爆炸极限计算
常见气体的爆炸极限及爆炸极限计算公式
爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)
此定律一直被证明是有效的。
2.2 理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)
式中Lm——混合气体爆炸极限,%;
L1、L2、L3——混合气体中各组分的爆炸极限,%;
V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369。
常见气体的爆炸极限及爆炸极限计算公式
可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)?(V%)
?此定律一直被证明是有效的。
2.2?理·查特里公式
????理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/
(V1/L1+V2/L2+……+Vn/Ln)
????式中Lm——混合气体爆炸极限,%;
????L1、L2、L3——混合气体中各组分的爆炸极限,%;
????V1、V2、V3——各组分在混合气体中的体积分数,%。
????例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L 下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
爆炸极限的计算方法-1
爆炸极限的计算方法1 根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0式中0.55——常数;c0——爆炸气体完全燃烧时化学理论体积分数。
若空气中氧体积分数按20.9%计,c0可用下式确定c0=20.9/(0.209+n0)式中n0——可燃气体完全燃烧时所需氧分子数。
如甲烷燃烧时,其反应式为CH4+2O2→CO2+2H2O此时n0=2则L下=0.55×20.9/(0.209+2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。
2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:2.1 莱•夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱•夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)此定律一直被证明是有效的。
2.2 理•查特里公式理•查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.3693 可燃粉尘许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。
爆炸极限计算
爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下: (1)爆炸反应当量浓度。
爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。
实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。
可燃气体或蒸气分子式一般用C αH βO γ表示,设燃烧1mol 气体所必需的氧摩尔数为n ,则燃烧反应式可写成:C αH βO γ+nO 2→生成气体按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示:可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示:也可根据完全燃烧所需的氧原子数2n 的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。
其中。
可燃气体(蒸气)在空气中和氧气中的化学当量浓度(2)爆炸下限和爆炸上限。
各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。
爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影.响,但仍不失去参考价值。
1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。
爆炸下限公式:(体积)爆炸上限公式:(体积)式中 L——可燃性混合物爆炸下限;下L——可燃性混合物爆炸上限;上n——1mol可燃气体完全燃烧所需的氧原子数。
某些有机物爆炸上限和下限估算值与实验值比较如表2:表2 石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。
2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。
计算公式如下:此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10%。
常见气体的爆炸极限及爆炸极限计算公式
爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)
此定律一直被证明是有效的。
2.2 理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已
知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)
式中Lm——混合气体爆炸极限,%;
L1、L2、L3——混合气体中各组分的爆炸极限,%;
V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369。
爆炸极限及危险度计算公式
爆炸极限及危险度计算公式引言。
在现代社会中,爆炸事故往往会给人们的生命财产安全带来巨大的威胁。
因此,对爆炸物质的爆炸极限及危险度进行准确的计算和评估显得尤为重要。
本文将从爆炸极限和危险度两个方面展开讨论,并介绍相关的计算公式和方法。
一、爆炸极限的概念及计算公式。
爆炸极限是指在一定条件下,爆炸物质在混合气体中能够发生爆炸的最低和最高浓度范围。
在这个范围内,爆炸物质与空气的混合物能够发生燃烧或爆炸。
爆炸极限的计算公式一般采用下面的形式:LFL = (100 φ) / (φα)。
UFL = (100 φ) / (φβ)。
其中,LFL表示下限爆炸浓度,UFL表示上限爆炸浓度,φ表示爆炸物质的最小燃烧浓度,α和β分别表示燃烧产物中氧气的最小和最大浓度。
这两个公式是用来计算爆炸物质在混合气体中的最低和最高浓度的,能够帮助我们更好地了解爆炸物质的危险程度。
二、危险度的概念及计算公式。
危险度是指爆炸物质对周围环境和人体造成危害的程度。
在工程实践中,我们常常需要对爆炸物质的危险度进行评估,以便采取相应的安全措施。
危险度的计算公式一般采用下面的形式:H = P × V。
其中,H表示危险度,P表示爆炸物质的爆炸压力,V表示爆炸物质的体积。
这个公式是用来计算爆炸物质的危险度的,能够帮助我们更好地评估爆炸物质的危险程度。
三、爆炸极限及危险度的计算方法。
在实际工程中,我们可以通过实验或者计算的方法来确定爆炸物质的爆炸极限和危险度。
对于爆炸极限,我们可以通过实验来测定爆炸物质在混合气体中的最低和最高浓度,然后利用上面提到的计算公式来计算出具体的数值。
对于危险度,我们可以通过实验来测定爆炸物质的爆炸压力和体积,然后利用上面提到的计算公式来计算出具体的数值。
此外,我们还可以利用一些现成的数据表格或者计算软件来进行爆炸极限及危险度的计算。
这些方法能够帮助我们更快速地获取爆炸物质的相关参数,从而更好地评估其危险程度。
四、结论。
爆炸极限计算
爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下:(1)爆炸反应当量浓度。
爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。
实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。
可燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成:CαHβOγ+nO2→生成气体按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示:可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示:也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。
其中。
可燃气体(蒸气)在空气中和氧气中的化学当量浓度(2)爆炸下限和爆炸上限。
各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。
爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影.响,但仍不失去参考价值。
1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。
爆炸下限公式:(体积)爆炸上限公式:(体积)式中L下——可燃性混合物爆炸下限;L上——可燃性混合物爆炸上限;n——1mol可燃气体完全燃烧所需的氧原子数。
某些有机物爆炸上限和下限估算值与实验值比较如表2:表2石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。
2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。
计算公式如下:此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10%。
例如甲烷爆炸极限的实验值为5%~15%,与计算值非常接近。
常见气体的爆炸极限及爆炸极限计算公式
可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)?(V%)
?此定律一直被证明是有效的。
2.2?理·查特里公式
????理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/
(V1/L1+V2/L2+……+Vn/Ln)
????式中Lm——混合气体爆炸极限,%;
????L1、L2、L3——混合气体中各组分的爆炸极限,%;
????V1、V2、V3——各组分在混合气体中的体积分数,%。
????例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L 下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
爆炸极限的计算
1、爆炸反应当量浓度的计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定可燃物的爆炸下限,公式如下:C =20.9/(0.209+n0)爆炸下限(LEL)=0.55×C爆炸上限(UEL)=4.8(C) ^0.5C——爆炸性气体完全燃烧时的化学计量浓度;0.55——常数;20.9%——空气中氧体积分数;n0——可燃气体完全燃烧时所需氧分子数。
例如:求丙烷的爆炸极限。
丙烷化学反应式:一分子丙烷+五分子氧气→三分子二氧化碳+四分子水丙烷(LEL)=0.55×C=2.21%丙烷(UEL)=4.8(20.9/(0.209+5))^0.5=9.62%2、由分子中所含碳原子数估算爆炸极限爆炸下限(LEL)=1/(0.1347n+0.04343)爆炸上限(UEL)=1/(0.01337n+0.05151)n——分子中所含碳原子数3、两种以上可燃气体组成的混合体系爆炸极限的计算3.1、莱夏特尔定律对于两种以上可燃气体混合体系,已知每种可燃气体的爆炸极限和所占空间体积分数,可根据莱夏特尔定律算出混合体系的爆炸极限。
(爆炸下限)LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(爆炸上限)UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)Pn——每种可燃气在混合物中的体积分数3.2、理查特里公式对于两种以上可燃性混合体系可用理查特里公式,该式适用于各组分间不反应、燃烧时无催化作用的可燃性混合体系。
EL=100/(V1/EL1+V2/EL2+……+Vn/ELn)EL——混合体系爆炸极限;ELn——混合体系中各组分的爆炸极限;Vn——各组分在混合气体中的体积分数。
4、含惰性气体的可燃性混合体系的爆炸极限对于有惰性气体混入的多元可燃性混合体系的爆炸极限,可用以下公式:EL=ELr/(1-D+(ELr×D)/100)EL——含惰性气体的可燃性混合体系的爆炸极限;ELr——可燃性混合体系中部分可燃物的爆炸极限;D——为惰性气体含量。
爆炸极限的计算
爆炸与防爆前言(1)爆炸就是物质的一种非常急剧的物理、化学变化,在变化过程中,伴有物质所含能量的快速转变,即变为该物质本身、变化产物或周围介质的压缩能与运动能。
其重要特征就是大量能量在有限的时间里突然释放或急剧转化,这种能量能在有限的时间与有限的体积内大量积聚造成高温高压等非寻常状态,对邻近介质形成急剧的压力突跃与随后的复杂运动,显示出不寻常的移动或破坏效应。
在石油、化工等行业生产过程中,从原料到成品,使用、产生的易燃易爆物质很多,一旦发生爆炸事故,常会带来非常严重的后果,造成巨大的经济损失与人员伤害,譬如泵房垮塌、油罐爆炸着火、装置报废、人员伤亡。
正因如此,控制爆炸就是石油、化工等行业的重中之重。
要科学有效地控制气体、粉尘爆炸,就不能不对爆炸极限有一个正确的理解。
爆炸极限的定义(2)可燃性气体或蒸气与助燃性气体的均匀混合系在标准测试条件下引起爆炸的浓度极限值,称为爆炸极限。
助燃性气体可以就是空气、氧气或辅助性气体。
一般情况提及的爆炸极限就是指可燃气体或蒸气在空气中的浓度极限,能够引起爆炸的可燃气体的最低含量称为爆炸下限Low Explosion - Level(LEL),最高浓度Upper Explosion - Level称为爆炸上限(UEL)。
影响爆炸极限的因素(3)1 可燃气体1、1 混合系的组分不同,爆炸极限也不同。
1、2 同一混合系,由于初始温度、系统压力、惰性介质含量、混合系存在空间及器壁材质以及点火能量的大小等都能使爆炸极限发生变化。
a、温度影响因为化学反应与温度有很大的关系,所以,爆炸极限数据必定与混合物规定的初始温度有关。
初始温度越高,引起的反应越容易传播。
一般规律就是,混合系原始温度升高,则爆炸极限范围增大即下限降低,上限增高。
但就是,目前,还没有大量的系统实验结果。
因为系统温度升高,分子内能增加,使原来不燃的混合物成为可燃、可爆系统。
初始温度对混合物爆炸极限的影响示例见表1。
常见气体的爆炸极限及爆炸极限计算公式
爆炸极限计算方法:比较认可的计算方法有两种:莱·夏特尔定律????对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)?(V%)?此定律一直被证明是有效的。
2.2?理·查特里公式????理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)????式中Lm——混合气体爆炸极限,%;????L1、L2、L3——混合气体中各组分的爆炸极限,%;????V1、V2、V3——各组分在混合气体中的体积分数,%。
????例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
????Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算:废气风量:19000Nm3/h废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178Nm3/h体积分数=2.178/19000=0.012%甲醛体积分数=25.39Nm3/h体积分数=25.39/19000=0.134%混合气体中可燃气体的总体积分数=0.146%由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)得:混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57%结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!。
常见气体的爆炸极限及爆炸极限计算公式
常见气体的爆炸极限及爆炸极限计算公式
The final revision was on November 23, 2020
爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律?对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)
此定律一直被证明是有效的。
理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极
限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=%)、乙烷15%(L下=%)、丙烷4%(L下=%)、丁烷1%(L下=%)求爆炸下限。
Lm=100/(80/5+15/+4/+1/)=。
爆炸极限的计算
爆炸极限的计算1、爆炸反应当量浓度的计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定可燃物的爆炸下限,公式如下:C =20.9/(0.209+n0)爆炸下限(LEL)=0.55×C爆炸上限(UEL)=4.8(C) ^0.5C——爆炸性气体完全燃烧时的化学计量浓度;0.55——常数;20.9%——空气中氧体积分数;n0——可燃气体完全燃烧时所需氧分子数。
例如:求丙烷的爆炸极限。
丙烷化学反应式:一分子丙烷+五分子氧气→三分子二氧化碳+四分子水丙烷(LEL)=0.55×C=2.21%丙烷(UEL)=4.8(20.9/(0.209+5))^0.5=9.62%2、由分子中所含碳原子数估算爆炸极限爆炸下限(LEL)=1/(0.1347n+0.04343)爆炸上限(UEL)=1/(0.01337n+0.05151)n——分子中所含碳原子数3、两种以上可燃气体组成的混合体系爆炸极限的计算3.1、莱夏特尔定律对于两种以上可燃气体混合体系,已知每种可燃气体的爆炸极限和所占空间体积分数,可根据莱夏特尔定律算出混合体系的爆炸极限。
(爆炸下限)LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(爆炸上限)UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)Pn——每种可燃气在混合物中的体积分数3.2、理查特里公式对于两种以上可燃性混合体系可用理查特里公式,该式适用于各组分间不反应、燃烧时无催化作用的可燃性混合体系。
EL=100/(V1/EL1+V2/EL2+……+Vn/ELn)EL——混合体系爆炸极限;ELn——混合体系中各组分的爆炸极限;Vn——各组分在混合气体中的体积分数。
4、含惰性气体的可燃性混合体系的爆炸极限对于有惰性气体混入的多元可燃性混合体系的爆炸极限,可用以下公式:EL=ELr/(1-D+(ELr×D)/100)EL——含惰性气体的可燃性混合体系的爆炸极限;ELr——可燃性混合体系中部分可燃物的爆炸极限;D——为惰性气体含量。
常见气体的爆炸极限及爆炸极限计算公式
可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)?(V%)
?此定律一直被证明是有效的。
2.2?理·查特里公式
????理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/
(V1/L1+V2/L2+……+Vn/Ln)
????式中Lm——混合气体爆炸极限,%;
????L1、L2、L3——混合气体中各组分的爆炸极限,%;
????V1、V2、V3——各组分在混合气体中的体积分数,%。
????例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L 下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
常见气体的爆炸极限及爆炸极限计算公式
爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限;用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=P1+P2+P3/P1/LEL1+P2/LEL2+P3/LEL3 V%
混合可燃气爆炸上限:
UEL=P1+P2+P3/P1/UEL1+P2/UEL2+P3/UEL3 V%
此定律一直被证明是有效的;
理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之;该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物;Lm=100/V1/L1+V2/L2+……+Vn/Ln
式中Lm——混合气体爆炸极限,%;
L1、L2、L3——混合气体中各组分的爆炸极限,%;
V1、V2、V3——各组分在混合气体中的体积分数,%;
例如:一天然气组成如下:甲烷80%L下=%、乙烷15%L下=%、丙烷4%L 下=%、丁烷1%L下=%求爆炸下限;
Lm=100/80/5+15/+4/+1/=。
爆炸极限计算PPT课件
4.4.2爆炸极限的影响因素
(1)初始温度
爆炸性混合物的初始温度越高,则爆炸极限范围越大,即爆炸下 限降低而爆炸上限增高
图4-19 温度对甲烷爆炸极限的影响
图4-20 温度对氢气爆炸极限的影响
4
温度对丙酮爆炸极限的影响
混合物温度,℃ 0 50 100 爆炸下限,% 4.2 4.0 3.2 爆炸上限,% 8.0 9.8 10.0
当β<1时,表示反应系统在受能源激发后,放热越来越少,也就是说,引起 反应的分子数越来越少,最后反应停止,不能形成燃烧或爆炸。 当β=1时,表示反应系统在受能源激发后能均衡放热,有一定数量的分子在 持续进行反应。这就是决定爆炸极限的条件(严格说稍微超过一些才能爆炸)。
当β>1时,表示放热量越来越大,反应分子越来越多,形成爆炸
2
在爆炸极限时,β=1
1
Q 1 E
设爆炸下限为L下(体积百分比)与反应概率α成正比, 即
KL下
1 Q =K1+ L下 E
当Q与E相比较大时,上式可近似写做
1 Q =K L下 E
各可燃气体的活化能变化不大,可大体上得出 :
L下 Q=常数
爆炸下限L下与可燃性气体的燃烧热Q近于成反比,可燃性气体燃烧热 越大,爆炸下限就越低。
(5)点火能源
火花的能量、热表面的面积、火源与 混合物的接触时间等,对爆炸极限均 有影响
图4-24 火源能量对甲烷爆 炸极限的影响 (常压,26℃)
8
4.4.3 爆炸极限的测定
爆炸极限的测定一般采用传播法 测试原理:首先将爆炸管内抽成真空,然后充以一定浓度的可燃气 与空气的混合气体,用循环泵使可燃气混合均匀,再用电极点火, 观察火焰传播情况。火焰传播的最低浓度或最高浓度(可燃气的体 积百分含量),即为该可燃气的爆炸下限或爆炸上限。
常见气体的爆炸极限及爆炸极限计算公式
爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限;用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=P1+P2+P3/P1/LEL1+P2/LEL2+P3/LEL3 V%
混合可燃气爆炸上限:
UEL=P1+P2+P3/P1/UEL1+P2/UEL2+P3/UEL3 V%
此定律一直被证明是有效的;
理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知
的爆炸极限按下式求之;该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物;Lm=100/V1/L1+V2/L2+……+Vn/Ln式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%; 例如:一天然气组成如下:甲烷80%L下=%、乙烷15%L下=%、丙烷4%L下=%、丁烷1%L下=%求爆炸下限;
Lm=100/80/5+15/+4/+1/=。
爆炸极限的两个计算公式
爆炸极限的两个计算公式爆炸极限是指在一定条件下,物质发生爆炸所需要的最小的能量或物质浓度。
在工业生产和安全管理中,对于爆炸极限的计算和预测是非常重要的。
下面我们将介绍两个常用的爆炸极限计算公式,以及它们在实际中的应用。
1. 燃烧极限计算公式。
燃烧极限是指在一定条件下,物质在空气中燃烧所需要的最小的浓度。
燃烧极限计算公式可以用来预测在一定条件下,物质的燃烧极限。
其计算公式如下:LFL = (Vf / Vt) 100%。
其中,LFL代表下限燃烧极限,Vf代表物质在空气中的体积浓度,Vt代表空气中的总体积。
在实际中,燃烧极限的计算可以帮助工程师和安全人员在设计和管理中预测物质燃烧的风险。
通过计算燃烧极限,可以确定物质在空气中的最小浓度,从而避免在生产过程中发生不必要的事故。
2. 爆炸极限计算公式。
爆炸极限是指在一定条件下,物质发生爆炸所需要的最小的浓度。
爆炸极限计算公式可以用来预测在一定条件下,物质的爆炸极限。
其计算公式如下:UEL = (Vuel / Vt) 100%。
LEL = (Vlel / Vt) 100%。
其中,UEL代表上限爆炸极限,LEL代表下限爆炸极限,Vuel代表物质在空气中的体积浓度,Vlel代表物质在空气中的体积浓度,Vt代表空气中的总体积。
在实际中,爆炸极限的计算可以帮助工程师和安全人员在设计和管理中预测物质发生爆炸的风险。
通过计算爆炸极限,可以确定物质在空气中的最小和最大浓度,从而避免在生产过程中发生严重的爆炸事故。
爆炸极限的计算公式可以帮助工程师和安全人员在设计和管理中预测物质发生爆炸的风险。
通过计算爆炸极限,可以确定物质在空气中的最小和最大浓度,从而避免在生产过程中发生严重的爆炸事故。
总结。
爆炸极限的计算公式是工业生产和安全管理中非常重要的工具。
通过计算燃烧和爆炸极限,可以帮助工程师和安全人员在设计和管理中预测物质的燃烧和爆炸风险,从而采取相应的措施来避免事故的发生。
因此,熟练掌握爆炸极限的计算公式,对于工程师和安全人员来说是非常重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
3
➢ 4.4.2爆炸极限的影响因素
❖ (1)初始温度
✓ 爆炸性混合物的初始温度越高,则爆炸极限范围越大,即爆炸下 限降低而爆炸上限增高
图4-19 温度对甲烷爆炸极限的影响
图4-20 温度对氢气爆炸极限的影响
B
4
温度对丙酮爆炸极限的影响
混合物温度,℃
爆炸下限,%
爆炸上限,%
0
4.2
8.0
50
4.0
图4-22 不同压力下氢气爆炸极限 1.火焰向下传播,圆筒容器尺寸为 37×8cm;2.端部或中心点,球形 容器;3.火焰向下传播,圆筒容器
6
❖ (3)惰性介质即杂质
✓ 若混合物中含惰性气体的百分数增加,爆炸极限的范围缩小,惰 性气体的浓度提高到某一数值,可使混合物不爆炸
➢ 加入惰性气体, 爆炸上限显著下降 爆炸下限略有上升
B
2
在爆炸极限时,β=1
1 Q 1
E
设爆炸下限为L下(体积百分比)与反应概率α成正比,
即
KL下
1 =K1+Q L下 E
当Q与E相比较大时,上式可近似写做
1 =K Q
L下
E
各可燃气体的活化能变化不大,可大体上得出 :
L下 Q=常数
爆炸下限L下与可燃性气体的燃烧热Q近于成反比,可燃性气体燃烧热 越大,爆炸下限就越低。
➢4.4.4 爆炸极限的经验公式
1)通过1摩尔可燃气在燃烧反应中所需氧原子的摩尔数(N)计算
有机可燃气爆炸极限(体积百分数)
x下= 4.76 N
4
%
如:甲烷:N=4 x下= 6.5%, x上= 17.3%,
B
9
(2)利用可燃气体在空气中完全燃烧时的化学计量浓度x0计算
CO2
O2
CO
H2
CH4
下限 上限
N2
%
%
下 限 %
上 限 %
水煤气
6.2 0.3 39.2 49.2 2.3 3.0 6.1 65.4 6.9 69.5
半水煤气 7.0 0.2 32.0 40.0 0.8 20.0 7.6 70.0 8.1 70.5
发生炉煤 气
6.2
0 27.3 12.4 0.7 53.4 19.0 71.0 20.3 73.7
合比值,再从图中查出该组气体的爆炸极限,然后代入莱— 夏特尔公式进行计算。
B
16
图4-25 氢、一氧化碳、甲烷与氮、二氧化碳混合气体在空气中的爆 炸极限
17
图4-26 乙烷、丙烷、丁烷和氮、二氧化碳 混合物气体在空气中的爆炸极限
18
例4—1 求煤气的爆炸极限。煤气组成为:H2一12.4%;CO一27.3 %;CO2一6.2%;O2一0%;CH4一0.7%;N2一53.4%。
最终合为一点
——爆炸临界点
➢ 惰化能力:
CCl4 > CO2 > H2O > N2 > He > Ar
图4-23 各种惰性气体对甲烷爆炸极限的影 响
B
7
❖ (4)容器
✓ 容器管子直径越小、爆炸极限范围越 小。
✓ 同一可燃物质,管径越小,其火焰蔓 延速度亦越小。当管径(或火焰通道) 小到一定程度时,火焰即不能通过。 这一间距称最大灭火间距,亦称临界 直径(消焰径)。当管径小于最大灭火 间距,火焰因不能通过而被熄灭。
➢当混合气燃烧时,其波面上的反应如下式: A+B→C+D+Q
E W
➢反应热Q=W-E
A+B
C+D
B
1
➢ 设燃烧波内反应物浓度为n 则单位体积放出能量为nw。 燃烧波向前传递,使前方分子活化,活化概率为α(α≤1) 则活化分子的浓度为αnW/E。第二批活化分子反应后再放出能量为αnW2/E。
➢前后两批分子反应时放出的能量比为 nW 2/EW1Q
(4)多种可燃气体组成的混合物爆炸极限的计算
➢莱—夏特尔公式
100
x
%
P1 P2 P3 Pi
N1 N2 N3
Ni
➢莱—夏特尔公式的证明如下:
➢证明时的指导思想:将可燃混合气体中的各种可燃气与空气组成一组,其 组成符合爆炸下限时的比例,可燃混气与空气组成的总的混合气体为各组之 和。
11
1)设各种可燃气体积为:V1,V2,V3,……,Vi。则总的可燃气体积为
13
例题
➢ 有燃气体含C2H6 40%,C4H10 60%,取1m3该燃气与19m3空气混 合。该混合气体遇明火是否有爆炸危险?(C2H6和C4H10在空气 中的爆炸上限分别为12.5%、8.5%,下限为3.0%、1.6%)
解: 乙烷:P1=40% 丁烷:P2=60%
x下=4010600%2.0% 3 1.6
CH4的爆炸极限为:5%~15%
1m3该煤气和 19m3空气混合, 遇明火是否爆炸?
x下18.61800.700.7%=19% 6.0 40 5.0
x上18.61800.700.7%= 70.5% 3 70 7.30 15
19
表4-7
某些气体混合物的爆炸浓度极限
气体组成(%)
计算值
实验值
气体混合
物
4.4 爆炸极限理论及计算
➢ 4.4.1 爆炸极限理论
❖ 爆炸下限 ❖ 爆炸上限 ❖ 混合爆炸物浓度在爆炸下限以下时含有过量空气,由于空气
的冷却作用,阻止了火焰的蔓延,此时,活化中心的销毁数 大于产生数。
❖ 同样,浓度在爆炸上限以上,含有过量的可燃性物质,空气 非常不足(主要是氧不足),火焰也不能蔓延。但此时若补 充空气同样有火灾爆炸的危险
9.8
100
3.2
10.0
❖ (2)初始压力
✓ 一般压力增大,爆炸极限扩大
✓ 压力降低,则爆炸极限范围缩小
✓ 待压力降至某值时,其下限与上限重合,将此时的最低压力称为 爆炸的临界压力。若压力降至临界压力以下,系统便成为不爆炸
B
5
图4-21 不同压力下甲烷爆炸极限 1.火焰向下传播,圆筒容器尺寸为 37×8cm;2.端部或中心点,球形 容器;3.火焰向下传播,圆筒容器
1.6%)
解:可燃气体总浓度=1%+1.5%=2.5%
乙烷:P1=1/2.5=40% 丁烷:P2=1.5/2.5=60%
x下=4010600%2.0% 3 1.6
x上=4010060%9.7% 12.5 8.5
2.0% < 2.5% < 9.7% 故,该混合气体遇火爆炸。
B
15
(5)含有惰性气体的可燃混气爆炸极限的计算方法
解
分组:CO2+H2;N2+CO;CH4 CO2+H2: 6.2%+12.4%=18.6%;
CHO22 =162..24% %=0.5
N2+CO:27.3%+53.4%=80.7%; CN2O=5237..43% %=1.96
CH4:0.77%。
问题:
从图4—25查得:
H2+CO2组的爆炸极限为:6.0%~70%; CO+N2组的爆炸极限为:40%~73%。
x上=4010060%9.7% 12.5 8.5
混合气中可燃气浓度:1/(1+19)=5%
2.0% < 5% < 9.7%
故,该混合气体遇火爆炸。
B
14
例题
➢ 有混合气体含C2H6 1%,C4H10 1.5%,其余为空气。 该混合气体遇明火是否有爆炸危险?(C2H6和C4H10在 空气中的爆炸上限分别为12.5%、8.5%,下限为3.0%、
有机物爆炸极限
x下=0.55 x0
x 上=4.8
x0
A+nO2+3.76nN2→生成物
有机可燃气A在空气中的化学计量浓度为
x0%1140.706n%
如:甲烷:n=2 x0%= 9.5%, x下= 5.2%,x上= 14.7%
10
(3)通过燃烧热计算有机可燃气的爆炸下限
x1Q 1x2Q 2C x
V=V1+V2+V3+……+Vi
2)设各组可燃气—空气在爆炸下限时的体积为: V’1,V’2,V’3,……,V’I 。
则总的可燃混气—空气体积为 V′= V’1+V’2+V’3,……,V’I
3)设各种可燃气爆炸下限为:x1下,x2下,x3下,…xi下。则
x1下=VV1'1 100
x2下=VV2'2 100
x1下
x2下
x3下
xi下
(5)设
100
%
V 1/V 10 V 0 2/V 10 V 0 3/V 10 0 V i/V 100
x1 下
x2下
x3下
xi下
P1=VV1 100 P2=VV2 100
P3=VV3 100
…
Pi=VVi 100
x下=P1
P2
100 P3 Pi
%
x1下 x2下 x3下
xi下
❖ 如果可燃混气中含有惰性气体,如N2、CO2等,计算其爆炸 极限时,仍然利用莱—夏特尔公式
❖ 但需将每种惰性气体与一种可燃气编为一组,将该组气体看 成一种可燃气体成分。
❖ 比如:H2+N2, CO+CO2, CH4 ❖ 该组在混合气体中的体积百分含量为该组中惰性气体和可燃
气体体积百分含量之和。 ❖ 而该组气体的爆炸极限可先列出该组惰性气体与可燃气的组
❖ (5)点火能源
✓ 火花的能量、热表面的面积、火源与 混合物的接触时间等,对爆炸极限均 有影响
图4-24 火源能量对甲烷爆 炸极限的影响 (常压,26℃)
B
8
➢ 4.4.3 爆炸极限的测定
❖ 爆炸极限的测定一般采用传播法