中考第二轮复习:方案设计型

合集下载

中考数学第二轮复习专题(14个)

中考数学第二轮复习专题(14个)

中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。

2).方程x 2+y 2+4x -2y+5=0的解是 。

3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。

例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。

例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。

4. 解方程: 211()65()11x x +=--对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。

(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。

2024年中考数学复习计划样本(二篇)

2024年中考数学复习计划样本(二篇)

2024年中考数学复习计划样本一、第一轮复习(第三周~质检)1、第一轮复习的形式第一轮复习的目的是要“过三关”:(1)过记忆关。

必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。

(2)过基本方法关。

如,待定系数法求二次函数解析式。

(3)过基本技能关。

如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。

基本宗旨:知识系统化,练习专题化,专题规律化。

在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构,可将代数部分分为六个单元:实数、代数式、方程、不等式、函数、统计初步等;将几何部分分为六个单元:几何基本概念,相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆等。

配套练习以《初中双基优化训练》为主,复习完每个单元进行一次单元测试,重视补缺工作。

2、第一轮复习应该注意的几个问题(1)必须扎扎实实地夯实基础。

今年中考试题按难:中:易____1:2:7的比例,基础分占总分(150分)的____%,因此使每个学生对初中数学知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。

(2)中考有些基础题是课本上的原题或改造,必须深钻教材,绝不能脱离课本。

(3)不搞题海战术,精讲精练,举一反三、触类旁通。

“大练习量”是相对而言的,它不是盲目的大,也不是盲目的练。

而是有针对性的、典型性、层次性、切中要害的强化练习。

(4)注意气候。

第一轮复习是冬、春两季,大家都知道,冬春季是学习的黄金季节,____月份之后,天气酷热,会一定程度影响学习。

(5)定期检查学生完成的作业,及时反馈。

教师对于作业、练习、测验中的问题,应采用集中讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等手办法进行反馈、矫正和强化,有利于大面积提高教学质量。

(6)实际出发,面向全体学生,因材施教,即分层次开展教学工作,全面提高复习效率。

课堂复习教学实行“低起点、多归纳、快反馈”的方法。

备考2021年中考科学二轮复习:实验方案设计与评价,实验探究题专训及答案

备考2021年中考科学二轮复习:实验方案设计与评价,实验探究题专训及答案

备考2021年中考科学二轮复习:实验方案设计与评价,实验探究题专训及答案备考2021中考科学二轮复习:实验方案设计与评价,实验探究题专训1、(2019台州.中考模拟)如图是甲、乙两组同学分别设计的质量守恒定律的两个验证实验。

请根据图示进行思考回答:(假设甲、乙两组药品混合前质量均为 m 前,混合后质量均为m 后)(1) 你认为甲组能否验证质量守恒定律,________(填“能”或“否”)。

(2) 乙组物质混合前、后质量关系为:m 前=m 后,乙组同学认为实验成功,甲组同学认为该实验不能验证质量守恒定律,其原因是________。

2、(2019杭州.中考模拟) 以CuSO 溶液和Na CO溶液为原料制备碱式碳酸铜【化学式表示为:aCuCO ·bCu (OH)】的过程如下:由于药品用量等原因,产品中可能会混有碱式硫酸铜【化学式表示为:cCuSO ·dCu (OH )】。

(1) 【定性研究】检验产品的成分:①取适量产品于试管中,加入足量的稀盐酸,固体全部溶解;若同时能观察到试管中有________(填实验现象),可证明有碱式碳酸铜存在。

②向反应后的试管中继续加入________(填试剂的化学式),可用以检验碱式硫酸铜是否存在。

(2) 【定量研究】通过定性研究发现产品中只有碱式碳酸铜。

为了进一步确定碱式碳酸铜的化学式,小乐设计了如图所示实验(夹持装置已略去,己知碱式碳酸铜受热分解为氧化铜、二氧化碳和水):③请写出N 在实验中的作用 ________ 。

④若装置B 和装置C 在反应前后的质量增加量分别为△m , △m ;则△m :△m =________时,碱式碳酸铜的化学式为Cu (OH )CO 。

3、(2019杭州.中考模拟) 某氧化铜(CuO)粉末中混有少量氧化亚铜(Cu O ),现有一课外活动小组利用下图所示装置测定其中Cu O 的含量,请根据图示内容回答下列问题:42332422B C B C 22322(1) X是常见还原性气体CO、H中的一种(可能混有少量水和二氧化碳),请根据组合装置判断X的化学式为_____ ___ 。

九年级数学中考第二轮复习—方案设计问题冀教版

九年级数学中考第二轮复习—方案设计问题冀教版

初三数学中考第二轮复习—方案设计问题冀教版【本讲教育信息】一. 教学内容:专题四:方案设计问题二. 知识要点:这类问题常常给出问题情景与解决问题的要求,让学生设计解决问题的方案,或给出多种不同方案,让学生判断它们的优劣.解这类问题的关键是寻找相等关系,利用函数的图像和性质解决问题;或列出相关不等式(组),通过寻求不等关系找到问题的答案;或利用图形变换、解直角三角形解决图形的设计方案、测量方案等.三. 考点分析:近年来,在各地的中考试题中,出现了方案设计题.方案设计题可以综合考查学生的阅读理解能力、分析推理能力、数据处理能力、文字概括能力、动手能力等.方案设计题还呈现出创新、新颖、异彩纷呈的新趋势.【典型例题】题型一利用方程(组)进行方案设计例1.一牛奶制品厂现有鲜奶9t.若将这批鲜奶制成酸奶销售,则加工1t鲜奶可获利1200元;若制成奶粉销售,则加工1t鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3t;若专门生产奶粉,则每天可用去鲜奶1t.由于受人员和设备的限制,酸奶和奶粉两产品不可能同时生产,为保证产品的质量,这批鲜奶必须在不超过4天的时间内全部加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?分析:要确定哪种方案获利最多,首先应求出每种方案各获得的利润,再比较即可.解:生产方案设计如下:(1)将9t鲜奶全部制成酸奶,则可获利1200×9=10800元.(2)4天内全部生产奶粉,则有5t鲜奶得不到加工而浪费,且利润仅为2000×4=8000元.(3)4天中,用x天生产酸奶,用4-x天生产奶粉,并保证9t鲜奶如期加工完毕.由题意,得3x+(4-x)×1=9.解得x.∴4-x(天).故在4天中,,,则利润为(×3××1×2000)元=12000元.答:按第三种方案组织生产能使该厂获利最大,最大利润是12000元.评析:运用数学知识解决现代经济生产中的实际问题是中考的热点考查对象之一,同学们应多关心商品经济,生活中的规律、规则,把数学与生活有机结合起来.题型二利用不等式进行方案设计例2.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲,乙两种机器供选择,其中每台机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不低于380个,那么为了节约资金应选择哪种购买方案?分析:(1)可设购买甲种机器x 台,然后用x 表示出购买甲、乙两种机器的实际费用,根据“本次购买机器所耗资金不能超过34万元”列不等式求解.(2)分别算出(1)中各方案每天的生产量,根据“日生产能力不低于380个”与“节约资金”两个条件选择购买方案.解:(1)设购买甲种机器x 台,则购买乙种机器(6-x )台, 则:7x +5(6-x )≤34,解得x ≤2, 又x ≥0,∴0≤x ≤2,∴整数x =0、1、2, ∴可得三种购买方案: 方案一:购买乙种机器6台;方案二:购买甲种机器1台,乙种机器5台; 方案三:购买甲种机器2台,乙种机器4台. (2)列表如下:由于方案一的日生产量小于380个,因此不选择方案一;•方案三比方案二多耗资2万元,故选择方案二.评析:①部分实际问题的解通常为整数;②方案的各种情况可以用表格的形式表达;③对关键词“不低于”、“至少”、“不少于”的理解是解本例的关键.题型三 利用函数进行方案设计例3.已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图(2)的坐标系中画出该函数图象;指出金额在什么X 围内,以同样的资金可以批发到较多数量的该种水果.图(1)m (kg )图(2)(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(3)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.图(3)分析:(1)中注意图像中的圆圈表示不包括该点;(2)中金额w (元)与批发量m (kg )之间的函数关系式分两部分,实际是两个函数图像.当240<w ≤300时,批发量m 有两个值,可比较这两者的大小;当w 取其他值时,m 只有一个值.(3)利用二次函数的最值求获得最大利润的进货和销售方案.解:(1)图(1)中①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;②表示批发量高于60kg 的该种水果,可按4元/kg 批发.(2)解:由题意得:w =⎩⎪⎨⎪⎧5m (20≤m ≤60)4m (m >60) ,函数图象如图(4)所示.由图可知资金金额满足240<w ≤300时,以同样的资金可批发到较多数量的该种水果.(3)解法一:设当日零售价为x 元,由图可得日最高销量m =320-40x , 当m >60时,x <6.5,由题意,销售利润为: y =(x -4)(320-40x )=40[-(x -6)2+4], 当x =6时,y 最大=160,此时m =80,即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元. 解法二:设日最高销售量为xkg (x >60),则由图(3)日零售价p 满足:x =320-40p ,于是p =320-x40, 销售利润y =x (320-x 40-4)=-140(x -80)2+160,当x =80时,y 最大=160,此时p =6,即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.m (kg )图(4)评析:本题考查同学们的读图能力,解题关键是数形结合,弄清题目的数量关系.题型四 利用解直角三角形进行方案设计例4. 如图所示,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB . 要求:(1)画出测量示意图.(2)写出测量步骤.(测量数据用字母表示) (3)根据(2)中的数据计算AB .分析:本题是一道开放性问题,设计方案时要注意测角仪有高度,同时还要注意测量所需数据可用a 、b 、c 、d 以及角度α、β来表示.最后还要注意直角三角形的模型.解:(1)测量图(示意图)如图所示.ABCD EFH αβhhm(2)测量步骤:第一步:在地面上选择点C 安装测角仪,测得此时树尖A 的仰角∠AHE =α. 第二步:沿CB 前进到点D ,用皮尺量出C 、D 之间的距离CD =m . 第三步:在点D 安装测角仪,测得此时树尖A 的仰角∠AFE =β. 第四步:用皮尺量出测角仪的高h .(3)AB =αββαtan tan tan tan m -⋅+h .评析:利用解直角三角形进行方案设计时一定要使用题目中所给的测量工具,而不能利用题目以外的测量工具.同时还要关注测量时是否有障碍物,是用具体的数值表示还是用字母表示等.本题的易错点在于同学们容易忽视测角仪的高度.设计测量方案时,结合我们平时在解直角三角形中已经建立的模型来考虑是一条捷径.题型五 利用统计和概率进行方案设计例5. 某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数. 方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.如图所示是这个同学的得分统计图.(1)分别按上述4个方案计算这个同学演讲的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.分析:对于题目中的四种方案我们可以分别计算出结果,只要注意平均数、中位数、众数的概念及三种统计量的意义即可.解:(1)方案1最后得分: 110(3.2+7.0+7.8+3×8.0+3×8.4+9.8)=7.7. 方案2最后得分:18(7.0+7.8+3×8.0+3×8.4)=8.方案3最后得分:8. 方案4最后得分:8或8.4.(2)因为方案1中的平均数受较大或较小数据的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为统计最后得分的方案.因为方案4中的众数有两个,众数没有实际意义,所以方案4不适合作为统计最后得分的方案.评析:本题考查了统计中三个统计量的计算和意义的使用.题型六 实际应用图形方案设计例6. 在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切) (1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆的半径;若不可行,请说明理由.A BCD ABDC方案一方案二分析:判断方案是否可行,可用反证法,假设方案可行,确定正方形的大小,与所给正方形进行比较得出结论.解:(1)理由如下:假设方案一可行.∵扇形的弧长=2π×16×14=8π,圆锥底面周长=2πr ,则圆的半径为4cm .由于所给正方形纸片的对角线长为162cm ,而制作这样的圆锥实际需要正方形纸片的对角线长为16+4+42=20+42cm ,20+42>162.∴假设不成立,故方案一不可行. (2)方案二可行.求解过程如下:设圆锥底面圆的半径为rcm ,圆锥的母线长为R cm ,则(1+2)r +R =162——①.2πr =2πR4——②.由①②,可得R =6425+2=3202-12823,r =1625+2=802-3223.故所求圆锥的母线长为3202-12823cm ,底面圆的半径为802-3223cm .评析:图形方案设计问题,关键要弄清楚设计要求,图形变化前后变化的量和不变的量.【方法总结】这类试题不仅要求学生要有扎实的数学双基知识,而且要能够把实际问题中所涉及的数学问题转化,抽象成具体的数学问题.从方法上分两类进行概括:(1)方案已知,要求选优;(2)先求方案,再选最优.【预习导学案】(专题五:开放探索性问题)一. 预习导学1. 如图所示,AC 、BD 相交于点O ,∠A =∠D ,请你再添加一个条件__________,使得∠ABC ≌△DCB .ABCDO2. 请同学们写出两个具有轴对称性的汉字__________.3. 已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,下列结论:①abc >0;②2a +b <0;③4a -2b +c <0;④a +c >0.其中正确的个数是( ) A .4个B .3个C .2个D .1个二. 反思1. 开放探索性问题有什么特征?2. 开放探索性问题的解题策略是什么?【模拟试题】(答题时间:50分钟)一. 选择题*1. 一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A. 4种B. 3种C. 2种D. 1种**2. 奥运期间,体育场馆要对观众进行安全检查。

2024年中考化学二轮复习专题突破---实验方案设计与评价课件

2024年中考化学二轮复习专题突破---实验方案设计与评价课件

选项
实验操作
现象或变化
结论
取少量井水,加入适量肥皂 A 水,振荡
产生 浮渣


井水为硬水
B
称量镁条在空气中燃烧前后质 量
质量减少
不遵循质量守恒 定律
C
向盛有NaOH溶液的试管中滴 加几滴酚酞溶液
溶液变红色
NaOH溶液没有 变质
D
将无色气体通入装有CuO粉末 黑 色 固 体 无色气体一定为
的玻璃管一段时间后,加热 变红
纸上,显色后与标准比色卡比较
D 比较黄铜与铜的硬度 将黄铜片与铜片互相刻画
【解析】A. 硫酸铵、氯化铵都能和熟石灰反应生成氨气,都产生刺 激性气味,不能区分两种物质,故A不能达到实验目的;B. 稀硫酸和 碳酸钠反应生成硫酸钠、水和二氧化碳,除去碳酸钠的同时带入了新 杂质硫酸钠,故B不能达到实验目的;C. 用玻璃棒蘸取待测液滴到湿 润的pH试纸上,如果溶液显酸性,会导致测定结果偏高,如果溶液 显碱性,会导致测定结果偏低,如果溶液显中性,测定结果不变,故 C不能达到实验目的;D. 将黄铜片与铜片互相刻画,痕迹更明显的物 质硬度小,故D能达到实验目的。故选D。
H2
素养强化练 1.(2023宜宾)下列实验方案能达到实验目的的是( D )
选项
实验目的
实验方案
鉴别硫酸铵和氯化铵 取样,分别加入少量熟石灰研磨,闻
A 固体
气味
除去NaCl固体中少量 先加水溶解,再加入适量稀硫酸,蒸
B 的Na2CO3
发结晶
用pH试纸测定溶液的 用玻璃棒蘸取待测液滴到湿润的pH试
C 酸碱度
素养强化练 1.对比实验是科学探究的重要方法。利用如图实验探究燃烧的条件,当 温度升高至40 ℃,仅①燃烧;继续升高至240 ℃,仅③开始燃烧。下 列分析错.误.的是( C )

2024年初三数学复习计划(五篇)

2024年初三数学复习计划(五篇)

2024年初三数学复习计划初三中考总复习教学时间紧,任务重,要求高是他的三大特点,而如何提高数学总复习计划的质量和效益,是我们每位数学教师必须要面对的问题。

下面就结合我校学生的实际情况,谈谈我的具体计划:第一阶段(____月____号到____月____号):全面复习基础知识,加强基本技能训练,让学生全面掌握初中数学基础知识,提高基本技能,做到全面,扎实,系统,形成知识网络。

1.重视课本,系统复习。

现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造。

总的知识结构让学生心里有数。

教师在这一阶段的教学可以按知识快组织复习。

具体为-代数部分是五块知识:实数和代数式,方程,不等式,函数,统计初步。

几何部分也是五块知识:几何基本概念,相交线和平行线,三角形和四边形,解直角三角形,圆。

在具体的教学中,教师可以提出每个知识块的复习提要,指导学生边复习边做知识归纳,掌握法则和公式定理等。

同时,例题的选择要具有针对性、典型性和层次性。

2.在基础知识的基础上学会思考。

随着教材的改革,中考命题已引起我们教师的高度重视。

为了充分体现中考数学考试选拔的公正,在命题时,一定会对需要考查的知识点和方法创设一个新的问题情境,尽量使每个考生面对的是相同背景和相同起点,特别是一些需要有较高区分度的试题更是如此。

因此,我们的学生要通过总复习,使每个学生都能达到“理解和掌握的要求”,在应用基础知识时能做到熟练、正确和迅速。

3.重视对数学思想的理解和运用。

例如,告诉学生自变量和因变量,要求学生写出函数的解析式,或用函数解析式去求交点等问题,都要用到函数的思想,也是近几年中考的必考题。

例如,数形结合的思想,最后的压轴题也与此有关的。

从而复习时着重举几个典型的例题,让学生体会数形结合的思想在题目中是如何呈现和如何转换的。

第二阶段(____月____号到____月____号):综合运用知识,加强能力培养。

本阶段应以建构初中数学知识结构和网络结构为主,从总体上把握教学内容,提高能力。

2013年中考数学二轮专题复习 专题四 操作方案设计问题课件

2013年中考数学二轮专题复习 专题四 操作方案设计问题课件
专题四
操作方案设计问题
专 题 解 读
考情透析 操作题是指通过动手测量、作图(象)、取值、计算 等,对某种现象获得感性认识,再利用数学知识进行 思考、探索、归纳概括等来解决的一类问题.考查学 生的动手能力、实践能力,分析和解决问题的能 力.方案设计题是通过设置一个实际问题情景,给出
若干信息,提出解决问题的要求,寻求恰当的解决方
图形. (1)将等腰梯形分割后拼成矩形
(2)将等腰梯形分割后拼成平行四边形(非矩形)
(3)将等腰梯形分割后拼成三角形
答案
(1)将等腰梯形分割后拼成矩形
(2)将等腰梯形分割后拼成平行四边形(非矩形)
(3)将等腰梯形分割后拼成三角形
二、图形变换类操作
此类操作题常与轴对称、平移、旋转、相(位)似等 变换有关,掌握图形变换的性质是解这类题的关 键.
种鱼不能混养).计划用于养鱼的总投资不少于7
万元,但不超过7.2万元,其中购置网箱等基础 建设需要1.2万元.设他用x只网箱养殖A种淡水 鱼,目前平均每只网箱养殖A、B两种淡水鱼所 需投入及产业情况如下表:
饲料 收获成品 成品鱼价格( 支出( 鱼(千克) 百元/千克) 百元) A种鱼 2.3 3 100 0.1 B种鱼 4 5.5 55 0.4 (1)小王有哪几种养殖方式? 项目 类别 鱼苗投资( 百元) (2)哪种养殖方案获得的利润最大? (3)根据市场调查分析,当他的鱼上市时,两种鱼的 价格会有所变化,A种鱼价格上涨a%(0<a<50),B 种鱼价格下降20%,考虑市场变化,哪种方案获得 的利润最大?(利润=收入-支出.收入指成品鱼收 益,支出包括基础建设投入、鱼苗投资及饲料支出)
③4.7×41+12.5×39-120=560.2(百元);
④4.7×42+12.5×38-120=552.4(百元). 所以,A种鱼39箱、B种鱼41箱利润最大.

初三数学第二轮复习计划模板

初三数学第二轮复习计划模板

初三数学第二轮复习计划模板
复习时间安排:
周一至周五晚上每天复习1到2个小时,周末加大复习时间,每天复习3到4个小时。

复习内容安排:
1. 整理重点知识点,包括代数、几何、概率统计等内容;
2. 解析和总结习题,掌握解题方法和技巧;
3. 制作记忆卡片,帮助记忆公式和定理;
4. 划重点,重点突破,集中精力攻克难题;
5. 留出时间进行模拟考试和试卷练习,查漏补缺;
特别注意:
1. 注意做好笔记,归纳总结重难点;
2. 多加练习,找出自己的薄弱环节,加强练习;
3. 注意休息,保持好的精神状态,注意作息规律;
4. 和同学交流,互相鼓励,相互监督,共同进步。

(可以根据自己的情况和需要调整具体复习计划)。

初二生物中考学习建议与复习计划

初二生物中考学习建议与复习计划

初二生物中考学习建议与复习计划初二生物中考复习计划我们所面临的中考生物复习可以真正称得上“时间紧、任务重”,要完成四本书内容的复习、记忆和训练,难度应当是比较大的,因此,我们要把握考试方向,系统复习、夯实基础、开阔视野,加深理解,精讲精练、提高能力,才能在中考考试中获得高分。

臻才教育培训机构诚邀经验丰富的老师与同学们高举科学备考的伟大旗帜,将中考进行到底。

一、复习要求及措施:1、重基础,巩固知识方法在复习过程中要注意知识系统化,以教材为依据,以《漳州市初中学业考试说明》为指导,利用概念图等多种方法全面巩固考点知识。

2、重提升,强化解题能力精选练习,诠释重点、难点;突破思维界限;方法技巧指导,做到举一反三。

3、重运用,关注热点问题注意理论联系实际,体现时代性,结合社会热点,焦点问题,引导学生关注科学技术社会的发展。

让学生热爱生物,提高学习主动性。

二、复习方案:1、复习安排及目的说明:第一轮:基础知识过关,重难点知识运用阶段 (18课时)按照考纲说明把中考分18个知识专题块,进行过关训练;每课时分知识点过关和基础题目训练,重难点知识运用,重难点知识精讲三个部分。

通过反复小测,让每位同学对每个知识都熟练掌握,百分百过关。

并通过重难点知识运用部分练习让学生熟悉考题做到举一反三,教师精讲点拨,答疑解惑第二轮:综合能力提高阶段 5课时针对中考试卷中的50分综合题和50分选择题,精心设计出选择题专题,识图题专题,实验探究题专题、社会热点专题、曲线题专题(压轴题)等专题练习,对知识进行串联,学生精练教师精讲,提升综合解题能力。

第三轮:中考模拟考试阶段 7课时(至少10份)经过系统的模拟测试,增加实战经验和现场感受,有效、快速地提高中考成绩,一矢中的。

2、复习材料:自编的复习书、自编知识过关卷、模拟卷初二生物学习方法建议一、认真预习,专心听讲,做好笔记1. 想收到好的听课效果,就需要课前做好预习。

2. 上课专心听讲是学好生物学知识的关键。

2014年数学中考二轮专题复习课件:方案设计型问题

2014年数学中考二轮专题复习课件:方案设计型问题

(3)∵ x= 15> 10, ∴①选择在 A 超市购买, yA=27× 15+ 270= 675(元); ②可先在 B 超市购买 10 副羽毛球拍,送 20 个羽毛球, 然后在 A 超市购买剩下的羽毛球 10× 15-20= 130(个 ),则 共需费用: 10× 30+130× 3× 0.9= 651(元 ). ∵ 651<675, ∴最省钱的购买方案是:先在 B 超市购买 10 副羽毛球 拍,然后在 A 超市购买 130 个羽毛球.
D)
解:设购买甲种笔记本 x 本,乙种笔记本 y 本,则 7x+5y≤ 50,且 x≥3,y≥3.根据题意有如下方案:①
x= 3, y= 3,用去 36 元;② x= 3, y= 4,用去 41 元;
③ x= 3,y=5,用去 46 元;④x=4,y=3,用去 43 元; ⑤ x= 4, y=4, 用去 48 元; ⑥ x= 5, y=3, 用去 50 元. 所 以共 6 种方案.故选 D.
∴“益安”车队载重量为 8 吨的卡车有 5 辆, 10 吨的卡车有 7 辆.
(2)设载重量为 8 吨的卡车增加了 z 辆,则载重量 为 10 吨的卡车增加了(6- z)辆,由题意,得 5 8(5+ z)+ 10(7+ 6- z)>165,解得 z< . 2 ∵ z≥ 0 且为整数,∴ z= 0,1,2. ∴ 6- z= 6,5,4.
2014年人教新课标版中考二轮复习
方案设计型问题
考点梳理
方案与设计问题是指解决问题的方案决策问题,同一个问
题往往有多种不同的解决方案,但其中最科学、最合理的方案
常常仅有一种.随着课程改革的全面展开和逐步深化,有利于
考查学生创新意识和实践能力的方案设计问题已经成为中考命
题的一大热点.

中考数学二轮复习专题工程问题和方案问题(师)

中考数学二轮复习专题工程问题和方案问题(师)

1.3 工程问题与方案问题【工程问题】思考1 :车工班原计划每天生产50个零件,改进操作方法后,实际每天比原计划多生产6个零件,结果比原计划提前5天,并超额8个零件,设原计划车工班应该生产x个零件,则方程式可列为_______________思考2:单独干某项工程,甲队需100天完成,乙队需150天完成。

甲、乙两队合干50天后,设剩下的工程乙队干还需x天,则方程式可列为_______________例1 修建某一建筑时,若请甲、乙两个工程队同时施工,5天可以完成,需付两队费用共3500元;若先请甲队单独做3天,再请乙队单独做6天可以完成,需付两队费用共3300元.问:(1)甲、乙两队每天的费用各为多少?(2)若单独请某队完成工程,则单独请哪队施工费用较少?(限时训练第1题)【变式练习1】为维护市区的生态环境,政府决定对市区周边水域的水质进行改善,甲工程队单独完成这项工程需要200天,且甲工程队每天的施工量是乙工程队的3倍.若要求乙工程队施工工期不超过300天,则甲工程队至少要施工多少天?【方案问题】例2 某商店计划一次购进两种型号的手机共110部,销售一部A型手机获利150元,销售一部B型手机获利100元,其中A型手机的进货量不超过B型手机的2倍,且商店最多购进B 型手机50台.(1)求商店共有多少种进货方案?(2)实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,请设计出手机销售总利润最大的进货方案.(限时训练第4题)【变式练习2】实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,要使(1)中所有方案获利相同,求m的值.【二元一次方程整数解类】例3 已知1辆A型车载满货物一次可运货3吨,1辆B型车载满货物一次可运货4吨.某物流公司现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请你帮该物流公司设计最省钱的租车方案,并求出最少租车费.(限时训练第3题)【拓展提升】期中考试即将结束,为了表彰优秀,李老师用W元钱购买奖品,若以3支钢笔和4本笔记本为一份奖品,则可买60份奖品;若以4支钢笔和7本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用y的代数式表示x;(2)若李老师用这钱恰好买75份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有),请求出所有可能的a,b的值.1.3 工程问题与方案问题限时训练班级:______ 学号:____ 姓名:__________ 1、修建某一建筑时,若请甲、乙两个工程队同时施工,5天可以完成,需付两队费用共3500元;若先请甲队单独做3天,再请乙队单独做6天可以完成,需付两队费用共3300元.问:(1)甲、乙两队每天的费用各为多少?(2)若单独请某队完成工程,则单独请哪队施工费用较少?2.某班决定购买一些笔记本和文具盒做奖品.已知需要的笔记本数量是文具盒数量的3倍,购买的总费用不低于220元,但不高于250元.(1)商店内笔记本的售价4元/本,文具盒的售价为10元/个,设购买笔记本的数量为x,按照班级所定的费用,有几种购买方案?每种方案中笔记本和文具盒数量各为多少?(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?(3)经过还价,老板同意4元/本的笔记本可打八折,10元/个的文具盒可打七折,用(2)中的最少费用最多还可以多买多少笔记本和文具盒?3、已知1辆A型车载满货物一次可运货3吨,1辆B型车载满货物一次可运货4吨.某物流公司现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请你帮该物流公司设计最省钱的租车方案,并求出最少租车费.4、某商店计划一次购进两种型号的手机共110部,销售一部A型手机获利150元,销售一部B型手机获利100元,其中A型手机的进货量不超过B型手机的2倍,且商店最多购进B型手机50台.(1)求商店共有多少种进货方案?(2)实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,请设计出手机销售总利润最大的进货方案.(此部分课堂完成)【变式练习1】为维护市区的生态环境,政府决定对市区周边水域的水质进行改善,甲工程队单独完成这项工程需要200天,且甲工程队每天的施工量是乙工程队的3倍.若要求乙工程队施工工期不超过300天,则甲工程队至少要施工多少天?【变式练习2】实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,要使(1)中所有方案获利相同,求m的值.【拓展提升】期中考试即将结束,为了表彰优秀,李老师用W元钱购买奖品,若以3支钢笔和4本笔记本为一份奖品,则可买60份奖品;若以4支钢笔和7本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用y的代数式表示x;(2)若李老师用这钱恰好买75份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有),请求出所有可能的a,b的值.。

2023年中考化学二轮复习:实验方案的设计与评价(附答案解析)

2023年中考化学二轮复习:实验方案的设计与评价(附答案解析)

2023年中考化学二轮复习:实验方案的设计与评价
一.选择题(共23小题)
1.(2023•碑林区校级二模)下列实验操作能达到实验目的的是()
选项实验目的实验操作
A检验无水CuSO4固体中是否
取样,加水溶解
混有KOH
B鉴别羊毛纤维和蚕丝取样,点燃后闻气味
C分离Cu粉和Fe粉的混合物加入足量的稀硫酸,过滤、
洗涤、干燥
D除去KNO3溶液中的KCl加入过量AgNO 3溶液后,过

A.A B.B C.C D.D 2.(2023•碑林区校级二模)下列实验方案可以达到实验目的的是()
A.检验呼出气体中含有CO2
B.验证燃烧需要温度达到着火点
C.验证质量守恒定律
第1页(共51页)。

初中数学中考第二轮专题复习-方案设计型试题(含答案

初中数学中考第二轮专题复习-方案设计型试题(含答案

方案设计型试题例1、(常州)七(2)班共有50名学生,老师安排每人制作一件A 型或B 型的陶艺品,学校现有甲种制作材料36kg ,乙种制作材料29kg ,制作A 、B 两种型号的陶(1)设制作型陶艺品件,求的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A 型和B 型陶艺品的件数. 分析:本题的背景是与人们的生活息息相关的现实问题,本题的条件较多,要分清楚每个量之间的关系,还有,弄清楚这些陶艺品并不能将料全部用完后,本题目就较容易解决了。

解:(1)由题意得:⎩⎨⎧⋯⋯⋯⋯≤+-⋯⋯⋯≤+-②x x ①x x 27)50(3.0364.0)50(9.0 由①得,x ≥18,由②得,x ≤20,所以x 的取值得范围是18≤x ≤20(x 为正整数) (2)制作A 型和B 型陶艺品的件数为:①制作A 型陶艺品32件,制作B 型陶艺品18件; ②制作A 型陶艺品31件,制作B 型陶艺品19件; ③制作A 型陶艺品30件,制作B 型陶艺品20件; 说明:1.本题考察的是不等式组的应用及解不等式。

练习一1、(黑龙江)某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于万元,但不超过万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?注:利润=售价-成本2.(哈尔滨)双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元。

(1)求A、B两种型号的服装每件分别为多少元?(2)若销售1件A型服装可获利18元,销售1件B型服装可获利30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案?如何进货?3.(河南)某公司为了扩大经营,决定购进6台机器用于生产某种活塞。

2014年数学中考二轮专题复习检测:方案设计型问题

2014年数学中考二轮专题复习检测:方案设计型问题

2014年数学中考二轮专题复习检测:方案设计型问题解答题:1、(2013•东营)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.2、(2013•遂宁)四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.3、(2013•内江)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道两侧,搭配每个造型所需花卉数量的情况如下表所示:结合上述信息,解答下列问题:(1)符合题意的搭配方案有哪几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说明选用哪种方案成本最低?最低成本为多少元?4、(2013•荆州)如图,是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分面积为4.5、(2013•南充市) 学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少..要有一名教师,且总组成费用不超过...2300元,求最省钱的租车方案.参考答案解答题:1、解:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意得:2 3.5,2 2.5x y x y +=⎧⎨+=⎩解得:0.5,1.5x y =⎧⎨=⎩答:每台电脑0.5万元,每台电子白板1.5万元. (2)设需购进电脑a 台,则购进电子白板(30-a )台, 则0.5 1.5(30)28,0.5 1.5(30)a a a a ≥≤30+-⎧⎨+-⎩…………………………6分解得:1517a#,即a =15,16,17.故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为0.515 1.51530⨯+⨯=万元; 方案二:购进电脑16台,电子白板14台.总费用为0.516 1.51429⨯+⨯=万元; 方案三:购进电脑17台,电子白板13台.总费用为0.517 1.51328⨯+⨯=万元; 所以,方案三费用最低.2、解:(1)总费用y 1(元)和y 2(元)与参演男生人数x 之间的函数关系式分别是: y 1=0.7[120x+100(2x ﹣100)]+2200=224x ﹣4800, y 2=0.8[100(3x ﹣100)]=240x ﹣8000;(2)由题意,得当y 1>y 2时,即224x ﹣4800>240x ﹣8000,解得:x <200 当y 1=y 2时,即224x ﹣4800=240x ﹣8000,解得:x=200 当y 1<y 2时,即224x ﹣4800<240x ﹣8000,解得:x >200 即当参演男生少于200人时,购买B 公司的服装比较合算;当参演男生等于200人时,购买两家公司的服装总费用相同,可任一家公司购买; 当参演男生多于200人时,购买A 公司的服装比较合算. 3、解:(1)设搭配A 种造型x 个,则搭配B 种造型(60-x )个.由题意,得:8050(60)42004070(60)3090x x x x +-⎧⎨+-⎩≤≤,解之得37≤x ≤40.∵x 为正整数,∴x 1=37,x 2=38,x 3=39,x 4=40.∴符合题意的搭配方案有4种:①A 种造型37个,B 种造型23个;②A 种造型38个,B 种造型22个;③A 种造型39个,B 种造型21个;④A 种造型40个,B 种造型20个.(2)设总成本为W 元,则W =1000x +1500(60-x)=-500x +90000. ∵W 随x 的增大而减小,∴当x =40时,W 最小=70000元. 即选用A 种造型40个,B 种造型20个时,成本最低为70000元. 4.解:如图所示:答案不唯一.5、解:(1)设租用一辆大车的租车费是x 元,租用一辆小车的租车费是y 元,依题意,得:+2=10002+=1100x y x y ⎧⎨⎩,解之,得:=400=300x y ⎧⎨⎩.答:大、小车每辆的租车费分别是400元和300元.(2)240名师生都有座位,租车总辆数≥6;每辆车上至少要有一名教师,租车总辆数≤6.故租车总数事故6辆,设大车辆数是x 辆,则租小车(6-x )辆.得:45+30(6-)240400+300(6-)2300x x x x ≥⎧⎨≤⎩,解之,得:4≤x≤5. ∵x 是正整数 ∴ x=4或5于是又两种租车方案,方案1:大车4辆 小车2辆 总租车费用2200元,方案2:大车5辆 小车1辆 总租车费用2300元,可见最省钱的是方案1.。

2020年中考化学第二轮复习专题训练:有关实验现象与结论、方案的设计与评价(含解析)

2020年中考化学第二轮复习专题训练:有关实验现象与结论、方案的设计与评价(含解析)

有关实验现象与结论、方案的设计与评价1.下列实验方案不可行的是( )A.用灼热的氧化铜去除二氧化碳中混有的少量一氧化碳B.用滴加硫酸铜溶液的方法鉴别稀盐酸和氢氧化钾溶液C.用稀盐酸去除CaO中混有的少量CaCO3D.采用相互刻划的方法,比较铜片和黄铜片的硬度2.下列实验能够达到目的的是( )A.除去KNO3溶液中混有的K2SO4,加入适量的BaCl2溶液,过滤B.为制备Cu(OH)2可将Ba(OH)2溶液和适量CuSO4溶液混合,过滤C.鉴别NaOH、NaCl、CuSO4和稀盐酸四种溶液,不需添加任何试剂就可完成D.分离NaCl和MgCl2的固体,先加水溶解,再加入适量的NaOH溶液过滤,向滤渣中滴加适量稀盐酸3.下列实验中,能达到相应实验目的的是( )4.为了达到实验目的,下列实验方案不合理的是( )5.下列实验设计及操作,其现象足以说明结论的是( )6.下列图示实验能达到目的的是( )7.下列实验进行中的现象或实验原理正确的是( )8.下列实验方案正确的是( )9.下列实验方案不能达到实验目的的是( )10.为了达到实验目的,下列实验方案或结论正确的是( )11.下列实验方案能达到相应实验目的的是( )12.下列实验中,实验原理和主要操作方法都符合实验目的的是( )13.下列实验操作中(括号内为待检验物质或杂质),能达到实验目的的是( )14.下列实验中,能达到相应实验目的的是( )A.探究水对铁生锈有无影响B.探究质量守恒定律C.检验碳酸盐D.探究甲烷的组成15.下列实验方案设计合理的是( )16.下列实验不能达到实验目的的是( )A.区分硬水和软水B.配制100g质量分数为10%的NaCl溶液C.探究接触面积对反应D.比较空气与人体呼出速率的影响的气体中CO2含量17.下列关于实验现象及结论描述错误的是( )第17题图A.实验A中观察到通入二氧化碳的紫色石蕊溶液变红,加热后石蕊溶液又由红变紫B.实验B中观察到一段时间后,去壳的熟鸡蛋掉入集气瓶中C.实验C中,a、b试管的气体体积之比为2∶1,a试管中生成的是氧气,b试管中生成的是氢气D.实验D中硬质玻璃管中的黑色粉末逐渐变成红色18.下列实验操作、现象与结论对应关系正确的是( )19.下列有关实验的设计,不能达到目的的是( )A.确定石蜡成分 B.比较纯碱与碘中含有碳元素的溶解性C.测溶液pH D.检验氢气的纯度参考答案1.C【解析】A.CO能与灼热的氧化铜反应生成铜和二氧化碳,能除去杂质且没有引入新的杂质,符合除杂原则,故实验方案可行。

九年级数学中考复习计划

九年级数学中考复习计划

九年级数学中考复习计划学期至今,许多老师新课已经上好或接近尾声,下一步的工作是如何进行总复习,迎接中考。

借此机会,就如何进行总复习,谈谈我个人的总复习计划,与大家进行交流,不妥之处敬请各位批评指正。

根据我的授课进度和课时安排,我计划采用三轮复习。

一、第一轮复习:中考考点全练(复习时间:4周左右)新课结束后,有的学生对以前所学知识或多或少有些遗忘,有的内容可能掌握不够牢固。

故本轮复习根据教材章节编排顺序进行复习,使学生更好掌握各章节内容。

复习时注重对学生基础知识梳理和对知识进行整合,目的是夯实学生的化学基础知识。

初中数学重点内容共有25章,在复习时注意将各章知识进行联系。

整理出各个章节的重点、难点、考试的热点问题,让学生更好地理解每个单元的内容。

同时根据学生各章节掌握情况调整复习进度,掌握情况不好的章节花的时间多点。

如:二次函数、圆等章节内容较多而且也是中考的重点,这些章节习题讲解和布置充分利用课本和基础训练的题目,可以适当进行拓展,难度不需太大。

特别是对于课本习题,因为中考许多试题是将课本习题进行演变或升华的,用于考查学生对课本知识能否灵活理解和运用。

因此在复习的过程中应回归课本,脚踏实地。

每一章节复习结束后都有相应的章节检测,抓好每位学生的基础。

二、第二轮复习:中考专题全练(复习时间:2周左右)按数学知识与技能考查目标分类,化学专题复习主要包括:“实数与代数式”,“方程与不等式”,“函数及图像”,“几何初步与三角形”,“图形的变换”,“四边形与圆”,“统计与概率”7大专题。

在这7个专题基础上划分小专题进行复习,本轮复习建立在单元复习的基础上,学生已经熟悉了课本的基础知识,是综合复习阶段,是中考复习的关键环节,决定着能否大幅度提高教学质量。

在本轮复习中,根据考试的要求、学生第一轮复习时掌握情况,通过比较、归纳、分析等方法使学生系统掌握化学知识。

复习以学生为主,尽量让学生多动脑、动嘴、动手。

以便及时发现在问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方案设计型考点:一次方程、方程组、分式方程、不等式组、一次函数、二次函数、1.某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两种商品各多少件? (2)若该商店准备用不超过3 100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=售价-进价)?解:(1)设购进甲种商品x 件,购进乙种商品y 件, 根据题意,得⎩⎪⎨⎪⎧ x +y =100,15x +35y =2 700,解得:⎩⎪⎨⎪⎧x =40,y =60. 答:商店购进甲种商品40件,购进乙种商品60件. (2)设商店购进甲种商品a 件,则购进乙种商品(100-a )件, 根据题意列,得⎩⎪⎨⎪⎧15a +35(100-a )≤3 100,5a +10(100-a )≥890,解得20≤a ≤22. ∵总利润W =5a +10(100-a )=-5a +1 000,W 是关于x 的一次函数,W 随x 的增大而减小, ∴当x =20时,W 有最大值,此时W =900,且100-20=80,答:应购进甲种商品20件,乙种商品80900元.2.今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编造了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1)(2)记该用户六月份的用水量为x 吨,缴纳水费y 元,试列出y 关于x 的函数式;(3)若该用户六月份的用水量为40吨,缴纳水费y 元的取值范围为70≤y ≤90,试求m 的取值范围. 解:(1)应缴纳水费:10×1.5+(18-10)×2=31(元). (2)当0≤x ≤10时,y =1.5x ;当10<x ≤m 时,y =10×1.5+2(x -10)=2x -5; 当x >m 时,y =15+2(m -10)+3(x -m )=3x -m -5.∴y =⎩⎪⎨⎪⎧1.5x (0≤x ≤10),2x -5 (10<x ≤m ),3x -m -5 (x >m ).(3)当40≤m ≤50时,y =2×40-5=75(元),满足. 当20≤m <40时,y =3×40-m -5=115-m , 则70≤115-m ≤90,∴25≤m ≤45,即25≤m ≤40.综上得,25≤m ≤50.3.潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A ,B 两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:(1)求A ,B 两类蔬菜每亩的平均收入各是多少元;(2)某种植户准备租20亩地用来种植A ,B 两类蔬菜,为了使总收入不低于63 000元,且种植A 类蔬菜的面积多于种植B 类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有的租地方案.解:(1)设A ,B 两类蔬菜每亩平均收入分别是x 元,y 元.由题意,得⎩⎪⎨⎪⎧ 3x +y =12 500,2x +3y =16 500.解得⎩⎪⎨⎪⎧x =3 000,y =3 500.答:A ,B 两类蔬菜每亩平均收入分别是3 000元,3 500元.(2)设用来种植A 类蔬菜的面积为a 亩,则用来种植B 类蔬菜的面积为(20-a )亩.由题意,得⎩⎪⎨⎪⎧3 000a +3 500(20-a )≥63 000,a >20-a .解得10<a ≤14.∵a 取整数,为:11,12,13,14. ∴租地方案为:4.某学校计划将校园内形状为锐角△ABC 的空地(如图)进行改造,将它分割成△AHG 、△BHE 、△CGF 和矩形EFGH 四部分,且矩形EFGH 作为停车场,经测量BC=120m ,高AD=80m ,(1)若学校计划在△AHG 上种草,在△BHE 、△CGF 上都种花,如何设计矩形的长、宽,使得种草的面积与种花的面积相等?7. “五一”期间,为了满足广大人民的消费需求,某商店计划用160000元购进一批家电,这批家电的进价和售价如下表:(1)、若全部资金用来购买彩电和洗衣机共100台,问商店可以购买彩电和洗衣机各多少台?(2)、若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润。

(利润=售价-进价) 解:(1)设商店购买彩电x 台,则购买洗衣机(100﹣x )台.由题意,得2000x+1000(100﹣x )=160000,解得x=60,则100﹣x=40(台), 所以,商店可以购买彩电60台,洗衣机40台.(2)设购买彩电和冰箱各a 台,则购买洗衣机为(100﹣2a )台.根据题意,得200016001000(100-2)1600001002a a a a a++≤⎧⎨-≥⎩ 解得5.373133≤≤a .因为a 是整数,所以a=34、35、36、37. 因此,共有四种进货方案.设商店销售完毕后获得的利润为w 元,则w=(2200﹣2000)a+(1800﹣1600)a+(2a )=200a+10000, ∵200>0,∴w 随a 的增大而增大, ∴当a=37时,W 最大值=200×37+10000=17400, 所以,商店获得的最大利润为17400元.8.某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件. (1)写出销售量y 件与销售单价x 元之间的函数关系式;(2)写出销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?解:(1)根据题意得,y=200+(80﹣x )×20=﹣20x+1800,所以销售量y 件与销售单价x 元之间的函数关系式为y=﹣20x+1800; (2)W=(x ﹣60)y=(x ﹣60)(﹣20x+1800)=﹣20x 2+3000x ﹣108000,所以销售该品牌童装获得的利润w 元与销售单价x 元之间的函数关系式y=﹣20x2+3000x ﹣108000; (3)根据题意得,﹣20x+1800≥240, x≥76, ∴76≤x≤78, w=﹣20x2+3000x ﹣108000, 对称轴为x=﹣30002(20)⨯-=75,a=﹣20<0,∴当76≤x≤78时,W 随x 的增大而减小,∴x=76时,W 有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元). 所以商场销售该品牌童装获得的最大利润是4480元.9.在眉山市开展城乡综合治理的活动中,需要将A 、B 、C 三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D 、E 两地进行处理.已知运往D 地的数量比运往E 地的数量的2倍少10立方米. (1)求运往两地的数量各是多少立方米?(2)若A 地运往D 地a 立方米(a 为整数),B 地运往D 地30立方米,C 地运往D 地的数量小于A 地运往D 地的2倍.其余全部运往E 地,且C 地运往E 地不超过12立方米,则A 、C 两地运往D 、E 两地哪几种方案?(3)已知从A 、B 、C 三地把垃圾运往D 、E 两地处理所需费用如下表:在(2)的条件下,请说明哪种方案的总费用最少?解:(1)设运往E 地x 立方米,由题意得,x+2x ﹣10=140,解得:x=50,∴2x ﹣10=90, 答:共运往D 地90立方米,运往E 地50立方米; (2)由题意可得,[]⎩⎨⎧≤+--<+-12)30(90502)30(90a aA ,解得:20<a≤22,单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由. 解:(1)设甲车单独完成任务需要x 天,乙单独完成需要y 天,由题意可得:⎪⎩⎪⎨⎧=-=⎪⎪⎭⎫⎝⎛+1511110x y y x ,解得:⎩⎨⎧==3015y x即甲车单独完成需要15天,乙车单独完成需要30天;(2)设甲车租金为a ,乙车租金为b ,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:⎩⎨⎧=-=+1500650001010b a b a ,解得:⎩⎨⎧==25004000b a .①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元; ③单独租乙车需要的费用为:30×2500=75000元; 综上可得,单独租甲车租金最少.13.为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元. (1)每个文具盒、每支钢笔个多少元?(2)时逢“五一”10支以上超出部分“八折”优惠.若买x 个文具盒需要1y 2y 元;求1y 、2y 关于x 的函数关系式; (3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱. 解:(1)设每个文具盒x 元,每支钢笔y 元,可列方程组得⎩⎨⎧=+=+1617410025y x y x , 解之得⎩⎨⎧==1514y x答:每个文具盒14元,每支钢笔15元.(2)由题意知,y1关于x 的函数关系式为y1=14×90%x ,即y1=12.6x.由题意知,买钢笔10以下(含10支)没有优惠,故此时的函数关系式为y2=15x. 当买10支以上时,超出部分有优惠,故此时函数关系式为y2=15×10+15×80%(x -10) 即y2=12x+30(3)当y1< y2即12.6x<12x+30时,解得x<50; 当y1= y2即12.6x=12x+30时,解得x=50; 当y1> y2即12.6x>12x+30时,解得x>50.综上所述,当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱.14.为极大地满足人民生活的需求,丰富市场供应,我区农村温棚设施农业迅速发展,温棚种植面积在不断扩大.在耕地上培成一行一行的矩形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种.科学研究表明:在塑料温棚中分垄间隔套种高、矮不同的蔬菜和水果(同一种紧挨在一起种植不超过两垄),可增加它们的光合作用,提高单位面积的产量和经济效益.现有一个种植总面积为540m 2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:(1)若设草莓共种植了x 垄,通过计算说明共有几种种植方案?分别是哪几种? (2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少? 解:(1)根据题意西红柿种了(24-x )垄15x +30(24-x )≤540 解得 x ≥12 ∵x ≤14,且x 是正整数 ∴x =12,13,14共有三种种植方案,分别是:方案一:草莓种植12垄,西红柿种植12垄 方案二:草莓种植13垄,西红柿种植11垄 方案三:草莓种植14垄,西红柿种植10垄 (2)解法一:方案一获得的利润:12×50×1.6+12×160×1.1=3072(元)方案二获得的利润:13×50×1.6+11×160×1.1=2976(元) 方案三获得的利润:14×50×1.6+10×160×1.1=2880(元)由计算知,种植西红柿和草莓各12垄,获得的利润最大,最大利润是3072元解法二:若草莓种了x 垄,设种植草莓和西红柿共可获得利润y 元,则422496)24(1601.1506.1+-=-⨯+⨯=x x x y∵=k -96<0 ∴y 随x 的增大而减小 又∵12≤x ≤14,且x 是正整数 ∴当x =12时,最大y =3072(元)。

相关文档
最新文档