化工原理数据表
化工原理实验教材

化工原理实验教材武汉科技大学化学工程与技术学院2003年目录实验一流体静力学演示实验 (1)实验二流体机械能转换实验——柏努利方程演示 (4)实验三雷诺数的测定与流型观察 (7)实验四管内流体流动阻力的测定 (9)实验五离心泵性能实验——离心泵特性曲线的测定 (12)试验六离心泵汽蚀、气缚的演示实验 (16)试验七传热实验 (19)试验八板式精馏塔的操作及塔板效率实验 (25)试验九吸收实验 (29)试验十填料塔流体力学特性实验 (34)试验十一板式塔演示实验 (37)试验十二干燥实验 (39)实验一流体静力学演示实验实验目的1.通过本实验的演示,加强对静力学概念的理解;2.掌握U型管压力计测量压力的使用方法;3.了解U型管压力计中不同指示液对读数的影响;基本原理⒈压力:流体垂直作用于单位面积上的力称为压强,工业上习惯称为压力。
常用压力表所示读数,即表压力(表压),并非表内压力的实际值,即绝对压力(绝压),而是表内压力比表外大气压力高出的值。
两者关系为:表压= 绝压—大气压。
真空表的读数为大气压比所测压力的实际值高出的值,称为真空度(负压)。
两者关系为:真空度= 大气压—绝压。
2.U形管压差计:U形管压差计是利用流体静力学平衡原理测流体静压力的仪器,为连通器应用的实例之一。
其读数的方法以图3.1-a 和3.1- b两种情况为例:(a) (b)图1.1流体静力学平衡示意图图1.1— a 表示容器内为正压,其绝对压力gRP P a ρ+=图1.1— b 表示容器内为负压,其绝对压力gRP P a ρ-=其中:P ——绝对压力,2m N ;aP ——大气压,2m N ;gR ρ——表压,2m N ;ρ——指示液密度,3m kg ;R ——液位差,m ;g ——重力加速度,2s m .若将图示中指示液改为密度为a ρ 或b ρ 、c ρ…… 的液体,则有===c c b b a a R R R ρρρ……若已知a ρ,则可求出b ρ、c ρ……实验装置(如图1.2)图1.2 静力学实验装置实验步骤1.打开阀门D,使大、小水箱内压力等于大气压。
化工原理实验报告综合经典篇

实验题目:流体流动阻力测定实验一、数据记录1、实验原始数据记录如下表:离心泵型号:MS60/0.55,额定流量:60L/min, 额定扬程:19.5mN,额定功率:0.55kw流体温度2、5 2.4 1.9258 0.00513 41149.8586 2.6487 0.024846 6 2.2 1.7653 0.0061 37720.7038 2.2759 0.029569 7 2 1.6048 0.00593 34291.5489 1.8149 0.028751 8 1.8 1.4443 0.00424 30862.3940 1.5304 0.020508 9 1.6 1.2838 0.00536 27433.2391 1.2164 0.025955 10 1.4 1.12340.005655 24004.08420.94180.0273820.00559绘制粗糙管路的双对数λ-Re 曲线如下图示:根据光滑管实验结果,对照柏拉修斯方程λ=0.3164/(Re0.25),计算其误差,计试验次数 阻力系数λ 雷诺数Re 柏拉修斯方程计算结果 误差1 0.016893 57609.8021 0.02042266 0.1728312 0.017215 54009.1895 0.02075485 0.1705553 0.017332 50408.5768 0.02111594 0.179198 4 0.017282 46807.9642 0.0215108 0.196595 0.018107 43207.3516 0.02194558 0.174914 6 0.017612 39606.7389 0.02242819 0.2147387 0.018552 36006.1263 0.02296902 0.1923038 0.019035 32405.5137 0.02358206 0.192819 9 0.019391 28804.901 0.02428678 0.201582 10 0.019954 25204.2884 0.02511122 0.205375 3 的流速2900d Vu π=(m/s ),雷诺数μρdu =Re ,流体阻力ρ1000⨯∆=P Hf,阻力系数22Lu d H f =λ,ξ=gu2f'Δ2ρP ,并以标准单位换算得光滑管数据处理结果如下表二、结果分析(1)光滑管结果分析:曲线表明,在湍流区内,光滑管阻力系数随雷诺数增大而减小,进入阻力平方区(也称完全湍流区)后,雷诺数对阻力系数的影响却越来越弱,阻力系数基本趋于不变。
化工原理实验

实验一 雷诺试验一、实验目的与要求1、观察流体流动轨迹随流速的变化情况,通过转子流量计改变流量观察流体的流动型态,并对层流和湍流的现象进行比较;2、计算雷诺数并比较雷诺数值与流动型态的关系,确定临界雷诺准数。
二、实验原理雷诺实验揭示了重要的流体流动机理,当流体流速较小时,流体质点只沿流动方向作一维的运动,与其周围的流体间无宏观的混合即分层流动,这种流动形态称层流或滞流。
流体流速增大至一定程度后,流体质点除流动方向(沿管轴方向)上的流动外,还向其它方向作随机的运动,即存在流体质点的不规则的脉动,流体质点彼此混合并有旋涡生成,这种流动形态称湍流或紊流。
层流与湍流是两种完全不同的流动型态。
除流速u 外,管径d ,流体粘度μ和密度ρ,对流动形态也有影响,雷诺将这些影响流体流动形态的因素用雷诺准数(或雷诺数) Re 表示。
即:μρdu =Re一般情况下: Re<2000 层流区 2000<Re<4000 过渡区 Re>4000 湍流区三、实验装置1.示踪剂瓶;2.稳压溢流水槽;3.试验导管;4.转子流量计;5.示踪剂调节阀;6.水流量调节阀;7.上水调节阀;8.放风阀图1 雷诺实验装置四、实验方法实验前准备工作:1.实验前,先用自来水充满稳压溢流水槽。
将适量示踪剂(红墨水)加入贮瓶内备用,并排尽贮瓶与针头之间管路内的空气。
2.实验前,先对转子流量计进行标定,作好流量标定曲线。
3.用温度计测定水温。
实验操作步骤:(一)、先做演示实验,观察滞流与湍流时流速分布曲线形态。
1、在玻璃管中流体为静止状态下迅速加入墨水,让墨水将指针附近2-3厘米的水层染上颜色,然后停止加入墨水。
2、慢慢打开水流量阀,并逐渐加大流量至一定的值后,观察墨水随流体流动形成的流速分布曲线形态。
(二)、确定不同流动形态下的临界雷诺准数。
1、打开水源上水阀使高位槽保持少量的溢流,维持高位槽液面稳定,以保证实验具有稳定的压头。
化工原理实验—流体流动阻力测定实验

化工原理实验报告—流体流动阻力测定实验班级: 031112班小组:第六组指导老师:刘慧仙组长:陈名组员:魏建武曹然实验时间: 2013年10月18日目录一、实验内容 (1)二、实验目的 (1)三、实验基本原理 (1)1.直管阻力 (1)2.局部阻力 (3)四、实验设计 (3)1.实验方案 (3)2.测试点及测试方法 (3)原始数据 (3)测试点 (4)测试方法 (4)3.控制点及调节方法 (4)4.实验装置和流程设计 (4)主要设备和部件 (4)实验装置流程图 (4)五、实验操作要点 (5)六、实验数据处理和结果讨论分析 (6)实验数据处理 (6)1.实验数据记录表 (6)2.流体直管阻力测定实验数据整理表 (7)3.流体局部阻力测定实验数据整理表 (8)4.计算示例。
(9)结果讨论分析 (10)七、思考题 (11)实验一流体流动阻力的测定实验一、实验内容1.测定流体在特定材质和的直管中流动时的阻力摩擦系数,并确定和之间的关系。
2.测定流体通过阀门时的局部阻力系数。
二、实验目的1.了解测定流体流动阻力摩擦系数的工程定义,掌握测定流体阻力的实验方法。
2.测定流体流径直管的摩擦阻力和流经管件或局部阻力,确定直管阻力摩擦系数与雷诺数之间的关系。
3.熟悉压差计和流量计的使用方法。
4.认识组成管路系统的各部件、阀门并了解其作用。
三、实验基本原理流体管路是由直管、管件(如三通、肘管、弯头)、阀门等部件组成。
流体在管路中流动时,由于黏性剪应力和涡流的作用,不可避免地要消耗一定的机械能,流体在直管中流动的机械能损失为直管阻力;而流体通过阀门、管件等部件时,因流动方向或流动截面的突然改变导致的机械能损失称为局部阻力。
在化工过程设计中,流体流动阻力的测定或计算,对于确定流体输送所需推动力的大小,例如泵的功率、液位或压差,选择适当的输送条件都有不可或缺的作用。
1.直管阻力流体在水平的均匀管道中稳定流动时,由截面1流动至截面2的阻力损失表现为压力的降低,即①由于流体分子在流动过程中的运动机理十分复杂,影响阻力损失的因素众多,目前尚不能完全用理论方法来解决流体阻力的计算问题,必须通过实验研究掌握其规律。
化工原理实验数据处理 (3)

流体机械能转换的实验数据记录21h h 、段截面连续性方程验证31h h 、段压头损失与流速的关系`流量L/h h1/cm h2/cm h3/cm h4/cm h5/cm h6/cm 0 102.3 102.2 102.4 44.6 44.5 44.7 160 102 101.4 101.7 36.6 35.6 36.4 350 101.3 98.5 100.5 34.9 34.4 34.8 500 100.8 90.9 99.4 33.7 32.7 33.6 700 99.7 87.3 97.2 30.5 29.4 30.4 850 98.1 79.1 94.7 27.8 25.7 27.1 900 98.3 77.1 94.2 26.3 24.9 26.2 110096.668.191.523.521.223.4序号 流量L/h 流速1(m/s) 流速2(m/s) )/(3211s m d u )/(3222s m d u1 0 0.0000 0.1400 0.0000 0.24732 160 0.0629 0.3487 0.4444 0.61583 350 0.1376 0.7535 0.9722 1.33084 500 0.1966 1.4068 1.3890 2.48475 700 0.2752 1.5831 1.9444 2.79616 850 0.3342 1.9585 2.3611 3.45927 900 0.3539 2.0689 2.5000 3.6545 811000.43252.40273.05564.2444序号 流量L/h 流速1(m/s) h1/cm h3/cm 压头损失/cm 1 0 0.0000 102.3 102.4 -0.1 2 160 0.0629 102 101.7 0.3 3 350 0.1376 101.3 100.5 0.8 4 500 0.1966 100.8 99.4 1.4 5 700 0.2752 99.7 97.2 2.5 6 850 0.3342 98.1 94.7 3.4 7 900 0.3539 98.3 94.2 4.1 81100 0.432596.691.55.143h h 、段压头损失及位能变化与流速的关系54h h 、段雷诺数与流体阻力系数的关系序号 流量L/h 流速1(m/s) h4/cm h5/cm 压力损失/cm 雷诺数 摩擦系数 1 0 0.0000 44.6 44.5 0.1 0 0.0000 2 160 0.0629 36.6 35.6 1.0 1772 5.0551 3 350 0.1376 34.9 34.4 0.5 3876 0.5282 4 500 0.1966 33.7 32.7 1.0 5538 0.5174 5 700 0.2752 30.5 29.4 1.1 7752 0.2905 6 850 0.3342 27.8 25.7 2.1 9414 0.3760 7 900 0.3539 26.3 24.9 1.4 9968 0.2236 811000.432523.521.22.3121820.245965h h 、段管道平均流速与中心流速的关系序号 流量L/h 流速1(m/s) h5/cm h6/cm 压力损失/cm 中心流速U/(m/s) 1 0 0.0000 44.5 44.7 0.2 0.1980 2 160 0.0629 35.6 36.4 0.8 0.3960 3 350 0.1376 34.4 34.8 0.4 0.2800 4 500 0.1966 32.7 33.6 0.9 0.4200 5 700 0.2752 29.4 30.4 1.0 0.4427 6 850 0.3342 25.7 27.1 1.4 0.5238 7 900 0.3539 24.9 26.2 1.3 0.5048 811000.432521.223.42.20.6567序号 流量L/h 流速1(m/s) h3/cm h4/cm 压头损失/cm 1 0 0.0000 102.4 44.6 57.8 2 160 0.0629 101.7 36.6 65.1 3 350 0.1376 100.5 34.9 65.6 4 500 0.1966 99.4 33.7 65.7 5 700 0.2752 97.2 30.5 66.7 6 850 0.3342 94.7 27.8 66.9 7 900 0.3539 94.2 26.3 67.9 811000.432591.523.568.0五实验数据分析本实验所得的实验结果存在巨大误差,与实际生产生活实际很不相符,精确度不准确,主要产生误差的地方有:流体未处于稳态过程,波动性很大,影响实验结果;由于波动性很大,以至于操作人员读数的不缺定性,引起很大的实验结果误差;实验装置本身的误差。
【免费阅读】化工原理实验讲义

雷诺演示实验一、实验目的1 观察流体流动时的不同流动型态2 观察层流状态下管路中流体的速度分布状态3 熟悉雷诺准数(Re)的测定与计算4 测定流动型态与雷诺数(Re)之间的关系及临界雷诺数二、实验原理流体在流动过程中由三种不同的流动型态,即层流、过渡流和湍流。
主要取决于流体流动时雷诺数Re的大小,当Re大于4000时为湍流,小于2000 时为层流,介于两者之间为过渡流。
影响流体流动型态的因素,不仅与流体流速、密度、粘度有关,也与管道直径和管型有关,其定义式如下:1.1-1式中: d 管子的直径mu 流体的速度m/sρ流体的密度kg/m 3μ流体的粘度 Pa· s三、实验装置雷诺演示实验装置如图1.1所示,其中管道直径为20 mm。
图1.1 雷诺演示实验装置图1—有机玻璃水槽;2 —玻璃观察管;3 —指试液;4,5 —阀门;6 —转子流量计四、实验步骤1 了解实验装置的各个部件名称及作用,并检查是否正常。
2 打开排空阀排气,待有机玻璃水槽溢流口有水溢出后开排水阀调节红色指示液,消去原有的残余色。
3 打开流量计阀门接近最大,排气后再关闭。
4 打开红色指示液的针形阀,并调节流量(由小到大),观察指示液流动形状,并记录指示液成稳定直线,开始波动,与水全部混合时流量计的读数。
5 重复上述实验3~5次,计算Re临界平均值。
6 关闭阀1、11,使观察玻璃管6内的水停止流动。
再开阀1,让指示液流出1~2 cm 后关闭1,再慢慢打开阀9,使管内流体作层流流动,观察此时速度分布曲线呈抛物线形状。
7 关闭阀1、进水阀,打开全开阀9排尽存水,并清理实验现场。
五、数据处理及结果分析1 实验原始数据记录见下表:序号123456q(l/h)U(m/s)Re2 利用Re的定义式计算不同流动型态时的临界值,并与理论临界值比较,分析误差原因。
六、思考题1雷诺数的物理意义是什么?2 有人说可以只用流体的流速来判断管中流体的流动型态,当流速低于某一数值时是层流,否则是湍流,你认为这种看法对否?在什么条件下可以只用流速来判断流体的流动型态?流体流动阻力系数的测定一、实验目的1 学习管路阻力损失( h f ) 、管路摩擦系数(λ)、管件局部阻力系数(ζ)的测定方法,并通过实验了解它们的变化规律,巩固对流体阻力基本理论的认识。
化工原理实验报告吸收实验要点

化工原理实验报告吸收实验要点————————————————————————————————作者:————————————————————————————————日期:ﻩ一、 实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数K Y a.三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。
但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。
(一)、空塔气速与填料层压降关系气体通过填料层压降△P 与填料特性及气、液流量大小等有关,常通过实验测定。
若以空塔气速o u [m/s]为横坐标,单位填料层压降ZP∆[mmH 20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。
当液体喷淋量L 0=0时,可知ZP∆~o u 关系为一直线,其斜率约1.0—2,当喷淋量为L 1时,ZP∆~o u 为一折线,若喷淋量越大,折线位置越向左移动,图中L 2>L 1。
每条折线分为三个区段,ZP∆值较小时为恒持液区,Z P ∆~o u 关系曲线斜率与干塔的相同。
Z P ∆值为中间时叫截液区,ZP∆~o u 曲线斜率大于2,持液区与截液区之间的转折点叫截点A。
Z P ∆值较大时叫液泛区,ZP∆~o u 曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B 。
在液泛区塔已无法操作。
塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。
吸收实验图2-2-7-1 填料塔层的ZP∆~o u 关系图图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。
若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收平均推动力可用对数平均浓度差法进行计算。
其吸收速率方程可用下式表示:m Ya A Y H K N ∆⋅⋅Ω⋅=(1)式中:N A ——被吸收的氨量[kmolN H3/h];Ω——塔的截面积[m 2]H ——填料层高度[m ]∆Y m ——气相对数平均推动力KY a ——气相体积吸收系数[k molN H3/m 3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):)()(2121X X L Y Y V N A -=-=(2)式中:V ——空气的流量[kmol 空气/h]L——吸收剂(水)的流量[kmol H20/h] Y 1——塔底气相浓度[kmolNH 3/kmol 空气] Y 2——塔顶气相浓度[kmolNH 3/km ol空气]X 1,X 2——分别为塔底、塔顶液相浓度[kmo lNH 3/kmolH 20]由式(1)和式(2)联解得:mYa Y H Y Y V K ∆⋅⋅Ω-=)(21(3)为求得KYa 必须先求出Y 1、Y 2和∆Y m 之值。
精馏实验(化工原理实验)

精馏实验一、实验目的1、了解筛板式精馏塔及其附属设备的基本结构,掌握精馏操作的基本方法;2、掌握精馏过程全回流和部分回流的操作方法;3、掌握测定板式塔全塔效率。
二、实验原理1、全塔效率E T全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值,即-1=T T P N E N (1)式中:T N -完成一定分离任务所需的理论塔板数,包括塔釜;P N -完成一定分离任务所需的实际塔板数。
全塔效率简单地反映了整个塔内塔板的平均效率,表明塔板结构、物性系数、操作状况等因素对塔板分离效果的影响。
对于双组分体系,塔内所需理论塔板数N T ,可通过实验测得塔顶组成x D 、塔釜组成x W 、进料组成x F 及进料热状况q 、回流比R等有关参数,利用相平衡关系和操作线用图解法或逐板计算法求得。
图1塔板气液流向示意图2、单板效率ME 单板效率又称莫弗里板效率,如图1所示,是指气相或液相经过一层实际塔板前后的组成变化值与经过一层理论塔板前后的组成变化值之比。
按气相组成变化表示的单板效率为1*1y =n n MV n n y E y y ++--(2)按液相组成变化表示的单板效率为1*1n n ML n n x x E x x ---=-(3)式中:y n 、1n y +-分别为离开第n 、n+1块塔板的气相组成,摩尔分数;1n x -、n x -分别为离开第n-1、n 块塔板的液相组成,摩尔分数;*ny -与x n 成平衡的气相组成,摩尔分数;*nx -与y n 成平衡的液相组成,摩尔分数。
3、图解法求理论塔板数N T图解法又称麦卡勃-蒂列(McCabe-Thiele)法,简称M-T 法,其原理与逐板计算法完全相同,只是将逐板计算过程在y-x 图上直观地表示出来。
对于恒摩尔流体系,精馏段的操作线方程为:111D n n x R y x R R +=+++(4)式中:1n y +-精馏段第n+1块塔板上升的蒸汽组成,摩尔分数;n x -精馏段第n 块塔板下流的液体组成,摩尔分数;D x -塔顶溜出液的液体组成,摩尔分数;R -回流比。
化工原理实验-——液体流动,、离心泵

实验一流动过程综合实验实验1-1 流体阻力测定实验一、实验装置⒈实验装置流程图如图1-2所示。
⒉流量测量:在图1-2中由转子流量计22、23测量。
⒊直管段压强降的测量:差压变送器和倒置U形管直接测取压差值。
图一、流体综合实验装置流程示意图1:水箱:2:水泵;3:入口真空表;4:出口压力表;5,16:缓冲罐:6,14测局部阻力近端阀;7,15:测局部阻力远端阀;8,17:粗糙管测压阀;9,21:光滑管测压阀;10:局部阻力阀;11:文丘里流量计;12:压力传感器;13:涡流流量计;18:阀门;19光滑管阀;20:粗糙管阀;22:小流量计;23:大流量计;24阀门25:水箱放水阀;26:倒U型管放空阀;27: 倒U型管;28,30:倒U型管排水阀;29,31: 倒U型管平衡阀;32:功率表;33:变频调速器设备主要参数二、实验内容⒈测定实验管路内流体流动的阻力和直管摩擦系数λ。
⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 之间的关系曲线。
⒊在本实验压差测量范围内,测量阀门的局部阻力系数。
三、实验原理⒈直管摩擦系数λ与雷诺数Re 的测定h f = ρfP ∆=22u d l λ (1-1)λ=22u P l d f∆⋅⋅ρ (1-2) Re =μρ⋅⋅u d (1-3)式中:-d 管径,m ;-∆f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,Pa ·s 。
⒉局部阻力系数ζ的测定 22'u P h ff ζρ=∆=' (1-4)2'2u P f∆⋅⎪⎪⎭⎫ ⎝⎛=ρζ (1-5)式中:-ζ局部阻力系数,无因次; -∆'f P 局部阻力引起的压强降,Pa ;-'f h 局部阻力引起的能量损失,J /kg 。
图1-1 局部阻力测量取压口布置图局部阻力引起的压强降'f P ∆ 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a'和b-b ',见图1-1,使ab =bc ; a 'b '=b 'c ' 则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a~a '之间列柏努利方程式:P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f(1-6)在b~b '之间列柏努利方程式:P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f = △P f ,a b +△P f ,a 'b '+△P 'f (1-7) 联立式(1-6)和(1-7),则:'f P ∆=2(P b -P b ')-(P a -P a ')为了实验方便,称(P b -P b ')为近点压差,称(P a -P a ')为远点压差。
化工原理实验资料

实验一 流体力学综合实验一、实验目的1.熟悉流体在管路中流动阻力的测定方法及实验数据的归纳 2.测定直管摩擦系数λ和e R 关系曲线及局部阻力系数ζ 3. 了解离心泵的构造,熟悉其操作和调节方法 4. 测出单级离心泵在固定转速下的特定曲线 二、实验原理流体在管路中的流动阻力分为直管阻力和局部阻力两种。
直管阻力是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,可由下式计算:gud l g pHf22⋅⋅=∆-=λρ (3-1)局部阻力主要是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力,计算公式如下:gugpHf22''⋅=∆-=ζρ (3-2)管路的能量损失'fffHHH+=∑ (3-3)式中 f H ——直管阻力,m 水柱;λ——直管摩擦阻力系数; l ——管长,m ; d ——直管内径,m ;u ——管内平均流速,1sm -⋅;g ——重力加速度,9.812s m -⋅p ∆——直管阻力引起的压强降,Pa ;ρ——流体的密度,3mkg -⋅;ζ——局部阻力系数; 由式3-1可得22ludP ρλ⋅∆-=(3-4)这样,利用实验方法测取不同流量下长度为l 直管两端的压差P ∆即可计算出λ和Re ,然后在双对数坐标纸上标绘出Re λ-的曲线图。
离心泵的性能受到泵的内部结构、叶轮形式、叶轮转速的影响。
实验将测出的H —Q 、N —Q 、η—Q 之间的关系标绘在坐标纸上成为三条曲线,即为离心泵的特性曲线,根据曲线可找出泵的最佳操作范围,作为选泵的依据。
离心泵的扬程可由进、出口间的能量衡算求得:gu u h H H H 221220-++-=入口压力表出口压力表(3-5)式中出口压力表H ——离心泵出口压力表读数,m 水柱;入口压力表H ——离心泵入口压力表的读数,m 水柱;0h ——离心泵进、出口管路两测压点间的垂直距离,可忽略不计;1u ——吸入管内流体的流速,1sm -⋅; 2u ——压出管内流体的流速,1sm -⋅泵的有效功率,由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又较理论值为高,所以泵的效率%100⨯=NN e η (3-6)而泵的有效功率g QH N e e ρ=/(3600×1000) (3-7) 式中:e N ——泵的有效功率,K w ;N ——电机的输入功率,由功率表测出,K w ;Q ——泵的流量,-13h m ⋅;e H ——泵的扬程,m 水柱。
化工原理实验(10个)资料

实验一 流体流动阻力的测定一、实验目的1. 掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法;2. 测定直管摩擦系数λ~R e 的关系,验证在一般湍流区内λ、R e 与ε/d 的函数关系;3. 测定流体流经阀门及突然扩大管时的局部阻力系数ζ;4.测定层流管的摩擦阻力。
二、实验原理流体流经直管时所造成机械能损失为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
(1) 直管阻力摩擦系数λ的测定:流体在水平等径直管中稳定流动时,阻力损失为:2122f p p l u h d λρ-== 即 1222()d p p luλρ-= 层流时:λ=64/Re; 湍流时:λ是Re 和ε/d 的函数,须由实验测定。
(2)局部阻力系数的测定: 局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
本实验采用阻力系数法进行测定。
22f u h ζ=三、实验装置与流程实验装置部分是由水箱,离心泵,不同管径、材质的水管,各种阀门、管件,涡轮流量计和倒U 形压差计等所组成。
管路部分由五段并联的长直管,自上而下分别为用于测定层流阻力、局部阻力、光滑管直管阻力、粗糙管直管阻力和扩径管阻力。
测定阻力部分使用不锈钢管,其上装有待测管件(球阀或截止阀);光滑管直管阻力的测定同样使用内壁光滑的1、水箱2、离心泵3、涡轮流量计4、层流水槽5、层流管6、截止阀7、球阀8、光滑管9、粗糙管 10、突扩管 11、孔板流量计 12、流量调节阀不锈钢管,而粗糙管直管阻力的测定对象为管道内壁较粗糙的镀锌管。
本装置的流量使用涡轮流量计测量。
管路和管件的阻力采用各自的倒U形压差计测量,同时差压变送器将差压信号传递给差压显示仪。
四、实验步骤1. 首先对水泵进行灌水,然后关闭出口阀门,启动水泵电机,待电机转动平稳后,把泵的出口阀缓缓开到最大;2. 同时打开被测管线上的开关阀及面板上与其相应的切换阀,关闭其他的开关阀和切换阀,保证测压点一一对应;3. 改变流量测量流体通过被测管的压降,每次改变流量(变化10L/min左右),待流动达到稳定后,分别仪表控制箱上的压降数值;4. 实验结束,关闭出口阀,停止水泵电机,清理装置。
吸收实验(化工原理实验)

吸收实验一、实验目的1、了解填料吸收塔的一般结构和工业吸收过程流程;2、掌握吸收总传质系数K a的测定方法;x3、考察吸收剂进口条件的变化对吸收效果的影响;4、了解处理量变化对吸收效果的影响。
二、实验原理1、概述吸收过程是依据气相中各溶质组分在液相中的溶解度不同而分离气体混合物的单元操作。
在化学工业中吸收操作广泛应用于气体原料净化、有用组分的回收、产品制取和废气治理等方面。
在吸收研究过程中,一般可分为对吸收过程本身的特点或规律进行研究和对吸收设备进行开发研究两个方向。
前者的研究内容包括吸收剂的选择、确定因影响吸收过程的因素、测定吸收速率等,研究的结果可为吸收工艺设计提供依据,或为过程的改进及强化指出方向;后者研究的重点为开发新型高效的吸收设备,如新型高效填料、新型塔板结构等。
吸收通常在塔设备内进行,工业上尤其以填料塔用的普遍。
填料塔一般由以K a下几部分构成:(1)圆筒壳体;(2)填料;(3)支撑板;(4)液体预分布装置;(5) x液体再分布器;(6)捕沫装置;(7)进、出口接管等等。
其中,塔内放置的专用填料作为气液接触的媒介,其作用是使从塔顶流下的流体沿填料表面散布成大面积的液膜,并使从塔底上升的气体增强湍动,从而为气液接触传质提供良好条件。
液体预分布装置的作用是使得液体在塔内有良好的均匀分布。
而液体在从塔顶向下流动的过程中,由于靠近塔壁处的空隙大,流体阻力小,液体有逐渐向塔壁处汇集的趋向,从而使液体分布变差。
液体再分布器的作用是将靠近塔壁处的液体收集后再重新分布。
填料是填料吸收塔最重要的部分。
对于工业填料,按照其结构和形状,可以分为颗粒填料和规整填料两大类。
其中,颗粒填料是一粒粒的具有一定几何形状和尺寸的填料颗粒体,一般以散装(乱堆)的方式堆积在塔内。
常见的大颗粒填料有拉西环、鲍尔环、阶梯环、弧鞍环、矩鞍环等等。
填料等材质可以使金属、塑料、陶瓷等。
规整填料是由许多具有相同几何形状的填料单元组成,以整砌的方式装填在塔内。
化工原理实验报告(流体阻力)

摘要:本实验通过测定流体在不同管路中流动时的流量qv 、测压点之间的压强差ΔP ,结合已知的管路的内径、长度等数据,应用机械能守恒式算出不同管路的λ‐Re 变化关系及突然扩大管的-Re 关系。
从实验数据分析可知,光滑管、粗糙管的摩擦阻力系数随Re 增大而减小,并且光滑管的摩擦阻力系数较好地满足Blasuis 关系式:0.250.3163Re λ= 。
突然扩大管的局部阻力系数随Re 的变化而变化。
一、 目的及任务①掌握测定流体流动阻力实验的一般实验方法。
②测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。
③验证湍流区内摩擦系数λ为雷诺数Re 和相对粗糙度的函数。
④将所得光滑管λ-Re 方程与Blasius 方程相比较。
二、 基本原理1. 直管摩擦阻力 不可压缩流体,在圆形直管中做稳定流动时,由于黏性和涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,产生局部阻力。
影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得到在一定条件下具有普遍意义的结果,其方法如下:流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态相关,可表示为:△p=ƒ(d ,l ,u ,ρ, μ, ε) 引入下列无量纲数群。
雷诺数 du Re ρμ=相对粗糙度 dε 管子长径比l d从而得到2(,,)p du lu d dρερμ∆=ψ 令(Re,)dελ=Φ2(Re,)2pl u d d ερ∆=Φ 可得到摩擦阻力系数与压头损失之间的关系,这种关系可用实验方法直接测定。
22f pl u h d λρ∆==⨯式中f h ——直管阻力,J/kg ;l ——被测管长,m ; d ——被测管内径,m ; u ——平均流速,m/s ; λ——摩擦阻力系数。
当流体在一管径为d 的圆形管中流动时,选取两个截面,用U 形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。
化工原理实验(教案)

《化工原理实验》讲稿王承敏二0一二年九月1. 能量转换(伯努利)实验—、实验目的1.演示流体在管内流动时静压能、动能、位能相互之间的转换关系,加深对伯努利方程的理解。
2.通过能量之间变化了解流体在管内流动时其流体阻力的表现形式。
3.可直接观测到当流体经过扩大、收缩管段时,各截面上静压头的变化过程,形象直观,说服力强。
二、实验内容1.测量几种情况下的压头,并作分析比较。
2.测定管中水的平均流速和点C 、D 处的点流速,并做比较。
三、实验原理在实验管路中沿管内水流方向取n 个过水断面。
运用不可压缩流体的定常流动的总流Bernoulli 方程,可以列出进口附近断面(1)至另一缓变流断面(i )的伯努利方程:i w i i ii h gv p z gv p z -+++=++122111122αγαγ其中i=2,3,4……,n ; 取121====n ααα 。
选好基准面,从断面处已设置的静压测管中读出测管水头γpz +的值;通过测量管路的流量,计算出各断面的平均流速v 和gv 22α的值,最后即可得到各断面的总水头gv pz 22αγ++的值。
四、实验装置基本情况1.实验设备流程图(如图一、图二所示):图一 能量转换实验流程示意图图二实验测试导管管路图2.实验设备主要技术参数表一设备主要技术参数1.将水箱灌入一定量的蒸馏水,关闭离心泵出口上水阀及实验测试导管出口流量调节阀、排气阀、排水阀,打开回水阀和循环水阀后启动离心泵。
2.逐步开大离心泵出口上水阀,当高位槽溢流管有液体溢流后,利用流量调节阀调节出水流量。
稳定一段时间。
3.待流体稳定后读取并记录各点数据。
4.逐步关小流量调节阀,重复以上步骤继续测定多组数据。
5.分析讨论流体流过不同位置处的能量转换关系并得出结论。
6.关闭离心泵,结束实验。
六、实验注意事项1.离心泵出口上水阀不要开得过大,以免水流冲击到高位槽外面,导致高位槽液面不稳定。
2.调节水流量时,注意观察高位槽内水面是否稳定,随时补充水量保持稳定。
化工原理——传热实验

一、实验课程名称:化工原理二、实验项目名称:空气-蒸汽对流给热系数测定 三、实验目的和要求:1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
四、实验内容和原理实验内容:测定不同空气流量下进出口端的相关温度,计算α,关联出相关系数。
实验原理:在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()m m W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 -热流体进口处热流体侧的壁面温度,℃;T W 2 -热流体出口处热流体侧的壁面温度,℃。
固体壁面与冷流体的对数平均温差可由式(4—3)计算,()()()22112211ln t t t t t t t t t t W W W W m W -----=- (4-3)式中:t W 1 - 冷流体进口处冷流体侧的壁面温度,℃;t W 2 - 冷流体出口处冷流体侧的壁面温度,℃。
热、冷流体间的对数平均温差可由式(4—4)计算,()()12211221m t T t T ln t T t T t -----=∆ (4-4)δTT W t W t图4-1间壁式传热过程示意图当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4-1)得内管内壁面与冷空气或水的对流传热系数,()()MW p t t A t t c m --=212222α (4-5)实验中测定紫铜管的壁温t w1、t w2;冷空气或水的进出口温度t 1、t 2;实验用紫铜管的长度l 、内径d 2,l d A 22π=;和冷流体的质量流量,即可计算α2。
化工原理实验-传热实验

传热实验——传热系数的测定2011011743 分1 黄浩实验日期:2013-11-15同组实验者:周昱、曹庆辰、陈辰地点:化工实验教学中心108室实验内容:传热系数的测定一、实验目的(1)掌握传热系数K、给热系数α和导热系数λ的测定方法。
(2)比较保温管、裸管、汽水套管的传热速率,并进行讨论。
(3)掌握热电偶测温原理及相关二次仪表的使用方法。
二、实验原理根据传热基本方程、牛顿冷却定律及圆筒壁的热传导方程,已知传热设备的结构尺寸,只要测得传热速率Q以及各相关温度,即可算出K、α和λ。
(1)测定汽-水套管的传热系数K [W/(m2·℃)]K=Q/AΔt m式中:A——传热面积,m2;Δt m——冷、热流体的平均温差,℃;Q——传热速率,W;Q=W汽×r式中:W汽——为冷凝液流量(kg/s),r——为汽化潜热(J/kg)。
(2)测定裸管的自然对流给热系数α [W/(m2·℃)]α=Q/A(t w−t f)式中:t W,t f——壁温和空气温度,℃。
(3)测定保温材料的导热系数λ [W/(m·℃)]λ=Qb/A m(T w−t w)式中:q——热通量,W/(m2)T W,t W——保温层两侧的温度,℃;b——保温层的厚度,m;A m——保温层内外壁的平均面积,m2。
三、实验流程与装置该装置主体设备为“三根管”:汽水套管、裸管和保温管。
这“三根管”与锅炉、汽包、高位槽、智能数字显示控制仪等组成整个测试系统。
如图1:图1 传热系数测定的实验装置示意图工艺流程为:锅炉内加热的水蒸气送入汽包,然后在三根并联的紫铜管内同时冷凝,冷凝液由计量管或量筒收集。
三根管外情况不同:一根管外用珍珠岩保温;一根为裸管;还有一根为套管式换热器,管外有来自高位槽的冷却水。
可定性观察到三个设备冷凝速率的差异,并测定K、α和λ。
1)各种设备的尺寸:2)锅炉加热功率:0~6 kW。
3)冷却水流量:0~160 L/h。
化工原理-流体阻力实验报告(北京化工大学)

北京化工大学化工原理实验报告实验名称:流体阻力实验班级:化工1305班*名:***学号:********** 序号:11同组人:宋雅楠、陈一帆、陈骏设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第4套实验日期:2015-11-27一、实验摘要首先,本实验使用UPRS Ⅲ型第4套实验设备,通过测量不同流速下水流经不锈钢管、镀锌管、层流管、突扩管、阀门的压头损失来测定不同管路、局部件的雷诺数与摩擦系数曲线。
确定了摩擦系数和局部阻力系数的变化规律和影响因素,验证在湍流区内λ与雷诺数Re 和相对粗糙度的函数。
该实验结果可为管路实际应用和工艺设计提供重要的参考。
结果,从实验数据分析可知,光滑管、粗糙管的摩擦阻力系数随Re 增大而减小,并且光滑管的摩擦阻力系数较好地满足Blasuis 关系式:0.250.3163Re λ= 。
突然扩大管的局部阻力系数随Re 的变化而变化。
关键词:摩擦系数,局部阻力系数,雷诺数,相对粗糙度二、实验目的1、掌握测定流体流动阻力实验的一般实验方法:①测量湍流直管的阻力,确定摩擦阻力系数。
②测量湍流局部管道的阻力,确定摩擦阻力系数。
③测量层流直管的阻力,确定摩擦阻力系数。
2、验证在湍流区内摩擦阻力系数λ与雷诺数Re 以及相对粗糙度的关系。
3、将实验所得光滑管的λ-Re 曲线关系与Blasius 方程相比较。
三、实验原理1、 直管阻力不可压缩流体在圆形直管中做稳定流动时,由于黏性和涡流的作用会产生摩擦阻力(即直管阻力);流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,会产生局部阻力。
由于分子的流动过程的运动机理十分复杂,目前不能用理论方法来解决流体阻力的运算问题,必须通过实验研究来掌握其规律。
为了减少实验的工作量、化简工作难度、同时使实验的结果具有普遍的应用意义,应采用基于实验基础的量纲分析法来对直管阻力进行测量。
利用量纲分析的方法,结合实际工作经验,流体流动阻力与流体的性质、流体流经处的几何尺寸、流体的运动状态有关。
化工原理实验

由于泵的进出口管径相同,压力表和真空表安装在同一个 高度上,只要读出压力表和真空表上的数值,由下式即可计 算得扬程。 p表 p真 H g
(3)轴功率的测定与计算
轴功率可按下式计算
2n N 9.81 P L 60
式中
W
P—为测功臂上所加砝码的质量,kg; L—测功臂长,L=0.4867m; n—泵的转速,r/min。
即
i
Q Si (tW t ) m
式中
Q Vs (t 2 t1 )
(tW t1 ) (tW t 2 ) (tW t ) m t t ln W 1 tW t 2
S i d i L
由此可见只要测得t1、t2、tw、流量Vs、换热管内径以 及管长L,再由流体的平均温度确定流体的密度,分 别求得Q,Si,(tw-t)m,代入牛顿冷却定律即可求得 给热系数i。然后再由下式计算其理论值进行比较。 i 0.023 Re0.8 Pr 0.4 di
(6)调节出口阀开度以改变流量,每调节好一个流量, 待流量稳定之后,在马达天平上添加砝码,当平衡臂对准 准星后,读取砝码重量P、转速n、流量q、水温t、真空表 读数p1、压力表读数p2并做记录。流量由大到小,重复以 上操作,并读取及记录每个流量下对应的数据,数据记录 列表格见表。一般要测8~9组数据,直到流量为零。 (7)每调节好一个流量,读取和记录数据之后,可点 击离心泵特性曲线实验软件界面上的“数据采集”按钮, 以将实验数据记入软件数据库。 (8)实验完毕后,将砝码取下,关闭离心泵出口阀, 按下离心泵停止按钮。 (9)停泵后,通知指导老师检查数据。按指导老师要 求,提取计算机中已经存入的实验数据进行处理,显示处 理结果(特性曲线),经指导老师检查并符合要求后,切 断仪表电源及总电源,将所有阀门关闭。
化工原理实验——恒压过滤

实验四 恒压过滤常数的测定一、实验装置:见图4-1、图4-2设备流程如图4-1所示,滤浆槽内放有已配制有一定浓度的碳酸钙~水悬浮液。
用电动搅拌器进行搅拌使滤浆浓度均匀(但不要使流体旋涡太大,使空气被混入液体的现象),用真空泵使系统产生真空,作为过滤推动力。
滤液在计量瓶内计量。
设备参数表二、实验内容测定不同压力下恒压过滤的过滤常数K 、e q 、e 。
图4-1 恒压过滤实验流程示意图1─滤浆槽; 2─过滤漏斗; 3─搅拌电机; 4─真空旋塞. 5─积液瓶; 6─真空压力表; 7─针型放空阀; 8─缓冲罐.9─真空泵; 10─放液阀; 11─真空胶皮管.三、实验原理恒压过滤方程)()(2e e K q q θθ+=+ (4-1)式中:q —单位过滤面积获得的滤液体积,m 3/m 2; e q —单位过滤面积上的虚拟滤液体积,m 3/m 2; θ—实际过滤时间,s ; e θ—虚拟过滤时间,s ; K —过滤常数,m 2/s 。
将式(4-1)进行微分可得:e q Kq K dq d 22+=θ (4-2) 这是一个直线方程式,于普通坐标上标绘q dq d -θ的关系,可得直线。
其斜率为K2,截距为e q K2,从而求出K 、e q 。
至于e θ可由下式求出:e e K q θ=2 (4-3) 当各数据点的时间间隔不大时,dqd θ可用增量之比q∆∆θ来代替.在实验中,当计量瓶中的滤液达到100ml 刻度时开始按表计时,作为横压过滤时间的零点。
但是,在此之前吸率早已开始,这部分系统存液量可视为常量,以V '表示(V '=360ml ),则对单位过滤面积上来说这部分滤液为q ´,(q ´=AV ,),这些滤液对应的滤饼视为过滤介质以外的另一层过滤介质,在整理数据时应考虑进去,则方程应改为:q∆∆θ=K 2q+K2(e q +q ´) (4-4) 以q∆∆θ与相应区间的平均值q 作图。