b =(cos x,1+sin x ),a -c =(cos x ,sin x -1),(a -b )·(a -c )=(cos x,1+sin x )·(cos x ,sin x -1)=cos 2x +sin 2x -1=0. ∴(a -b )⊥(a -c ). (2)|a |= +cos x2++sin x2=3+x +cos x=3+22sin ⎝⎛⎭⎪⎫x +π4≤ 3+22=2+1.当sin ⎝⎛⎭⎪⎫x +π4=1,即x =π4+2k π(k ∈Z)时,|a |有最大值2+1.18.(本小题满分12分)已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ).(1)求证:tan(α+β)=2tan α; (2)求f (x )的解析式.解:(1)证明:由sin(2α+β)=3sin β, 得sin[(α+β)+α]=3sin[(α+β)-α], 即sin(α+β)cos α+cos(α+β)sin α =3sin (α+β)cos α-3cos(α+β)sin α, ∴sin(α+β)cos α=2cos(α+β)sin α. ∴tan(α+β)=2tan α.(2)由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y1-xy=2x , ∴y =x1+2x 2,即f (x )=x1+2x2.19.(本小题满分12分)已知cos ⎝⎛⎭⎪⎫α-β2=-45,sin β-α2=513,且π2<α<π,0<β<π2,求cos α+β2的值. 解:∵π2<α<π,0<β<π2,∴α-β2∈⎝ ⎛⎭⎪⎫π4,π,β-α2∈⎝ ⎛⎭⎪⎫-π2,π4. ∴sin ⎝ ⎛⎭⎪⎫α-β2=1-cos 2⎝ ⎛⎭⎪⎫α-β2=35,cos ⎝⎛⎭⎪⎫β-α2= 1-sin 2⎝⎛⎭⎪⎫β-α2=1213. ∵⎝⎛⎭⎪⎫α-β2+⎝ ⎛⎭⎪⎫β-α2=α+β2,∴cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α-β2+⎝ ⎛⎭⎪⎫β-α2=cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫β-α2-sin ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫β-α2=⎝ ⎛⎭⎪⎫-45×1213-35×513=-6365.20.(本小题满分12分)如图,摩天轮上一点P 在时刻t (单位:分钟)距离地面的高度y (单位:米)满足y =A sin(ωt +φ)+b ,φ∈[-π,π],已知该摩天轮的半径为50米,圆心O 距地面的高度为60米,摩天轮做匀速转动,每3分钟转一圈,点P 的起始位置在摩天轮的最低点处.(1)根据条件写出y 关于t 的解析式;(2)在摩天轮转动的一圈内,有多长时间点P 距离地面的高度超过85米? 解:(1)由题设可知A =50,b =60, 又T =2πω=3,所以ω=2π3,从而y =50sin ⎝⎛⎭⎪⎫2π3t +φ+60.由题设知t =0时y =10, 将t =0,y =10代入y =50sin ⎝ ⎛⎭⎪⎫2π3t +φ+60,得sin φ=-1,又φ∈[-π,π],从而φ=-π2,因此y =60-50cos 2π3t (t ≥0).(2)要使点P 距离地面的高度超过85米,则有y =60-50cos 2π3t >85,即cos 2π3t <-12,解得2π3<2π3t <4π3,即1<t <2,所以在摩天轮转动的一圈内,点P 距离地面的高度超过85米的时间有1分钟. 21.(本小题满分12分)已知f (x )=23cos 2x +sin 2x -3+1(x ∈R). (1)求f (x )的最小正周期; (2)求f (x )的递增区间;(3)当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,求f (x )的值域. 解:f (x )=sin 2x +3(2cos 2x -1)+1=sin 2x + 3cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π3+1. (1)函数f (x )的最小正周期T =2π2=π.(2)由2k π-π2≤2x +π3≤2k π+π2,得2k π-5π6≤2x ≤2k π+π6,∴k π-5π12≤x ≤k π+π12(k ∈Z).∴函数f (x )的递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z).(3)∵x ∈⎣⎢⎡⎦⎥⎤-π4,π4,∴2x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6.∴sin ⎝ ⎛⎭⎪⎫2x +π3∈⎣⎢⎡⎦⎥⎤-12,1.∴f (x )∈[0,3].22.(本小题满分12分)已知向量m =(sin x,1),n =3A cos x ,A2cos 2x (A >0),函数f (x )=m ·n 的最大值为6.(1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤0,5π24上的值域.解: (1)f (x )=m ·n=3A sin x cos x +A2cos 2x=A ⎝⎛⎭⎪⎫32sin 2x +12cos 2x=A sin ⎝ ⎛⎭⎪⎫2x +π6. 因为A >0,由题意知A =6. (2)由(1)知f (x )=6sin ⎝⎛⎭⎪⎫2x +π6.将函数y =f (x )的图象向左平移π12个单位后得到y =6sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π6=6sin ⎝ ⎛⎭⎪⎫2x +π3的图象;再将得到图象上各点横坐标缩短为原来的12倍,纵坐标不变,得到y =6sin ⎝ ⎛⎭⎪⎫4x +π3的图象.因此g (x )=6sin ⎝⎛⎭⎪⎫4x +π3.因为x ∈⎣⎢⎡⎦⎥⎤0,5π24,所以4x +π3∈⎣⎢⎡⎦⎥⎤π3,7π6,故g (x )在⎣⎢⎡⎦⎥⎤0,5π24上的值域为[-3,6].。
人教A版必修四高一数学必修4综合考试卷(人教A版附答案.docx
高中数学学习材料唐玲出品高一数学必修4综合考试卷(人教A 版附答案)第I 卷注意事项:本次考试试卷分为试题和答题卷两部分,学生应把试题中的各个小题答在第II 卷中相应的位置上,不能答在试题上,考试结束后,只交答题卷。
一、选择题:本大题共10题,每小题3分,共30分。
在每一题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在...........第.II ..卷的选择题答案表中.........。
1.将-300o 化为弧度为( ) A .-;34π B .-;35π C .-;67π D .-;47π2.若角α的终边过点(sin30o ,-cos30o ),则sin α等于( ) A .;21 B .-;21 C .-;23 D .-;33 3.下列四式不能化简为AD 的是( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .;-+BM AD M B D .;+-CD OA OC 4.oooo26sin 19sin -26cos 71sin 的值为( ) A .;21B .1;C .-;22 D .;22 5.函数)23cos(3x y π+=的图象是把y=3cos3x 的图象平移而得,平移方法是( )A .向左平移2π个单位长度; B .向左平移6π个单位长度; C .向右平移2π个单位长度; D .向右平移6π个单位长度; 6.在下列四个函数中,在区间),(20π上为增函数,且以π为最小正周期的偶函数是( ) A .y=x 2; B .y=|sinx|; C .y=cos2x; D .y=sinxe ;7.在∆ABC 中,若sinAsinB<cosAcosB ,则∆ABC 一定是( ) A .锐角三角形; B .直角三角形; C .钝角三角形; D .不能确定;8.已知)(),点=(),,-=(-21x,P 1,1ON 32OM 在线段NM 的中垂线上, 则x 等于( )A .;-25B .;-23C .;-27 D .-3;9.在平面直角坐标系中,已知两点A (cos80o ,sin80o ),B(cos20o ,sin20o ),则|AB |的值是( ) A .;21 B .;22 C .;23 D .1; 10.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足,+=OB OA OC βα 1R =+,且、其中βαβα∈,则点C 的轨迹方程是( )A .3x+2y -11=0;B .(x -1)2+(y -2)2=5;C .2x -y=0;D .x+2y -5=0;二、填空题:本大题共有5小题,每小题3分,满分15分。
高中数学人教a版高一必修四章末综合测评2有答案
章末综合测评(二) 平面向量(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·全国卷Ⅰ)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)【解析】 法一:设C (x ,y ), 则AC→=(x ,y -1)=(-4,-3), 所以⎩⎨⎧x =-4,y =-2,从而BC→=(-4,-2)-(3,2)=(-7,-4).故选A . 法二:AB→=(3,2)-(0,1)=(3,1),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 故选A . 【答案】 A2.(2015·福建高考)设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C .53D .32 【解析】 c =a +k b =(1+k ,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.【答案】 A3.(2015·山东高考)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=( )A .-32a 2B .-34a 2C .34a 2D .32a 2【解析】 由已知条件得BD →·CD →=BD →·BA →=3a ·a cos 30°=32a 2,故选D . 【答案】 D4.(2015·陕西高考)对任意向量a ,b ,下列关系式中不恒成立....的是( ) A .|a·b |≤|a ||b | B .|a -b |≤||a |-|b || C .(a +b )2=|a +b |2 D .(a +b )·(a -b )=a 2-b 2【解析】 根据a·b =|a||b|cos θ,又cos θ≤1,知|a·b|≤|a||b|,A 恒成立.当向量a 和b 方向不相同时,|a -b |>||a|-|b||,B 不恒成立.根据|a +b |2=a 2+2a·b +b 2=(a +b )2,C 恒成立.根据向量的运算性质得(a +b )·(a -b )=a 2-b 2,D 恒成立.【答案】 B5.(2015·重庆高考)已知非零向量a ,b 满足|b|=4|a|,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3D .5π6【解析】 ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a||b|cos 〈a ,b 〉=0.∵|b|=4|a|,∴2|a|2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=23π. 【答案】 C6.(2015·安徽高考)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a ·b =1D .(4a +b )⊥BC→【解析】 在△ABC 中,由BC →=AC →-AB →=2a +b -2a =b ,得|b |=2.又|a |=1,所以a ·b =|a ||b |cos 120°=-1,所以(4a +b )·BC →=(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥BC→,故选D . 【答案】 D7.(2016·锦州高一检测)已知向量a =(2,1),a ·b =10,|a +b|=50,则|b|=( ) A .0B .2C .5D .25【解析】 因为a =(2,1),则有|a|=5,又a·b =10, 又由|a +b|=50, ∴|a|2+2a·b +|b|2=50, 即5+2×10+|b|2=50, 所以|b|=5. 【答案】 C8.已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,设AD→=a ,BE →=b ,则BC →等于( )图1【导学号:00680065】A .43a +23bB .23a +43bC .23a -43bD .-23a +43b【解析】 BC→=2BD →=2⎝ ⎛⎭⎪⎫23BE →+13AD → =43BE →+23AD →=23a +43b . 【答案】 B9.(2016·景德镇期末)设非零向量a 、b 、c 满足|a|=|b|=|c|,a +b =c ,则向量a 、b 的夹角为( )A .150°B .120°C .60°D .30°【解析】 设向量a 、b 夹角为θ, |c|2=|a +b|2=|a|2+|b|2+2|a||b|cos θ,则cos θ=-12,又θ∈[0°,180°],∴θ=120°.故选B . 【答案】 B10.(2016·西城高一检测)在矩形ABCD 中,AB =3,BC =1,E 是CD 上一点,且AE →·AB →=1,则AE→·AC →的值为( ) A .3 B .2 C .32D .33【解析】 设AE→与AB →的夹角为θ,则AE →与AD →的夹角为π2-θ,又AD→∥BC →,故有AE →与BC →夹角为π2-θ,如图:∵AE→·AB →=|AE →|·|AB →|·cos θ=3|AE →|·cos θ=1, ∴|AE→|·cos θ=33, ∴AE →·BC →=|AE →|cos ⎝ ⎛⎭⎪⎫π2-θ=|AE →|sin θ=1, ∴AE →·AC →=AE →·(AB →+BC →)=AE →·AB →+AE →·BC →=1+1=2.【答案】 B11.(2016·济南高一检测)已知向量OA →=(2,2),OB →=(4,1),在x 轴上有一点P ,使AP →·BP →有最小值,则P 点坐标为( )A .(-3,0)B .(3,0)C .(2,0)D .(4,0)【解析】 设P (x ,0),则有 AP →·BP →=(x -2,0-2)·(x -4,0-1) =(x -2)(x -4)+2 =x 2-6x +10 =(x -3)2+1,当x =3时,(AP →·BP →)min =1,此时P 点坐标为(3,0). 【答案】 B12.(2014·天津高考)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE→·AF →=1,CE →·CF →=-23,则λ+μ=( ) A .12 B .23 C .56D .712【解析】 如图:∠BAD =120°,|AB→|=|AD →|=2.AF→·AE →=(AD →+DF →)(AB →+BE →) =(AD→+μDC →)(AB →+λBC →) =(AD→+μAB →)(AB →+λAD →) =λAD→2+μAB →2+(λμ+1)AD →·AB → =4(λ+μ)+(λμ+1)×4×cos 120° =4(λ+μ)-2(λμ+1)=1, 即2λμ-4(λ+μ)+3=0,①由CE →·CF →=(CB →+BE →)(CD →+DF →)=(λ-1)·(μ-1)·BC →·DC → =-2(λ-1)(μ-1)=-23,所以有λμ=λ+μ-23,代入①得 2⎝ ⎛⎭⎪⎫λ+μ-23-4(λ+μ)+3=0, 解得λ+μ=56. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)13.(2014·湖北高考)若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________.【解析】 因为OA →=(1,-3), 又|OA→|=10=|OB →|, 又OA→·OB →=0, 所以∠AOB =90°,所以△AOB 为等腰直角三角形,且|AB →|=2|OA →|=2 5. 【答案】 2 514.(2015·江苏高考)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.【解析】 ∵m a +n b =(2m +n ,m -2n ) =(9,-8),∴⎩⎨⎧2m +n =9,m -2n =-8,∴⎩⎨⎧m =2,n =5,∴m -n =2-5=-3. 【答案】 -315.(2015·湖北高考)已知向量OA→⊥AB →,|OA →|=3,则OA →·OB →=________.【解析】 因为OA →⊥AB →,所以OA →·AB →=OA →·(OB →-OA →)=OA →·OB →-OA 2→=0,所以OA →·OB →=OA2→=|OA →|2=9,即OA →·OB →=9. 【答案】 916.(2015·北京高考)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.【解析】 ∵AM →=2MC →,∴AM →=23AC →. ∵BN→=NC →,∴AN →=12(AB →+AC →), ∴MN→=AN →-AM →=12(AB →+AC →)-23AC → =12AB →-16AC →.又MN→=xAB →+yAC →,∴x =12,y =-16. 【答案】 12 -16三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)不共线向量a ,b 的夹角为小于120°的角,且|a|=1,|b|=2,已知向量c =a +2b ,求|c|的取值范围.【解】 |c|2=|a +2b|2=|a|2+4a·b +4|b|2=17+8cos θ(其中θ为a 与b 的夹角). 因为0°<θ<120°, 所以-12<cos θ<1, 所以13<|c|<5,所以|c |的取值范围为(13,5).18.(本小题满分12分)(2016·无锡高一检测)设OA →=(2,-1),OB →=(3,0),OC →=(m ,3).(1)当m =8时,将OC→用OA →和OB →表示; (2)若A ,B ,C 三点能构成三角形,求实数m 应满足的条件. 【解】 (1)m =8时,OC →=(8,3),设OC →=λ1OA →+λ2OB →, ∴(8,3)=λ1(2,-1)+λ2(3,0) =(2λ1+3λ2,-λ1),∴⎩⎨⎧2λ1+3λ2=8,-λ1=3,解得⎩⎪⎨⎪⎧λ1=-3,λ2=143, ∴OC→=-3OA →+143OB →. (2)若A ,B ,C 三点能构成三角形, 则有AB→与AC →不共线, 又AB→=OB →-OA →=(3,0)-(2,-1)=(1,1), AC→=OC →-OA →=(m ,3)-(2,-1)=(m -2,4), 则有1×4-(m -2)×1≠0, ∴m ≠6.19.(本小题满分12分)设i ,j 是平面直角坐标系中x 轴和y 轴正方向上的单位向量,AB →=4i -2j ,AC→=7i +4j ,AD →=3i +6j ,求四边形ABCD 的面积. 【解】 因为AB →·AD →=(4i -2j )·(3i +6j )=3×4-2×6=0, 所以AB→⊥AD →,又因为AC →=7i +4j =4i -2j +3i +6j=AB→+AD →, 所以四边形ABCD 为平行四边形, 又AB→⊥AD →,所以四边形ABCD 为矩形. 所以S 四边形ABCD =|AB→|×|AD →|=16+4×9+36=30.20.(本小题满分12分)设e 1,e 2是正交单位向量,如果OA →=2e 1+m e 2,OB →=n e 1-e 2,OC →=5e 1-e 2,若A ,B ,C 三点在一条直线上,且m =2n ,求m ,n 的值.【解】 以O 为原点,e 1,e 2的方向分别为x ,y 轴的正方向,建立平面直角坐标系xOy , 则OA→=(2,m ),OB →=(n ,-1),OC →=(5,-1), 所以AC→=(3,-1-m ),BC →=(5-n ,0), 又因为A ,B ,C 三点在一条直线上,所以AC→∥BC →,所以3×0-(-1-m )·(5-n )=0,与m =2n 构成方程组 ⎩⎪⎨⎪⎧mn -5m +n -5=0,m =2n , 解得⎩⎪⎨⎪⎧m =-1,n =-12或⎩⎨⎧m =10,n =5. 21.(本小题满分12分)已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. 【解】 (1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1), 所以⎩⎨⎧cos α+cos β=0, ①sin α+sin β=1, ②由①得,cos α=cos(π-β), 由0<β<π,得0<π-β<π. 又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6. 22.(本小题满分12分)已知向量a ,b 满足|a|=|b|=1,|k a +b|=3|a -k b |(k >0,k ∈R ). (1)求a·b 关于k 的解析式f (k ); (2)若a ∥b ,求实数k 的值; (3)求向量a 与b 夹角的最大值. 【解】 (1)由已知|k a +b|=3|a -k b |, 有|k a +b|2=(3|a -k b |)2,k 2a 2+2k a·b +b 2=3a 2-6k a·b +3k 2b 2. 由|a|=|b|=1,得8k a·b =2k 2+2, 所以a·b =k 2+14k ,即f (k )=k 2+14k (k >0).(2)因为a ∥b ,k >0,所以a·b =k 2+14k >0,则a 与b 同向. 因为|a|=|b|=1,所以a·b =1, 即k 2+14k =1,整理得k 2-4k +1=0, 所以k =2±3,所以当k =2±3时,a ∥b .(3)设a ,b 的夹角为θ,则cos θ=a ·b|a||b|=a·b =k 2+14k =14⎝ ⎛⎭⎪⎫k +1k=14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫k -1k 2+2.当k =1k,即k =1时,cos θ取最小值12,又0≤θ≤π, 所以θ=π3,即向量a 与b 夹角的最大值为π3.。
2020高中数学人教A版必修4模块综合检测(二) Word版含解析
模块综合检测(二)(时间:120分钟,满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(北京高考)已知向量a =(2,4),b =(-1,1),则 2a -b =( )A .(5,7)B .(5,9)C .(3,7)D .(3,9)解析:选A 因为a =(2,4),b =(-1,1),所以2a -b =(2×2-(-1),2×4-1)=(5,7),故选A.2.点M (2,tan 300°)位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D ∵tan 300°=tan(360°-60°)=-tan 60°=-3,∴M (2,-3).故点M (2,tan 300°)位于第四象限.3.已知OA =(2,3),OB =(-3,y ),且OA ⊥OB ,则y 等于( )A .2B .-2 C.12 D .-12解析:选A ∵OA ⊥OB ,∴OA ·OB =-6+3y =0,∴y =2.4.已知cos ⎝ ⎛⎭⎪⎫π2-φ=32,且|φ|<π2,则tan φ=( )A .-33 B.33C .- 3 D. 3解析:选D cos ⎝ ⎛⎭⎪⎫π2-φ=sin φ=32,又|φ|<π2,则cos φ=12,所以tan φ= 3. 5.2sin 2α1+cos 2α·cos 2αcos 2α等于( ) A .tan αB .tan 2αC .1 D.12解析:选B 2sin 2α1+cos 2α·cos 2αcos 2α=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α. 6.设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( )A .-3B .-1C .1D .3解析:选A 由题意可知tan α+tan β=3,tan α·tan β=2,则tan(α+β)=tan α+tan β1-tan αtan β=-3. 7.已知函数f (x )=2sin x ,对任意的x ∈R 都有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值为( ) A.π4 B.π2C .πD .2π解析:选C ∵f (x )=2sin x 的周期为2π,∴|x 1-x 2|的最小值为π.8.已知a =(1,sin 2x ),b =(2,sin 2x ),其中x ∈(0,π).若|a ·b |=|a ||b |,则tan x 的值等于( )A .1B .-1 C. 3 D.22 解析:选A 由|a ·b |=|a ||b |知a ∥b .所以sin 2x =2sin 2x ,即2sin x cos x =2sin 2x .而x ∈(0,π),所以sin x =cos x ,即x =π4,故tan x =1. 9.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin ⎝⎛⎭⎪⎫2x -π10 B .y =sin ⎝⎛⎭⎪⎫2x -π5 C .y =sin ⎝ ⎛⎭⎪⎫12x -π10D .y =sin ⎝ ⎛⎭⎪⎫12x -π20 解析:选C 函数y =sin x 的图象上的点向右平移π10个单位长度可得函数y =sin ⎝ ⎛⎭⎪⎫x -π10的图象;再把各点的横坐标伸长到原来的2倍(纵坐标不变)可得函数y =sin ⎝ ⎛⎭⎪⎫12x -π10的图象,所以所得函数的解析式是y =sin ⎝ ⎛⎭⎪⎫12x -π10.10.(山东高考)函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3解析:选A 当0≤x ≤9时,-π3≤πx 6-π3≤7π6, -32≤sin ⎝ ⎛⎭⎪⎫πx6-π3≤1,所以函数的最大值为2,最小值为-3,其和为2- 3.11.如图,在△ABC 中,AD ⊥AB ,BC =3BD ,|AD |=1,则AC ·AD =()A .2 3B .3 3 C.32 D. 3解析:选D 建系如图.设B (x B,0),D (0,1),C (x C ,y C ),BC =(x C -x B ,y C ),BD =(-x B,1).∵BC = 3 BD ,∴x C -x B =-3x B ⇒x C =(1-3)x B ,y C = 3.AC =((1-3)x B ,3),AD =(0,1),AC ·AD = 3.12.已知向量a ,b 不共线,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为( )A .3B .-3C .0D .2解析:选A 由原式可得⎩⎨⎧ 3x -4y =6,2x -3y =3, 解得⎩⎨⎧ x =6,y =3.所以x -y =3. 二、填空题(本题共4小题,每小题5分,共20分)13.(重庆高考)已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a ·b =________.解析:因为a =(-2,-6),所以|a |=-22+-62=210,又|b|=10,向量a 与b 的夹角为60°,所以a ·b =|a|·|b|·cos 60°=210×10×12=10.答案:1014.(江西高考)已知单位向量e 1与e 2的夹角为α,且cos α=13,若向量a =3e 1-2e 2,则|a |=________.解析:因为a 2=(3e 1-2e 2)2=9-2×3×2×cos α+4=9,所以|a |=3.答案:315.(山东高考)函数y =32sin 2x +cos 2x 的最小正周期为________. 解析:y =32sin 2x +12cos 2x +12=sin2x +π6+12,所以其最小正周期为2π2=π. 答案:π16.化简:sin 2⎝ ⎛⎭⎪⎫α-π6+sin 2⎝ ⎛⎭⎪⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝ ⎛⎭⎪⎫2α-π32+1-cos ⎝⎛⎭⎪⎫2α+π32-sin 2α=1-12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2α-π3+cos ⎝⎛⎭⎪⎫2α+π3-sin 2α=1-cos 2α·cos π3-sin 2α =1-cos 2α2-1-cos 2α2=12. 答案:12三、解答题(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)设a =(1+cos x,1+sin x ),b =(1,0),c =(1,2).(1)求证:(a -b )⊥(a -c );(2)求|a |的最大值,并求此时x 的值.解:(1)证明:a -b =(cos x,1+sin x ),a -c =(cos x ,sin x -1),(a -b )·(a -c )=(cos x,1+sin x )·(cos x ,sin x -1)=cos 2x +sin 2x -1=0.∴(a -b )⊥(a -c ).(2)|a |= 1+cos x 2+1+sin x 2 =3+2sin x +cos x= 3+22sin ⎝ ⎛⎭⎪⎫x +π4≤ 3+22=2+1.当sin ⎝ ⎛⎭⎪⎫x +π4=1,即x =π4+2k π(k ∈Z)时,|a |有最大值2+1. 18.(本小题满分12分)已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ).(1)求证:tan(α+β)=2tan α;(2)求f (x )的解析式.解:(1)证明:由sin(2α+β)=3sin β,得sin[(α+β)+α]=3sin[(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin (α+β)cos α-3cos(α+β)sin α,∴sin(α+β)cos α=2cos(α+β)sin α.∴tan(α+β)=2tan α.(2)由(1)得tan α+tan β1-tan αtan β=2tan α, 即x +y 1-xy=2x , ∴y =x 1+2x 2, 即f (x )=x1+2x 2. 19.(本小题满分12分)已知cos ⎝ ⎛⎭⎪⎫α-β2=-45,sin β-α2=513,且π2<α<π,0<β<π2,求cos α+β2的值.解:∵π2<α<π,0<β<π2, ∴α-β2∈⎝ ⎛⎭⎪⎫π4,π,β-α2∈⎝ ⎛⎭⎪⎫-π2,π4. ∴sin ⎝ ⎛⎭⎪⎫α-β2= 1-cos 2⎝ ⎛⎭⎪⎫α-β2=35, cos ⎝ ⎛⎭⎪⎫β-α2= 1-sin 2⎝ ⎛⎭⎪⎫β-α2=1213. ∵⎝ ⎛⎭⎪⎫α-β2+⎝ ⎛⎭⎪⎫β-α2=α+β2, ∴cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2+⎝ ⎛⎭⎪⎫β-α2 =cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫β-α2-sin ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫β-α2 =⎝ ⎛⎭⎪⎫-45×1213-35×513=-6365. 20.(本小题满分12分)(湖北高考)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度;(2)求实验室这一天的最大温差.解:(1)f (8)=10-3cos ⎝ ⎛⎭⎪⎫π12×8-sin ⎝ ⎛⎭⎪⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝ ⎛⎭⎪⎫-12-32=10.故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.21.(本小题满分12分)已知f (x )=23cos 2x +sin 2x -3+1(x ∈R).(1)求f (x )的最小正周期;(2)求f (x )的递增区间;(3)当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,求f (x )的值域. 解:f (x )=sin 2x +3(2cos 2x -1)+1=sin 2x +3cos 2x +1=2sin ⎝⎛⎭⎪⎫2x +π3+1. (1)函数f (x )的最小正周期T =2π2=π. (2)由2k π-π2≤2x +π3≤2k π+π2, 得2k π-5π6≤2x ≤2k π+π6, ∴k π-5π12≤x ≤k π+π12(k ∈Z). ∴函数f (x )的递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z). (3)∵x ∈⎣⎢⎡⎦⎥⎤-π4,π4,∴2x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6. ∴sin ⎝ ⎛⎭⎪⎫2x +π3∈⎣⎢⎡⎦⎥⎤-12,1. ∴f (x )∈[0,3].。
高中数学 模块综合检测卷 新人教A版必修4
模块综合检测卷(测试时间:120分钟 评价分值:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设向量a =(1,0),b =⎝ ⎛⎭⎪⎫12,12,则下列结论中正确的是(C ) A .|a |=|b | B .a·b =22C .a -b 与b 垂直D .a ∥b解析:a -b =⎝ ⎛⎭⎪⎫12,-12,(a -b )·b =0,所以a -b 与b 垂直.故选C.2.点P 从()1,0出发,沿单位圆逆时针方向运动4π3弧长到达Q 点,则Q 点的坐标为(C )A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12解析:由三角函数的定义知,Q 点的坐标为⎝⎛cos 4π3,⎭⎪⎫sin 4π3=⎝ ⎛⎭⎪⎫-12,-32.故选C.3.函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,|φ|<π2)的图象如图所示,则f (0)=(D )A .1 B.12 C.22 D.32解析:由图象知A =1,T =4⎝⎛⎭⎪⎫7π12-π3=π,∴ω=2,把⎝ ⎛⎭⎪⎫7π12,-1代入函数式中,可得φ=π3,∴f (x )=A sin(ωx +φ)=sin ⎝⎛⎭⎪⎫2x +π3,∴f (0)=sin π3=32.故选D. 4.将函数y =sin( 2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为(B )A.3π4 B.π4 C .0 D .-π4解析:利用平移规律求得解析式,验证得出答案.y =sin(2x +φ)――→向左平移π8个单位Y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π8+φ=sin ⎝⎛⎭⎪⎫2x +π4+φ. 当φ=3π4时,y =sin(2x +π)=-sin 2x ,为奇函数;当φ=π4时,y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x ,为偶函数; 当φ=0时,y =sin ⎝ ⎛⎭⎪⎫2x +π4,为非奇非偶函数; 当φ=-π4时,y =sin 2x ,为奇函数.故选B.5.已知sin(π+α)=45且α是第三象限的角,则cos(2π-α)的值是(B )A .-45B .-35C .±45 D.35解析:sin(π+α)=45⇒sin α=-45,又∵α是第三象限的角,∴cos(2π-α)=cosα=-35.故选B.6.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2sin 3x 的图象(D ) A .向右平移π4个单位 B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位解析:y =sin 3x +cos 3x =2sin ⎝ ⎛⎭⎪⎫3x +π4,故只需将y =2sin 3x 向左平移π12个单位.7.已知向量a ,b ,c 满足|a |=1,|b |=2,c =a +b ,c ⊥a ,则a 与b 的夹角等于(C ) A .30° B .60°C .120°D .90°解析:c ⊥a ,c =a +b ⇒(a +b )·a =a 2+a ·b =0⇒a ·b =-1⇒cosa ,b =a ·b ||a ||b =-12⇒a ,b =120°.故选C. 8.函数f (x )=sin x -12,x ∈(0,2π)的定义域是(B )A.⎣⎢⎡⎦⎥⎤π6,π2B.⎣⎢⎡⎦⎥⎤π6,5π6C.⎣⎢⎡⎦⎥⎤π2,5π6 D.⎣⎢⎡⎦⎥⎤π3,5π3 解析:如下图所示,∵sin x ≥12,∴π6≤x ≤5π6.故选B.9.(2015·新课标全国高考Ⅰ卷)设D 为△ABC 所在平面内一点BC →=3CD →,则(A ) A.AD →=-13AB →+43AC → B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →解析:由题知AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=-13AB →+43AC →,故选A.10.已知α∈⎝ ⎛⎭⎪⎫π,32π,cos α=-45,则tan ⎝ ⎛⎭⎪⎫π4-α等于(B )A .7 B.17 C .-17D .-7解析:因为α∈⎝⎛⎭⎪⎫π,32π,cos α=-45,所以sin α<0,即sin α=-35,tan α=34. 所以tan ⎝ ⎛⎭⎪⎫π4-α=1-tan α1+tan α=1-341+34=17,故选B.11.函数f (x )=sin(x +φ)在区间⎝ ⎛⎭⎪⎫π3,2π3上单调递增,常数φ的值可能是(D )A .0 B.π2 C .π D.3π212.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎝ ⎛⎭⎪⎫12,4,n =⎝ ⎛⎭⎪⎫π6,0,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间⎣⎢⎡⎦⎥⎤π6,π3上的最大值是(D )A .2 2B .2 3C .2D .4二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.解析:因为a 2=9+4-2×3×2×13=9,b 2=9+1-2×3×1×13=8,a ·b =9+2-9×1×1×13=8,所以cos β=83×22=223.考点:向量数量积及夹角 答案:223.14.已知函数f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos 2x -1,x ∈⎣⎢⎡⎦⎥⎤π4,π2,则f (x )的最小值为________.解析:f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos 2x -1=1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+x -3cos 2x -1=-cos ⎝ ⎛⎭⎪⎫π2+2x -3cos 2x =sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,∵π4≤x ≤π2,∴π6≤2x -π3≤2π3, ∴12≤sin ⎝⎛⎭⎪⎫2x -π3≤1.∴1≤2sin ⎝ ⎛⎭⎪⎫2x -π3≤2,∴1≤f (x )≤2, ∴f (x )的最小值为1. 答案:115.若将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________.解析:由题意f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4,将其图象向右平移φ个单位,得2sin ⎣⎢⎡⎦⎥⎤2(x -φ)+π4=2sin ⎣⎢⎡⎦⎥⎤2x -2φ+π4,要使图象关于y 轴对称,则π4-2φ=π2+kπ,解得φ=-π8-k π2,当k =-1时,φ取最小正值3π8.答案:3π816.已知函数f (x )=sin ωx ,g (x )=sin ⎝ ⎛⎭⎪⎫2x +π2,有下列命题: ①当ω=2时,f (x )g (x )的最小正周期是π2;②当ω=1时,f (x )+g (x )的最大值为98;③当ω=2时,将函数f (x )的图象向左平移π2可以得到函数g (x )的图象.其中正确命题的序号是______________(把你认为正确的命题的序号都填上). 解析:①ω=2时,f (x )g (x )=si n 2x ·cos 2x =12sin 4x ,周期T =2π4=π2.故①正确.②ω=1时,f (x )+g (x )=sin x +cos 2x =sin x +1-2sin 2x =-2⎝⎛⎭⎪⎫sin x -142+98,∴当sin x =14时,f (x )+g (x )取最大值98.故②正确.③ω=2时,将函数f (x )的图象向左平移π2得到sin 2⎝⎛⎭⎪⎫x +π2=-sin 2x ,故③不正确.答案:①②三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)在平面直角坐标系中,A (1,-2),B (-3,-4),O 为坐标原点.(1)求OA →·OB →;(2)若点P 在直线AB 上,且OP →⊥AB →,求OP →的坐标. 解析:(1)OA →·OB →=1×(-3)+(-2)×(-4)=5. (2)设P (m ,n ),∵P 在AB 上,∴BA →与PA →共线. BA →=(4,2),PA →=(1-m ,-2-n ),∴4·(-2-n )-2(1-m )=0. 即2n -m +5=0.① 又∵OP →⊥AB →,∴(m ,n )·(-4,-2)=0. ∴2m +n =0.②由①②解得m =1,n =-2,∴OP →=(1,-2). 18.(本小题满分12分)已知tan ⎝ ⎛⎭⎪⎫α+π4=13. (1)求tan α的值;(2)求2sin 2α-sin(π-α)sin ⎝ ⎛⎭⎪⎫π2-α+sin 2⎝ ⎛⎭⎪⎫3π2+α的值.解析:(1)∵tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=13,∴tan α=-12.(2)原式=2sin 2α-sin αcos α+cos 2α=2sin 2α-sin αcos α+cos 2αsin 2α+cos 2α=2tan 2α-tan α+1tan 2α+1=2×⎝ ⎛⎭⎪⎫-122-⎝ ⎛⎭⎪⎫-12+1⎝ ⎛⎭⎪⎫-122+1=85. 19.(本小题满分12分)已知函数f (x )=2sin ⎝⎛⎭⎪⎫x +π6-2cos x .(1)求函数f (x )的单调增区间; (2)若f (x )=65,求cos ⎝⎛⎭⎪⎫2x -π3的值.解析:(1)f (x )=2sin ⎝⎛⎭⎪⎫x +π6-2cos x =2sin x cos π6+2cos x sin π6-2cos x=3sin x -cos x =2sin ⎝⎛⎭⎪⎫x -π6.由-π2+2k π≤x -π6≤π2+2k π ,k ∈Z ,得-π3+2k π≤x ≤23π+2k π,k ∈Z ,所以f (x )的单调增区间为[-π3+2k π,23π+2k π](k ∈Z).(2)由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6,即sin ⎝⎛⎭⎪⎫x -π6=35.∴cos ⎝ ⎛⎭⎪⎫2x -π3=1-2sin 2⎝⎛⎭⎪⎫x -π6=725.20.(本小题满分12分)已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (a )的值;(2)求函数f (x )的最小正周期及单调递增区间.解析:(1)由0<α<π2,且sin α=22,求出角α的余弦值,再根据函数f (x )=cosx (sin x +cos x )-12,即可求得结论.(2)已知函数f (x )=cos x (sin x +cos x )-12,由正弦与余弦的二倍角公式,以及三角函数的化一公式,将函数f (x )化简,根据三角函数周期的公式即可得结论,根据函数的单调递增区间,通过解不等式即可得到所求的结论.(1)因为0<α<π2,sin α=22,所以cos α=22,所以f (a )=22⎝ ⎛⎭⎪⎫22+22-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x =22sin ⎝⎛⎭⎪⎫2x +π4,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z.所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z. 21.(本小题满分12分)已知函数f (x )=sin x +a cos x 的图象经过点⎝ ⎛⎭⎪⎫-π3,0.(1)求实数a 的值;(2)设g (x )=[f (x )]2-2,求函数g (x )的最小正周期与单调递增区间.解析:(1)∵函数f (x )=sin x +a cos x 的图象经过点⎝ ⎛⎭⎪⎫-π3,0,∴f ⎝ ⎛⎭⎪⎫-π3=0,即sin ⎝ ⎛⎭⎪⎫-π3+a cos ⎝ ⎛⎭⎪⎫-π3=0.即-32+a2=0.解得a = 3. (2)g (x )=4sin 2(x +π3)-2=2(1-cos(2x +2π3)-2=-2cos(2x +2π3)∴g (x )的最小正周期T =2π2=π.令- π+2k π≤2x +2π3≤2k π,k ∈Z-5π6+k π≤x ≤k π-π3,k ∈Z ∴g (x )的增区间为⎣⎢⎡⎦⎥⎤-5π6+k π,-π3+k π,k ∈Z.22.(本小题满分10分)已知向量m =(sin x ,-cos x ),n =(cos θ,-sin θ),其中0<θ<π.函数f (x )=m·n 在x =π处取最小值.(1)求θ的值;(2)设A ,B ,C 为△ABC 的三个内角,若sin B =2sin A ,f (C )=12,求A .解析:(1)∵f (x )=m ·n =sin x cos θ+cos x sin θ=sin(x +θ),又∵函数f (x )在x =π处取最小值,∴sin(π+θ)=-1, 即sin θ=1.又0<θ<π,∴θ=π2.(2)由(1)得,f (x )=sin ⎝⎛⎭⎪⎫x +π2=cos x .∵f (C )=12,∴cos C =12,∵0<C <π,∴C =π3.∵A +B +C =π,∴B =2π3-A ,代入sin B =2sin A 中,∴sin ⎝ ⎛⎭⎪⎫2π3-A =2sin A ,∴sin 2π3cos A -cos 2π3sin A =2sin A ,∴tan A =33, ∵0<A <π,∴A =π6.。
高中数学模块测试卷新人教A版必修4(2021学年)
高中数学模块测试卷新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学模块测试卷新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学模块测试卷新人教A版必修4的全部内容。
模块测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两个部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.与-463°终边相同的角可以表示为(k∈Z)()A.k·360°+463°ﻩB.k·360°+103°C.k·360°+257° D.k·360°-257°答案C2.下列关系式中,不正确的是()A.sin585°〈0 ﻩB.tan(-675°)〉0C.cos(-690°)〈0 D.sin1 010°〈0答案C解析585°=360°+225°是第三象限角,则sin585°<0;-675°=-720°+45°,是第一象限角,∴tan(-675°)〉0;1010°=1 080°-70°,是第四象限角,∴sin1 010°<0;而-690°=-720°+30°是第一象限角,∴cos(-690°)>0.3.如图,在正六边形ABCDEF中,点O为其中心,则下列判断错误的是( )A.错误!=错误!ﻩB.错误!∥错误!C.|错误!|=|错误!|ﻩD。
最新2019高中数学 模块综合测评 新人教A版必修4
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.cos(-2 640°)+sin 1 665°等于( ) A .1+22B .-1+22C .1+32D .-1+32B [cos(-2 640°)=cos 2 640° =cos(7×360°+120°) =cos 120°=-12,sin 1 665°=sin(4×360°+225°) =sin 225°=sin(180°+45°) =-sin 45°=-22, ∴cos(-2 640°)+sin 1 665°=-12-22=-1+22.]2.已知扇形的圆心角为2π3弧度,半径为2,则扇形的面积是( )【导学号:84352374】A .8π3B .43C .2πD .4π3D [此扇形的面积S =12×2π3×22=4π3.]3.log 2sin π12+log 2cos π12的值为( )A .-4B .4C .-2D .2C [log 2sin π12+log 2cos π12=log 2⎝ ⎛⎭⎪⎫sin π12cos π12=log 2⎝ ⎛⎭⎪⎫12sin π6=log 214=-2.]4.设向量a =(2tan α,tan β),向量b =(4,-3),且a +b =0,则tan(α+β)=( )【导学号:84352375】A .17B .-15C .15D .-17A [∵a +b =(2tan α+4,tan β-3)=0,∴⎩⎪⎨⎪⎧2tan α+4=0,tan β-3=0,∴tan α=-2,tan β=3,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+31--2×3=17.]5.函数y =sin(ωx +φ)(x ∈R ,且ω>0,0≤φ<2π)的部分图象如图1所示,则( )图1A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π4,φ=5π4C [∵T =4×2=8,∴ω=π4, 又π4×1+φ=π2,∴φ=π4.] 6.已知tan θ2=23,则1-cos θ+sin θ1+cos θ+sin θ的值为( )A .23 B .-23C .32D .-32A [1-cos θ+sin θ1+cos θ+sin θ=2sin2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cosθ2=tan θ2=23.]7.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫π6x +π3(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l与函数的图象交于B 、C 两点,则(OB →+OC →)·OA →等于( )【导学号:84352376】A .-32B .-16C .16D .32D [由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B 、C 两点,根据对称性可知,A 是BC 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)·OA →=2OA →·OA →=2|OA →|2=2×42=32,]8.函数y =sin x cos x +3cos 2x -3的图象的一个对称中心为( ) A.⎝⎛⎭⎪⎫2π3,-32B.⎝ ⎛⎭⎪⎫5π6,-32C.⎝ ⎛⎭⎪⎫-2π3,32D.⎝⎛⎭⎪⎫π3,-3B [y =12sin 2x +32(1+cos 2x )-3=sin ⎝⎛⎭⎪⎫2x +π3-32,令2x +π3=k π,(k ∈Z ),x =k π2-π6(k ∈Z ),当k =2时,x =5π6,∴函数图象的一个对称中心为⎝⎛⎭⎪⎫5π6,-32.]9.设向量a =(c os 55°,sin 55°),b =(cos 25°,sin 25°),若t 为实数,则|a -t b |的最小值是( )A .12B .1C .32D .1+ 3A [|a -t b |=a -t b2=a 2-2t a·b +t 2b 2=1-2t a·b +t 2=t 2-2t ++1=t 2--2t +1=t 2-3t +1=⎝⎛⎭⎪⎫t -322+14,即|a -t b |的最小值为12.]10.已知f (x )=1+sin 2x2,若a =f (lg 5),b =f (lg 0.2),则下列正确的是( )【导学号:84352377】A .a +b =0B .a -b =0C .a +b =1D .a -b =1C [∵b =f (lg 0.2)=f (-lg 5), ∴f (x )+f (-x )=1+sin 2x 2+1+-2x 2=1, ∴a +b =f (lg 5)+f (-lg 5)=1.]11.如图2,设P 为△ABC 内一点,且AP →=14AB →+15AC →,BM →=34BA →,CN →=45CA →,则△PMB 的面积与△ABC 的面积之比等于( )图2A .1∶5B .2∶5C .3∶20D .7∶20C [由题可知AM →=14AB →,AN →=15AC →,则AP →=AM →+AN →,由平行四边形法则可知NP →∥AB →,AN →∥MP →,所以S △PMB S △ABC =|PM →|·|MB →||AB →|·|AC →|=15×34=320.]12.在△ABC 中,A ,B ,C 是其三个内角,设f (B )=4sin B ·cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B ,当f (B )-m <2恒成立时,实数m 的取值范围是( )【导学号:84352378】A .m <1B .m >-3C .m <3D .m >1D [f (B )=4sin B cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B=4sin B ·1+cos ⎝ ⎛⎭⎪⎫π2-B 2+cos 2B=2sin B (1+sin B )+(1-2sin 2B ) =2sin B +1.∵f (B )-m <2恒成立, ∴2sin B +1-m <2恒成立, 即m >2sin B -1恒成立. ∵0<B <π, ∴0<sin B ≤1,∴-1<2sin B -1≤1,故m >1.]二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知O A →=(-2,1),O B →=(0,2),且A C →∥O B →,B C →⊥A B →,则点C 的坐标是________. (-2,6) [设C (x ,y ),则A C →=(x +2,y -1),B C →=(x ,y -2),A B →=(2,1).由A C →∥O B →,B C →⊥A B →,得⎩⎪⎨⎪⎧x +=0,2x +y -2=0,解得⎩⎪⎨⎪⎧x =-2,y =6,∴点C 的坐标为(-2,6).]14.将函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象上的所有点向右平移π6个单位,再将图象上所有点的横坐标变为原来的12(纵坐标不变),则所得的图象的函数解析式为________.【导学号:84352379】y =sin 4x [y =sin ⎝⎛⎭⎪⎫2x +π3的图象上的所有点向右平移π6个单位得y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3=sin 2x , 再将图象上所有点的横坐标变为原来的12(纵坐标不变)得y =sin 4x .]15.如图3,在平行四边形OPQR 中,S 是对角线的交点,若OP →=2e 1,OR →=3e 2,以e 1,e 2为基底,表示PS →=________,QS →=________.图332e 2-e 1,-e 1-32e 2 [∵平行四边形OPQR 中,OQ →=OP →+OR →=2e 1+3e 2, PR →=OR →-OP →=3e 2-2e 1. S 是OQ ,PR 的中点,∴PS →=12PR →=32e 2-e 1,QS →=-12OQ →=-e 1-32e 2.]16.定义运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于________. 【导学号:84352380】π3[由题意得, sin αcos β-cos αsin β=3314,∴sin(α-β)=3314.∵0<β<α<π2,∴cos(α-β)=1-27196=1314. 又cos α=17得sin α=437.cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=17×1314+437×3314=12, ∴β=π3.]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知角α的终边过点P ⎝ ⎛⎭⎪⎫45,-35.(1)求sin α的值;(2)求式子sin ⎝ ⎛⎭⎪⎫π2-αα+π·α-ππ-α的值.[解] (1)∵|OP |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫-352=1, ∴点P 在单位圆上,由正弦函数定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α.由(1)得sin α=-35,P 在单位圆上,∴cos α=45,∴原式=54.18.(本小题满分12分)已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2.【导学号:84352381】[解] 由已知得tan α=12.(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=12-312+1=-53.(2)sin 2α+sin αcos α+2 =3sin 2α+sin αcos α+2cos 2α =3sin 2α+sin αcos α+2cos 2αsin 2α+cos 2α=3tan 2α+tan α+2tan 2α+1=3×⎝ ⎛⎭⎪⎫122+12+2⎝ ⎛⎭⎪⎫122+1=135. 19.(本小题满分12分)如图4,在△ABC 中,已知AB =2,AC =6,∠BAC =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=5AE →,图4(1)若BF →=-34AB →+110AC →,求证:点F 为DE 的中点;(2)在(1)的条件下,求BA →·EF →的值. [解] (1)证明:因为BF →=-34AB →+110AC →,所以AF →=BF →-BA →=14AB →+110AC →,又AB →=2AD →,AC →=5AE →,所以AF →=12AD →+12AE →,所以F 为DE 的中点.(2)由(1)可得EF →=12ED →=12(AD →-AE →),因为AB →=2AD →,AC →=5AE →, 所以EF →=14AB →-110AC →,所以BA →·EF →=-AB →·⎝ ⎛⎭⎪⎫14AB →-110AC →=-14AB 2→+110AB →·AC →=-14×4+110×2×6×cos 60°=-25.20.(本小题满分12分)已知函数f (x )=cos 4x -12cos ⎝ ⎛⎭⎪⎫π2+2x +cos 2x -sin 2x .(1)求函数f (x )的最小正周期和单调递减区间;(2)在所给坐标系中画出函数在区间⎣⎢⎡⎦⎥⎤38π,118π的图象(只作图不写过程).【导学号:84352382】图5[解] f (x )=1-2sin 22x -1-2sin 2x +cos 2x=sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4. (1)函数f (x )的最小正周期T =2π2=π,令2k π+π2≤2x +π4≤2k π+3π2,k ∈Z ,则2k π+π4≤2x ≤2k π+5π4,k ∈Z ,故k π+π8≤x ≤k π+5π8,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). (2)图象如下:21.(本小题满分12分)如图6,已知OP →=(2,1),OA →=(1,7),OB →=(5,1),设Z 是直线OP 上的一动点.图6(1)求使ZA →·ZB →取最小值时的OZ →;(2)对(1)中求出的点Z ,求cos ∠AZB 的值. [解] (1)∵Z 是直线OP 上的一点, ∴OZ →∥OP →.设实数t ,使OZ →=tOP →, ∴OZ →=t (2,1)=(2t ,t ), 则ZA →=OA →-OZ →=(1,7)-(2t ,t ) =(1-2t,7-t ), ZB →=OB →-OZ →=(5,1)-(2t ,t )=(5-2t,1-t ),∴ZA →·ZB →=(1-2t )(5-2t )+(7-t )(1-t ) =5t 2-20t +12=5(t -2)2-8. 当t =2时,ZA →·ZB →有最小值-8, 此时OZ →=(2t ,t )=(4,2).(2)当t =2时,ZA →=(1-2t,7-t )=(-3,5),|ZA →|=34,ZB →=(5-2t,1-t )=(1,-1),|ZB →|= 2. 故cos ∠AZB =ZA →·ZB→|ZA →||ZB →|=-834×2=-417=-41717.22.(本小题满分12分)已知函数f (x )=3tan ωx +1tan 2ωx +1(ω>0). (1)若f ⎝⎛⎭⎪⎫x +π2=-f (x ),求f (x )的单调增区间;(2)若f (-x )=f ⎝ ⎛⎭⎪⎫2π3+x (0<ω<2),求ω的值; (3)若y =f (x )在⎣⎢⎡⎦⎥⎤-3π2,π2上单调递增,则ω的最大值为多少? 【导学号:84352383】[解] f (x )=3sin ωx cos ωx +1⎝ ⎛⎭⎪⎫sin ωx cos ωx 2+1 =3sin ωx cos ωx +cos 2ωx sin 2ωx +cos 2ωx =3sin ωx cos ωx +cos 2ωx =32sin 2ωx +1+cos 2ωx 2 =32sin 2ωx +12cos 2ωx +12 =sin ⎝⎛⎭⎪⎫2ωx +π6+12. (1)因为f ⎝⎛⎭⎪⎫x +π2=-f (x ), 所以f (x +π)=f (x ),所以T =π,2π|2ω|=π. 又ω>0,所以ω=1.所以f (x )=sin ⎝⎛⎭⎪⎫2x +π6+12,又因当2k π-π2≤2x +π6≤2k π+π2时f (x )单调递增即f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6k ∈Z . (2)因为f (-x )=f ⎝ ⎛⎭⎪⎫2π3+x , 所以函数f (x )关于直线x =π3对称, 所以sin ⎝ ⎛⎭⎪⎫2π3ω+π6=±1, 所以ω=12+3k 2(k ∈Z ). 又ω∈(0,2),所以k =0,ω=12.(3)由题意知ω>0,y =f (x )在⎣⎢⎡⎦⎥⎤-3π2,π2上单调递增,所以T 4=π4ω, 所以⎩⎪⎨⎪⎧ -π4ω≤-3π2,π4ω≥π2,解得ω∈⎝ ⎛⎦⎥⎤0,16, 所以ωmax =16.。
高中数学 模块综合质量检测卷 新人教A版必修4-新人教A版高一必修4数学试题
模块综合质量检测卷(时间:120分钟 满分:150分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B 由θ是第三象限角,知θ2为第二或第四象限角,∵⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2≤0,综上知,θ2为第二象限角.故选B.2.若sin(π-α)=log 814,且α∈⎝ ⎛⎭⎪⎫-π2,0,则cos(π+α)的值为( )A .53 B .-53C .±53D .-23解析:选B ∵sin(π-α)=sin α=log 22-23=-23,又α∈⎝ ⎛⎭⎪⎫-π2,0,∴cos(π+α)=-cos α=- 1-sin 2α= -1-49=-53.故选B. 3.设单位向量e 1,e 2的夹角为60°,则向量3e 1+4e 2与向量e 1的夹角的余弦值是( ) A .34 B .537 C .2537D .53737解析:选D ∵|3e 1+4e 2|2=9e 21+24e 1·e 2+16e 22=9+24×12+16=37,∴|3e 1+4e 2|=37.又∵(3e 1+4e 2)·e 1=3e 21+4e 1·e 2=3+4×12=5,∴cos θ=537=53737.故选D.4.(2018·某某太和中学期中)已知a ,b 是不共线的向量,AB →=λa +2b ,AC →=a +(λ-1)b ,且A ,B ,C 三点共线,则实数λ的值为( )A .-1B .2C .-2或1D .-1或2解析:选D 由于A ,B ,C 三点共线,故AB →∥AC →,因为AB →=λa +2b ,AC →=a +(λ-1)b ,所以λ(λ-1)-2×1=0,解得λ=-1或λ=2.故选D.5.(2019·某某诊断)设D 为△ABC 所在平面内一点,BC →=-4CD →,则AD →=( ) A .14AB →-34AC → B .14AB →+34AC →C .34AB →-14AC → D .34AB →+14AC → 解析:选 B 解法一:设AD →=xAB →+yAC →,由BC →=-4CD →可得,BA →+AC →=-4CA →-4AD →,即-AB →-3AC →=-4xAB →-4yAC →,则⎩⎪⎨⎪⎧-4x =-1,-4y =-3,解得⎩⎪⎨⎪⎧x =14,y =34,即AD →=14AB →+34AC →,故选B.解法二:在△ABC 中,BC →=-4CD →,即-14BC →=CD →,则AD →=AC →+CD →=AC →-14BC →=AC →-14(BA →+AC →)=14AB →+34AC →,故选B.6.(2019·某某定州中学调研)函数f (x )=12(1+cos2x )·sin 2x (x ∈R )是( )A .最小正周期为π的奇函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数解析:选D 由题意,得f (x )=14(1+cos2x )(1-cos2x )=14(1-cos 22x )=14sin 22x =18(1-cos4x ).又f (-x )=f (x ),所以函数f (x )是最小正周期为π2的偶函数,故选D.7.(2018·永州二模)已知tan ⎝ ⎛⎭⎪⎫α+π4=34,则cos 2π4-α=( )A .725 B .925 C .1625D .2425解析:选B ∵tan ⎝ ⎛⎭⎪⎫α+π4=34, ∴cos 2⎝⎛⎭⎪⎫π4-α=sin 2⎝⎛⎭⎪⎫α+π4=sin 2⎝⎛⎭⎪⎫α+π4sin 2⎝ ⎛⎭⎪⎫α+π4+cos 2⎝ ⎛⎭⎪⎫α+π4=tan 2⎝⎛⎭⎪⎫α+π4tan 2⎝⎛⎭⎪⎫α+π4+1=916916+1=925.故选B.8.函数y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是( )A .⎝ ⎛⎦⎥⎤-32,12 B .⎣⎢⎡⎦⎥⎤-12,32 C .⎣⎢⎡⎦⎥⎤32,1 D .⎣⎢⎡⎦⎥⎤12,1解析:选B 由x ∈⎣⎢⎡⎦⎥⎤0,π2,得x +π6∈⎣⎢⎡⎦⎥⎤π6,2π3.故y max =cos π6=32,y min =cos 2π3=-12.所以,所求值域为⎣⎢⎡⎦⎥⎤-12,32.故选B.9.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则将y =f (x )的图象向左平移π3个单位长度后,得到的图象对应的函数解析式为( )A .y =-cos2xB .y =cos2xC .y =sin ⎝ ⎛⎭⎪⎫2x +5π6D .y =sin ⎝⎛⎭⎪⎫2x -π6解析:选C 设函数f (x )的最小正周期为T .由题图知,34T =1112π-π6,得T =2πω=π,∴ω=2;由f (x )的最大值为1,得A =1,∴f (x )=sin(2x +φ),将⎝ ⎛⎭⎪⎫π6,1代入可得sin ⎝ ⎛⎭⎪⎫π3+φ=1,又∵|φ|<π2,∴φ=π6,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.f (x )的图象向左平移π3个单位长度,可得g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π3+π6=sin ⎝ ⎛⎭⎪⎫2x +5π6的图象.故选C .10.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( )A .-58B .18C .14D .118解析:选B如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=DE →+EF →=12AC →+14AC →=34AC →,所以AF →=AD →+DF →=12AB →+34AC →.又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →.又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B.11.(2019·某某百校联盟联考)已知cos ⎝ ⎛⎭⎪⎫π2+α=3sin ⎝ ⎛⎭⎪⎫α+7π6,则tan ⎝ ⎛⎭⎪⎫π12+α=( )A .4-2 3B .23-4C .4-4 3D .43-4解析:选B 由题意可得-sin α=-3sin ⎝ ⎛⎭⎪⎫α+π6,即sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π12-π12=3sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π12+π12,∴sin ⎝ ⎛⎭⎪⎫α+π12·cos π12-cos ⎝ ⎛⎭⎪⎫α+π12sin π12=3sin α+π12cos π12+3cos ⎝ ⎛⎭⎪⎫α+π12sinπ12,整理可得tan ⎝ ⎛⎭⎪⎫α+π12=-2tan π12=-2tan ⎝ ⎛⎭⎪⎫π4-π6=-2×tan π4-tanπ61+tan π4tanπ6=23-4.故选B.12.(2019·某某部分市学校联考)如图,点C 在以AB 为直径的圆上,其中AB =2,过A 向点C 处的切线作垂线,垂足为P ,则AC →·PB →的最大值是( )A .2B .1C .0D .-1解析:选B 连接BC ,则∠ACB =90°.∵AP ⊥PC ,∴AC →·PB →=AC →·(PC →+CB →)=AC →·PC →=(AP →+PC →)·PC →=PC →2.依题意可证Rt △APC ∽Rt △ACB ,∴|PC →||CB →|=|AC →||AB→|,即|PC →|=|AC →||CB →|2.∵|AC →|2+|CB →|2=|AB →|2,∴|AC →|2+|CB →|2=4≥2|AC→||CB →|,即|AC →||CB →|≤2,当且仅当|AC →|=|CB →|时取等号,∴|PC →|≤1,∴AC →·PB →=PC →2≤1,AC →·PB →的最大值为1,故选B. 二、填空题(本题共4小题,每小题5分,共20分) 13.函数f (x )=sin(-2x )的单调增区间是________. 解析:由f (x )=sin(-2x )=-sin 2x ,令2k π+π2≤2x ≤2k π+3π2(k ∈Z ),得k π+π4≤x ≤k π+3π4(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z )14.(2019·某某师大附中一模)已知两个单位向量a ,b 满足|a +2b |=3,则a ,b 的夹角为________.解析:因为|a +2b |=3,所以|a +2b |2=a 2+4a ·b +4b 2=(3)2.又a ,b 是两个单位向量,所以|a |=1,|b |=1,所以a ·b =-12.因为a ·b =|a ||b |cos 〈a ,b 〉,所以cos 〈a ,b 〉=-12,则a ,b 的夹角为2π3. 答案:2π315.(2019·某某四校协作体联考)化简:1cos 80°-3sin 80°=________.解析:1cos 80°-3sin 80°=sin 80°-3cos 80°sin 80°cos 80°=2sin (80°-60°)12sin 160°=2sin 20°12sin 20°=4.答案:416.已知向量a =(1,1),b =(-1,1),设向量c 满足(2a -c )·(3b -c )=0,则|c |的最大值为________.解析:设c =(x ,y ),则2a -c =(2-x,2-y ),3b -c =(-3-x,3-y ),则由题意得(2-x )(-3-x )+(2-y )(3-y )=0,即⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -522=132,表示以⎝ ⎛⎭⎪⎫-12,52为圆心,262为半径的圆,所以|c |的最大值为26.答案:26三、解答题(本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知c =m a +n b ,c =(-23,2),a ⊥c ,b 与c 的夹角为2π3,b ·c =-4,|a |=22,某某数m ,n 的值及a 与b 的夹角θ.解:∵c =(-23,2),∴|c |=4.∵a ⊥c ,∴a ·c =0. ∵b ·c =|b ||c |cos 2π3=|b |×4×⎝ ⎛⎭⎪⎫-12=-4, ∴|b |=2.∵c =m a +n b ,∴c 2=m a ·c +n b ·c . ∴16=n ×(-4).∴n =-4. 在c =m a +n b 两边同乘以a , 得0=8m -4a ·b ,即a ·b =2m ,①在c =m a +n b 两边同乘以b ,得m a ·b =12.② 由①②,得m =± 6. ∴a ·b =±2 6.∴cos θ=±2622×2=±32.∴θ=π6或5π6.18.(12分)(2019·某某日照五中期中)已知角α的终边过点P (-4,3). (1)求tan (3π+α)sin (5π-α)-cos ⎝ ⎛⎭⎪⎫π2+α的值;(2)若β为第三象限角,且tan β=43,求cos(α-β)的值.解:(1)因为角α的终边过点P (-4,3), 所以sin α=35,cos α=-45,所以tan (3π+α)sin (5π-α)-cos ⎝ ⎛⎭⎪⎫π2+α=sin αcos αsin α+sin α=12cos α=-58.(2)因为β为第三象限角,且tan β=43,所以sin β=-45,cos β=-35.由(1)知,sin α=35,cos α=-45,所以cos(α-β)=cos αcos β+sin αsin β=-45×⎝ ⎛⎭⎪⎫-35+35×⎝ ⎛⎭⎪⎫-45=0.19.(12分)如图是函数y =A sin(ωx +φ)+k ⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的一段图象.(1)求此函数解析式;(2)分析一下该函数是如何通过y =sin x 变换得来的. 解:(1)由图象知A =-12-⎝ ⎛⎭⎪⎫-322=12,k =-12+⎝ ⎛⎭⎪⎫-322=-1,T =2×⎝ ⎛⎭⎪⎫2π3-π6=π,所以ω=2πT =2.所以y =12sin(2x +φ)-1.当x =π6时,2×π6+φ=π2+2k π,k ∈Z ,又|φ|<π2,所以φ=π6.综上,所求函数解析式为y =12sin ⎝⎛⎭⎪⎫2x +π6-1.(2)把y =sin x 向左平移π6个单位长度,得到y =sin ⎝ ⎛⎭⎪⎫x +π6;然后纵坐标保持不变,横坐标缩短为原来的12,得到y =sin ⎝ ⎛⎭⎪⎫2x +π6;再使横坐标保持不变,纵坐标变为原来的12,得到y =12sin ⎝ ⎛⎭⎪⎫2x +π6,最后把函数y =12sin ⎝ ⎛⎭⎪⎫2x +π6的图象向下平移1个单位,得到y =12sin ⎝⎛⎭⎪⎫2x +π6-1的图象.20.(12分)已知向量a ,b 不共线.(1)若OA →=a ,OB →=t b ,OC →=13(a +b ),求当实数t 为何值时,A ,B ,C 三点共线;(2)若|a |=|b |=1,且a 与b 的夹角为120°,实数x ∈⎣⎢⎡⎦⎥⎤-1,12,求|a -x b |的取值X 围.解:(1)若A ,B ,C 三点共线,则存在实数λ,使得OC →=λOA →+(1-λ)OB →, 即13(a +b )=λa +(1-λ)t b , 则⎩⎪⎨⎪⎧λ=13,(1-λ)t =13,解得⎩⎪⎨⎪⎧λ=13,t =12.故t =12时,A ,B ,C 三点共线.(2)因为a ·b =|a ||b |cos120°=-12,则|a -x b |2=a 2+x 2b 2-2x a ·b =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34. 因为x ∈⎣⎢⎡⎦⎥⎤-1,12,所以当x =-12时,|a -x b |取得最小值,最小值为32;当x =12时,|a -x b |取得最大值,最大值为72,所以|a -x b |的取值X 围是⎣⎢⎡⎦⎥⎤32,72. 21.(12分)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解:(1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,故cos x ≠0. 于是tan x =-33.又x ∈[0,π]所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎪⎫x +π6.因为x ∈[0,π]所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.22.(12分)(2019·襄阳四校期中)设函数f (x )=cos π2-x cos x -sin 2(π-x )-12.(1)求函数f (x )的最小正周期和单调递增区间;(2)若f (α)=3210-1,且α∈⎝ ⎛⎭⎪⎫π8,3π8,求f ⎝⎛⎭⎪⎫α-π8的值.解:(1)∵f (x )=sin x cos x -sin 2x -12=12(sin 2x +cos2x )-1=22sin ⎝ ⎛⎭⎪⎫2x +π4-1,∴f (x )的最小正周期为T =2π2=π. 由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .(2)∵f (α)=22sin ⎝⎛⎭⎪⎫2α+π4-1=3210-1, ∴sin ⎝⎛⎭⎪⎫2α+π4=35.由α∈⎝ ⎛⎭⎪⎫π8,3π8知,2α+π4∈⎝ ⎛⎭⎪⎫π2,π, ∴cos ⎝⎛⎭⎪⎫2α+π4=-45. ∴f ⎝ ⎛⎭⎪⎫α-π8=22sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫α-π8+π4-1word11 / 11 =22sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π4-π4-1 =22⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2α+π4cos π4-cos ⎝⎛⎭⎪⎫2α+π4sin π4-1 =22×⎝ ⎛⎭⎪⎫35×22+45×22-1=-310.。
高中数学 模块综合测评 新人教A版必修4-新人教A版高一必修4数学试题
模块综合测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)3.(2016•某某阿克苏高一期末)函数y=cos 2x+sin2x,x∈R的值域是()A.[0,1]B.C.[-1,2]D.[0,2]解析:因为函数y=cos 2x+sin2x=cos 2x+cos 2x=cos 2x,且x∈R,所以cos 2x∈[-1,1],所以cos 2x∈[0,1].故选A.答案:A4.已知两向量a=(2,sin θ),b=(1,cos θ),若a∥b,则的值为()A.2B.3C.4D.5解析:∵a∥b,∴2cos θ=sin θ,∴tan θ=2,∴=2+tan θ=4.答案:C5.已知函数f(x)=sin ωx+cos ωx(ω>0),x∈R.在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()A. B. C.π D.2π解析:∵f(x)=2sin=1,∴sin,∴ωx1++2k1π(k1∈Z)或ωx2++2k2π(k2∈Z),则ω(x2-x1)=+2(k2-k1)π.又相邻交点距离的最小值为,∴ω=2,∴T=π.答案:C7.函数y=在一个周期内的图象是()解析:y=cos x·=-2sin x cos x=-sin 2x,故选B.答案:B9.(2016·某某某某二中期中)设函数f(x)=cos (2x+φ)+sin (2x+φ),且其图象关于直线x=0对称,则()A.y=f(x)的最小正周期为π,且在上为增函数B.y=f(x)的最小正周期为π,且在上为减函数C.y=f(x)的最小正周期为,且在上为增函数D.y=f(x)的最小正周期为,且在上为减函数解析:f(x)=cos(2x+φ)+sin(2x+φ)=2=2cos.∵ω=2,∴T==π.又函数图象关于直线x=0对称,∴φ-=kπ(k∈Z),即φ=kπ+(k∈Z).又|φ|<,∴φ=,∴f(x)=2cos 2x.令2kπ≤2x≤2kπ+π(k∈Z),解得kπ≤x≤kπ+(k∈Z),∴函数的递减区间为(k∈Z).又(k∈Z),∴函数在上为减函数,则y=f(x)的最小正周期为π,且在上为减函数.故选B.答案:B10.函数f(x)=A sin(ωx+φ)的图象如图所示,为了得到g(x)=sin 3x的图象,只需将f(x)的图象() A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度D.向左平移个单位长度解析:由题中图象可知,A=1,,即T=,∴ω=3,∴f(x)=sin(3x+φ).又f=sin=sin=-1,∴+φ=+2kπ,k ∈Z,即φ=+2kπ,k∈Z,又|φ|<,∴φ=,即f(x)=sin.∵g(x)=sin 3x=sin=sin,∴只需将f(x)的图象向右平移个单位长度,即可得到g(x)=sin 3x的图象,故选C.答案:C11.已知|a|=2|b|≠0,且关于x的方程x2+|a|x+a·b=0有实根,则a与b夹角的取值X围是()A. B. C. D.解析:设a与b的夹角为θ,∵Δ=|a|2-4a·b≥0,∴a·b≤,∴cos θ=.∵θ∈[0,π],∴θ∈.答案:B12α,β为锐角,cos(α+β)=,cos(2α+β)=,则cos α的值为()A. B.C. D.以上都不对解析:∵0<α+β<π,cos(α+β)=>0,∴0<α+β<,sin(α+β)=.∵0<2α+β<π,cos(2α+β)=>0,∴0<2α+β<,sin(2α+β)=.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β)=.答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知sin α=(2π<α<3π),则sin+cos=.解析:∵2π<α<3π,∴π<,∴sin<0,cos<0.由=1+2sincos=1+,知sin+cos=-.答案:-14.在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若=1,则AB的长为. 解析:=()·()=()·|·||·|2+1=1.得||=|=,则AB的长为.答案:15.设f(x)=2cos2x+sin 2x+a,当x∈时,f(x)有最大值4,则a=.解析:f(x)=2cos2x+sin 2x+a=cos 2x+sin 2x+a+1=2sin+a+1.由x∈,∴f(x)max=3+a=4,∴a=1.答案:116.关于函数f(x)=cos+cos,则下列命题:①y=f(x)的最大值为;②y=f(x)最小正周期是π;③y=f(x)在区间上是减函数;④将函数y=cos 2x的图象向右平移个单位后,将与已知函数的图象重合.其中正确命题的序号是.解析:f(x)=cos+cos=cos+sin=cos-sin==coscos,∴y=f(x)的最大值为,最小正周期为π,故①,②正确.又当x∈时,2x-∈[0,π],∴y=f(x)在上是减函数,故③正确.由④得y=cos 2cos,故④正确.答案:①②③④三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f(x)=A sin(ωx+φ)的部分图象如图所示,其中点P是图象的一个最高点.(1)求函数f(x)的解析式;(2)已知α∈,且sin α=,求f.解:(1)由函数最大值为2,得A=2.由题图可得周期T=4=π,由=π,得ω=2.又ω·+φ=2kπ+,k∈Z,及φ∈,得φ=.∴f(x)=2sin.(2)由α∈,且sin α=,得cos α=-=-,∴f=2sin=2.18.(本小题满分12分)如图,在△ABC中,AB=8,AC=3,∠BAC=60°,以点A为圆心,r=2为半径作一个圆,设PQ为圆A的一条直径.(1)请用表示,用表示;(2)记∠BAP=θ,求的最大值.解:(1)=-.(2)∵∠BAC=60°,∠BAP=θ,∴∠CAP=60°+θ,∵AB=8,AC=3,AP=2,∴=()·(-)=8-6cos(θ+60°)+16cos θ=3sin θ+13cos θ+8=14sin(θ+φ)+8,∴当sin(θ+φ)=1时,的最大值为22.19.(本小题满分12分)已知函数f(x)=sin (ωx+φ)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f,求cos 的值.解:(1)因为f(x)的图象上相邻两个最高点的距离为π,所以f(x)的最小正周期T=π,从而ω==2.又因为f(x)的图象关于直线x=对称,所以2·+φ=kπ+,k=0,±1,±2,….由-≤φ<,得k=0,所以φ==-.(2)由(1)得f sin ,所以sin.由<α<,得0<α-,所以cos=.因此cos=sin α=sin=sincos +cos sin=.20.(本小题满分12分)(2016·某某某某高一期末)已知向量a=(1,cos 2x),b=(sin 2x,-),函数f(x)=a·b.(1)求函数f(x)的单调递减区间;(2)若f,求f的值.解:(1)由题意得f(x)=a·b=sin 2x-cos 2x=2sin.因为函数y=sin x的单调递减区间为,k∈Z,∴由+2kπ≤2x-+2kπ,k∈Z得+kπ≤x≤+kπ,k∈Z,∴函数f(x)的单调递减区间为,k∈Z.(2)∵f(x)=2sin,∴f=2sin=2sin (α+π)=-2sin α=,∴sin α=-,∴f=2sin=2sin=2cos 2α=2(1-2sin2α)=2.21.(本小题满分12分)在如图所示的直角坐标系xOy中,点A,B是单位圆上的点,且A(1,0),∠AOB=.现有一动点C在单位圆的劣弧上运动,设∠AOC=α.(1)求点B的坐标;(2)若tan α=,求的值;(3)若=x+y,其中x,y∈R,求x+y的最大值.解:(1)由任意角的三角函数定义,可得点B的坐标为.(2)∵=(1,0),=(cos α,sin α),∴=cos α.又tan α=,且0≤α≤,∴cos α=,即.(3)方法一:由=x+y,得(cos α,sin α)=x(1,0)+y,∴∴x+y=cos α+sin α=cos α+sin α)=sin,又0≤α≤,∴当α=时,x+y有最大值.方法二:即∴x+y=[cos α+cos(60°-α)]==cos α+sin α=sin.又0≤α≤,∴当α=时,x+y有最大值.22本小题满分12分)(2016•某某揭阳惠来一中检测)已知点A(sin 2x,1),B,设函数f(x)=(x∈R),其中O为坐标原点.(1)求函数f(x)的最小正周期;(2)当x∈时,求函数f(x)的最大值与最小值;(3)求函数f(x)的单调减区间.解:(1)∵A(sin 2x,1),B,∴=(sin 2x,1),,∴f(x)==sin 2x+cos=sin 2x+cos 2x cos -sin 2x cos=sin 2x+cos 2x=sin 2x cos +cos 2x sin=sin.故f(x)的最小正周期T==π.(2)∵0≤x≤,∴≤2x+,∴-≤sin≤1,∴f(x)的最大值和最小值分别为1和-.(3)由+2kπ≤2x++2kπ,k∈Z得+kπ≤x≤+kπ,k∈Z, ∴f(x)的单调减区间是,k∈Z.。
最新2019高中数学 模块综合测评 新人教A版必修4
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.cos(-2 640°)+sin 1 665°等于( ) A .1+22B .-1+22C .1+32D .-1+32B [cos(-2 640°)=cos 2 640° =cos(7×360°+120°) =cos 120°=-12,sin 1 665°=sin(4×360°+225°) =sin 225°=sin(180°+45°) =-sin 45°=-22, ∴cos(-2 640°)+sin 1 665°=-12-22=-1+22.]2.已知扇形的圆心角为2π3弧度,半径为2,则扇形的面积是( )【导学号:84352374】A .8π3B .43C .2πD .4π3D [此扇形的面积S =12×2π3×22=4π3.]3.log 2sin π12+log 2cos π12的值为( )A .-4B .4C .-2D .2C [log 2sin π12+log 2cos π12=log 2⎝ ⎛⎭⎪⎫sin π12cos π12=log 2⎝ ⎛⎭⎪⎫12sin π6=log 214=-2.]4.设向量a =(2tan α,tan β),向量b =(4,-3),且a +b =0,则tan(α+β)=( )【导学号:84352375】A .17B .-15C .15D .-17A [∵a +b =(2tan α+4,tan β-3)=0,∴⎩⎪⎨⎪⎧2tan α+4=0,tan β-3=0,∴tan α=-2,tan β=3,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+31--2×3=17.]5.函数y =sin(ωx +φ)(x ∈R ,且ω>0,0≤φ<2π)的部分图象如图1所示,则( )图1A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π4,φ=5π4C [∵T =4×2=8,∴ω=π4, 又π4×1+φ=π2,∴φ=π4.] 6.已知tan θ2=23,则1-cos θ+sin θ1+cos θ+sin θ的值为( )A .23 B .-23C .32D .-32A [1-cos θ+sin θ1+cos θ+sin θ=2sin2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cosθ2=tan θ2=23.]7.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫π6x +π3(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l与函数的图象交于B 、C 两点,则(OB →+OC →)·OA →等于( )【导学号:84352376】A .-32B .-16C .16D .32D [由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B 、C 两点,根据对称性可知,A 是BC 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)·OA →=2OA →·OA →=2|OA →|2=2×42=32,]8.函数y =sin x cos x +3cos 2x -3的图象的一个对称中心为( ) A.⎝⎛⎭⎪⎫2π3,-32B.⎝ ⎛⎭⎪⎫5π6,-32C.⎝ ⎛⎭⎪⎫-2π3,32D.⎝⎛⎭⎪⎫π3,-3B [y =12sin 2x +32(1+cos 2x )-3=sin ⎝⎛⎭⎪⎫2x +π3-32,令2x +π3=k π,(k ∈Z ),x =k π2-π6(k ∈Z ),当k =2时,x =5π6,∴函数图象的一个对称中心为⎝⎛⎭⎪⎫5π6,-32.]9.设向量a =(c os 55°,sin 55°),b =(cos 25°,sin 25°),若t 为实数,则|a -t b |的最小值是( )A .12B .1C .32D .1+ 3A [|a -t b |=a -t b2=a 2-2t a·b +t 2b 2=1-2t a·b +t 2=t 2-2t ++1=t 2--2t +1=t 2-3t +1=⎝⎛⎭⎪⎫t -322+14,即|a -t b |的最小值为12.]10.已知f (x )=1+sin 2x2,若a =f (lg 5),b =f (lg 0.2),则下列正确的是( )【导学号:84352377】A .a +b =0B .a -b =0C .a +b =1D .a -b =1C [∵b =f (lg 0.2)=f (-lg 5), ∴f (x )+f (-x )=1+sin 2x 2+1+-2x 2=1, ∴a +b =f (lg 5)+f (-lg 5)=1.]11.如图2,设P 为△ABC 内一点,且AP →=14AB →+15AC →,BM →=34BA →,CN →=45CA →,则△PMB 的面积与△ABC 的面积之比等于( )图2A .1∶5B .2∶5C .3∶20D .7∶20C [由题可知AM →=14AB →,AN →=15AC →,则AP →=AM →+AN →,由平行四边形法则可知NP →∥AB →,AN →∥MP →,所以S △PMB S △ABC =|PM →|·|MB →||AB →|·|AC →|=15×34=320.]12.在△ABC 中,A ,B ,C 是其三个内角,设f (B )=4sin B ·cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B ,当f (B )-m <2恒成立时,实数m 的取值范围是( )【导学号:84352378】A .m <1B .m >-3C .m <3D .m >1D [f (B )=4sin B cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B=4sin B ·1+cos ⎝ ⎛⎭⎪⎫π2-B 2+cos 2B=2sin B (1+sin B )+(1-2sin 2B ) =2sin B +1.∵f (B )-m <2恒成立, ∴2sin B +1-m <2恒成立, 即m >2sin B -1恒成立. ∵0<B <π, ∴0<sin B ≤1,∴-1<2sin B -1≤1,故m >1.]二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知O A →=(-2,1),O B →=(0,2),且A C →∥O B →,B C →⊥A B →,则点C 的坐标是________. (-2,6) [设C (x ,y ),则A C →=(x +2,y -1),B C →=(x ,y -2),A B →=(2,1).由A C →∥O B →,B C →⊥A B →,得⎩⎪⎨⎪⎧x +=0,2x +y -2=0,解得⎩⎪⎨⎪⎧x =-2,y =6,∴点C 的坐标为(-2,6).]14.将函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象上的所有点向右平移π6个单位,再将图象上所有点的横坐标变为原来的12(纵坐标不变),则所得的图象的函数解析式为________.【导学号:84352379】y =sin 4x [y =sin ⎝⎛⎭⎪⎫2x +π3的图象上的所有点向右平移π6个单位得y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3=sin 2x , 再将图象上所有点的横坐标变为原来的12(纵坐标不变)得y =sin 4x .]15.如图3,在平行四边形OPQR 中,S 是对角线的交点,若OP →=2e 1,OR →=3e 2,以e 1,e 2为基底,表示PS →=________,QS →=________.图332e 2-e 1,-e 1-32e 2 [∵平行四边形OPQR 中,OQ →=OP →+OR →=2e 1+3e 2, PR →=OR →-OP →=3e 2-2e 1. S 是OQ ,PR 的中点,∴PS →=12PR →=32e 2-e 1,QS →=-12OQ →=-e 1-32e 2.]16.定义运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于________. 【导学号:84352380】π3[由题意得, sin αcos β-cos αsin β=3314,∴sin(α-β)=3314.∵0<β<α<π2,∴cos(α-β)=1-27196=1314. 又cos α=17得sin α=437.cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=17×1314+437×3314=12, ∴β=π3.]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知角α的终边过点P ⎝ ⎛⎭⎪⎫45,-35.(1)求sin α的值;(2)求式子sin ⎝ ⎛⎭⎪⎫π2-αα+π·α-ππ-α的值.[解] (1)∵|OP |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫-352=1, ∴点P 在单位圆上,由正弦函数定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α.由(1)得sin α=-35,P 在单位圆上,∴cos α=45,∴原式=54.18.(本小题满分12分)已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2.【导学号:84352381】[解] 由已知得tan α=12.(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=12-312+1=-53.(2)sin 2α+sin αcos α+2 =3sin 2α+sin αcos α+2cos 2α =3sin 2α+sin αcos α+2cos 2αsin 2α+cos 2α=3tan 2α+tan α+2tan 2α+1=3×⎝ ⎛⎭⎪⎫122+12+2⎝ ⎛⎭⎪⎫122+1=135. 19.(本小题满分12分)如图4,在△ABC 中,已知AB =2,AC =6,∠BAC =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=5AE →,图4(1)若BF →=-34AB →+110AC →,求证:点F 为DE 的中点;(2)在(1)的条件下,求BA →·EF →的值. [解] (1)证明:因为BF →=-34AB →+110AC →,所以AF →=BF →-BA →=14AB →+110AC →,又AB →=2AD →,AC →=5AE →,所以AF →=12AD →+12AE →,所以F 为DE 的中点.(2)由(1)可得EF →=12ED →=12(AD →-AE →),因为AB →=2AD →,AC →=5AE →, 所以EF →=14AB →-110AC →,所以BA →·EF →=-AB →·⎝ ⎛⎭⎪⎫14AB →-110AC →=-14AB 2→+110AB →·AC →=-14×4+110×2×6×cos 60°=-25.20.(本小题满分12分)已知函数f (x )=cos 4x -12cos ⎝ ⎛⎭⎪⎫π2+2x +cos 2x -sin 2x .(1)求函数f (x )的最小正周期和单调递减区间;(2)在所给坐标系中画出函数在区间⎣⎢⎡⎦⎥⎤38π,118π的图象(只作图不写过程).【导学号:84352382】图5[解] f (x )=1-2sin 22x -1-2sin 2x +cos 2x=sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4. (1)函数f (x )的最小正周期T =2π2=π,令2k π+π2≤2x +π4≤2k π+3π2,k ∈Z ,则2k π+π4≤2x ≤2k π+5π4,k ∈Z ,故k π+π8≤x ≤k π+5π8,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). (2)图象如下:21.(本小题满分12分)如图6,已知OP →=(2,1),OA →=(1,7),OB →=(5,1),设Z 是直线OP 上的一动点.图6(1)求使ZA →·ZB →取最小值时的OZ →;(2)对(1)中求出的点Z ,求cos ∠AZB 的值. [解] (1)∵Z 是直线OP 上的一点, ∴OZ →∥OP →.设实数t ,使OZ →=tOP →, ∴OZ →=t (2,1)=(2t ,t ), 则ZA →=OA →-OZ →=(1,7)-(2t ,t ) =(1-2t,7-t ), ZB →=OB →-OZ →=(5,1)-(2t ,t )=(5-2t,1-t ),∴ZA →·ZB →=(1-2t )(5-2t )+(7-t )(1-t ) =5t 2-20t +12=5(t -2)2-8. 当t =2时,ZA →·ZB →有最小值-8, 此时OZ →=(2t ,t )=(4,2).(2)当t =2时,ZA →=(1-2t,7-t )=(-3,5),|ZA →|=34,ZB →=(5-2t,1-t )=(1,-1),|ZB →|= 2. 故cos ∠AZB =ZA →·ZB→|ZA →||ZB →|=-834×2=-417=-41717.22.(本小题满分12分)已知函数f (x )=3tan ωx +1tan 2ωx +1(ω>0). (1)若f ⎝⎛⎭⎪⎫x +π2=-f (x ),求f (x )的单调增区间;(2)若f (-x )=f ⎝ ⎛⎭⎪⎫2π3+x (0<ω<2),求ω的值; (3)若y =f (x )在⎣⎢⎡⎦⎥⎤-3π2,π2上单调递增,则ω的最大值为多少? 【导学号:84352383】[解] f (x )=3sin ωx cos ωx +1⎝ ⎛⎭⎪⎫sin ωx cos ωx 2+1 =3sin ωx cos ωx +cos 2ωx sin 2ωx +cos 2ωx =3sin ωx cos ωx +cos 2ωx =32sin 2ωx +1+cos 2ωx 2 =32sin 2ωx +12cos 2ωx +12 =sin ⎝⎛⎭⎪⎫2ωx +π6+12. (1)因为f ⎝⎛⎭⎪⎫x +π2=-f (x ), 所以f (x +π)=f (x ),所以T =π,2π|2ω|=π. 又ω>0,所以ω=1.所以f (x )=sin ⎝⎛⎭⎪⎫2x +π6+12,又因当2k π-π2≤2x +π6≤2k π+π2时f (x )单调递增即f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6k ∈Z . (2)因为f (-x )=f ⎝ ⎛⎭⎪⎫2π3+x , 所以函数f (x )关于直线x =π3对称, 所以sin ⎝ ⎛⎭⎪⎫2π3ω+π6=±1, 所以ω=12+3k 2(k ∈Z ). 又ω∈(0,2),所以k =0,ω=12.(3)由题意知ω>0,y =f (x )在⎣⎢⎡⎦⎥⎤-3π2,π2上单调递增,所以T 4=π4ω, 所以⎩⎪⎨⎪⎧ -π4ω≤-3π2,π4ω≥π2,解得ω∈⎝ ⎛⎦⎥⎤0,16, 所以ωmax =16.。
高中人教A版数学必修4:模块综合测试卷Word版含解析
2
3
A. 3π B. 4π
5 C.6π D .π
答案: A
解析: 设该弦 AB 所对的圆心角为 α,由已知 R= 1, AB
∴ sinα= 2 = 2R
3,∴ 2
α= 2
π,∴ 3
α=
2 3π,∴
l=
αR=
2 3π.
2.- 3290 °角是 ( )
A .第一象限角 B.第二象限角
C.第三象限角 D.第四象限角 答案: D
9. y=2cos
π- 2x 4
的单调减区间是
(
)
A. kπ+ π8, kπ+58π(k∈ Z )
B.
-
3 8π+
kπ,
π8+
kπ(
k∈
Z
)
C.
π+ 8
2kπ,
58π+
2kπ
(
k∈
Z
)
D.
-
3 8π+
2kπ,π8+
2kπ
(
k∈
Z
)
答案: A
解析:
y= 2cos
π4- 2x
= 2cos
2x-
π 4 .由
0,
π 4
,
∴ cos
β-
π 4
=
45,
于是
sin2
β-π4 = 2sin
π β- 4 cos
β-
π 4
=
24 25.
又
sin2
π β- 4 =-
cos2β,∴
cos2β=-
24 25
.
又 2β∈
π, 2
π
,∴
sin2
β=
275,又
2020_2021学年高中数学模块综合测评新人教A版必修4
精品文档,欢迎下载!模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若cos α=13,则cos 2α=( )A.429B .-429C.79D .-79D [cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫132-1=-79,故选D.]2.已知扇形的圆心角为2π3弧度,半径为2,则扇形的面积是( )A.8π3B.43 C .2πD.4π3D [扇形的面积S =12×2π3×22=4π3.]3.已知sin ⎝ ⎛⎭⎪⎫α-π12=13,则cos ⎝ ⎛⎭⎪⎫α+5π12的值等于( ) A.13 B.223C .-13D .-223C [cos ⎝ ⎛⎭⎪⎫α+5π12=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α-π12+π2=-sin ⎝ ⎛⎭⎪⎫α-π12=-13,故选C.] 4.设向量a =(2tan α,tan β),向量b =(4,-3),且a +b =0,则tan(α+β)=( ) A.17 B .-15C.15D .-17A [∵a +b =(2tan α+4,tan β-3)=0,∴⎩⎪⎨⎪⎧2tan α+4=0,tan β-3=0,∴tan α=-2,tan β=3,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+31--2×3=17.]5.已知函数f (x )=sin x +cos x ,g (x )=2cos x ,动直线x =t 与f (x )和g (x )的图象分别交于A ,B 两点,则|AB |的取值范围是( )A .[0,1]B .[0,2]C .[0,2]D .[1,2]B [题意得|AB |=|f (t )-g (t )|=|sin t -cos t |=⎪⎪⎪⎪⎪⎪2sin ⎝⎛⎭⎪⎫t -π4∈[0,2].故选B.]6.已知tan θ2=23,则1-cos θ+sin θ1+cos θ+sin θ的值为( )A.23 B .-23C.32D .-32A [1-cos θ+sin θ1+cos θ+sin θ=2sin2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cosθ2=tan θ2=23.]7.为了得到函数y =2sin ⎝ ⎛⎭⎪⎫2x +π4的图象,只要把函数y =2cos 2x 图象上所有的点( )A .向左平行移动π8个单位长度B .向右平行移动π8个单位C.向左平行移动π4个单位长度D .向右平行移动π4个单位B [只要把函数y = 2 cos 2x 图象上所有的点,向右平行移动π8个单位,可得函数y = 2 sin ⎝⎛⎭⎪⎫2x +π4的图象,故选B.]8.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )在一个周期内的图象如图所示,则y =f (x )的解析式是( )A .f (x )=4sin ⎝⎛⎭⎪⎫3x -π4 B .f (x )=4sin ⎝ ⎛⎭⎪⎫43x +π3 C.f (x )=4sin ⎝ ⎛⎭⎪⎫3x +π4 D .f (x )=4sin ⎝ ⎛⎭⎪⎫43x -π3B [由图象知函数的最大值为A =4,T 4=π8-⎝ ⎛⎭⎪⎫-π4=3π8.即T =3π2=2πω,即ω=43,即f (x )=4sin ⎝ ⎛⎭⎪⎫43x +φ, 由五点对应法得43×⎝ ⎛⎭⎪⎫-π4+φ=0,得φ=π3,得f (x )=4sin ⎝ ⎛⎭⎪⎫43x +π3,故选B.]9.已知f (x )=1+sin 2x2,若a =f (lg 5),b =f (lg 0.2),则下列正确的是( )A .a +b =0B .a -b =0C .a +b =1D .a -b =1C [∵b =f (lg 0.2)=f (-lg 5),∴f (x )+f (-x )=1+sin 2x 2+1+sin -2x2=1,∴a +b =f (lg 5)+f (-lg 5)=1.]10.如图,设P 为△ABC 内一点,且AP →=14AB →+15AC →,BM →=34BA →,CN →=45CA →,则△PMB 的面积与△ABC 的面积之比等于( )A .1∶5B .2∶5C .3∶20D .7∶20C [由题可知AM →=14AB →,AN →=15AC →,则AP →=AM →+AN →,由平行四边形法则可知NP →∥AB →,AN →∥MP →,所以S △PMB S △ABC =|PM →|·|MB →||AB →|·|AC →|=15×34=320.]11.函数f (x )=cos x +cos ⎝ ⎛⎭⎪⎫x -π3的一个单调递增区间为( )A.⎣⎢⎡⎦⎥⎤-5π6,π6B.⎣⎢⎡⎦⎥⎤0,5π6C.⎣⎢⎡⎦⎥⎤-π,-π6 D.⎣⎢⎡⎦⎥⎤π6,π A [函数f (x )=cos x +cos ⎝⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x=3sin ⎝⎛⎭⎪⎫x +π3,令-π2+2k π≤x +π3≤2k π+π2(k ∈Z ),解得-5π6+2k π≤x ≤2k π+π6,当k =0时,函数的单调递增区间为⎣⎢⎡⎦⎥⎤-5π6,π6.故选A.]12.在△ABC 中,A ,B ,C 是其三个内角,设f (B )=4sin B ·cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B ,当f (B )-m <2恒成立时,实数m 的取值范围是( )A .m <1B .m >-3C .m <3D .m >1D [f (B )=4sin B cos 2⎝ ⎛⎭⎪⎫π4-B 2+cos 2B=4sin B ·1+cos ⎝ ⎛⎭⎪⎫π2-B 2+cos 2B=2sin B (1+sin B )+(1-2sin 2B ) =2sin B +1.∵f (B )-m <2恒成立, ∴2sin B +1-m <2恒成立, 即m >2sin B -1恒成立. ∵0<B <π, ∴0<sin B ≤1,∴-1<2sin B -1≤1,故m >1.]二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知OA →=(-2,1), OB →=(0,2),且AC →∥OB →,BC →⊥AB →,则点C 的坐标是 . (-2,6) [设C (x ,y ),则AC →=(x +2,y -1),B C →=(x ,y -2),AB →=(2,1).由AC →∥OB →,BC →⊥AB →,得⎩⎪⎨⎪⎧2x +2=0,2x +y -2=0,解得⎩⎪⎨⎪⎧x =-2,y =6,∴点C 的坐标为(-2,6).]14.将函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象上的所有点向右平移π6个单位,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变),则所得的图象的函数解析式为 .y =sin 4x [y =sin ⎝⎛⎭⎪⎫2x +π3的图象上的所有点向右平移π6个单位得y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π3=sin 2x ,再将图象上所有点的横坐标变为原来的12倍(纵坐标不变)得y =sin 4x .]15.设α是第二象限角,P (x,4)为其终边上一点,且cos α=x5,则tan 2α= .247[因为α是第二象限角,P (x,4)为其终边上的一点,所以x <0,因为cos α=x 5=xx 2+16,所以x =-3,所以tan α=y x =-43,所以tan 2α=2tan α1-tan 2α=247.] 16.如图,在等腰△ABC 中,D 为底边BC 的中点,E 为AD 的中点,直线BE 与边AC 交于点F ,若AD =BC =4,则AB →·CF →= .-8 [以点D 为原点,以BC 为x 轴建立平面直角坐标系;则A (0,4),B (-2,0),C (2,0),E (0,2),直线AC 的方程为2x +y -4=0; 直线BE 的方程为x -y +2=0;由⎩⎪⎨⎪⎧2x +y -4=0x -y +2=0得⎩⎪⎨⎪⎧x =23y =83,向量AB →=(-2,-4),CF →=⎝ ⎛⎭⎪⎫-43,83,则AB →·CF →=-2×⎝ ⎛⎭⎪⎫-43+⎝ ⎛⎭⎪⎫-4×83=-8, 所以AB →·CF →=-8.]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知角α的终边过点P ⎝ ⎛⎭⎪⎫45,-35.(1)求sin α的值;(2)求式子sin ⎝ ⎛⎭⎪⎫π2-αsin α+π·tan α-πcos 3π-α的值.[解] (1)∵|OP |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫-352=1,∴点P 在单位圆上,由正弦函数定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α.由(1)知,P 在单位圆上,∴由余弦函数定义得cos α=45,∴原式=54.18.(本小题满分12分)已知a =(cos 2α,sin α),b =(1,2sin α-1),α∈⎝ ⎛⎭⎪⎫π2,π,a·b =25,求52sin 2α-4cos ⎝⎛⎭⎪⎫α+π42cos 2α2.[解] ∵a·b =cos 2α+sin α(2sin α-1) =cos 2α+2sin 2α-sin α =1-sin α=25,∴sin α=35.∵α∈⎝⎛⎭⎪⎫π2,π,∴cos α=-45, ∴sin 2α=2sin αcos α=-2425,∴52sin 2α-4cos ⎝⎛⎭⎪⎫α+π42cos 2α2=52sin 2α-22cos α-sin α1+cos α=52×⎝ ⎛⎭⎪⎫-2425-22⎝ ⎛⎭⎪⎫-45-351-45=-10 2.19.(本小题满分12分)如图,在△ABC 中,已知AB =2,AC =6,∠BAC =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=5AE →.(1)若BF →=-34AB →+110AC →,求证:点F 为DE 的中点;(2)在(1)的条件下,求BA →·EF →的值. [解] (1)证明:因为BF →=-34AB →+110AC →,所以AF →=BF →-BA →=14AB →+110AC →,又AB →=2AD →,AC →=5AE →,所以AF →=12AD →+12AE →,所以F 为DE 的中点.(2)由(1)可得EF →=12ED →=12(AD →-AE →),因为AB →=2AD →,AC →=5AE →, 所以EF →=14AB →-110AC →,所以BA →·EF →=-AB →·⎝ ⎛⎭⎪⎫14AB →-110AC →=-14AB 2→+110AB →·AC →=-14×4+110×2×6×cos 60°=-25.20.(本小题满分12分)已知函数f (x )=cos 4x -12cos ⎝ ⎛⎭⎪⎫π2+2x +cos 2x -sin 2x .(1)求函数f (x )的最小正周期和单调递减区间;(2)在所给坐标系中画出函数在区间⎣⎢⎡⎦⎥⎤38π,118π的图象(只作图不写过程).[解] f (x )=1-2sin 22x -1-2sin 2x +cos 2x=sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4. (1)函数f (x )的最小正周期T =2π2=π,令2k π+π2≤2x +π4≤2k π+3π2,k ∈Z ,则2k π+π4≤2x ≤2k π+5π4,k ∈Z ,故k π+π8≤x ≤k π+5π8,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). (2)图象如下:21.(本小题满分12分)如图,已知OP →=(2,1),OA →=(1,7),OB →=(5,1),设Z 是直线OP 上的一动点.(1)求使ZA →·ZB →取最小值时的OZ →;(2)对(1)中求出的点Z ,求cos∠AZB 的值. [解] (1)∵Z 是直线OP 上的一点,∴OZ →∥OP →.设实数t ,使OZ →=tOP →, ∴OZ →=t (2,1)=(2t ,t ), 则ZA →=OA →-OZ →=(1,7)-(2t ,t ) =(1-2t,7-t ),ZB →=OB →-OZ →=(5,1)-(2t ,t ) =(5-2t,1-t ),∴ZA →·ZB →=(1-2t )(5-2t )+(7-t )(1-t ) =5t 2-20t +12=5(t -2)2-8. 当t =2时,ZA →·ZB →有最小值-8, 此时OZ →=(2t ,t )=(4,2).(2)当t =2时,ZA →=(1-2t,7-t )=(-3,5),|ZA →|=34,ZB →=(5-2t,1-t )=(1,-1),|ZB →|= 2. 故cos∠AZB =ZA →·ZB→|ZA →||ZB →|=-834×2=-417=-41717.22.(本小题满分12分)(2019·钦州高一期末)已知函数f (x )=sin 2x -3cos 2x . (1)求f (x )的单调递增区间;(2)若关于x 的方程f (x )=m 在x ∈⎣⎢⎡⎦⎥⎤π4,π2上有两个不相等的实数根,求m 的取值范围.[解] (1)f (x )=sin 2x -3cos 2x =2⎝ ⎛⎭⎪⎫12sin 2x -32cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,即函数的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .(2)因为x ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2x -π3∈⎣⎢⎡⎦⎥⎤π6,2π3,设X =2x -π3,则X ∈⎣⎢⎡⎦⎥⎤π6,2π3,精品文档,欢迎下载!- 11 - f (x )=m 在x ∈⎣⎢⎡⎦⎥⎤π4,π2上有两个不相等的实数根,即g (X )=2sin X =m 在⎣⎢⎡⎦⎥⎤π6,2π3上有两个不相等的实数根,由图象知g ⎝ ⎛⎭⎪⎫2π3=2sin 2π3=2×32=3,则要使g (X )=m 在⎣⎢⎡⎦⎥⎤π6,2π3上有两个不相等的实数根,则3≤m <2,即实数m 的取值范围是[3,2).。
高中数学 综合训练题(二) 新人教A版必修4
高中数学 综合训练题(二) 新人教A 版必修4第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.) 1.=︒210cos ( ).A.12-B.12C.2-D .22.如果角θ的终边经过点)21,23(-,那么θtan 的值是( ). A.33-B.23-C.3D.21 3.已知θθtan sin ⋅<0,那么角θ是( )A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角4.sin 27cos63cos27sin63︒︒+︒︒=( ). A.1 B.1- C.22D.22-5.若向量(1,2)=a ,(3,4)=-b ,则()()⋅⋅+a b a b 等于( ). A.20 B.),(3010- C.54 D.),(248-6.为了得到函数3sin(2)3y x π=-的图象,只需要把函数x y 2sin 3=的图象上所有的点( ).A.向右平移3π B.向右平移6π C.向左平移3π D.向左平移6π 7.函数2(sin cos )1y x x =--是( ).A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为2π的奇函数D.最小正周期为2π的偶函数 8.已知平面向量(1,2)=a ,(2,)m =-b ,且a //b ,则23+a b =( ). A.(5,10)-- B.(4,8)-- C.(3,6)-- D.(2,4)--9.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)f = ( ).A.26ωϕπ==,B.123ωϕπ==,C.23ωϕπ==,D.126ωϕπ==, 10.已知函数()sin()()2f x x x π=-∈R ,下面结论错误..的是( ). A.函数)(x f 的最小正周期为2π B.函数)(x f 在区间[0,2π]上是增函数 C.函数)(x f 的图象关于直线x =0对称 D.函数)(x f 是奇函数 11.在ABC ∆中,有命题:①BC AC AB =-;②=++;③若0)()(=-⋅+,则ABC ∆为等腰三角形;④若0>⋅,则ABC ∆为锐角三角形. 上述命题正确的是( ).A.①②B.①④C.②③D.②③④12.已知F E D 、、分别是ABC ∆的边AB CA BC 、、的中点,且=a ,=b ,=c ,则下列命题中正确命题的个数为( ).①=21c 21-b ; ②=a 21+b ;③=21b 21-a ; ④=++0.A.1B.2C.3D.4第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13.已知向量(2,1)=-a 与向量b 共线,且满足10⋅=-a b ,则向量b =_________ .14.已知tan 2α=,3tan()5αβ-=-,则tan β= . 15.已知(3=a ,1),(sin α=b ,cos )α,且a ∥b ,则4sin 2cos 5cos 3sin αααα-+= .16.若关于x 的方程2cos24sin 450x x k -++=有解,则实数k 的取值范围是 .三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.)17.(本小题满分10分)ABCD E F已知3sin 5θ=,(,)2θπ∈π,求tan θ,cos()4θπ+的值.18.(本小题满分12分)已知||1=a ,||4=b ,且向量a 与b 不共线. (1)若a 与b 的夹角为60︒,求(2)()-⋅+a b a b ; (2)若向量k +a b 与k -a b 互相垂直,求k 的值.19. (本小题满分12分)设222sin()cos()cos()()1sin sin()cos ()f αααααααπ+π--π+=++π--π-, (1)若176α=-π,求)(αf 的值; (2)若α是锐角,且33sin()25α-π=,求)(αf 的值.20. (本小题满分13分)设两个非零向量与不共线.(1)若AB =a +b ,28BC =+a b ,3()CD =-a b ,求证:D B A ,,三点共线; (2)试确定实数k ,使k +a b 和k +a b 共线.21. (本小题满分13分)已知()22sin cos cos f x x x x x =+-.(1)求()f x 的最大值及取最大值时x 的集合; (2)求()f x 的增区间.22. (本小题满分14分)已知向量,cos ),(cos ,cos ),(0)x x x x ωωωωω==->a b ,函数1()2f x =⋅+a b 的图象的两相邻对称轴间的距离为4π.(1)求ω值;(2)若75(,)2412x ∈ππ时,53)(-=x f ,求x 4cos 的值;(3)若1cos ,(0,)2x x ≥∈π,且m x f =)(有且仅有一个实根,求实数m 的值.必修四综合训练题(二)参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.C 2330cos )30180cos(210cos -=︒-=︒+︒=︒. 2.A 由正切的定义x y =θtan 易得3331tan -=-=θ. 3.B 由0cos sin tan sin 2<=⋅θθθθ可知0sin ≠θ且0cos <θ,故θ为第二或第三象限角. 4.A sin 27cos63cos 27sin 63sin(2763)sin901︒︒+︒︒=︒+︒=︒=. 5.B 542)3(1=⨯+-⨯=⋅b a ,)6,2()4,3()2,1(-=-+=+b a ,故)30,10()6,2(5)()(-=-=+⋅⋅b a b a . 6.B )6(2sin 3)32sin(3ππ-=-=x x y ,故应向右平移6π. 7.A 222(sin cos )1sin 2sin cos cos 1sin 2y x x x x x x x =--=-+-=-.8.B a //12(2)4b m m ⇒⨯=⨯-⇒=-⇒232(1,2)3(2,4)(4,8)a b +=+--=--.9.C 22=⇒==ωπωπT ,(0)2sin sin f ϕϕ=⇒==,又由2ϕπ<可得3πϕ=.10.D x x x f cos )2sin()(-=-=π,易知)(x f 是偶函数.11.CCB AC AB =-,故①不正确;②显然是正确的;0||||)()(22=-=-⋅+,||||AC AB =⇒,故③正确;A A AB AC ⇒>∠⋅=⋅0cos ||||为锐角,另外两个角不能确定,故④不正确. 12.C )(21)(2121+=+==,2121+=+=+=,)(21)(21-=+=,)(21)(21)(21CB CA BA BC AC AB CF BE AD +++++=++0)(21=-+-+-=BC CA AB BC CA AB ,故②③④正确.二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13.)2,4(- 设(,)b x y =,则有⎩⎨⎧-=--=,102,2y x x y 解得4-=x ,2=y .14.13- tan tan()tan tan[()]131tan tan()ααββααβααβ--=--==-+-.15.57 由已知可得ααsin cos 3=,即3tan =α,4sin 2cos 4tan 255cos 3sin 53tan 7αααααα--==++. 16.1[2,]4- 原方程可化为2)21(sin 2-+=x k ,由1sin 1≤≤-x 可得412)21(sin 22≤-+≤-x .三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.)17.解:∵3sin 5θ=,(,)2πθπ∈,∴54sin 1cos 2-=--=θθ, ∴43cos sin tan -==θθθ,∴4sinsin 4coscos )4cos(πθπθπθ-=+22532254⨯-⨯-==2107-.18.解:(1)(2)()a b a b -⋅+⋅-⋅+⋅=2-+=θ 2460cos 4112-︒⨯⨯+⨯=12-=. (2)由题意可得:()ka b +⋅()0ka b -=, 即0222=-b a k ,∴0162=-k , ∴4±=k .19.解:因为)(cos )sin(sin 1)cos()cos()sin(2)(22απαπααπαπαπα---+++--+=f αααααα22cos sin sin 1)cos ()cos )(sin 2(-++----= αααααsin sin 2cos cos sin 22++=αααααtan 1sin )1sin 2(cos )1sin 2(=++=, (1)若πα617-=, ∴)617tan(1)617(ππ-=-f )63tan(1ππ+-=33316tan 1===π.(2)若α是锐角,且53)23sin(=-πα, ∴53cos =α, ∴54cos 1sin 2=-=αα, ∴34cos sin tan ==ααα, ∴43)(=αf .20.解:(1)∵CD BC BD +=b a 82+=)(3-+=+=b a 55AB 5, ∴D B A ,,三点共线.(2)∵b a k +和b k a +共线,则存在实数λ,使得b a k +=λ(b k a +),即)1()(=-+-k k λλ,∵非零向量与不共线, ∴0=-λk 且01=-k λ, ∴1±=k . 21.解:由已知,()2cos 22sin(2)6f x x x x π=-=-,(1)当2262x k πππ-=+,k Z ∈即sin(2)16x π-=时,()f x 取最大值2,此时x 的集合为{|,}3x x k k Z ππ=+∈.(2)由222262k x k πππππ-≤-≤+,k Z ∈,得增区间为[,]()63k k k Z ππππ-+∈.22.解:由题意,21cos cos sin 3)(2+-⋅=x x x x f ωωω2122cos 12sin 23++-=x x ωω x x ωω2cos 212sin 23-=)62sin(πω-=x , (1)∵两相邻对称轴间的距离为4π,∴222πωπ==T , ∴2=ω. (2)由(1)得,53)64sin()(-=-=πx x f ,∵)125,247(π∈x , ∴)23,(64πππ∈-x ,∴54)64cos(-=-πx ,∴)664cos(4cos ππ+-=x x 6sin )64sin(6cos )64cos(ππππ---=x x21)53(23)54(⨯--⨯-=103532+-=. (3)21cos ≥x ,且余弦函数在),0(π上是减函数, ∴]3,0(π∈x , 令21)(+⋅=b a x f =)64sin(π-x ,m x g =)(,在同一直角坐标系中作出两个函数的图象,可知211-==m m 或.。
新课标高中数学人教A版(必修4)测试卷及答案(月考卷二)
月考试卷二 (必修4)1.已知向量b 在向量a 方向上的投影为2,且=1a ,则b a =( ) A. −2 B. −1 C. 1 D. 2【解析】∵a⃑ ·b ⃑|a ⃑ |=2,又|a |=1,∵a ·b ⃑ =22.已知向量a =(x , ,b =(x ,- ,若(2a +b )∵b ,则|a |=( )A. 1B.C. D. 2【解析】因为(2a +b )∵b ,所以(2a +b )·b =0,即(3x ,x ,-=3x 2-3=0,解得x =±1,所以a =(±1,,|a |=2,3.已知向量()()1,,2,4a x b =-=-.若//a b ,则x 的值为 A. 2- B. 12-C. 12D. 2 【解析】由题意,得420x -+=,解得2x =.故选D. 4.若角θ的终边过点()3,4P -,则()tan πθ+= A.34 B. 34- C. 43 D. 43- 4.C 【解析】因为角θ的终边过点()3,4P -,,则4tan 3θ=-,则4tan(π)=tan =3θθ+-. 5.在ABC ∆中,若4AB AC AP +=,则CP =( ) A.3144AB AC - B. 3144AB AC -+ C. 1344AB AC - D. 1344AB AC -+【解析】由题意得4AB AC AP +==()4AB CP +,解得CP =1344AB AC -,选C. 6.函数()()sin 2f x x ϕ=+的图象向右平移6π个单位后所得的图象关于原点对称,则ϕ可以是( ) A.6π B. 3π C. 4πD. 23π【解析】由题函数()()sin 2f x x ϕ=+的图象向右平移6π个单位后所得的图象关于原点对称,即平移后得到的函数为奇函数,即sin 2sin 263x x ππϕϕ⎡⎤⎛⎫⎛⎫-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦为奇函数, 7.函数()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<的图象如图所示,则( )A. ()f x 在,313ππ⎛⎫-⎪⎝⎭上是增函数 B. ()f x 在,213ππ⎛⎫-⎪⎝⎭上是增函数 C. ()f x 在27,36ππ⎛⎫⎪⎝⎭上是増函数 D. ()f x 在,212ππ⎛⎫-⎪⎝⎭上是增函数 【解析】由图知, 71,41234T A πππ==-=所以2,2T ππϖϖ==∴= 又()2,,0,33k k Z ππϕπϕπϕ⨯+=∈<<∴=,则()sin 23f x x π⎛⎫=+⎪⎝⎭, 由π222,232k x k k Z ππππ-+≤+≤+∈,得5π,1212k x k k Z πππ-+≤≤+∈. 所以()f x 在5π,,1212k k k Z πππ⎛⎫-++∈ ⎪⎝⎭上是增函数,观察选项知A 正确.8.设a ,b 是单位向量,且1a b +=,则,a b =A.π6 B. π3 C. π2 D. 2π38.D 【解析】 由1a b +=,则()222221a b a ba ab b +=+=+⋅+=,则12a b ⋅=-,所以112cos ,112a b a b a b -⋅===-⨯⋅,且[],0,a b π∈,所以2,3a b π=,故选D . 9.已知函数()()3sin 22f x x x R π⎛⎫=-∈ ⎪⎝⎭,下列说法错误的是( ) A. 函数()f x 最小正周期是π B. 函数()f x 是偶函数 C. 函数()f x 图像关于04π⎛⎫⎪⎝⎭,对称 D. 函数()f x 在02π⎡⎤⎢⎥⎣⎦,上是增函数 【解析】函数()3sin 22f x x π⎛⎫=-⎪⎝⎭cos2x =,故函数是偶函数,最小正周期为π,当,044x f ππ⎛⎫== ⎪⎝⎭ 故函数()f x 图像关于04π⎛⎫ ⎪⎝⎭,对称,函数()f x 在02π⎡⎤⎢⎥⎣⎦,上是减函数,因为函数的减区间为,,2k k k z πππ⎛⎫+∈ ⎪⎝⎭,故D 不正确.10.已知向量a a =(m,1),b =(m ,-1),且|a +b |=|a -b |,则|a |=( )A. 1B.2C. D. 4【解析】∵a =(m,1),b =(m ,-1),∵a +b =(2m,0),a -b =(0,2),又|a +b |=|a -b |,∵|2m |=2,∵m =±1,∵|a |.故选C.11.已知函数()sin 3f x x π⎛⎫=-⎪⎝⎭,要得到()cos g x x =的图象,只需将函数()y f x =的图象 A. 向左平移56π个单位 B. 向右平移3π个单位 C. 向左平移3π个单位 D. 向右平移56π个单位 【解析】函数()5cos sin sin 236g x x x x πππ⎡⎤⎛⎫⎛⎫==+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以将函数()f x 的图象向左平移56π个单位时,可得到()cos g x x =的图象,选A. 12.已知函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭, ()π9f x f ⎛⎫≤ ⎪⎝⎭对任意x R ∈恒成立,则ω可以是 A. 1 B. 3 C.152D. 12 【解析】 由题意函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭, ()π9f x f ⎛⎫≤ ⎪⎝⎭对任意x R ∈恒成立,则可得当9x π=时,函数()f x 取得最大值,即πsin 1996f ππω⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,则π2,962k k Z ππωπ⨯+=+∈,解得318,k k Z ω=+∈, 当0k =时, 3ω=,故选B. 13.已知向量()121a k ,=-, ()1b k ,=,若a b ⊥,则实数k =_______. 【解析】由a b ⊥,得10,210,3a b k k k ⋅=+-==,填13。
高中数学必修四本册综合能力测试新人教A版必修4
2α
=
. 119
4.若 sin2 α =
5 , sin( β - α ) =
10 ,且
α
∈
[
π,π
]
,
β∈
[
3π π, ]
,则
α+
5
10
4
2
β 的值是 ( ) 7π
A. 4
9π B. 4
5π 7π C. 4 或 4
5π 9π D. 4 或 4
[ 答案 ] A
[ 解析 ]
因为 α ∈ [ π ,π] ,故 2α∈ [ π ,2π ] ,又 sin2 α =
x 轴将横坐标伸长到原来的
1 2倍 ( 纵坐标不变 )
π
1
C.先向左平移 4 个单位,然后再沿 x 轴将横坐标压缩到原来的 2倍 ( 纵坐标不变 )
D.先向左平移
π 4
个单位,然后再沿
x 轴将横坐标伸长到原来的
1 2倍 ( 纵坐标不变 )
[ 答案 ] A
[ 解析 ]
y= cos2 x= sin(2
x
∴ ( →OA+ O→B) · A→B=6.
kx+ 10.函数 y=
-2≤ x ω x+ φ
, 8π
ω >0, 0<x≤ 3
的图象如下图,则 (
)
A.
k=
1 2,
ω
1 =2,
φ
=
π 3
B.
k=
1 2,
ω
1 =2,
φ
=
π 6
C.
k=
1 ,
ω
=
2,
φ
=
π
2
6
D.
k=-
高中数学 模块综合测试(含解析)新人教A版必修4-新人教A版高一必修4数学试题
模块综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知角α的终边过点P (sin(-30°),cos(-30°)),则角α的一个值为( D ) A .30° B .-30° C .-60°D .120°解析:P ⎝⎛⎭⎫-12,32,点P 在第二象限,sin α=32,cos α=-12,∴120°为角α的一个值.2.已知sin α=23,则cos(π-2α)等于( B )A .-53B .-19C .19D .53解析:cos(π-2α)=-cos2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.3.对于函数f (x )=2sin x cos x ,下列选项中正确的是( B ) A .f (x )在⎝⎛⎭⎫π4,π2上是递增的 B .f (x )的图象关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为2解析:f (x )=2sin x cos x =sin2x ,它在(π4,π2)上是单调递减的,图象关于原点对称,最小正周期是π,最大值为1,故B 是正确的.4.已知▱ABCD 中,AD →=(-3,7),AB →=(4,3),对角线AC 、BD 交于点O ,则CO →的坐标为( C )A .⎝⎛⎭⎫-12,5 B .⎝⎛⎭⎫12,5 C .⎝⎛⎭⎫-12,-5 D .⎝⎛⎭⎫12,-5 解析:由AD →+AB →=(-3,7)+(4,3)=(1,10). ∵AD →+AB →=AC →.∴AC →=(1,10). ∴CO →=-12AC →=⎝⎛⎭⎫-12,-5.故应选C . 5.已知e 1,e 2是夹角为60°的两个单位向量,若a =e 1+e 2,b =-4e 1+2e 2,则a 与b 的夹角为( C )A .30°B .60°C .120°D .150°解析:依据题意a ·b =-3,|a |·|b |=3×23=6, cos 〈a ,b 〉=-12,故a 与b 的夹角为120°.6.设α∈(0,π),sin α+cos α=13,则cos2α的值是( C )A .179 B .-223C .-179D .179或-179解析:∵sin α+cos α=13,∴1+2sin αcos α=19,即2sin αcos α=-89.∵α∈(0,π),∴sin α>0,cos α<0,∴cos α-sin α<0,∴cos α-sin α=-(cos α-sin α)2=-1-2sin αcos α=-173,∴cos2α=(cos α-sin α)(cos α+sin α)=-179. 7.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( B )A .3π4B .π4C .0D .-π4解析:y =sin(2x +φ)――→向左平移π8个单位y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ =sin ⎝⎛⎭⎫2x +π4+φ. 当φ=3π4时,y =sin(2x +π)=-sin2x ,为奇函数;当φ=π4时,y =sin ⎝⎛⎭⎫2x +π2=cos2x ,为偶函数; 当φ=0时,y =sin ⎝⎛⎭⎫2x +π4,为非奇非偶函数; 当φ=-π4时,y =sin2x ,为奇函数.故选B .8.已知sin(α-β)=35,cos(α+β)=-35,且α-β∈(π2,π),α+β∈(π2,π),则cos2β的值为( C )A .1B .-1C .2425D .-45解析:由题意知cos(α-β)=-45,sin(α+β)=45,所以cos2β=cos[α+β-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β) =(-35)×(-45)+45×35=2425.9.已知tan ⎝⎛⎭⎫α+π4=12,且-π2<α<0,则2sin 2α+sin2αcos ⎝⎛⎭⎫α-π4等于( A ) A .-255B .-3510C .-31010D .255解析:由tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,∴sin α=-1010.故2sin 2α+sin2αcos ⎝⎛⎭⎫α-π4=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.10.已知向量a =⎝⎛⎭⎫2cos x ,22sin x ,b =⎝⎛⎭⎫22sin x ,2cos x ,f (x )=a ·b ,要得到函数y =sin ⎝⎛⎭⎫2x +π3的图象,只需将f (x )的图象( C ) A .向左平移π3个单位B .向右平移π3个单位C .向左平移π6个单位D .向右平移π6个单位解析:f (x )=a ·b =sin x cos x +sin x cos x =sin2x . 而y =sin ⎝⎛⎭⎫2x +π3=sin2⎝⎛⎭⎫x +π6, 于是只需将f (x )的图象向左平移π6个单位.故选C .11.将函数y =sin ωx (ω>0)的图象向左平移π6个单位,平移后的图象如图所示,则平移后的图象所对应的函数解析式是( C )A .y =sin ⎝⎛⎭⎫x +π6B .y =sin ⎝⎛⎭⎫x -π-π6 C .y =sin ⎝⎛⎭⎫2x +π3 D .y =sin ⎝⎛⎭⎫2x -π3 解析:将函数y =sin ωx (ω>0)的图象向左平移π6个单位,平移后的图象所对应的解析式为y =sin ⎣⎡⎦⎤ω⎝⎛⎭⎫x +π6.由题图象知,⎝⎛⎭⎫7π12+π6ω=3π2,所以ω=2.所以平移后的图象所对应的函数解析式是y =sin ⎝⎛⎭⎫2x +π3.12.点O 在△ABC 所在平面内,给出下列关系式: ①OA →+OB →+OC →=0;②OA →·⎝ ⎛⎭⎪⎫AC →|AC →|-AB →|AB →|=OB →·⎝ ⎛⎭⎪⎫BC →|BC →|-BA →|BA →|=0;③(OA →+OB →)·AB →=(OB →+OC →)·BC →=0. 则点O 依次为△ABC 的( C ) A .内心、重心、垂心 B .重心、内心、垂心 C .重心、内心、外心D .外心、垂心、重心解析:①由于OA →=-(OB →+OC →)=-2OD →,其中D 为BC 的中点,可知O 为BC 边上中线的三等分点(靠近线段BC ),所以O 为△ABC 的重心;②向量AC →|AC →|,AB →|AB →|分别表示在AC 和AB 上的单位向量AC ′→和AB ′→,它们的差是向量B ′C ′→,当OA →·⎝ ⎛⎭⎪⎫AC →|AC →|-AB →|AB →|=0,即OA ⊥B ′C ′时,则点O 在∠BAC 的平分线上,同理由OB →·⎝ ⎛⎭⎪⎫BC →|BC →|-BA →|BA →|=0,知点O 在∠ABC 的平分线上,故O 为△ABC 的内心;③OA →+OB →是以OA →,OB →为边的平行四边形的一条对角线,而AB →是该四边形的另一条对角线,AB →·(OA →+OB →)=0表示这个平行四边形是菱形,即|OA →|=|OB →|,同理有|OB →|=|OC →|,于是O 为△ABC 的外心.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=43.解析:设BC →=b ,BA →=a ,则AF →=12b -a ,AE →=b -12a ,AC →=b -A .代入条件得λ=μ=23,∴λ+μ=43.14.已知tan ⎝⎛⎭⎫α-π4=12,则sin α+cos αsin α-cos α的值为2 . 解析:由tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=12,解得tan α=3,所以sin α+cos αsin α-cos α=tan α+1tan α-1=42=2.15.已知函数f (x )=A cos 2(ωx +φ)+1⎝⎛⎭⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y 轴交点坐标为(0,2),其相邻的两条对称轴的距离为2,则f (1)+f (2)+…+f (2 015)=4 030 .解析:由最大值为3知A =2,f (x )=2cos 2(ωx +φ)+1=cos(2ωx +2φ)+2, 由交点(0,2)及0<φ<π2知φ=π4.∴f (x )=2-sin2ωx . 又周期为4,∴ω=π4.∴f (x )=2-sin π2x ,f (1)+f (2)+f (3)+f (4)=8.∴f (1)+f (2)+…+f (2 015)=503[f (1)+f (2)+f (3)+f (4)]+f (1)+f (2)+f (3)=503×8+6=4 030.16.给出下列四个命题:①函数y =tan x 的图象关于点(k π+π2,0)(k ∈Z )对称;②函数f (x )=sin|x |是最小正周期为π的周期函数;③设θ为第二象限的角,则tan θ2>cos θ2,且sin θ2>cos θ2;④函数y =cos 2x +sin x 的最小值为-1.其中正确的命题是①④.解析:①由正切曲线,知点(k π,0),(k π+π2,0)是正切函数图象的对称中心,∴①对;②f (x )=sin|x |不是周期函数,②错;③∵θ∈(2k π+π2,2k π+π),k ∈Z ,∴θ2∈(k π+π4,k π+π2),k ∈Z . 当k =2n +1,n ∈Z 时,sin θ2<cos θ2.∴③错;④y =1-sin 2x +sin x =-(sin x -12)2+54,∴当sin x =-1时,y min =1-(-1)2+(-1)=-1. ∴④对.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)计算:(1)cos π5+cos 2π5+cos 3π5+cos 4π5;(2)tan10°+tan170°+sin1 866°-sin(-606°). 解:(1)原式=⎝⎛⎭⎫cos π5+cos 4π5+⎝⎛⎭⎫cos 2π5+cos 3π5 =⎣⎡⎦⎤cos π5+cos ⎝⎛⎭⎫π-π5+⎣⎡⎦⎤cos 2π5+cos ⎝⎛⎭⎫π-2π5 =⎝⎛⎭⎫cos π5-cos π5+⎝⎛⎭⎫cos 2π5-cos 2π5=0. (2)原式=tan10°+tan(180°-10°)+sin(5×360°+66°)-sin[(-2)×360°+114°]=tan10°-tan10°+sin66°-sin(180°-66°)=sin66°-sin66°=0.18.(12分)已知|a |=2|b |=2,且向量a 在向量b 的方向上的投影为-1,求: (1)a 与b 的夹角θ; (2)(a -2b )·B .解:(1)由题意知,|a |=2,|b |=1,|a |cos θ=-1, ∴a ·b =|a ||b |cos θ=-|b |=-1, ∴cos θ=a ·b |a ||b |=-12.由于θ∈[0,π], ∴θ=2π3即为所求.(2)(a -2b )·b =a ·b -2b 2=-1-2=-3.19.(12分)已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示.(1)求函数的解析式;(2)求这个函数的单调递增区间.解:(1)由题图象可知A =2,T 2=3π8-(-π8)=π2,∴T =π,ω=2, ∴y =2sin(2x +φ),将点(-π8,2)代入得-π4+φ=2k π+π2(k ∈Z ),∵|φ|<π,∴φ=34π.∴函数的解析式为y =2sin(2x +3π4).(2)由2k π-π2≤2x +3π4≤2k π+π2(k ∈Z ),得k π-5π8≤x ≤k π-π8(k ∈Z ).∴函数y =2sin(2x +3π4)的单调递增区间为[k π-5π8,k π-π8](k ∈Z ). 20.(12分)已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 解:(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数, 所以y 2=cos(2x +θ)为奇函数, 又θ∈(0,π),得θ=π2,所以f (x )=-sin2x ·(a +2cos 2x ), 由f ⎝⎛⎭⎫π4=0得-(a +1)=0.即a =-1. (2)由(1)得,f (x )=-12sin4x ,因为f ⎝⎛⎭⎫α4=-12sin α=-25.即sin α=45, 又α∈⎝⎛⎭⎫π2,π,从而cos α=-35. 所以sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3310.21.(12分)如图,在△ABC 中,已知AB =2,AC =6,∠BAC =60°,点D ,E 分别在边AB ,AC 上,且AB →=2AD →,AC →=5AE →,(1)若BF →=-34AB →+110AC →,求证:点F 为DE 的中点.(2)在(1)的条件下,求BA →·EF →的值. 解:(1)证明:因为BF →=-34AB →+110AC →,所以AF →=BF →-BA →=14AB →+110AC →,又AB →=2AD →,AC →=5AE →,所以AF →=12AD →+12A E →,所以F 为DE 的中点.(2)由(1)可得EF →=12ED →=12(AD →-AE →),因为AB →=2AD →,AC →=5AE →, 所以EF →=14AB →-110AC →,所以BA →·EF →=-AB →·⎝⎛⎭⎫14AB →-110AC → =-14AB →2+110AB →·AC →=-14×4+110×2×6×cos60°=-25.22.(12分)已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ),设函数f (x )=a ·b +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈(12,1).(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点(π4,0),求函数f (x )在区间⎣⎡⎦⎤0,3π5上的取值X 围. 解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos2ωx +3sin2ωx +λ=2sin(2ωx -π6)+λ.由直线x =π是y =f (x )图象的一条对称轴, 可得sin(2ωπ-π6)=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈(12,1),k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5.word11 / 11 (2)由y =f (x )的图象过点(π4,0),得f (π4)=0, 即λ=-2sin(56×π2-π6)=-2sin π4=-2, 即λ=- 2.故f (x )=2sin(53x -π6)-2, 由0≤x ≤3π5,有-π6≤53x -π6≤5π6, 所以-12≤sin(53x -π6)≤1, 得-1-2≤2sin(53x -π6)-2≤2-2, 故函数f (x )在[0,3π5]上的取值X 围为[-1-2,2-2].。
2021新教材人教版高中数学A版必修第一册模块练习题--4.2.2 指数函数的图象和性质
4.2.2指数函数的图象和性质基础过关练题组一指数函数的图象特征1.(2020山西大学附中高一上期中)在同一坐标系中,函数y=ax+a与y=a x的图象大致是()2.(2020北京丰台高一上期中联考)函数y=(12)|x|的图象是()3.(2020湖南衡阳八中高一上期中)设a,b,c,d均大于0,且均不等于1,y=a x,y=b x,y=c x,y=d x在同一坐标系中的图象如图,则a,b,c,d的大小顺序为()A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d4.(2020山西长治二中高一上期中)函数f(x)=a x-2+1(a>0,且a ≠1)的图象恒过定点( ) A.(2,2) B.(2,1) C.(3,1) D.(3,2)5.已知函数f(x)=ax,g(x)=(1a)x(a>0,且a ≠1), f(-1)=12.(1)求f(x)和g(x)的函数解析式;(2)在同一坐标系中画出函数f(x)和g(x)的图象; (3)若f(x)<g(x),请直接写出x 的取值范围.题组二 指数函数的单调性及其应用 6.方程4x -3×2x +2=0的解构成的集合为( ) A.{0} B.{1} C.{0,1} D.{1,2}7.(2020山东师大附中高一上第一次学分认定考试)设y1=40.9,y2=80.61,y3=(12)-1.5,则()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y3>y2>y18.(2020广东湛江一中高一上第一次大考)若f(x)=-x2+2ax与g(x)=(a+1)1-x在区间[1,2]上都是减函数,则a的取值范围是()A.(12,1] B.(0,12]C.[0,1]D.(0,1]9.若不等式2x2+1≤(14)x-2的解集是函数y=2x的定义域,则函数y=2x的值域是()A.[18,2) B.[18,2]C.(-∞,18] D.[2,+∞)10.(2020广东珠海高一上期末)已知函数f(x)满足f(x+1)的定义域是[0,31),则f(2x)的定义域是()A.[1,32)B.[-1,30)C.[0,5)D.(-∞,30]11.(2020甘肃兰州一中高一月考)函数y=(12)8-2x-x2的单调递增区间为.12.(2020浙江嘉兴一中高一上期中)已知集合A={x|12≤2x-4< 4},B={x|x2-11x+18<0}.(1)求∁R(A∩B);(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值集合.题组三指数函数性质的综合应用13.(2020浙江温州十五校联合体高一上期中联考)函数f(x)=√x+12x-1的定义域为()A.[-1,0)∪(0,+∞)B.(-1,+∞)C.[-1,+∞)D.(0,+∞)14.已知函数f(x)=3x-(13)x,则f(x)是()A.奇函数,且在R上是增函数B.偶函数,且在R上是增函数C.奇函数,且在R上是减函数D.偶函数,且在R上是减函数15.(2019湖南醴陵一中高一上期中)函数f(x)=13x+1+a是奇函数,则实数a的值是()A.0B.12C.-12D.116.已知a>0,且a≠1,若函数f(x)=2a x-4在区间[-1,2]上的最大值为10,则a=.17.(2020浙江杭州高级中学高一上期末)函数y=(14)-|x|+1的单调递增区间为;奇偶性为(填“奇函数”“偶函数”或“非奇非偶函数”).18.(2020山东泰安一中高一上期中)已知函数f(x)=a+22x-1.(1)求函数f(x)的定义域;(2)若f(x)为奇函数,求a的值,并求f(x)的值域.能力提升练题组一指数函数的图象特征1.(2020福建厦外高一上期中,)已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()2.(2020陕西西安中学高一上期中,)已知实数a,b满足等式2019a=2 020b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有()A.1个B.2个C.3个D.4个3.(2020河北唐山一中高一上期中,)若函数y=(12)|1-x|+m的图象与x轴有公共点,则m的取值范围是.题组二指数函数的单调性及其应用4.(2020湖南长郡中学高一上模块检测,)已知a=√0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a5.()函数f(x)=-a2x-1+5a x-8(a>0,且a≠1)在[2,+∞)上单调递减,则实数a 的取值范围为(易错)A.(0,1)∪[52,+∞) B.[45,1)∪(1,+∞) C.(0,1)∪(1,52] D.(1,52]6.()若函数f(x)=√2x 2+2ax -a -1的定义域为R,则实数a 的取值范围是 .7.(2020黑龙江大庆实验中学高一上月考,)已知函数f(x)=ba x (其中a,b 为常数,a>0,且a ≠1)的图象经过A(1,6),B(2,18)两点.若不等式(2a )x +(1b )x-m ≥0在x ∈(-∞,1]上恒成立,则实数m 的最大值为 .8.(2020福建福州八县(市)一中高一上期末联考,)已知定义在R 上的偶函数f(x)满足:当x ≥0时, f(x)=2x +a 2x , f(1)=52. (1)求实数a 的值;(2)用定义法证明f(x)在(0,+∞)上是增函数; (3)求函数f(x)在[-1,2]上的值域.题组三 指数函数性质的综合应用 9.(2020安徽安庆高一上期末,)某数学课外兴趣小组对函数f(x)=2|x-1|的图象与性质进行了探究,得到下列四条结论:①函数f(x)的值域为(0,+∞);②函数f(x)在区间[0,+∞)上单调递增;③函数f(x)的图象关于直线x=1对称;④函数f(x)的图象与直线y=-a 2(a ∈R)不可能有交点.则其中正确结论的个数为(深度解析)A.1B.2C.3D.410.(2020浙江温州十五校联合体高一上期中联考,)已知a>0,设函数f(x)=2 019x+1+32 019x+1(x∈[-a,a])的最大值为M,最小值为N,那么M+N=()A.2025B.2022C.2020D.201911.(2020浙江浙北G2高一上期中联考,)已知实数a>0,定义域为R的函数f(x)=3xa +a3x是偶函数.(1)求实数a的值;(2)判断函数f(x)在(0,+∞)上的单调性并用定义证明;(3)是否存在实数m,使得对任意的t∈R,不等式f(t-2)<f(2t-m)恒成立?若存在,求出m的取值范围;若不存在,请说明理由.答案全解全析 基础过关练1.B 函数y=ax+a 的图象经过(-1,0)和(0,a)两点,选项D 错误;在图A 中,由指数函数y=a x 的图象得a>1,由y=ax+a 的图象得0<a<1,选项A 错误;在图B 中,由指数函数y=a x 的图象得a>1,由y=ax+a 的图象得a>1,选项B 正确;在图C 中,由指数函数y=a x 的图象得0<a<1,由y=ax+a 的图象得a>1,选项C 错误.故选B.2.D y=(12)|x|={(12)x,x ≥0,2x ,x <0.因此,当x ≥0时,y=(12)|x|的图象与y=(12)x的图象相同;当x<0时,y=(12)|x|的图象与y=2x 的图象相同,故选D. 3.C 作出直线x=1,如图所示.直线x=1与四个函数图象的交点从下到上依次为(1,b),(1,a),(1,d),(1,c),因此a,b,c,d 的大小顺序是b<a<d<c,故选C. 4.A ∵a 0=1,∴令x-2=0,得y=a 0+1=2, ∴x=2时,y=2,因此函数f(x)的图象恒过定点(2,2),故选A. 5.解析 (1)因为f(-1)=a -1=1a =12,所以a=2,所以f(x)=2x,g(x)=(12)x.(2)在同一坐标系中画出函数f(x)和g(x)的图象如图所示:(3)由图象知,当f(x)<g(x)时,x 的取值范围是{x|x<0}.6.C 令2x =t,则4x =(2x )2=t 2,原方程可化为t 2-3t+2=0,解得t=1或t=2. 当t=1时,2x =1=20,解得x=0, 当t=2时,2x =2=21,解得x=1.因此原方程的解构成的集合为{0,1}. 故选C.7.B 由题意知,y 1=40.9=22×0.9=21.8,y 2=80.61=23×0.61=21.83,y 3=(12)-1.5=21.5,∵y=2x 在R 上是增函数,∴y 2>y 1>y 3.故选B.8.D 由f(x)=-x 2+2ax=-(x-a)2+a 2在区间[1,2]上是减函数得a ≤1;由g(x)=(a+1)1-x=(1a+1)x -1在区间[1,2]上是减函数得0<1a+1<1,因此a+1>1,解得a>0.因此a 的取值范围是(0,1],故选D. 9.B 由2x 2+1≤(14)x -2得2x 2+1≤2-2x+4,即x 2+1≤-2x+4,解得-3≤x ≤1,∴函数y=2x 的定义域为[-3,1].由于函数y=2x 在R 上单调递增,故当x=-3时取得最小值18,当x=1时取得最大值2,所以函数的值域为[18,2].故选B.10.C ∵f(x+1)的定义域是[0,31),即0≤x<31,∴1≤x+1<32,∴f(x)的定义域是[1,32),∴f(2x )有意义必须满足20=1≤2x <32=25,∴0≤x<5. 11.答案 [-1,+∞)解析 设t=8-2x-x 2,则y=(12)t,易知y=(12)t在R 上单调递减,又知t=8-2x-x 2在(-∞,-1]上单调递增,在[-1,+∞)上单调递减, 所以由y=(12)t与t=8-2x-x 2复合而成的函数y=(12)8-2x -x 2的单调递增区间为[-1,+∞).12.解析 由12≤2x-4<4得2-1≤2x-4<22,∴-1≤x-4<2,即3≤x<6,∴A=[3,6).由x 2-11x+18<0得2<x<9,∴B=(2,9).(1)∵A=[3,6),B=(2,9), ∴A ∩B=[3,6),∴∁R (A ∩B)=(-∞,3)∪[6,+∞).(2)由C ⊆B 得{a ≥2,a +1≤9,解得2≤a ≤8,故实数a 的取值集合为{a|2≤a ≤8}.13.A 依题意得{x +1≥0,2x -1≠0,即{x ≥-1,x ≠0.故函数f(x)的定义域为[-1,0)∪(0,+∞),故选A.14.A 由题知x ∈R,且f(-x)=3-x-(13)-x=(13)x-3x =-f(x),所以f(x)是奇函数;又y=3x是增函数,且y=(13)x是减函数,所以f(x)=3x-(13)x是R 上的增函数,故选A. 15.C 函数f(x)=13x +1+a 的定义域为R,且f(x)是奇函数,因此f(0)=0,即130+1+a=0,解得a=-12.此时f(x)=13x +1-12=1-3x2(3x +1)符合题意,故选C.16.答案 √7或17解析 若a>1,则函数y=a x 在区间[-1,2]上是单调递增的,当x=2时, f(x)取得最大值,则f(2)=2a 2-4=10,即a 2=7,又a>1,所以a=√7. 若0<a<1,则函数y=a x 在区间[-1,2]上是单调递减的, 当x=-1时, f(x)取得最大值,则f(-1)=2a -1-4=10,所以a=17.综上所述,a 的值为√7或17.17.答案 [0,+∞);偶函数 解析 设u=-|x|+1,则y=(14)u.易知u=-|x|+1的单调递减区间为[0,+∞),y=(14)u是减函数,∴y=(14)-|x|+1的单调递增区间为[0,+∞).∵f(-x)=(14)-|-x|+1=(14)-|x|+1=f(x),∴f(x)是偶函数.18.解析 (1)由2x -1≠0,可得x ≠0, ∴函数f(x)的定义域为{x|x ≠0}. (2)∵f(x)为奇函数,∴f(-x)=-f(x). 又∵f(-x)=a+22-x -1=a+2×2x 1-2x=a-2(2x -1)+22x -1=(a-2)-22x -1,-f(x)=-a-22x -1,∴a-2=-a,解得a=1. 因此f(x)=1+22x -1.∴当x>0时,2x -1>0,f(x)>1; 当x<0时,-1<2x -1<0,f(x)<-1. ∴f(x)的值域为(-∞,-1)∪(1,+∞).能力提升练1.A 由函数f(x)的图象知,b<-1<0<a<1. ∴g(x)=a x +b 的图象是单调递减的.又g(0)=a 0+b=1+b<0,∴图象与y 轴交于负半轴,故选A.2.B 在同一平面直角坐标系中作出y=2 019x 与y=2 020x 的图象如图所示.设2 020b =2 019a =t, 当t>1时,0<b<a,①正确; 当t=1时,a=b=0,⑤正确;当0<t<1时,a<b<0,②正确,③④不成立. 故选B.3.答案 [-1,0) 解析 作出函数g(x)=(12)|1-x|={(12)x -1,x ≥1,2x -1,x <1的图象如图所示.由图象可知0<g(x)≤1,则m<g(x)+m ≤1+m,即m<f(x)≤1+m, 要使函数y=(12)|1-x|+m 的图象与x 轴有公共点,则{1+m ≥0,m <0,解得-1≤m<0. 故答案为[-1,0). 4.A a=√0.3=0.30.5.∵f(x)=0.3x 在R 上单调递减, ∴0.30.5<0.30.2<0.30⇒a<c<1. 又b=20.3>20=1,∴a<c<b,故选A.5.A 设y=f(x)=-1a ·a 2x +5a x -8,令a x =u(u>0),则y=-1a u 2+5u-8=-1a (u -5a2)2+25a4-8(u>0).∴y=-1au 2+5u-8在(0,5a2]上单调递增,在[5a2,+∞)上单调递减.①当0<a<1时,u=a x 是减函数, ∵x ≥2,∴0<u ≤a 2<5a2,此时y=-1au 2+5u-8是增函数,从而f(x)是减函数,符合题意. ②当a>1时,u=a x 是增函数, ∵x ≥2,∴u ≥a 2,由f(x)在[2,+∞)上单调递减,得a 2≥5a2,又a>0,∴a ≥52,即当a ≥52时,f(x)是减函数.综上所述,实数a 的取值范围是(0,1)∪[52,+∞),故选A.易错警示 解决与指数函数有关的复合函数的单调性问题时,一要注意底数的取值对单调性的影响,必要时进行分类讨论;二要注意中间变量的取值范围. 6.答案 [-1,0] 解析 依题意得2x2+2ax -a-1≥0恒成立,即x 2+2ax-a ≥0恒成立.∴Δ=4a 2+4a ≤0,解得-1≤a ≤0, 故实数a 的取值范围是[-1,0]. 7.答案 76解析 由已知可得{ba =6,ba 2=18,解得{a =3,b =2,则不等式(23)x+(12)x-m ≥0在x ∈(-∞,1]上恒成立,设g(x)=(23)x+(12)x-m,显然函数g(x)=(23)x+(12)x-m 在(-∞,1]上单调递减,∴g(x)≥g(1)=23+12-m=76-m,故76-m ≥0,即m ≤76,∴实数m 的最大值为76.8.解析 (1)由题意得f(1)=2+a 2=52,∴a=1.(2)证明:由(1)知a=1,∴f(x)=2x +12x ,任取x 1,x 2∈(0,+∞),且x 1<x 2,则f(x 1)-f(x 2)=(2x 1+12x 1)-(2x 2+12x 2)=(2x 1-2x 2)+2x 2-2x 12x 1·2x 2=(2x 1-2x 2)·(2x 1+x 2-1)2x 1+x 2.∵0<x 1<x 2,∴1<2x 1<2x 2,2x 1+x 2>1, ∴f(x 1)-f(x 2)<0,∴f(x 1)<f(x 2),∴f(x)在(0,+∞)上是增函数.(3)易得f(0)=2, f(2)=174, f(-1)=52, f(x)在[-1,0]上为减函数,在[0,2]上为增函数,∴f(x)的值域为[2,174].9.B 函数f(x)的值域为[1,+∞),①错误;函数f(x)在区间[0,1)上单调递减,在[1,+∞)上单调递增,②错误;函数f(x)的图象关于直线x=1对称,③正确;因为y=-a 2≤0,所以函数f(x)的图象与直线y=-a 2(a ∈R)不可能有交点,④正确.正确结论的个数为2,故选B.解题模板 研究指数型复合函数的性质,借助图象是常见的手段,画出简图很多问题可迎刃而解. 10.B f(x)=2 019x+1+2 019-2 0162 019x +1=2 019-2 0161+2 019x,∴f(-x)=2 019-2 0161+2 019-x=2 019-2 016×2 019x 2 019x +1.因此f(x)+f(-x) =4 038-2 016(11+2 019x+2 019x2 019x +1)=4 038-2 016=2 022. 又f(x)在[-a,a]上是增函数,∴M+N=f(a)+f(-a)=2 022,故选B.11.解析 (1)定义域为R 的函数f(x)=3xa+a3x 是偶函数,则f(-x)=f(x)恒成立,即3-xa+a3-x =3xa+a 3x ,故(1a-a)(3x -3-x )=0恒成立.因为3x -3-x 不可能恒为0,所以当1a-a=0时,f(-x)=f(x)恒成立,而a>0,所以a=1.(2)函数f(x)=3x +13x 在(0,+∞)上单调递增,证明如下:设任取x 1,x 2∈(0,+∞),且x 1<x 2,则 f(x 1)-f(x 2)=(3x 1+13x 1)-(3x 2+13x 2)=(3x 1-3x 2)+(13x 1-13x 2)=(3x 1-3x 2)+3x 2-3x 13x 1·3x 2=(3x 1-3x 2)(3x 1·3x 2-1)3x 1·3x 2.因为0<x 1<x 2,所以3x 1<3x 2,3x 1>1,3x 2>1, 所以(3x 1-3x 2)(3x 1·3x 2-1)3x 1·3x 2<0,即f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 故函数f(x)=3x +13x 在(0,+∞)上单调递增.(3)不存在.理由如下:由(2)知函数f(x)在(0,+∞)上单调递增,而函数f(x)是偶函数,则函数f(x)在(-∞,0)上单调递减.若存在实数m,使得对任意的t∈R,不等式f(t-2)<f(2t-m)恒成立,则|t-2|<|2t-m|恒成立,即(t-2)2<(2t-m)2,即3t2-(4m-4)t+m2-4>0对任意的t∈R恒成立,则Δ=[-(4m-4)]2-12(m2-4)<0,得到(m-4)2<0,故m∈⌀,所以不存在.。
高中数学人教A必修4章末综合测评2 Word版含解析
章末综合测评(二)平面向量(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的).(·全国卷Ⅰ)已知点(,),(,),向量=(-,-),则向量=( ).(-,-) .(,).(-,) .(,)【解析】法一:设(,),则=(,-)=(-,-),所以从而=(-,-)-(,)=(-,-).故选.法二:=(,)-(,)=(,),=-=(-,-)-(,)=(-,-).故选.【答案】.(·福建高考)设=(,),=(,),=+.若⊥,则实数的值等于( ).-.-..【解析】=+=(+,+),又⊥,所以×(+)+×(+)=,解得=-.【答案】.(·山东高考)已知菱形的边长为,∠=°,则·=( ).-.-..【解析】由已知条件得·=·=·°=,故选.【答案】.(·陕西高考)对任意向量,,下列关系式中不恒成立....的是( ) .·≤.-≤-.(+)=+.(+)·(-)=-【解析】根据·=θ,又θ≤,知·≤,恒成立.当向量和方向不相同时,->-,不恒成立.根据+=+·+=(+),恒成立.根据向量的运算性质得(+)·(-)=-,恒成立.【答案】.(·重庆高考)已知非零向量,满足=,且⊥(+),则与的夹角为( )....【解析】∵⊥(+),∴·(+)=,∴+·=,即+〈,〉=.∵=,∴+〈,〉=,∴〈,〉=-,∴〈,〉=π.【答案】.(·安徽高考)△是边长为的等边三角形,已知向量,满足=,=+,则下列结论正确的是( ).=.⊥.·=.(+)⊥【解析】在△中,由=-=+-=,得=.又=,所以·=°=-,所以(+)·=(+)·=·+=×(-)+=,所以(+)⊥,故选.【答案】.(·锦州高一检测)已知向量=(,),·=,+=,则=( )....【解析】因为=(,),则有=,又·=,又由+=,∴+·+=,即+×+=,所以=.。
高中数学模块综合测评(A)新人教A版必修4(2021年整理)
2018-2019学年高中数学模块综合测评(A)新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学模块综合测评(A)新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学模块综合测评(A)新人教A版必修4的全部内容。
模块综合测评(A)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1。
已知α∈,tan α=—,则sin(α+π)=()A。
B。
-C。
D。
—解析由题意可得sin α=,∴sin(α+π)=-sin α=—,故选B.答案B2。
函数y=cos42θ—sin42θ的最小正周期是()A。
2πB。
4π C.D。
解析y=cos42θ—sin42θ=(cos22θ+sin22θ)(cos22θ-sin22θ)=cos 4θ,所以最小正周期T=.故选D.答案D3.已知向量m=(λ+1,1),n=(λ+2,2),若(m+n)⊥(m—n),则λ=()A。
—4 B。
—3 C。
-2 D。
-1解析由题意得(m+n)·(m-n)=m2-n2=0,即(λ+1)2+1=(λ+2)2+4,解得λ=—3。
答案B4。
已知f(x)=A sin(ωx+θ)(ω>0),若两个不等的实数x1,x2∈,且|x1—x2|=π,则f(x)的最小正周期是()minA.3πB.2πC.πD。
解析依题意,转化为sin(ωx+θ)=有两个不等的实数x1,x2,|x1-x2|min=π,则=π,得ω=,故f(x)的最小正周期是T==3π。
答案A5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合测试卷班级____ 姓名____ 考号____ 分数____ 本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.-3290°角是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 答案:D解析:-3290°=-360°×10+310° ∵310°是第四象限角 ∴-3290°是第四象限角2.在单位圆中,一条弦AB 的长度为3,则该弦AB 所对的弧长l 为( ) A.23π B.34π C.56π D.π 答案:A解析:设该弦AB 所对的圆心角为α,由已知R =1,∴sin α2=AB2R =32,∴α2=π3,∴α=23π,∴l =αR =23π.3.下列函数中周期为π2的偶函数是( )A .y =sin4xB .y =cos 22x -sin 22x C .y =tan2x D .y =cos2x 答案:B解析:A 中函数的周期T =2π4=π2,是奇函数.B 可化为y =cos4x ,其周期为T =2π4=π2,是偶函数.C 中T =π2,是奇函数,D 中T =2π2=π,是偶函数.故选B. 4.已知向量a ,b 不共线,实数x ,y 满足(3x -4y )a +(2x -3y )·b =6a +3b ,则x -y 的值为( )A .3B .-3C .0D .2 答案:A解析:由原式可得⎩⎪⎨⎪⎧ 3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3.∴x -y =3.5.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 是( ) A .长方形 B .平行四边形 C .菱形 D .梯形 答案:D解析:AD →=AB →+BC →+CD →=-8a -2b =2BC →, 且|AD →|≠|BC →|∴四边形ABCD 是梯形.6.已知向量a =(1,0),b =(cos θ,sin θ),θ∈⎣⎢⎡⎦⎥⎤-π2,π2,则|a +b |的取值范围是( )A .[0,2]B .[0,2]C .[1,2]D .[2,2] 答案:D解析:|a +b |2=a 2+b 2+2a ·b =2+2cos θ,因为θ∈⎣⎢⎡⎦⎥⎤-π2,π2,所以2+2cos θ∈[2,4],所以|a +b |的取值范围是[2,2].7.已知cos α=-45,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan ⎝ ⎛⎭⎪⎫π4-α=( ) A .-17 B .7C.17D .-7 答案:B解析:∵α∈⎝ ⎛⎭⎪⎫π2,π,cos α=-45,∴sin α=35,tan α=-34, tan ⎝ ⎛⎭⎪⎫π4-α=1-⎝ ⎛⎭⎪⎫-341+⎝ ⎛⎭⎪⎫-34=7. 8.函数f (x )=2sin ⎪⎪⎪⎪⎪⎪x -π2的部分图象是( )答案:C解析:∵f (x )=2sin ⎪⎪⎪⎪⎪⎪x -π2, ∴f (π-x )=2sin ⎪⎪⎪⎪⎪⎪π-x -π2=2sin ⎪⎪⎪⎪⎪⎪π2-x =f (x ),∴f (x )的图象关于直线x =π2对称.排除A 、B 、D.9.y =2cos ⎝ ⎛⎭⎪⎫π4-2x 的单调减区间是( ) A.⎣⎢⎡⎦⎥⎤k π+π8,k π+58π(k ∈Z ) B.⎣⎢⎡⎦⎥⎤-38π+k π,π8+k π(k ∈Z ) C.⎣⎢⎡⎦⎥⎤π8+2k π,58π+2k π(k ∈Z ) D.⎣⎢⎡⎦⎥⎤-38π+2k π,π8+2k π(k ∈Z ) 答案:A解析:y =2cos ⎝ ⎛⎭⎪⎫π4-2x =2cos ⎝⎛⎭⎪⎫2x -π4.由2k π≤2x -π4≤π+2k π,(k ∈Z ) 得π8+k π≤x ≤58π+k π(k ∈Z )时,y =2cos ⎝⎛⎭⎪⎫2x -π4单调递减.故选A. 10.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ的值为( )A.π4B.π3C.π2D.3π4 答案:A解析:因为直线x =π4和x =5π4是函数图象中相邻的两条对称轴,所以5π4-π4=T2,即T 2=π,T =2π.又T =2πω=2π,所以ω=1,所以f (x )=sin(x +φ).因为直线x =π4是函数图象的对称轴,所以π4+φ=π2+k π,k ∈Z ,所以φ=π4+k π,k ∈Z .因为0<φ<π,所以φ=π4,检验知,此时直线x =5π4也为对称轴.故选A.11.若向量a =(2x -1,3-x ),b =(1-x,2x -1),则|a +b |的最小值为( ) A.2-1 B .2-2 C. 2 D .2 答案:C解析:|a +b |=2x 2+2x +2≥ 2.12.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝⎛⎭⎪⎫α+β2=( )A.33 B .-33C.539 D .-69 答案:C 解析:∵α+β2=⎝⎛⎭⎪⎫α+π4-⎝ ⎛⎭⎪⎫π4-β2,∴cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫α+π4sin ⎝ ⎛⎭⎪⎫π4+β2=13×33+223×63=3+439=539.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知|a |=4,a 与b 的夹角为π6,则a 在b 方向上的投影为__________.答案:2 3解析:由投影公式计算:|a |cos π6=2 3.14.函数y =2sin x cos x -1,x ∈R 的值域是______. 答案:[-2,0]解析:y =2sin x cos x -1=sin2x -1,∵x ∈R ,∴sin2x ∈[-1,1],∴y ∈[-2,0].15.已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是________.答案:⎣⎢⎡⎦⎥⎤-32,3 解析:由f (x )与g (x )的图像的对称轴完全相同,易知:ω=2,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,则f (x )的最小值为3sin ⎝ ⎛⎭⎪⎫-π6=-32,最大值为3sin π2=3,所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤-32,3. 16.下列判断正确的是________.(填写所有正确判断序号)①若sin x +sin y =13,则sin y -cos 2x 的最大值是43②函数y =sin ⎝ ⎛⎭⎪⎫π4+2x 的单调增区间是⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ) ③函数f (x )=1+sin x -cos x1+sin x +cos x 是奇函数④函数y =tan x 2-1sin x的最小正周期是π答案:①④解析:①sin y -cos 2x =sin 2x -sin x -23,∴sin x =-1时,最大值为43.②2k π-π2≤2x +π4≤2k π+π2,∴k π-3π8≤x ≤k π+π8.③定义域不关于原点对称.④y =tan x 2-1sin x =-1tan x,∴T =π.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知角α终边上一点P (-4,3),求cos ⎝ ⎛⎭⎪⎫π2+αsin -π-αcos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α的值.解:∵tan α=y x =-34∴cos ⎝ ⎛⎭⎪⎫π2+αsin -π-αcos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α=-sin α·sin α-sin α·cos α=tan α=-34.18.(12分)已知向量m =(sin A ,cos A ),n =(1,-2),且m ·n =0. (1)求tan A 的值;(2)求函数f (x )=cos2x +tan A ·sin x (x ∈R )的值域. 解:(1)∵m ·n =0, ∴sin A -2cos A =0.∴tan A =sin Acos A=2.(2)f (x )=cos2x +tan A sin x =cos2x +2sin x=1-2sin 2x +2sin x =-2⎝⎛⎭⎪⎫sin x -122+32.∵-1≤sin x ≤1∴sin x =12时,f (x )取最大值32,sin x =-1时,f (x )取最小值-3,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-3,32. 19.(12分)已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2). (1)若|c |=2 5,且c ∥a ,求c 的坐标;(2)若|b |=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ.解:(1)设c =(x ,y ).∵|c |=2 5,∴x 2+y 2=2 5,即x 2+y 2=20.① ∵c ∥a ,a =(1,2)∵2x -y =0,即y =2x ,② 联立①②得⎩⎪⎨⎪⎧x =2y =4或⎩⎪⎨⎪⎧x =-2y =-4,∴c =(2,4)或(-2,-4).(2)∵(a +2b )⊥(2a -b ), ∴(a +2b )·(2a -b )=0,∴2|a |2+3a ·b -2|b |2=0.∵|a |2=5,|b |2=54,代入上式得a ·b =-52,∴cos θ=a ·b|a |·|b |=-525×52=-1.又∵θ∈[0,π], ∴θ=π.20.(12分)已知函数f (x )=cos 2⎝⎛⎭⎪⎫x -π6-sin 2x .(1)求f ⎝ ⎛⎭⎪⎫π12的值; (2)若对于任意的x ∈⎣⎢⎡⎦⎥⎤0,π2,都有f (x )≤c ,求实数c 的取值范围.解:(1)f ⎝ ⎛⎭⎪⎫π12=cos 2⎝ ⎛⎭⎪⎫-π12-sin 2π12=cos π6=32.(2)f (x )=12⎣⎢⎡⎦⎥⎤1+cos ⎝⎛⎭⎪⎫2x -π3-12(1-cos2x ) =12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2x -π3+cos2x =12⎝ ⎛⎭⎪⎫32sin2x +32cos2x =32sin ⎝ ⎛⎭⎪⎫2x +π3.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3,所以当2x +π3=π2,即x =π12时,f (x )取得最大值32.所以对任意x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )≤c 等价于32≤c .故当对任意x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )≤c 时,c 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.21.(12分)已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2.(1)求sin2α和tan2α的值; (2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95,即1+sin2α=95,∴sin2α=45.又2α∈⎝⎛⎭⎪⎫0,π2,∴cos2α=1-sin 22α=35,∴tan2α=sin2αcos2α=43.(2)∵β∈⎝ ⎛⎭⎪⎫π4,π2,β-π4∈⎝ ⎛⎭⎪⎫0,π4,∴cos ⎝⎛⎭⎪⎫β-π4=45, 于是sin2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4cos ⎝ ⎛⎭⎪⎫β-π4=2425. 又sin2⎝⎛⎭⎪⎫β-π4=-cos2β,∴cos2β=-2425. 又2β∈⎝ ⎛⎭⎪⎫π2,π,∴sin2β=725,又cos 2α=1+cos2α2=45,∴cos α=25,∴sin α=15⎝ ⎛⎭⎪⎫α∈⎝ ⎛⎭⎪⎫0,π4.∴cos(α+2β)=cos αcos2β-sin αsin2β=255×⎝ ⎛⎭⎪⎫-2425-55×725=-11525.22.(12分)如图,点P ⎝ ⎛⎭⎪⎫0,A 2是函数y =A sin ⎝ ⎛⎭⎪⎫2π3x +φ(其中A >0,φ∈[0,π))的图象与y 轴的交点,点Q ,点R 是它与x 轴的两个交点.(1)求φ的值;(2)若PQ ⊥PR ,求A 的值.解:(1)∵函数经过点P ⎝ ⎛⎭⎪⎫0,A 2,∴sin φ=12, 又∵φ∈[0,π),且点P 在递增区间上,∴φ=π6.(2)由(1)可知y =A sin ⎝ ⎛⎭⎪⎫2π3+π6.令y =0,得sin ⎝ ⎛⎭⎪⎫2π3x +π6=0,∴2π3x +π6=k π,(k ∈Z ),∴可得x =-14,54, ∴Q ⎝ ⎛⎭⎪⎫-14,0,R ⎝ ⎛⎭⎪⎫54,0. 又∵P ⎝ ⎛⎭⎪⎫0,A 2,∴PQ →=⎝ ⎛⎭⎪⎫-14,-A 2,PR →=⎝ ⎛⎭⎪⎫54,-A 2. ∵PQ ⊥PR ,∴PQ →·PR →=-516+14A 2=0,解得A =52.。