合成气的生产过程.doc
合成气的生产过程
第五章合成气的生产过程5。
1 概述合成气是指一氧化碳和氢气的混和气,英文缩写是Syngas。
其H2/ CO(摩尔比)由1/2到3/1。
合成气在化学工业中有着重要作用。
5.1.1 合成气的生产方法(1)以煤为原料的生产方法:有间歇和连续两种操作方式。
煤制合成气中H2/ CO比值较低,适于合成有机化合物。
(2)以天然气为原料的生产方法:主要有转化法和部分氧化法.目前工业上多采用水蒸气转化法(steam reforming),该法制得的合成气中H2/ CO比值理论上是3,有利于用来制造合成氨或氢气。
(3) 以重油或渣油为原料的生产方法:主要采用部分氧化法(partial oxidation).5。
1。
2.1 工业化的主要产品(1)合成氨(2)合成甲醇(3)合成醋酸(4)烯烃的氢甲酰化产品(5)合成天然气、汽油和柴油5.1.2。
2 合成气应用新途径(1)直接合成乙烯等低碳烯烃(2)合成气经甲醇再转化为烃类(3)甲醇同系化制乙烯(4)合成低碳醇(5)合成乙二醇(6)合成气与烯烃衍生物羰基化产物5.2 由煤制合成气以煤或焦炭为原料,以氧气(空气、富氧或纯氧)、水蒸气等为气化剂,在高温条件下通过化学反应把煤或焦炭中的可燃部分转化为气体的过程,其有效成分包括一氧化碳、氢气和甲烷等。
5。
2.1。
1煤气化的基本反应煤气化过程的主要反应有:这些反应中,碳与水蒸气反应的意义最大,此反应为强吸热过程。
碳与二氧化碳的还原反应也是重要的气化反应。
气化生成的混合气称为水煤气.总过程为强吸热的。
提高反应温度对煤气化有利,但不利于甲烷的生成。
当温度高于900℃时,CH4和CO2的平衡浓度接近于零.低压有利于CO和H2生成,反之,增大压力有利于CH4生成。
5.2。
1.2 煤气化的反应条件(1)温度一般操作温度在1100℃以上。
(2) 压力一般为2。
5~3。
2MPa。
(3)水蒸气和氧气的比例H2O/O2比值要视采用的煤气化生产方法来定。
合成气的生产过程
水碳比 H2O/CH4摩尔比
水碳比
甲烷平衡含量(%)
2
18.0
4
7.9
6
1.0
P=3.5MPa、T=800℃
水碳比越高,甲烷平衡含量越低 高水碳比有利于抑制析碳副反应
压力 反应体积增大,低压有利平衡
催化剂
镍活性成分+助催化剂+载体+碱性物质
成分
助催化剂:提高活性、改善性能:金属氧化物 载体:提高表面积,防止烧结:Al2O3 或MgAl2O4尖晶石 碱性物质:中和酸性
C1化工指以合成气和甲烷为原料合成碳数为2或2个 以上化合物的化学工艺。
合成气的应用
合成氨 合成甲醇
合成醋酸
CH3OCH3 新燃料
烯烃的甲酰基化
合成天然气、汽油和柴油
新用途
煤变油
先转化为乙烯,再转化为其他 先转化为甲醇,再转化为汽油、乙烯等 直接转化为其他
目录
概述 由煤制合成气 由天然气制合成气 由渣油制合成气 一氧化碳的变换过程 脱硫与脱碳
合成气的生产过程
2020/8/13
目录
概述 由煤制合成气 由天然气制合成气 由渣油制合成气 一氧化碳的变换过程 脱硫与脱碳
合成气
合成气(syngas):CO与H2的混合气 H2: CO=1:2~3:1
合成气的制造:许多含碳资源如煤、天然气、石油馏 分、农林废料、城市垃圾等均可用来制造合成气
利用合成气可以转化为液体和气体燃料、大宗化学品 和高附加值的精细有机合成产度:1200℃ 压力:3MPa 煤的转化率:88~95% 特点:制得的水煤气中CH4和 CO2含量较高,而CO 含量较 低,适于制备城市煤气
流化床连续式气化
以高活性煤如褐煤或某些烟煤 为原料,生成气的组成为: H2 35~46%、CO 30~40%、 CO2 13~25%、CH4 1~2%, 目前多用于制氢、氨原料气和燃料煤气
天然气制备合成气
天然气制备合成气天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。
天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。
制合成气是间接利用天然气的重要步骤,也是天然气制氢的基础,充分了解天然气制合成气的工艺与催化剂对于我们进一步研究天然气的利用将有很大帮助。
天然气中甲烷含量一般大于90%,其余为小量的乙烷、丙烷等气态烷烃,有些还含有少量氮和硫化物。
其他含甲烷等气态烃的气体,如炼厂气、焦炉气、油田气和煤层气等均可用来制造合成气。
目前工业上有天然气制合成气的技术主要有蒸汽转化法和部分氧化法。
本文主要对蒸汽转化法进行具体的描述,并具体介绍此工艺的发展趋势。
蒸气转化法蒸气转化法是目前天然气制备合成气的主要途径。
蒸汽转化法是在催化剂存在及高温条件下,使甲烷等烃类与水蒸气反应,生成H2、CO等混合气,其主反应为:CH + H O = CO + 3H,A H © 298 = 206KJ / mol该反应是强吸热的,需要外界供热。
因为天然气中甲烷含量在90%以上,而甲烷在烷烃中热力学最稳定,其他烃类较易反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。
甲烷水蒸气转化反应和化学平衡甲烷水蒸气转化过程的主要反应有:CH4+ H2O o CO + 3H2,A H © 298 = 206KJ / molCH4+ 2 H2O o CO 2 + 4 H 2,A H © 298 = 165KJ /molCO + H 2 O o CO 2 + H2,A H © 298 = 74.9 KJ /mol可能发生的副反应主要是析碳反应,它们是:CH4 o C + 2H2,A H©298 = 74.9KJ /mol2CO o C + CO2,AH © 298 = -172.5 KJ /molCO + H 2 o C + H 2 O,A H © 298 = -131.4KJ /mol甲烷水蒸气转化反应必须在催化剂存在下才有足够的反应速率。
第5章-合成气
原料:多种多样。 C1化工技术:利用合成气转化成液体和气体燃料、大吨位化工
产品和高附加值的精细有机合成产品,实现这种转化的重要 技术。 CH3OH等参与反应的化学。
C1化学:凡含一个碳原子的化合物,如CH4、CO、 CO2、HCN、
C1化工:涉及Cl化学反应的工艺过程和技术。
5.1.1
合成气的生产方法
第5章 合成气生产过程
5.1 5.2 5.3 5.4 5.5 5.6 概 述 由煤制合成气 由天然气制造合成气 由渣油制合成气 一氧化碳变换过程 气体中硫化物和二氧化碳的脱除
5.1
概 述
合成气:一氧化碳和氢气的混合物,英文缩写是Syngas。H2与
CO的比值随原料和生产方法不同而异,其H2/CO(摩尔比)由1 /2到3/1。 合成气是有机合成原料之一,也是氢气和一氧化碳的来源,在 化学工业中有着重要作用。
上部为无催化剂的燃烧段,在此处一定量的CH4按下式进行不完全燃烧,释放 出热量。
下部为有催化剂的转化段,利用燃烧段反应放出的热量,进行吸热的甲烷蒸汽 转化反应[见式(5-20)]。 下部的反应条件: 2.45 MPa,950~1030℃,(下部的)颗粒状镍催化剂 (以含氧化锰和氧化铝的尖晶石为载体,具有很高的活性和耐高温性能, 可采用较高空速进行反应)。
�设臵预先转化器的目的? 主转化器:多管式反应器,反应管垂直臵于转化炉中,管外燃烧燃料供热,
转化温度900℃左右,操作压力0.7~1.2 MPa,利用烟道气余热来加热各种 原料。 调节原料混合气的CO2/CH4和H2O/CH4之比,可使转化后合成气中H2/CO 在1.8~2.7之间变动。
5.3.2
可能发生的副反应主要是析碳反应析碳:甲烷水蒸气转化反应必须在催化 剂存在下才能有足够的反应速率。 倘若操作条件不适当,析碳反应严重,生成的碳会覆盖在催化剂内外表面, 致使催化活性降低,反应速率下降。 析碳更严重时,床层堵塞,阻力增加,催化剂毛细孔内的碳遇水蒸气会剧 烈汽化,致使催化剂崩裂或粉化,迫使非正常停工,经济损失巨大。
合成气的生产过程(PPT116张)
Ni是工业化催化剂唯一活性组分,以NiO存在。 高活性:Ni晶粒小(稳定) 较大比表面(Ni/Al2O3)
2.助催化剂:
Al2O3、MgO、CaO、TiO2、MoO3、稀土氧化物 助剂用量一般为Ni含量的10%以下
2.载体
载体作用:使镍的晶体尽量分散,达到较大的比表面以 及阻止镍晶体熔结。载体还具有足够机械强度,使催
共沉淀法是指在溶液中含有两种或多种阳离子,它
们以均相存在溶液中,加人沉淀剂,经沉淀反应后,可 得到各种成分的均一的沉淀,它是制备含有两种或两 种以上金属元素的复合氧化物超细粉体的重要方法 。
b.浸渍法 镍晶粒小,分散度高 镍含量低,活性较低 NiO与载体不易生成新化合物,易还原成金属镍
3.催化剂的制备和还原 (1)制备方法 c.混合法
p CH 4
K P 1
p CO 2 K P 2 2 p CO
p H O 2
p p CO H 2
K P 3
(2) 析 炭 动 力 学
• 由CO歧化反应生成碳的速度比同一 条件下CH4裂解反应生成碳的速度要 快3~10倍。 • 碳与水蒸汽的反应比碳与CO2的反应 的脱炭速度快2~3倍,而碳与氢的反 应速度则较慢。 • 碳与CO2的脱炭速度比由一氧化碳歧 化反应生成炭的速度快10倍左右。
化剂在贮藏、运输、装卸和使用中不易破碎和粉化。
镍熔点:Tm=1454 ℃
载体类型:(熔点大于2000℃金属氧化物)。
原因:抑制烃类在催化剂表面酸性中心上的裂解析碳 。
(1)耐火材料烧结型
• 高温烧结的α - Al2O3, MgO-Al2O3等材料 为载体。
• 用浸渍法将含镍盐和促进剂的溶液负载到 预先成型的载体上,再加热分解和煅烧。 • 因活性组分集中于载体表层,10-15% (以NiO计)。 • 负载性催化剂。
二氧化碳甲烷重整制备合成气工艺设计
二氧化碳甲烷重整制备合成气工艺设计在当今的环境保护和可持续发展的大背景下,人类社会需要发展出更加环保和能够有效利用化石资源的技术来满足各种能源需求。
其中,二氧化碳甲烷重整制备合成气工艺正是在这种背景下逐渐被全世界各个国家和地区广泛采用的一种技术。
本文将从工艺步骤、工艺原理和工艺优点三方面来阐述这种技术。
一、工艺步骤二氧化碳甲烷重整制备合成气工艺步骤如下:1. 气体造气与净化:二氧化碳和甲烷通过一系列化学反应生成一种合成气体,然后将其通过净化处理,去除其中的杂质,为后续工艺步骤提供优质的燃料。
2. 加热反应:将净化后的合成气体经过加热反应,让化学反应得以充分发挥,生成更多的氢气和一氧化碳。
3. 调节气体比例:对于生成的氢气和一氧化碳进行调节,以满足不同的工业应用需求。
4. 后续工艺:根据实际需求,对合成气体进行后续处理,包括将其储存、运输或将其进一步加工为二甲醚等其他化学品。
二、工艺原理二氧化碳甲烷重整制备合成气工艺的原理基于废弃的二氧化碳和甲烷的再利用。
在化学反应中,这两种废弃原料会经过一系列化学反应,生成一种更加有价值的化学品。
具体来讲,二氧化碳和甲烷会先发生水煤气反应,生成一氧化碳和氢气。
之后,这些反应产物又会进行甲烷重整反应,生成更多的氢气和一氧化碳。
最终,我们得到了一种成分比例可以得到调控的合成气体,可以用于各种工业生产过程中。
值得一提的是,这种工艺中不会产生任何尾气或者废水,对于环境的影响非常小,切实起到了节约化石资源和环保的作用。
三、工艺优点二氧化碳甲烷重整制备合成气工艺具有以下几个优点:1. 节约资源:这种工艺利用废弃的二氧化碳和甲烷,减少了原料成本,也避免了废弃物的浪费。
2. 环保:这种工艺中不会产生任何有害尾气或者废水,对环境无负面影响。
3. 应用广泛:这种合成气可以被广泛应用于各种工业生产过程中,可以替代传统燃料,提升工业生产效率。
综上所述,二氧化碳甲烷重整制备合成气工艺是一种既节约资源又环保的技术,由于其应用广泛,已经受到了全球各国的广泛关注和采用。
第四章_合成气的生产过程.pptx
0.1MPa下碳 -蒸汽反应 的平衡组成
2MPa下碳蒸汽反应的 平衡组成
动力学特征 气固反应,反应速率不仅与化学反应速率,还与气化剂 向碳 表面的扩散速率有关。另外,反应速率还与煤的 种类有关:无烟煤<焦炭<褐煤(反应活性)
(1) 对于碳与氧气的反应,一般认为先生成CO2,然后0~ 1200℃高温反应 ;大量吸热
要求:大量供热 采取措施: 通过燃烧一部分C的反应热, 维持整个系 统的热平衡。
具体方法包括: 固定床 间歇式气化法 连续式气化法(鲁奇法) 流化床 气流床(德士古法)
.固定床间歇法(蓄热法)
优:制气时 不用氧气, 不需空分装 置
缺:生产 过程间歇, 发生炉的生 产强度低, 对煤的质量 要求高。
• 蒸汽转化法 Steam reforming
分H6部H氧2k29分J98化=8/氧m2法=部0化-o63l法k分5CCJ.HH7/氧mk44CCJo++H化H/强lm14H4/法o++22外OOl1H强2/热22供OO催外高平2化热温P供催剂衡高a化,r温热,技tCH剂iO,a2C技术/lCOC+o术OCO3+成xHO+易成2i2dH3熟+调熟Ha22t2H,节,iHHoH2Hn2.22需/29/CH98CH=8纯O222=9O098=-氧=863=2k35=0J.-73/63mkk5JJo.7//lmmkJoo/llm强热ol外平强热供衡外平热,供H衡 -35.7kJ/mol 热平衡,H2/CO易调节.需纯氧
.鲁奇炉结构示意图
1.煤箱 2.分布器 3.水夹套 4.灰箱 5.洗涤器
特点:
气化剂:水蒸汽和氧气的 混合物
燃料层分层:与间歇法 大致相同
合成气的生产过程
合成气的生产过程1. 简介合成气是由一氧化碳和氢气组成的气体混合物,通常用作能源源和化工原料。
它可以通过多种不同的方法来生产,本文将介绍合成气的主要生产过程。
2. 生产方法2.1 煤气化法煤气化法是最常见和传统的合成气生产方法之一。
该方法将煤炭与氧气和水蒸气在高温下反应,产生一氧化碳和氢气。
具体的步骤如下: 1. 原料准备:将煤炭破碎成适当的大小并干燥。
2. 煤气化反应:将干燥的煤炭与预热的氧气和水蒸气一起送入煤气化炉中,在高温下反应生成合成气。
3. 硫化物的处理:通过添加适当的催化剂或吸收剂,去除合成气产生过程中的硫化物。
4. 分离和净化:将产生的合成气进行分离和净化,去除杂质和不需要的组分。
2.2 水蒸气重整法水蒸气重整法是另一种常用的合成气生产方法。
该方法主要用于天然气和液化石油气等碳氢化合物的转化。
具体的步骤如下: 1. 原料准备:准备天然气或液化石油气作为原料。
2. 蒸汽重整反应:将天然气或液化石油气与水蒸气以适当的比例混合,通过蒸汽重整催化剂在高温下反应,生成一氧化碳和氢气。
3. 硫化物的处理:与煤气化法相同,通过添加适当的催化剂或吸收剂,去除合成气产生过程中的硫化物。
4. 分离和净化:将产生的合成气进行分离和净化,去除杂质和不需要的组分。
2.3 部分氧化法部分氧化法是一种将重油、煤焦油和煤等碳质燃料直接部分氧化而制取合成气的方法。
具体的步骤如下: 1. 原料准备:准备重油、煤焦油或煤作为碳质燃料。
2. 燃烧反应:将碳质燃料与氧气在合适的反应条件下进行部分燃烧,生成一氧化碳和氢气。
3. 硫化物的处理:与前两种方法一样,通过添加适当的催化剂或吸收剂,去除合成气产生过程中的硫化物。
4. 分离和净化:将产生的合成气进行分离和净化,去除杂质和不需要的组分。
3. 应用领域合成气作为一种重要的能源源和化工原料,被广泛应用于以下领域: - 化工工业:合成气可用于制造合成油、合成烯烃、合成醇、氨和甲醇等化学品。
第五章 合成气的生成方法
第五章合成气的生成方法5.1概述一概述合成气,是以氢气、一氧化碳为主要组分供化学合成用的一种原料气。
由含碳矿物质如煤、石油、天然气以及焦炉煤气、炼厂气等转化而得。
按合成气的不同来源、组成和用途,它们也可称为煤气、合成氨原料气、甲醇合成气(见甲醇)等。
合成气的原料范围极广,生产方法甚多,用途不一,组成(体积%)有很大差别:H2 32~67、CO 10~57、CO22~28、CH4 0.1~14、N2 0.6~23。
制造合成气的原料含有不同的H/C摩尔比:对煤来说约为1:1;石脑油约为2.4:1;天然气最高,为4:1。
由这些原料所制得的合成气,其组成比例也各不相同,通常不能直接满足合成产品的需要。
例如:作为合成氨的原料气,要求H2/N2=3,需将空气中的氮引入合成气中(见合成氨原料气);生产甲醇的合成气要求H2/CO≈2或(H2-CO2)/(CO+CO2)≈2;用羰基合成法生产醇类时,则要求H2/CO≈1;生产甲酸、草酸、醋酸和光气等则仅需要一氧化碳。
为此,在合成气制得后,尚需调整其组成,调整的主要方法是利用水煤气反应(变换反应):CO+H2O=CO2+H2。
以降低一氧化碳,提高氢气的含量。
二历史沿革合成气的生产和应用在化学工业中具有极为重要的地位。
早在1913年已开始从合成气生产氨,现在氨已成为最大吨位的化工产品。
从合成气生产的甲醇,也是一个重要的大吨位有机化工产品。
1939年,德国开发的乙炔氢羧化工艺曾是生产丙烯酸及其酯的重要方法。
第二次世界大战期间,德国和日本曾建立了十多座以煤为原料用费托合成从合成气生产液体燃料(见煤间接液化)的工厂,战后由于有廉价的原油,这些厂先后关闭。
1945年,德国鲁尔化学公司用羰基合成(即氢甲酰化)法生产高级脂肪醛和醇开发成功,此项工艺技术发展很快。
60年代,在传统费托合成的基础上,南非开发了SASOL工艺,生产液体燃料并联产乙烯等化工产品,以适应当地的特殊情况。
1960年,联邦德国巴登苯胺纯碱公司的甲醇羰基化生产醋酸工艺工业化;1970年,美国孟山都公司对此法作了重大改进,使之成为生产醋酸的主要方法,进而带动了有关领域的许多研究。
天然气制备合成气 催化部分氧化法 工艺流程
天然气制备合成气催化部分氧化法工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!《天然气制备合成气催化部分氧化法工艺流程》1. 引言合成气是一种重要的化工原料,通常由一氧化碳和氢气组成,可用于合成甲醇、氨和其他有机化合物。
合成气的生产过程
优质、清洁、环境友好的能源。
5.3.1 天然气制合成气的工艺技术及其进展
天然气制合成气的方法:蒸汽转化法 部分氧化法
产 品 甲醇 乙烯 乙醛 乙二醇
合成气合成有机物所需的H2/CO(mol)
反 应 式 CO+2H2=CH3OH H2/CO 2/1 2/1 3/2 3/2
2CO+4H2=C2H4+2H2O 2CO+3H2=CH3CHO+H2O 2CO+3H2=HOCH2CH2OH
以重油或渣油为原料的生产方法
合成气的生产方法
(1)以煤为原料的生产方法 高温条件下,以水蒸气和氧气为气化剂;
C H 2 O CO H 2
特点:H2/CO比值较低,适于合成有机化合物 (煤化工)
(2)以天然气为原料的生产方法
水蒸气转化法 Steam reforming
CH 4 H 2O CO 3H 2 H (298K ) 206kJ / mol
As、Cu、Pb会引起催化剂永久失活(As≯ 1μ l/m3) 卤素引起催化剂因烧结而永久失活 中毒 ( Cl≯ 5μl/m3 常出现在水蒸汽中) 硫化物通过吸附引起催化剂暂时性中毒 (xNi+H2S NixS+H2 ≯ 0.5μl/m3 0.1ml/m3长期 )
失活判断标准: ① 出口气体中甲烷含量升高; ② 出现“红管”现象(Q吸<Q供); ③ 出口处平衡温距增大。
副反应 (析碳)
2CO C CO2
CO H 2 C H 2O
炭黑覆盖在催化剂表面,堵塞微孔,降 低催化剂活性。 影响传热,使局部反应区产生过热而缩
析 炭 危 害
短反应管使用寿命。
合成气的生产过程
合成气的生产过程合成气(Synthesis gas,简称syngas)是一种含有一氧化碳和氢气的混合气体,可用于许多重要的工业过程,如制氢、化学合成和能源生产。
合成气的主要生产过程有煤气化、蒸汽重整和部分氧化三种方法。
以下是对这三种方法的详细介绍。
1.煤气化:煤气化是通过将固体煤转化为可燃气体的过程,它是合成气生产中最常用的方法。
煤气化过程分为两个阶段:干煤气化和水煤气化。
首先,干煤气化是将煤在高温条件下与空气或氧气反应产生一氧化碳和氢气。
煤被加热至高温(约700-1400℃)并通过供气管注入少量的氧气或空气,从而引发煤的部分燃烧和热裂解。
在这个过程中,煤中的可燃物质将转化为一氧化碳和氢气,同时产生煤气化渣滓。
然后,水煤气化是在干煤气化的基础上继续进行的。
煤气化渣滓与水蒸气反应生成CO和H2、在水煤气化中,煤中的碳氢化合物与水蒸气反应生成更多的一氧化碳和氢气。
该反应通常在较低的温度(约200-350℃)和较高的压力(约20-50个大气压)下进行。
整个煤气化过程产生的合成气可以根据不同用途进一步处理,例如通过净化去除杂质,或进行酸碱平衡调整以满足特定的化学反应要求。
2.蒸汽重整:蒸汽重整是一种将天然气、石油或重质烃类转化为合成气的方法。
这种方法经常用于制备合成氨、合成甲醇和合成烃等化学品。
首先,通过部分燃烧天然气或石油产生的混合燃料与空气混合并通过催化剂床,使其部分氧化。
在这个过程中,产生一氧化碳和氢气。
然后,将得到的混合气体与过量的水蒸气反应,通过蒸汽重整反应产生更多的一氧化碳和氢气。
该反应在高温(700–1100℃)和中等压力(10-30个大气压)条件下进行。
最后,合成气经过净化、升压和其他处理,以满足特定的产品要求。
3.部分氧化:部分氧化是通过将碳氢化合物(如天然气、石油或液化石油气)与氧气反应产生合成气的一种方法。
这种方法通常用于合成气和液体燃料的生产。
首先,将碳氢化合物与过量的氧气在高温(约1300–1500℃)和高压(20-30个大气压)条件下反应。
合成气的生产过程
合成气的生产过程由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等吸附由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等伊犁煤田伊犁煤田位于我国新疆维吾尔自治区伊犁哈萨克自治州。
伊犁州西北部与哈萨克斯坦接壤,是我国向西开放的重要门户,设有国际口岸——霍尔果斯口岸,是新欧亚大陆桥和中哈石油管道进入中国的第一站,在我国经济建设和边防安全方面均具有战略位置。
伊犁煤田位于伊犁州伊犁河谷。
它是中国西部面积最大、景色最美、资源最丰富的绿洲。
这里气候湿润,水源充足,草原辽阔,沃野千里,素有塞外江南之称。
由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等2007年3月新矿集团伊犁煤液化基地规划:煤炭5500万吨/年,转化油品1050万吨/年,转化甲醇360万吨/年(转化烯烃120万吨/年)。
其中,伊北生产煤炭2000万吨/年,采用直接液化工艺,转化油品450万吨/年;伊南生产煤炭3500万吨/年,采用间接液化工艺,转化油品600万吨/年,转化甲醇360万吨/年(转化烯烃120万吨/年)。
由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等伊北直接液化工艺分为两步:一期50万吨/年直接液化示范装置,将采用在NEDOL基础上改进的工艺和我国自主知识产权的“863”催化剂;二、三期将采用在一期基础上集成创新的新液化工艺和针对伊北煤自主研发的催化剂。
一期工程工艺特点:反应条件温和,产油率较高,放大风险小。
由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等工艺流程包括:①煤炭预处理(煤浆制备)单元②液化单元③蒸馏(分离)单元由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等直接液化工艺:氢气尾气煤煤浆制催化剂备单元液化单元分离单元水液化油残渣溶剂由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等煤制烯烃工艺:水煤气化甲醇MTO技术乙烯和丙烯LPG等液体燃料由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等伊南煤间接液化工艺图:燃料气煤气化净化精制F.T合成汽油柴油化工产品由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等第5章5.15.25.35.45.55.6概述由煤制合成气由天然气制合成气由渣油制合成气一氧化碳变换过程气体中硫化物和二氧化碳的脱除由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等5.1概述合成气:CO和H2(H2/CO=1/2~1/3)原料:①煤②天然气③石油馏分④农林废料⑤城市垃圾等由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等5.1.1间隙方式一、以煤为原料连续气化剂:水蒸气和氧气由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等二、以天然气为原料方法:√转化法和部分氧化法用途:1、合成氨和氢气(H2/CO=3)2、甲醇、醋酸、乙烯、乙二醇等由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等三、以重油或渣油为原料方法:部分氧化法三种方法比较:天然气成本最低重油或渣油可以使石油资源充分利用由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等5.1.2合成气的应用实例一、工业化的主要产品1、合成氨2、合成甲醇3、合成醋酸4、烯烃的氢甲酰化5、合成天然气、汽油和柴油由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等二、合成气应用新途径1、直接合成乙烯等低碳烯烃2、合成气经甲醇再转化为烃类(未工业化)3、甲醇同系化制乙烯4、合成低碳醇5、合成乙二醇(研究开发阶段)6、合成气与烯烃衍生物羰基化产物(做了大量研究)由煤、天然气、渣油制合成气,一氧化碳的变换,脱硫等5.2由煤制合成气5.2.1煤气化过程工艺原理5.2.1.1基本反应155~156页自学。
合成气的主要成分
合成气的主要成分一、引言合成气是一种重要的工业原料,广泛应用于化工、冶金、能源等领域。
其主要成分包括一氧化碳、氢气和少量的二氧化碳、甲烷等。
本文将从合成气的定义、制备方法以及主要成分等方面进行详细介绍。
二、合成气的定义合成气是由一氧化碳和氢气组成的混合物,通常以CO/H2比例表示。
它可以通过多种途径制备,如煤炭或天然气的部分氧化、水蒸汽重整或生物质的热解等。
三、制备方法1. 煤炭或天然气部分氧化法:该方法将煤炭或天然气在高温下与空气或纯氧反应,产生一定比例的CO和H2。
这种方法具有简单易行、适用范围广等优点。
2. 水蒸汽重整法:该方法将天然气或液化石油气与水蒸汽在催化剂存在下反应,生成CO和H2。
这种方法具有高效节能、环保无污染等优点。
3. 生物质热解法:该方法利用生物质材料在高温下分解,产生CO和H2等气体。
这种方法具有资源丰富、环保可持续等优点。
四、主要成分1. 一氧化碳:合成气的主要成分之一,其化学式为CO。
它是一种无色、无味、有毒的气体,在工业生产中广泛应用于合成化学品和燃料制备等领域。
2. 氢气:合成气的主要成分之二,其化学式为H2。
它是一种无色、无味、易燃的气体,在工业生产中被广泛应用于制备氨、加氢裂化等反应。
3. 二氧化碳:合成气中含量较少,其化学式为CO2。
它是一种无色、无味的气体,在工业生产中被广泛应用于饮料制造、石油开采等领域。
4. 甲烷:合成气中含量较少,其化学式为CH4。
它是一种无色、无味、易燃的气体,在工业生产中被广泛应用于天然气加工和燃料制备等领域。
五、应用领域合成气作为一种重要的工业原料,广泛应用于化工、冶金、能源等领域。
其中,化工领域主要用于制备氨、甲醇、乙烯等化学品;冶金领域主要用于铁合金和铸造等生产过程中的还原剂;能源领域主要用于燃料电池和合成液体燃料等方面。
六、结论综上所述,合成气是由一氧化碳和氢气组成的混合物,其主要成分包括一氧化碳、氢气和少量的二氧化碳、甲烷等。
合成气生产工艺
合成气生产工艺探索合成气生产工艺的深度解析合成气,也被称为煤气或合成燃料气体,是一种主要由一氧化碳和氢气组成的混合气体,是化工生产中的重要原料。
其生产工艺的科学性和高效性直接影响到工业生产的经济效益和环境影响。
本文将深入探讨合成气的生产工艺,从基本原理、主要方法到其在实际应用中的挑战与前景。
首先,合成气的生成主要基于两种基础反应:水煤气变换反应和部分氧化反应。
水煤气变换反应是通过高温下将水蒸气与煤或天然气反应,产生一氧化碳和氢气;部分氧化反应则是将烃类燃料与氧气在一定比例下反应,生成含有一定比例的一氧化碳和氢气的混合气体。
这两种反应在不同条件下,可以灵活调整合成气的组成,以满足不同的化工生产需求。
接下来,我们关注合成气生产工艺的主要方法。
其中,蒸汽重整法是最常见的一种,它广泛应用于石油炼制和化工行业中。
这种方法通过将天然气或石油产品与过量的水蒸气在高温高压下反应,得到的合成气主要用于生产氨、甲醇等化工产品。
另外,部分氧化法和自热重整法也是重要的合成气生产方式,它们在能源转化和环保领域有广泛应用。
然而,合成气生产工艺并非没有挑战。
首要问题便是能源效率和环保。
在生产过程中,需要大量的热能,如何提高热效率并减少碳排放是当前科研的重点。
此外,催化剂的选择和使用寿命也是关键,好的催化剂可以提高反应速率,降低能耗,但催化剂的稳定性、选择性和再生性都需要不断优化。
再者,安全问题也不容忽视,如高温高压环境下的设备安全、有害气体的处理等。
在实际应用中,合成气被广泛用于生产各种化学品,如氨、甲醇、醋酸、甲醛等,同时也是燃料电池的重要燃料。
随着科技的进步,合成气的应用领域正在不断扩大,例如在生物燃料、氢能源以及新型材料的制造中都有其身影。
未来,随着对清洁能源需求的增加,合成气作为氢能的重要来源,其生产技术将更加受到重视。
总的来说,合成气生产工艺是一个复杂而重要的过程,涉及到化学反应工程、热力学、催化剂科学等多个领域。
co2制合成气 综述
co2制合成气综述CO2制合成气是一种利用二氧化碳(CO2)作为原料制备合成气(Syngas)的技术。
合成气是一种重要的化工原料,它可以通过进一步加工制备燃料、化学品和材料。
CO2制合成气技术具有重要的环境和经济意义,可以实现CO2的资源化利用和减缓温室气体排放。
在过去的几十年中,全球温室气体排放和气候变化问题日益突出,因此CO2的资源化利用成为了研究的热点。
CO2制合成气技术依靠催化剂将CO2与水蒸气一起加热,通过一系列反应转化为一氧化碳(CO)和氢气(H2)。
这种技术不仅可以减少二氧化碳的排放,还可以将CO2转化为有价值的化学品,实现碳循环经济。
CO2制合成气的过程可以分为两个主要步骤:反应器和催化剂选择。
反应器的选择是关键,常见的反应器包括固定床反应器、流化床反应器和微反应器。
固定床反应器具有结构简单、操作稳定的优点,但在高温和高压下容易堵塞。
流化床反应器具有良好的传热和传质性能,但对催化剂的选择要求较高。
微反应器由于其小尺寸和高表面积,能够提高反应速率和选择性。
催化剂的选择也是影响CO2制合成气效果的重要因素,常见的催化剂包括金属氧化物、过渡金属和有机催化剂。
研究表明,催化剂的种类和反应条件对CO2制合成气的效果有重要影响。
金属氧化物催化剂具有较高的反应活性和稳定性,但选择合适的金属氧化物催化剂是一个挑战。
过渡金属催化剂具有较高的选择性,但对反应条件的要求较高。
有机催化剂由于其结构多样性和可调性,在CO2制合成气中也得到了广泛的研究和应用。
除了反应器和催化剂的选择,反应条件也是影响CO2制合成气效果的重要因素。
反应温度、压力和水蒸气与CO2的摩尔比对反应效果有重要影响。
通常情况下,较高的反应温度和压力可以提高CO2的转化率和选择性,但也会增加能源消耗和设备成本。
适当的水蒸气与CO2的摩尔比可以调控CO和H2的比例,对进一步利用合成气具有重要意义。
近年来,CO2制合成气技术取得了一系列的研究进展。
合成气的制备方法
合成气的制备方法(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二甲醚原料----合成气合成气的主要组分为CO和H2,可作为化学工业的基础原料,亦可作为制氢气和发电的原料。
经过多年的发展,目前以天然气、煤为原料的合成气制备工艺已很成熟,以合成气为原料的合成氨、含氧化物、烃类及碳一化工生产技术均已投入商业运行。
清洁高效的煤气化联合循环发电系统的成功开发,进一步促进了合成气制备技术的发展。
合成气的用途广泛,廉价、清洁的合成气制备过程是实现绿色化工、合成液体燃料和优质冶金产品的基础。
1合成气的制备工艺根据所用原料和设备的不同,合成气制备工艺可以分为不同的类型,目前大多数合成气制备工艺是以处理天然气和煤这2种原料的工艺为基础发展起来的。
以天然气为原料的合成气制备工艺以天然气为原料制备合成气是一个复杂的反应过程,其主要的反应包括天然气的蒸汽转化反应(1)、部分氧化反应(2)、完全燃烧反应(3)、一氧化碳变换反应(4)和甲烷与二氧化碳重整反应(5)。
CH4+H2O CO+3H2 +206 kJ/mol (1)CH4+0·5O2 CO+2H2 -36 kJ/mol (2)CH4+2O2 CO2+2H2O -802 kJ/mol (3)CO+H2O CO2+H2 -41 kJ/mol (4)CH4+CO2 2CO+2H2 +247 kJ/mol (5)这几个主要反应的不同组合、不同的实施方式和生产装置,形成了天然气转化制备合成气的多种工艺。
从工艺特征上来讲,目前成熟的天然气转化制备合成气的工艺可分为管式炉蒸汽转化法、部分氧化法和两者的组合方法等三大类。
甲烷蒸汽转化甲烷蒸汽转化的代表反应式为(1)。
工业上使用以Ni为活性组分,载体可用硅铝酸钙、铝酸钙以及难熔的耐火氧化物为催化剂,生成的合成气中H2/CO体积比约为3:0,适合于制备合成氨和氢气为主产品的工艺。
合成气变换
合成气变换合成气变换简单的说,它是指将某种气体(如天然气、液化石油气、人工煤气等)与另一种气体混合在一起,再进行变换处理。
而这两种气体的差别在于前者经过净化可直接作为燃料使用,后者则需经加压液化或冷却液化处理。
在日常生活中,这类应用比较多,家庭常用到的就是天然气和液化石油气。
那么今天我们学习一下他们之间是怎样合成的。
我从合成气变化的原理得知了合成气有四个步骤:第一步是把天然气提纯;第二步是向罐内加入液化石油气(由天然气和一定比例的其他化合物组成的),并迅速盖上罐盖;第三步是排出残余的液化石油气;第四步是自然冷却或置换。
首先,开始做第一步,我准备了一瓶天然气和几个干净的玻璃瓶。
天然气被吸收管抽吸到一个洗脸盆大小的罐子里,然后通过重力的作用下慢慢地沉入装有液化石油气的瓶子里,此时罐底会冒出一些气泡,用透明胶带把三只瓶子密封起来,防止漏气。
第二步是向罐内加入液化石油气,用打火机点着火焰,仔细观察冒出来的气体。
突然,火焰一下子窜起来了,而且颜色变成蓝白色的火焰,真好看!我感叹道:“燃烧真快呀!”这时候也就是最重要的一步——净化气体。
然后,让罐子放在火上烤,当听到“啪”的一声响时,就是证明完成了第三步。
其实第三步就是对罐子的一个加热过程,让罐内的空气受热膨胀,然后用手挤压三只瓶子,就能顺利完成了第三步,这时候你就能闻到淡淡的液化石油气的味道。
最后,在向容器中注入自来水,然后把口密封住,一个“合成气”就产生了。
原理1:液化石油气的燃点在200 ℃至220 ℃左右,若在空气中不与氧气充分混合燃烧,会散发大量有害物质,污染环境。
现在,采用的方法是改进提高钢瓶的技术参数,尽量缩短液化石油气在空气中的停留时间,让更多的石油气与空气混合,提高它的着火能力,减少有害气体的散发。
原理2:天然气含有甲烷、丙烷、丁烷、戊烷、奥等烃类,这些烃类中除了乙烷和丙烷外都易燃烧。
其中乙烷、丙烷在空气中极易与氧气混合而发生爆炸,因此在运输、储存和使用时都必须严格防止泄漏,否则将造成巨大的灾难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章合成气的生产过程5.1 概述合成气是指一氧化碳和氢气的混和气,英文缩写是Syngas。
其H2/ CO(摩尔比)由1/2到3/1。
合成气在化学工业中有着重要作用。
5.1.1 合成气的生产方法(1) 以煤为原料的生产方法:有间歇和连续两种操作方式。
煤制合成气中H2/ CO比值较低,适于合成有机化合物。
(2) 以天然气为原料的生产方法:主要有转化法和部分氧化法。
目前工业上多采用水蒸气转化法(steam reforming),该法制得的合成气中H2/ CO比值理论上是3,有利于用来制造合成氨或氢气。
(3) 以重油或渣油为原料的生产方法:主要采用部分氧化法(partial oxidation)。
5.1.2.1 工业化的主要产品(1) 合成氨(2) 合成甲醇(3) 合成醋酸(4) 烯烃的氢甲酰化产品(5) 合成天然气、汽油和柴油5.1.2.2 合成气应用新途径(1) 直接合成乙烯等低碳烯烃(2) 合成气经甲醇再转化为烃类(3) 甲醇同系化制乙烯(4) 合成低碳醇(5)合成乙二醇(6)合成气与烯烃衍生物羰基化产物5.2 由煤制合成气以煤或焦炭为原料,以氧气(空气、富氧或纯氧)、水蒸气等为气化剂,在高温条件下通过化学反应把煤或焦炭中的可燃部分转化为气体的过程,其有效成分包括一氧化碳、氢气和甲烷等。
5.2.1.1煤气化的基本反应煤气化过程的主要反应有:这些反应中,碳与水蒸气反应的意义最大,此反应为强吸热过程。
碳与二氧化碳的还原反应也是重要的气化反应。
气化生成的混合气称为水煤气。
总过程为强吸热的。
提高反应温度对煤气化有利,但不利于甲烷的生成。
当温度高于900℃时,CH4和CO2的平衡浓度接近于零。
低压有利于CO和H2生成,反之,增大压力有利于CH4生成。
5.2.1.2 煤气化的反应条件(1) 温度一般操作温度在1100℃以上。
(2) 压力一般为2.5~3.2MPa。
(3) 水蒸气和氧气的比例H2O/O2比值要视采用的煤气化生产方法来定。
5.2.2 煤气化的生产方法及主要设备气化过程按操作方式来分,有间歇式和连续式。
目前最通用的分类方法是按反应器分类,分为固定床(移动床)、流化床、气流床和熔融床。
至今熔融床还处于中试阶段,而固定床(移动床)、流化床和气流床是工业化或建立示范装置的方法。
5.2.2.1 固定床间歇式气化制水煤气法5.2.2.2 固定床连续式气化制水煤气法此法由德国鲁奇公司开发。
目前鲁奇炉已发展到MarkV型,炉径5m,每台炉煤气(标准状态)的生产能力达100000m3/h。
鲁奇法制的水煤气中甲烷和二氧化碳含量较高,而一氧化碳含量较低,在C1化工中的应用受到一定限制,适合于做城市煤气。
5.2.2.3 流化床连续式气化制水煤气法发展流化床气化法是为了提高单炉的生产能力和适应采煤技术的发展,直接使用小颗粒碎煤为原料,并可利用褐煤等高灰分煤。
它又称为沸腾床气化,把气化剂送入气化炉内,使煤颗粒呈沸腾状态进行气化反应。
温克勒(Winkler)煤气化方法采用流化床技术。
5.2.2.4 气流床连续式气化制水煤气法较早的气流床法是K-T法,由德国Koppers公司的Totzek工程师开发成功,是一种在常压、高温下以水蒸气和氧气与粉煤反应的气化法。
气化设备为K-T炉。
第二代气流床是德士古法,由美国Texaco公司于20世纪80年代初开发成功。
5.3 由天然气制造合成气5.3.1 天然气制合成气的工艺技术及其进展现在暂且不考虑副反应来讨论主反应的化学平衡。
三个主反应中只有其中两个是独立的,通常认为第一个和第三个是独立反应。
反应达平衡时,产物含量达到最大值,而反应物含量达最小值。
列出这两个独立反应的化学平衡常数式再加上物料衡算式,联立求解此方程,就可以计算出平衡组成(一般用摩尔分数表示)。
5.3.2.1 甲烷水蒸汽转化反应和化学平衡根据物料衡算可计算出反应后各组分的组成和分压,若反应达平衡,该表中各项则代表各对应的平衡值,可将有关组分的分压代入甲烷水蒸气转化制合成气反应的Kp1和CO变换反应的Kp2的公式,整理后得到根据反应温度查出或求出Kp1和Kp2,再将总压和气体的初始组成代入以上两式,解出n x和n y,那么,平衡组成和平衡分压即可求出。
平衡组成是反应达到的极限,实际反应距平衡总是有一定距离的,通过对一定条件下实际组成与平衡组成的比较,可以判断反应速率快慢或催化剂活性的高低。
在相同反应时间内,催化剂活性越高,实际组成越接近平衡组成。
平衡组成与温度、压力及初始组成有关,图5-7显示了CH4、CO、及CO2的平衡组成与温度、压力及水碳比(H2O/CH4摩尔比)的关系,H2的平衡组成可根据组成约束关系式(∑yi=1)求出。
下面分析在什么情况下会有碳析出,如何避免或尽量减少析碳的可能性。
三个析碳反应也是可逆的,它们的平衡常数式分别为:以上三式中各组分的分压均为体系在某指定状态时的实际分压,而非平衡分压。
可由温度、压力查出Kp,再根据指定组成和总压计算Jp,最后由Jp/ Kp是否小于1来判断该状态下有否析碳发生。
当Jp/ Kp<1时,⊿G<0,反应自发向右进行,会析碳;当Jp/ Kp=1时,⊿G=0,反应达平衡,是热力学析碳的边界;当Jp/ Kp>1时,⊿G>0,反应不能自发进行,体系不析碳。
甲烷水蒸气转化体系中,水蒸汽是一个重要组分,由各析碳反应生成的碳与水蒸汽之间存在的平衡,通过热力学计算,可求得开始析碳时所对应的H2O/CH4摩尔比,称为热力学最小水碳比。
不同温度、压力下有不同的热力学最小水碳比。
综上所述,影响甲烷水蒸气转化反应平衡的主要因素有温度、水碳比和压力。
(1) 温度的影响甲烷与水蒸气反应生成CO和H2是吸热的可逆反应,高温对平衡有利,即H2及CO的平衡产率高,CH4平衡含量低。
高温对一氧化碳变换反应的平衡不利,可以少生成二氧化碳,而且高温也会抑制一氧化碳岐化和还原析碳的副反应。
但是,温度过高,会有利于甲烷裂解,当高于700℃时,甲烷均相裂解速率很快,会大量析出碳,并沉积在催化剂和器壁上。
(2) 水碳比的影响水碳比对于甲烷转化影响重大,高的水碳比有利于甲烷的蒸汽重整反应,同时,高水碳比也有利于抑制析碳副反应。
(3) 压力的影响甲烷蒸气转化反应是体积增大的反应,低压有利平衡,低压也可抑制一氧化碳的两个析碳反应,但是低压对甲烷裂解析碳反应平衡有利,适当加压可抑制甲烷裂解。
压力对一氧化碳变换反应平衡无影响。
总之,从反应平衡考虑,甲烷水蒸气转化过程应该用适当的高温、稍低的压力和高水碳比。
5.3.2.2 甲烷水蒸气转化催化剂(1)转化催化剂的组成和外形工业上一直采用镍催化剂,并添加一些助催化剂,如铝、镁、钾、钙、钛、镧、鈰等金属氧化物。
催化剂应该具有较大的镍表面。
提高镍表面的最有效的方法是采用大比表面的载体,为了抑制烃类在催化剂表面酸性中心上裂解析碳,往往在载体中添加碱性物质中和表面酸性。
目前,工业上采用的转化催化剂有两大类,一类是以高温烧结的α-Al2O3或MgAl2O4尖晶石为载体,用浸渍法将含有镍盐和促进剂的溶液负载到预先成型的载体上,再加热分解和煅烧,称之为负载型催化剂,镍在整个催化剂颗粒中的含量可以很低,一般为10%~15%(按NiO计);另一类转化催化剂以硅铝酸钙水泥作为粘接剂,与用沉淀法制得的活性组分细晶混合均匀,成型后用水蒸气养护,使水泥固化而成,称之为粘结剂催化剂,镍的含量高些,一般为20%~30%(按NiO计)。
(2)转化催化剂的使用和失活转化催化剂在使用前是氧化态,装入反应器后应先进行严格的还原操作,使氧化镍还原成金属镍才有活性。
还原气可以是氢气、甲烷或一氧化碳。
转化催化剂在使用中出现活性下降现象的原因主要有老化、中毒、积碳等。
催化剂在长期使用过程中,由于经受高温和气流作用,镍晶粒逐渐长大、聚集甚至烧结,致使表面积降低,或某些促进剂流失,导致活性下降,此现象称为老化。
许多物质,例如硫、砷、氯、溴、铅、钒、铜等的化合物,都是转化催化剂的毒物。
最重要、最常见的毒物是硫化物,上述反应是可逆的,称为暂时性中毒,可以再生。
砷中毒和卤素中毒是不可逆的,会使镍催化剂烧结而造成永久性失活。
析炭危害:(1)炭黑覆盖在催化剂表面,堵塞微孔,降低催化剂活性,使甲烷转化率下降而使出口气中残余甲烷增多。
(2)影响传热,使局部反应区产生过热而缩短反应管使用寿命。
(3)使催化剂破碎而增大床层阻力,影响生产能力。
生产中,催化剂活性显著下降可由三个现象来判断:其一是反应器出口气中甲烷含量升高;其二是出口处平衡温距增大。
平衡温距为出口实际温度与出口气体实际组成对应的平衡温度之差。
催化剂活性下降时,出口甲烷含量升高,一氧化碳和氢含量降低,此组成对应的平衡常数减小,故平衡温度降低,平衡温距增大。
催化剂活性越低,平衡温距则越大;其三是出现“红管”现象。
因为反应是吸热的,活性降低则吸热减少,而管外供热未变,多余热量将管壁烧得通红。
5.3.2.3 甲烷水蒸气转化反应动力学由以上方程可知,对于一定的催化剂而言,影响反应速率的主要因素有温度、压力和组成。
(1) 温度的影响温度升高,反应速率常数k增大,反应速率亦增大;在上式中还有一项Kp1也与温度有关,因甲烷蒸汽转化是要吸热的,平衡常数随温度的升高而增大,结果反应速率也是增大的。
(2) 压力的影响总压增高,会使各组分的分压也增高,对反应初期的速率提高很有利。
此外加压尚可使反应体积减小。
(3) 组分的影响原料的组成由水碳比决定,H2O/CH4过高时,虽然水蒸气分压高,但甲烷分压过低,反应速率不一定高;反之,H2O/CH4过低时,反应速率也不会高。
所以水碳比要适当。
在反应初期,反应物CH4和H2O的浓度高,反应速率高。
到反应后期,反应物浓度下降,产物浓度增高,反应速率降低,需要提高温度来补偿。
5.3.3 天然气蒸气转化过程的工艺条件(1)压力从热力学特征看,低压有利转化反应。
从动力学看,在反应初期,增加系统压力,相当于增加了反应物分压,反应速率加快。
但到反应后期,反应接近平衡,反应物浓度高,加压反而会降低反应速率,所以从化学角度看,压力不宜过高。
但从工程角度考虑,适当提高压力对传热有利,因为①节省动力消耗②提高传热效率③提高过热蒸汽的余热利用价值。
综上所述,甲烷水蒸气转化过程一般是加压的,大约3MPa左右。
(2)温度从热力学角度看,高温下甲烷平衡浓度低,从动力学看,高温使反应速率加快,所以出口残余甲烷含量低。
因加压对平衡的不利影响,更要提高温度来弥补。
但高温下,反应管的材质经受不了,需要将转化过程分为两段进行。
第一段转化800℃左右,出口残余甲烷10%(干基)左右。
第二段转化反应器温度1000℃,出口甲烷降至0.3%。