热处理变形与裂纹
金属热处理产生的组织缺陷
金属热处理产生的组织缺陷
金属热处理缺陷指在热处理生产过程中产生的使零件失去使用价值或不符合技术条件要求的各种补助,以及使热处理以后的后续工序工艺性能变坏或降低使用性能的热处理隐患。
最危险的缺陷为裂纹,其中最主要的是淬火裂纹,其次是加热裂纹、延迟裂纹、冷处理裂纹、回火裂纹、时效裂纹、磨削裂纹和电镀裂纹等。
导致淬火裂纹的原因:(1)原材料已有缺陷(冶金缺陷扩展成淬火裂纹);(2)原始组织不良(如钢中粗大组织或魏氏组织倾向大);(3)夹杂物;(4)淬火温度不当;(5)淬火时冷却不当;(6)机械加工缺陷;(7)不及时回火。
最常见的缺陷是变形,其中淬火变形占多数,产生的原因是相变和热应力。
残余应力、组织不合格、性能不合格、脆性及其他缺陷发生的频率和严重性较低。
内应力来源有两个方面:(1)冷却过程中零件表面与中心冷却速率不同、其体积收缩在表面与中心也不一样。
这种由于温度差而产生的体积收缩量不同所引起的内用力叫做“热应力”;(2)钢件在组织转变时比体积发生变化,如奥氏体转变为马氏体时比体积增大。
由于零件断面上各处转变的先后不同,其体积变化各处不同,由此引起额内应力称作“组织应力”。
第8章 金属高温下的变形与断裂
8
9
典型的蠕变曲线
金属蠕变过程用蠕变曲线来描述。 金属蠕变过程用蠕变曲线来描述。典型的蠕变曲线如图。 (1)Oa线段:是试样在t 温度下承受恒定拉应力σ时所产 线段: 线段 生的起始伸长率δq。 若应力超过金属在该温度下的屈服强度,则δq包括弹性伸长 弹性伸长 塑性伸长率两部分。 率和塑性伸长率 塑性伸长率 此应变还不算蠕变 应变还不算蠕变,而是由外载荷引起的一般变形过程。 应变还不算蠕变
20
(二)扩散蠕变
(二)扩散蠕变 扩散蠕变: 扩散蠕变:是在较高温度(约比温度(T/Tm)远超过0.5)下的 ( 一种蠕变变形机理。 它是在高温下大量原子和空位定向移动造成的 高温下大量原子和空位定向移动造成的。 高温下大量原子和空位定向移动造成的 在不受外力情况下,原子和空位的移动无方向性,因而宏观 上不显示塑性变形。 但当受拉应力σ作用时,在多晶体内产生不均匀的应力场 产生不均匀的应力场。 产生不均匀的应力场
17
刃位错攀移克服障碍的几种模型: 刃位错攀移克服障碍的几种模型: 可见,塞积在某种障碍前的位错通过热激活可以在新的滑移 面上运动(a),或与异号位错相遇而对消(b),或形成亚 晶界(c),或被晶界所吸收(d)。
18
当塞积群中某一个位错被激活而发生攀移时,位错源便可能 再次开动而放出一个位错,从而形成动态回复过程 动态回复过程。 动态回复过程 这一过程不断进行,蠕变得以不断发展。
7
本章介绍内容: 本章介绍内容: 阐述金属材料在高温长时载荷作用下的蠕变现象 蠕变现象。 蠕变现象 讨论蠕变变形和断裂的机理 蠕变变形和断裂的机理。 蠕变变形和断裂的机理 介绍高温力学性能指标及影响因素。 为正确选用高温金属材料和合理制定其热处理工艺提供基础 知识。
热处理常见缺陷分析与对策-学习总结
热处理常见缺陷分析与对策时 间:2020.10.28 学习人:吴俊 部 门:试验检测中心基本知识点:1、热处理缺陷直接影响产品质量、使用性能和安全。
2、热处理缺陷中最危险的是:裂纹。
有:淬火裂纹、延迟裂纹、冷处理裂纹、回火裂纹、时效裂纹、磨削裂纹和电镀裂纹。
其中生产中最常见的裂纹是纵火裂纹。
3、热处理缺陷中最常见的是:热处理变形,它有尺寸变化和形状畸变。
4、淬火获得马氏体组织,以保证硬度和耐磨性。
淬火后应进行回火,以消除残余应力,如W6Mo5Cr4V2应进行一次回火。
5、亚共析钢淬火加热温度: +(30-50)度。
6、高速钢应采用调质处理即淬火+高温回火。
7、回火工艺若控制不当则会产生回火裂纹。
8、热处理过热组织可通过多次正火或退火消除,严重过热组织则应采用高温变形和退火联合作用才能消除。
9、渗氮零件基本组织为回火索氏体。
其原始组织中若有大块F 或表面严重脱碳,则易出现针状组织。
10、有色金属最有效的强化手段是固溶处理和固溶处理+时效处理。
11、疲劳破坏有疲劳源区、裂纹疲劳扩展和瞬时断裂三个阶段。
12、高速钢的热组织为:共晶莱氏体,也有可能晶界会熔化。
13、应力腐蚀开裂的必要条件之一是:存在拉应力。
14、65Mn 钢第二类回火脆性温度区间为250-380。
钼能有效抑制第二类回火脆性。
15、热处理时发生的组织变化中,体积比容变化最大的是马氏体。
16、防止淬裂的工艺措施:等温淬火、分级淬火、水-油淬火和水-空气双液淬火。
17、高温合金热处理产生的特殊热处理缺陷有:晶间氧化、表面成分变化、腐蚀点、晶粒粗大及混合晶粒等。
18、感应加热淬火缺陷有:表层硬度低、硬化层深度不合格、变形大、残留应力大、尖角过热及软点与软带。
19、弹簧钢的组织状态一般为:T+M 。
20、氢脆条件:氢的存在、三项应力和对氢敏感的组织。
21、断裂有脆性断裂和韧性断裂。
绝大多数热处理裂纹属脆性断裂。
22、高碳钢淬火前应进行球化退火。
23、时效变形的主要影响因素有:化学成分、回火温度和时效温度。
影响齿轮热处理变形的几个重要因素
儿、J 续} f f 施
对 于 内 孔 磨 削 过 程 监 审 中 发
或y a n g k a i 1 9 8 0 @1 2 6 . c o m
皿口 2 ~ 0 i 7 0 3 2 4 :
5 0
造 参磊
…
F I 失 效 分 析
艺 , 产 品 采 州 串放 ,产 的 轴 向 跳 动较 好 ,渗碳 温 度 降 低 ,渗
业 。齿 轮 在 进 行 渗 碳 热 处 理 的过 程 中 ,常 遇 到 齿 轮 渗 碳淬 火 后平
产 品 结 构 示 意 , 图2 是 试 制 时 的 热 处 理 工 艺 , 图3 是 改 进 的 热 处
理 工 艺 。可 以 看 出 试 制 的 热 处 理
面扭 曲变形大 ,造成齿轮报废 ;
F : I 失 效 分 析
影响齿轮热处理变形的几个重要因素
一 陈正 国 。郝 丰林
我 公 司 是 一 家 专 业 生 产 汽 车
及 热 处 理 项 目进 行 检 测 ;合 格 后 按照一炉 ( 或 者 一 盘 )热 处 理 , 检 测 变 形 ;合 格 后 连 续 生 产 几炉 ( 或 几盘 ) ,热 处 理 合 格 、变 形 合 格 ,这 样 热 处 理 工 艺 就 可 固定
碳时 I ' H 】 增加 ,减 少热 处理 变形 。 这样 改 进 后 的 热处 理 : [艺 生 产
了5 年 多 , 产 品 的 寿 命 周 期 就 要
于轴 向 圆跳 动 进 行 严 格 控 制 。后 来 有一 个 月 出现 的 量 较 大 ,检 查 从箱 体 拆 下 来 的 齿 轮 进 行 检 测 齿 形齿 向 ,发现 齿形 齿 向 不符 合 图
到 了 ,客 户 反 馈 变速 器有 噪 声 ,
热处理工艺对高强度钢材料的断裂韧性和冷弯性的提升
热处理工艺对高强度钢材料的断裂韧性和冷弯性的提升高强度钢材料在现代工业中得到广泛应用,但其断裂韧性和冷弯性常常是制约其应用范围的关键因素。
热处理工艺是一种常用的方法,旨在通过改变材料的组织结构和性质,提高高强度钢材料的断裂韧性和冷弯性。
热处理工艺主要包括回火、正火、淬火和淬火回火等几个步骤。
回火是将钢材加热到一定温度,然后冷却到室温的工艺,其目的是降低材料的硬度和脆性,提高其韧性。
回火温度和时间的选择对钢材的性能提升至关重要,过低的回火温度和时间将无法改善钢材的断裂韧性,而过高的回火温度和时间则容易导致钢材的硬度下降。
因此,在进行回火处理时,需要合理选择回火温度和时间,以实现最佳的性能提升。
正火是将加热到高温然后迅速冷却的工艺,其目的是通过形成马氏体来增加材料的硬度。
正火后的材料通常具有较高的强度,但也相应地降低了材料的韧性。
因此,在正火的基础上进行适当的回火处理,可以在一定程度上提高钢材的韧性,使其更具断裂韧性和冷弯性。
淬火是将加热到高温的钢材迅速冷却到室温的工艺,通过形成马氏体来提高钢材的硬度和强度。
淬火后的钢材具有良好的断裂韧性和冷弯性,但同时也容易出现脆性断裂的问题。
为了解决脆性断裂的问题,可以在淬火的基础上进行回火处理,以获得更好的综合性能。
淬火回火是先进行淬火工艺,然后经过回火处理。
该工艺能够使钢材既具备较高的硬度和强度,又具备较好的断裂韧性和冷弯性。
通过选择适当的淬火温度和回火温度,能够实现最佳的性能提升,使高强度钢材达到最佳的断裂韧性和冷弯性。
总之,热处理工艺对提升高强度钢材料的断裂韧性和冷弯性起着重要的作用。
通过合理选择热处理工艺的参数,如回火温度和时间,淬火温度和回火温度等,能够充分发挥材料的潜力,提高其综合性能。
随着技术的不断发展,热处理工艺在高强度钢材料的应用中将发挥越来越重要的作用,为现代工业的发展提供更好的材料基础。
除了选择合适的热处理工艺参数外,还有其他一些技术和方法可以进一步提升高强度钢材料的断裂韧性和冷弯性。
如何解决淬火变形和淬火裂纹的问题
如何解决淬火变形和淬火裂纹的问题淬火的定义与目的将钢加热到临界点Ac3(亚共析钢)或Ac1 (过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界淬火速度的速度冷却,使过冷奥氏体转变为马氏体或下贝氏体组织的热处理工艺称为淬火。
淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或下贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。
也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能。
钢件在有物态变化的淬火介质中冷却时,其冷却过出一般分为以下三个阶段:蒸汽膜阶段、沸腾阶段、对流阶段。
钢的^透性淬硬性和淬透性是表征钢材接受淬火能力大小的两项性能指标,它们也是选材、用材的重要依据。
1.淬硬性与淬透性的概念淬硬性是钢在理想条件下进行淬火硬化所能达到的最高硬度的能力。
决定钢淬硬性高低的主要因索是钢的含碳量,更确切地说是淬火加热时固溶在奥氏体中的含碳量,含碳量越离,钢的淬硬性也就越高。
而钢中合金元素对淬硬性的影响不大,但对钢的淬透性却有重大影响。
淬透性是指在规定条件下,决定钢材淬硬深度和硬度分布的特性。
即钢淬火时得到淬硬层深度大小的能力,它是钢材固有的一种属性。
淬透性实际上反映了钢在淬火时,奥氏体转变为马氏体的容易程度。
它主要和钢的过冷奥氏体的稳定性有关,或者说与钢的临界淬火冷却速度有关。
还应指出:必须把钢的淬透性和钢件在具体淬火条件下的有效淬硬深度区分开来。
钢的淬透性是钢材本身所固有的属性,它只取决于其本身的内部因素,而与外部因素无关;而钢的有效淬硬深度除取决于钢材的淬透性外,还与所采用的冷却介质、工件尺寸等外部因索有关,例如在同样奥氏体化的条件下,同一种钢的淬透性是相同的,但是水淬比油淬的有效淬硬深度大,小件比大件的有效淬硬深度大,这决不能说水淬比油淬的淬透性高。
也不能说小件比大件的淬透性高。
铸造铝合金热处理质量缺陷及其消除与预防
铸造铝合金热处理质量缺陷及其消除与预防铝合金铸件热处理后常见的质量问题有:力学性能不合格、变形、裂纹、过烧等缺陷,对其产生原因和消除与预防方法分述如下。
〔1〕力学性能不合格通常表现为退火状态伸长率〔6 5〕偏低,淬火或时效处理后强度和伸长率不合格。
其形成的原因有多种:如退火温度偏低、保温时间缺乏,或冷却速度太快;淬火温度偏低、保温时间不够,或冷却速度太慢〔淬火介质温度过高〕;不完全人工时效和完全人工时效温度偏高,或保温时间偏长;合金的化学成分出现偏差等。
消除这种缺陷,可采取以下方法:再次退火,提高加热温度或延长保温时间;提高淬火温度或延长保温时间,降低淬火介质温度;如再次淬火,则要调整其后的时效温度和时间;如成分出现偏差,则要根据具体的偏差元素、偏差量,改变或调整重复热处理的工艺参数等。
〔2〕变形与翘曲通常在热处理后或随后的机械加工过程中,反映出铸件尺寸、形状的变化。
产生这种缺陷的原因是:加热升温速度或淬火冷却速度太快〔太剧烈〕;淬火温度太高;铸件的设计构造不合理〔如两连接壁的壁厚相差太大,框形构造中加强筋太薄或太细小〕;淬火时工件下水方向不当及装料方法不当等。
消除与预防的方法是:降低升温速度,提高淬火介质温度,或换成冷却速度稍慢的淬火介质,以防止合金产生剩余应力;在厚壁或薄壁部位涂敷涂料或用石棉纤维等隔热材料包覆薄壁部位;根据铸件构造、形状选择合理的下水方向或采用专用防变形的夹具;变形量不大的部位,则可在淬火后立即予以矫正。
〔3〕裂纹表现为淬火后的铸件外表用肉眼可以看到明显的裂纹,或通过荧光检查肉眼看不见的微细裂纹。
裂纹多曲折不直并呈暗灰色。
产生裂纹的原因是:加热速度太快,淬火时冷却太快〔淬火温度过高或淬火介质温度过低,或淬火介质冷却速度太快〕;铸件构造设计不合理〔两连接壁壁厚差太大,框形件中间的加强筋太薄或太细小〕;装炉方法不当或下水方向不对;炉温不均匀,使铸件温度不均匀等。
消除与预防的方法是:减慢升温速度或采取等温淬火工艺;提高淬火介质温度或换成冷却速度慢的淬火介质;在壁厚或薄壁部位涂敷涂料或在薄壁部位包覆石棉等隔热材料;采用专用防开裂的淬火夹具,并选择正确的下水方向。
变速箱齿轮的热处理常见缺陷及其防止措施
变速箱齿轮的热处理常见缺陷及其防止措施变速箱齿轮是汽车传动系统中的重要组成部分,其质量和性能直接影响到汽车的驾驶稳定性和可靠性。
热处理是提高变速箱齿轮性能的关键步骤之一,然而在热处理过程中常会出现一些缺陷,影响齿轮的质量。
本文将介绍变速箱齿轮热处理常见缺陷以及相应的防止措施。
一、热处理常见缺陷1. 软化现象:在热处理过程中,如果温度过高或保温时间过长,会导致齿轮表面过度软化,从而使齿轮硬度降低。
软化现象会导致齿轮的强度和耐磨性下降,影响其使用寿命。
2. 淬火裂纹:淬火过程中,如果齿轮表面温度不均匀或冷却速度过快,会产生裂纹。
这些裂纹会降低齿轮的强度和韧性,甚至引发断裂。
3. 淬火变形:淬火过程中,由于齿轮的不均匀加热或冷却不均匀,容易导致齿轮发生变形。
变形会影响齿轮的精度和配合性能,导致传动噪声和振动增加。
4. 残余应力:热处理后,齿轮内部会产生残余应力。
过大的残余应力会引起齿轮变形和裂纹,影响齿轮的使用寿命。
二、防止措施1. 控制热处理参数:合理控制热处理温度和保温时间,避免齿轮表面软化现象的发生。
同时,要保证齿轮表面温度均匀,避免淬火裂纹的产生。
2. 优化冷却方式:选择适当的淬火介质和冷却方式,确保齿轮冷却均匀,避免淬火变形的发生。
可以采用喷水冷却或油浸冷却等方式,以提高冷却效果。
3. 适当回火处理:在淬火后进行适当的回火处理,可以降低齿轮的硬度,减少残余应力的产生。
回火温度和时间的选择要根据齿轮的具体材料和要求进行调整。
4. 采用预应力技术:通过在热处理过程中施加预应力,可以减小齿轮的残余应力,提高其承载能力和抗疲劳性能。
5. 严格控制热处理工艺:热处理工艺参数的控制非常重要,要严格按照工艺规范进行操作,避免因操作不当而引起的缺陷。
6. 定期检测和评估:对热处理后的齿轮进行定期的质量检测和性能评估,及时发现并处理问题,确保齿轮的质量和性能稳定。
总结:变速箱齿轮的热处理是确保其质量和性能的关键环节,然而在热处理过程中常会出现软化现象、淬火裂纹、淬火变形和残余应力等缺陷。
锻件常见缺陷裂纹的原因
锻件常见缺陷裂纹的原因锻件常见缺陷裂纹的原因有很多,主要包括以下几个方面:1. 锻造前材料的缺陷:锻造前原材料中可能存在着各种缺陷,如夹杂物、气孔、夹渣等。
这些缺陷会在锻造过程中被拉长、扭曲或剪切,最终导致锻件出现裂纹。
2. 异常冷却方式:锻件在冷却过程中,如果冷却速度过快或不均匀,会导致锻件内部产生应力集中,从而引发裂纹。
尤其是在大尺寸、复杂形状的锻件中,由于其冷却速度不均匀,容易出现内部裂纹。
3. 冷、热变形不均匀:锻造过程中,如果材料的冷、热变形不均匀,会导致锻件内部应力分布不均匀,从而引发裂纹的产生。
尤其是在复杂形状、壁厚不一的锻件中,易出现材料贫化、过冷区和高应力区,容易引发裂纹。
4. 锻造温度过低或过高:锻造温度是影响锻件质量的关键因素之一。
如果温度过低,会导致材料的硬化能力不足,易发生塑性变形困难,从而引发裂纹;而温度过高,则会导致材料的焊接性能下降,也容易引发裂纹。
5. 压力不均匀:锻造过程中,如果锻压力不均匀,会使锻件中的应力分布不均匀,从而容易产生应力集中和裂纹。
尤其是在薄壁锻件中,容易出现锻压力不均匀的问题,导致裂纹的发生。
6. 锻件设计不合理:锻件的设计是影响锻件质量的重要因素之一。
如果锻件的形状、结构设计不合理,容易导致应力集中,从而引发裂纹的产生。
尤其是在复杂形状、尺寸大的锻件中,设计不合理会增加裂纹发生的概率。
7. 热处理不当:热处理是锻件制造过程中的关键环节,如果热处理不当,会导致锻件中的应力不释放或释放不充分,从而引发裂纹。
此外,热处理时的温度、时间等参数也需要合适,否则也可能导致裂纹的产生。
这些都是导致锻件常见缺陷裂纹的主要原因。
为了降低或避免裂纹的产生,需要从原材料选用、工艺控制、设备维护等方面做好控制和管理。
同时,制定合理的锻造工艺和热处理工艺,合理设计锻件形状和结构,对裂纹的产生起到有力的控制和避免作用。
还需要加强工作人员的培训和技能提升,提高他们的专业水平和质量意识,从而减少裂纹缺陷的发生,提高锻件的质量。
影响淬火热处理变形的原因
影响淬火热处理变形的原因淬火是将钢件加热到临界温度以上,保温适当的时间,然后以大于临界冷却速度冷却,获得马氏体或贝氏体组织的热处理工艺,它是强化钢材的最重要的热处理方法。
大量重要的机器零件及各类刀具、刃具、量具等都离不开淬火处理。
需要淬火的工件,经过加热后,便放到一定的淬火介质中快速冷却。
但冷却过快,工件的体积收缩及组织转变都很剧烈,从而不可避免地引起很大的内应力,容易造成工件变形及开裂。
由于淬火变形影响因素非常复杂,导致变形控制十分棘手。
而采用校直办法纠正变形或通过加大磨削加工余量,都会增加成本,因此研究钢件淬火热处理变形的影响因素,提出防止变形的措施是提高产品质量、延长零部件使用寿命、提高经济效益的重要课题。
零件热处理变形原因分析1 热应力引起的变形钢件在加热和冷却过程中,将发生热胀冷缩的体积变化以及因组织转变时新旧相比容差而产生的体积改变。
零件加热到淬火温度时,屈服强度明显降低,塑性则大大提高。
当应力超过屈服强度时,就会产生塑性变形,如果造成应力集中,并超过了材料的强度极限,就会使零件淬裂。
导热性很差的高碳合金钢,如合金模具钢Cr12MoV、高速钢W18Cr4V之类的工具钢,淬火加热温度很高,如不采用多次预热和缓慢加热,不但会造成零件变形,而且会导致零件开裂而报废。
此外,铸钢件和锻件毛坯,如果表层存在着一层脱碳层,由于表层和心部导热性能不同,在淬火加热较快时,也会产生热应力而引起变形。
冷却时由于温差大,热应力是造成零件变形的主要原因。
2 组织应力引起的变形体积的变化往往与加热和冷却有关,因为它和钢的膨胀系数相关。
比容的变化导致零件尺寸和形状的变化。
组织应力的产生起源于体积的收缩和膨胀,没有体积的膨胀,就没有组织转变的不等时性,也就没有组织应力引起的变形,导致热处理变形的内应力是热应力和组织应力共同作用形成的复合应力,热应力和组织应力综合作用的结果是不定的,可能因冷却条件及淬火温度的不同而产生不同情况,淬火应力是由急冷急热应力及由组织转变不同时所引起的应力综合构成的。
不锈钢焊缝热影响区出现裂纹的原因
不锈钢焊缝热影响区出现裂纹的原因引言:不锈钢作为一种常见的材料,广泛应用于许多领域,如航空航天、化工、建筑等。
在焊接过程中,常常会出现焊缝热影响区裂纹的问题,这给不锈钢的使用和维护带来了困扰。
本文将探讨不锈钢焊缝热影响区出现裂纹的原因,并提出相应的解决方法。
一、热影响区的定义和特点不锈钢焊缝热影响区是指在焊接过程中,焊缝周围的区域受到热影响而发生微结构和性能变化的区域。
热影响区具有以下特点:1. 高温:焊接过程中,热影响区温度较高,一般处于临界温度以上。
高温会引起不锈钢晶粒的长大和相变,从而导致热影响区的性能变化。
2. 快速冷却:焊接结束后,热影响区会经历快速冷却过程,冷却速度较快。
快速冷却会导致不锈钢晶粒的细化和残余应力的产生,进而引发裂纹的形成。
二、裂纹形成的原因1. 残余应力:焊接过程中,由于热量的不均匀分布和快速冷却,热影响区内会形成残余应力。
残余应力是裂纹形成的主要原因之一。
当残余应力超过材料的强度极限时,就会导致裂纹的形成。
2. 晶粒长大和相变:高温会引起不锈钢晶粒的长大和相变,这会导致晶界的断裂和裂纹的生成。
尤其是在焊接过程中,由于热量集中和焊接速度较快,晶粒的长大和相变更加明显,容易引发裂纹。
3. 焊接变形:焊接过程中,由于热膨胀和热收缩的影响,不锈钢焊缝周围会发生变形。
焊接变形会导致局部应力集中,从而增加了裂纹的形成概率。
三、预防和解决方法为了预防和解决不锈钢焊缝热影响区裂纹的问题,可以采取以下方法:1. 控制焊接参数:合理控制焊接电流、电压、焊接速度等参数,避免热输入过大或过小,减少热影响区的温度梯度和冷却速度,从而降低裂纹的形成概率。
2. 采用适合的焊接工艺:选择合适的焊接工艺,如预热、后热处理等,可以改变热影响区的组织和性能,减少裂纹的产生。
预热可以提高材料的塑性和韧性,后热处理可以消除残余应力。
3. 使用适当的填充材料:选择合适的填充材料,可以改变热影响区的组织和性能,提高焊缝的抗裂性能。
热处理缺陷裂纹产生原因的分析
如钒、 铌、 钛等有细化奥氏体晶粒的作用, 减少钢的过热倾向, 因而减少了淬裂倾向。 1. 2 原始组织的影响 淬火前钢件的原始组织状态和原始组织对淬裂的影响很 大。 片状珠光体, 在加热温度偏高时易引起奥氏体晶粒长大, 容 易过热, 所以对原始组织为片状珠光体的钢件, 必须严格控制 淬火加热温度和保温时间。 否则, 将因钢件过热导致淬火开裂。 具有球状珠光体原始组织的钢件, 在淬火加热时, 因为球状碳 化物比较稳定, 在向奥氏体转变的过程中, 碳化物的溶解, 往往 残留少量的碳化物,这些残留碳化物阻碍了奥氏体晶粒长大, 与片状珠光体相比, 淬火可以获得较细的马氏体, 因此原始组 织为均匀球状珠光体的钢对减少裂纹来说, 是淬火前较理想的 组织状态。 在生产中, 常常产生重复淬火开裂现象, 这是由于二次淬 火前未进行中间正火或中间退火所致, 未经退火而直接二次淬 火, 组织中没有阻碍奥氏体晶粒长大的碳化物存在, 奥氏体晶 粒极易显著长大, 引起过热。因此在二次淬火中进行一次中间 退火, 同时也可通过退火来达到完全消除内应力的目的。 1. 3 零件尺寸和结构的影响 零件的截面尺寸过小和过大都不易淬裂。 截面尺寸小的工 件淬火时, 心部很易淬硬, 而且心部和表面的马氏体形成在时 间上几乎是同时进行的, 组织应力小, 不容易淬裂。 截面尺寸过 大的零件, 特别是用淬透性较低的钢制造时, 淬火时不仅心部 不能硬化, 甚至连表层也得不到马氏体, 其内应力主要是热应 力, 不易出现淬火裂纹。因此, 对于每一种钢制的零件, 在一定 的淬火介质下, 存在着一个临界淬裂直径, 也就是说在临界直 径的零件具有较大的淬裂倾向性。 出现淬裂的危险尺寸可能因 钢的化学成分而波动、 加热温度和方法不同而发生变化, 不可 千篇一律。零件的尖角、 棱角、 等几何形状因素, 使工件局部冷 却速度的急剧变化, 增大了淬火的残余应力, 从而增大了淬火 的开裂倾向。 零件截面不均匀性的增加, 淬裂倾向也加大, 零件 薄的部位在淬火时先发生马氏体转变, 随后, 当厚的部位发生 马氏体转变时, 体积膨胀, 使薄的部位承受拉应力, 同时在薄厚 交界处产生应力集中, 因而常出现淬火裂纹。 1. 4 工艺因素的影响 工艺因素 ( 主要是淬火加热温度, 保温时间, 冷却方式等因 素) 对淬火裂纹倾向影响较大。热处理包括加热、 保温、 冷却等
热裂纹、再热裂纹、冷裂纹、层状撕裂,这些你都了解吗?
癖接裂纹就其本质来分,可分为热裂纹、再热裂纹'冷裂纹、层状撕裂等.下面就各杵裂奴的成因、特点和防治办法进行具体的阐述。
Ol热裂纹在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。
根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同.目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类.(1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si黑高)和单相奥氏体钢、银基合金以及某些话合金焊逢中.这种裂纹是在焊逢结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂.防治措施为:在冶金因素方面,适当调整焊逢金属成分,缩短照性温度区的范围控制焊逢中硫、磷、碳等有害杂质的含量;细化焊逢金属一次晶粒,即适当加入M。
、V、Ti.Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。
(2)近缱区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。
它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。
这一种裂纹的防治措施与结晶裂纹基本上是一致的.特别是在冶金方面,尽可能降低硫、磷、畦、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度.(3)多边化裂纹是在形成多边化的过程中,由于高温时的芨性很低造成的.这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等,02再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高混合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。
热处理缺陷
热处理缺陷一、淬火裂纹(一)淬火裂纹的类型和特征1. 纵向裂纹:沿工件纵向分布,裂纹较深而长,一条或几条。
产生原因:完全淬透,温度升高,裂纹倾向增大,尺寸较长而形状复杂的工件易产生纵向裂纹2. 横向裂纹:裂纹垂直于轴向,断口形貌由中心向四周发散,易长生于尺寸较大的工件,由于内外层马氏体相变不同时,相变应力较大产生3. 表面裂纹:呈网状,深度较浅,高频或火焰淬火时,加热未达到奥氏体化温度就快冷火加热到临界温度以上后冷速慢4. 剥离裂纹:表面淬火工件,表面淬硬层剥落或化学热处理后沿扩散层出现的表面剥落称玻璃裂纹。
裂纹平行于工件表面,潜伏在表皮下。
5. 淬火裂纹微观特征:抛光态下,曲折刚直,多沿晶扩展,也有穿晶、混晶扩展,裂纹两侧无脱碳,断口上无氧化色,呈脆性沿晶或混晶断裂。
(二)淬火裂纹形成机理钢中奥氏体向马氏体转变时体积增大所产生的应力导致淬火裂纹。
当钢淬火冷却时,在首先达到M s点温度的工件外层率先形成马氏体,发生体积膨胀,产生应力,外表面的马氏体膨胀几乎不受限制。
继续冷却当靠近中心部位的材料到达M s点温度时,新生的马氏体膨胀收到早已形成的外层马氏体的限制,产生使表面张开的内应力。
当马氏体大量形成所产生的内应力大于零件外层淬火状态的马氏体强度时,便出现开裂。
(三)影响淬火裂纹的因素1. 钢的化学成分:含碳、铬、钼、磷高易引起裂纹2. 材料缺陷:发纹、气泡、碳化物偏析、非金属夹杂、过热、折叠、微裂纹等3. 钢件形状结构:截面急剧变化的工件,有尖角、缺口、孔洞、槽口、冲压标记、刻痕、加工刀痕等应力集中部位易发生。
4. 淬火前原始组织:球状珠光体比片状珠光体不易产生淬火裂纹,因球状珠光体淬成马氏体时其比容变化小、应力小5. 淬火温度淬火温度高易产生裂纹,奥氏体晶粒粗大,淬透性提高,淬裂倾向大。
淬火温度与淬火裂纹发生率之间有三种情况:1)对于小型零件,淬火温度高,淬火裂纹发生率高2)对于大型零件,淬火温度高,淬火裂纹发生率低3)对于中型零件,裂纹发生有个转变温度6. 冷却速度冷速快,使表面产生压应力,内层为张应力,这种应力不易产生裂纹,但冷到马氏体转变点以下时产生相变应力,表面为张应力,易产生淬火裂纹。
齿圈热处理变形
齿圈热处理变形
齿圈热处理变形是一种常见的金属加工技术,它可以通过加热和冷却的方式来改变金属的物理和化学性质,从而实现对齿圈的变形和加工。
这种技术在机械制造、汽车制造、航空航天等领域都有广泛的应用。
齿圈热处理变形的基本原理是利用金属的热膨胀和收缩特性,通过加热和冷却的方式来改变金属的形状和尺寸。
在加热过程中,金属会因为温度的升高而膨胀,这时可以利用外力来对其进行变形。
而在冷却过程中,金属会因为温度的降低而收缩,这时可以利用外力来对其进行形状的调整。
齿圈热处理变形的具体步骤包括加热、变形和冷却三个阶段。
首先,需要将齿圈放入加热炉中进行加热,使其达到一定的温度。
然后,在加热的过程中,可以利用外力对齿圈进行变形,使其达到所需的形状和尺寸。
最后,将齿圈从加热炉中取出,进行冷却处理,使其保持所需的形状和尺寸。
齿圈热处理变形的优点在于可以实现对金属材料的精确加工和形状调整,同时还可以提高金属材料的强度和硬度。
此外,这种技术还可以减少金属材料的变形和裂纹等缺陷,提高其使用寿命和可靠性。
齿圈热处理变形是一种非常重要的金属加工技术,它可以实现对金属材料的精确加工和形状调整,提高其强度和硬度,减少变形和裂
纹等缺陷,从而提高其使用寿命和可靠性。
在未来的发展中,这种技术将会得到更广泛的应用和推广。
热处理工艺性及其影响因素
热处理工艺性及其影响因素热处理工艺性是指热处理过程获得预期结果的难易程度。
热处理工艺性通常是指淬透性、淬硬性、过热和过烧敏感性、耐回火性和回火脆性等。
1、淬透性淬透性指钢接受淬火的能力,即在淬火时所能达到的淬硬层深度。
沿垂直于硬化表面的方向进行测量,当硬度值下降到规定的数值时,这一点距离硬化表面的深度就是淬硬层深度。
它是衡量钢材淬透性好坏的重要依据,通常以含50%(体积分数)马氏体的组织来测量,但工具钢或轴承钢等某些钢种除外,是以含90%或95%马氏体的组织来测量。
淬透性主要取决于其临界冷却速度的大小,而临界冷却速度则主要取决于过冷奥氏体的稳定性,影响奥氏体的稳定性主要是:(1)化学成分的影响主要是碳元素的影响,当C%小于0.77%时,随着奥氏体中碳浓度的提高,显著降低临界冷却速度,C曲线右移,钢的淬透性增大;当C%大于0.77%时,钢的冷却速度反而升高,C曲线左移,淬透性下降。
其次是合金元素的影响,除钴外,绝大多数合金元素溶入奥氏体后,均使C曲线右移,降低临界冷却速度,从而提高钢的淬透性。
(2)奥氏体晶粒大小的影响奥氏体的实际晶粒度对钢的淬透性有较大的影响,粗大的奥氏体晶粒能使C曲线右移,降低了钢的临界冷却速度。
但晶粒粗大将增大钢的变形、开裂倾向和降低韧性。
(3)奥氏体均匀程度的影响在相同冷度条件下,奥氏体成分越均匀,珠光体的形核率就越低,转变的孕育期增长,C曲线右移,临界冷却速度减慢,钢的淬透性越高。
(4)钢的原始组织的影响钢的原始组织的粗细和分布对奥氏体的成分将有重大影响。
(5)部分元素,例如Mn,Si等元素对提高淬透性能起到一定作用,但同时也会对钢材带来其他不利的影响。
通常以钢的淬火临界直径表示淬透性。
2、淬硬性淬硬性指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。
主要取决于马氏体中的含碳量,碳含量越高,则钢的淬硬性越高。
其他合金元素的影响比较小。
3、过热敏感性与过烧敏感性过热敏感性是指钢淬火加热时,奥氏体晶粒急剧长大的敏感性。
影响热处理硬度的因素及防止措施
影响热处理硬度的因素及防止措施摘要:热处理可以提高钢的性能和工艺性能,通过适当的热处理,充分发挥材料的潜力,减轻零件的重量,提高产品质量,延长使用寿命。
COCC生产的液压支架产品,必须通过热处理工艺对构件、连接件和结构部件进行组装,以改善工件的结构和性能,而经过热处理后的工件的机械性能主要有强度、塑性、硬度、韧性、疲劳极限等。
机械性能不仅是机械零件设计、选择、验收和识别的主要依据,也是产品加工过程中质量控制的重要参数。
在此基础上,研究了影响热处理硬度的因素和预防措施,以供参考。
关键词:热处理硬度;影响因素;防止措施引言在近几年,热处理设备在规模上有了很大发展,在新工艺、新技术方面的研究,都有了很大进步,但是,我国热处理设备还有一部分处于耗能高、效率低的模式中。
热处理的技术水平和热处理设备依旧没有达到国际的先进水平,为改善我国热处理技术的发展和进步,比较有效的方法就是借鉴国外的先进技术、设备和管理的经验,逐步改造热处理设备,改善热处理设备管理方法,推进热处理专业化的生产发展。
一、金属材料的类型金属在工业中起着不可或缺的作用。
随着科学技术的进步,金属材料的加工质量也在提高。
粘度,导电性和导热性是金属材料的独特特征,其中钢材作为代表性的金属结构材料受到高度重视。
金属材料作为社会发展的物质基础,离不开人类文明的延续。
金属材料一直是现代社会发展的最重要因素之一。
金属材料在制造业和日常生活中广泛应用,可以在各个领域发挥积极作用。
它主要分为黑色金属、粗金属和特种金属材料三种。
铁基黑色金属,包括不锈钢,合金结构钢和工业纯铁,在工业生产中广泛使用。
非金属材料包括稀有金属和合金,如金属和铝合金,它们通常具有高强度和硬度。
特种金属材料包括功能金属材料和结构金属材料。
一些特殊的金属材料还具有高质量的特性,如隐形性,超导性,耐磨性等。
这为现代社会的发展提供了坚实的保障。
二、金属材料热处理硬度的影响因素(一)淬火冷却介质及冷却方式淬火冷却介质的选择不当或冷却介质温度过高,零件在淬火冷却时速度未超过临界冷却速度,冷却不充分。
热处理裂纹及其预防
热处理裂纹及其预防热处理裂纹的分类:⾮淬⽕裂纹——表⾯龟裂、表⾯边缘T型裂纹;淬⽕裂纹——纵裂(组织应⼒型)、弧裂(局部拉应⼒型)、⼤型⼯件淬⽕裂纹(纵断、横断)、边廓表⾯裂纹(局部拉应⼒型)、脱裂、第⼆类应⼒裂纹。
纵裂⑴纵裂的宏观形态沿细长零件表⾯启裂,在沿纵向扩展的同时,⼜以垂直表⾯的⽅向向截⾯内部扩展,形成外宽内尖的楔形裂⼝。
纵裂的扩展总是终⽌于截⾯的中⼼处附近,外观上看纵向单条裂纹和横截⾯上的楔形裂⼝,是纵裂的基本宏观形态。
⑵纵裂的形成条件淬透是纵裂形成的必要条件。
⼩⼯件淬透后的应⼒状态属于组织应⼒型残余应⼒,⼀般情况下组织应⼒的切向应⼒显著⼤于轴向应⼒。
因此形成组织应⼒型残余应⼒是纵裂的应⼒条件。
⑶纵裂预防措施①采⽤较缓慢的冷却介质,如油等。
也可⽤⽔、油双液淬⽕,但⽔、油双液淬⽕对于⼀些⼩件⽆实际使⽤价值。
②⼯件加热避免过热,出炉后可适当预冷,淬⽕后及时回⽕。
③加强技术管理技术培训,切实对有关⼯艺操作⼈员进⾏淬裂理论教育。
弧裂⑴弧裂形成的条件应同时具备整体快速冷却、不能淬透、具有弧裂的⼏何敏感部位的结构形式。
⑵⼏何敏感部位的结构形式有孔洞、凹⾯和碗⾯、截⾯尺⼨突变、轴肩。
⑶⼏何敏感部位的缓冷效应具有上述结构形式在淬⽕冷却过程中的主要作⽤是显著降低那⾥的实际冷却速度,产⽣缓冷效应。
⑷⼏何敏感部位处的组织⼏何敏感部位缓冷效应,要么使局部未淬硬产⽣淬⽕屈⽒体并处在马⽒体的包围之中(在⾦相的宏观或微观上可看出);要么淬硬层被局部明显减薄。
在热处理⽣产中产⽣的弧裂中,前⼀种占绝⼤多数。
⑸弧裂的形成扩展⽅式及典型宏观形态弧裂⾸先在⼏何敏感部位的表⾯上形成,并由此沿曲(弧)⾯先向截⾯内部定向扩展,严重时可穿越零件的其余截⾯,再向零件的外表⾯延伸,直到在那⾥呈弧形露出;严重时常使相应部位沿弧裂脱落(或经敲击即可脱落)。
开裂⾯通常为形状各异的曲(弧)⾯,最典型的是从⼏个不同的⽅向观察时都呈弧形,是判定弧裂的重要依据。
钢热处理十种组织缺陷分析及对策
钢热处理十种组织缺陷分析及对策钢的力学性能、物理性能和化学性能决定钢的热处理组织。
正常组织赋予钢优异性能;组织缺陷恶化钢的性能,降低产品质量和使用寿命,甚至发生事故。
钢热处理主要有十种组织缺陷.分析原因,采取对第,有显著技术经济效益。
一、奥氏体晶粒粗大钢奥氏体晶粒定为13级,一级最粗,13 级最细。
晶粒愈细,强韧性愈佳,淬火得到隐晶马氏体;晶粒禽粗,强韧性愈差、脆性大,淬火得到粗马氏体。
实践证明.奥氏体形成后,随着温度升高和长时间保温,奥氏体晶粒急剧长大当加热温度一定时,快速加热奥氏体晶粒细小;慢速加热,奥氏体晶粒粗大奥氏体晶粒随钢中含C、Mn元素增加而增大,随钢中含W、Mo、V元素增加而细化。
钢最终淬火前未经预处理,奥氏体晶粒易粗化,淬火得到粗马氏体,强韧性低,脆性大。
晶粒粗化,降低晶粒之闻结合力,力学性能恶化。
对策——合理选择加热温度和保温时间。
加热温度过低,起始晶粒大,相转变缓慢;加热温度过高,起始晶粒细,长大倾向大,得到粗大奥氏体晶粒。
加热温度应按钢的临界温度确定,保温时间接加热设备确定。
合理选择加热速度,根据过热度对奥氏体形核率和长大速率影响规律,采用快速加热和瞬时加热方法细化奥氏体晶粒,如铅浴加热、盐浴加热、高频加热、循环加热、激光加热等。
淬火前预处理细化奥氏体晶粒,如正火、退火、调质处理等。
选用细晶粒钢和严格控温等措施。
二、残余奥氏体量过多钢件淬火后过冷奥氏体已转变成淬火马氏体.未完全转变者为残余奥氏体。
残余奥氏体在回火过程可部分转变成马氏体,但因材料与工艺不同,残余奥氏体可多可少保留在使用状态中。
保留少量残余奥氏体有利增加强韧性、松驰残余应力、延缓裂纹扩展、减少变形等。
但过量残余奥氏体将降低钢的硬度、耐磨性、疲劳强度、屈服强度、弹性极限和引起组织不稳定,导致使用时发生尺寸变化等不利因素。
园此,残余奥氏体含量不宜过多。
高合金钢中有大量降低Ms点的台金元素,会增加淬火钢残余奥氏体量,如高速钢淬火后残余奥氏体量高达50%以上;过高的淬火加热温度会使钢中C和合金元素大量溶入高温奥氏体中,提高了台金化奥氏体稳定性,不易发生马氏体相变,保留在淬火组织中,增加残余奥氏体量;等温淬火较普通淬火残余奥氏体量多;淬火冷却速度慢,残余奥氏体量多等。
高温合金铸造中的热裂纹问题研究
高温合金铸造中的热裂纹问题研究高温合金铸造是一种特殊的铸造工艺,主要应用于航空、石化、核工业、船舶等领域。
高温合金材料具有耐高温、耐腐蚀、高强度、高刚性等优良的机械性能,但在制造过程中容易出现热裂纹问题。
1. 高温合金铸造的热裂纹问题高温合金材料由于熔点较高、凝固温度范围大,使得其凝固过程受到一系列复杂的物理化学变化的影响,易导致出现内部应力过大、裂纹、缩孔等缺陷。
其中,热裂纹是高温合金铸造过程中最为常见、影响最大的缺陷之一。
其主要原因可归纳为以下几点:(1)由于高温合金材料的熔点较高,使得其在凝固过程中,温度梯度、凝固速率大,导致凝固形态不规则,内部应力集中,易引起裂纹。
(2)高温合金材料的铸造成分复杂,易出现长大的铸造组织,表面和内部的应力不均匀,也会引起热裂纹。
(3)高温合金材料的热处理过程中,温度控制较为困难,热处理时间也比较长,容易发生变形、内部应力累积,也是热裂纹的主要因素之一。
2. 热裂纹问题的研究方法针对高温合金铸造中的热裂纹问题,目前主要采用以下几种研究方法:(1)试验方法:通过真实环境下的铸造试验,收集热裂纹的数据,分析热裂纹发生的规律,找出热裂纹的形成机理和影响因素。
(2)数值模拟方法:利用有限元分析等数值计算方法,建立高温合金铸造的数学模型,通过计算分析出热裂纹的形成机理和影响因素。
(3)微观组织研究方法:通过显微镜、扫描电镜等手段,观察高温合金材料的微观组织结构,分析组织结构和裂纹形态之间的关系,为热裂纹问题的解决提供理论依据。
3. 热裂纹问题的解决措施为了解决高温合金铸造中的热裂纹问题,目前采用的主要措施包括:(1)优化铸造工艺:针对高温合金材料的特殊性质,通过优化熔炼、浇注、冷却等工艺参数,降低温度梯度,减少内部应力,从而降低热裂纹的发生概率。
(2)优化合金设计:通过设计合适的铸造组织结构、调整化学成分、添加合适的合金元素等手段,提高高温合金的耐热、耐腐蚀、韧性等性能,从根本上解决热裂纹问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热处理变形与裂纹工件热处理后常产生变形和开裂,其结果不是报废,也要花大量工时进行修整。
工件变形和开裂是由于在冷、热加工中产生的应力所引起的。
当应力超过弹性极限时,工件产生变形;应力大于强度极限时,工件产生裂纹。
热处理中热应力和组织应力是怎样产生的只有不断认识这个问题,才能采用各种工艺方法来减小和近控制这两种应力。
在加热和冷却时,由于工件热胀冷缩而产生的热应力和组织转变产生的组织应力是造成变形和开裂的主要原因,而原材料缺陷、工件结构形状等因素也促使裂纹的产生和发展。
后面主要叙述热处理操作中的变形和开裂产生原因及一般防止方法,也讨论原材料质量、结构形状等对变形和开裂的影响。
一、钢的缺陷类型1、缩孔:钢锭和铸件在最后凝固过程中,由于体积的收缩,得不到钢液填充,心部形成管状、喇叭状或分散的孔洞,称为缩孔。
缩孔将显著降低钢的机械性能。
2、气泡:钢锭在凝固过程中会析出大量的气体,有一部分残留在处于塑性状态的金属中,形成了气孔,称为气泡。
这种内壁光滑的孔洞,在轧制过程中沿轧制方向延伸,在钢材横截面的酸浸试样上则是圆形的,也叫针孔和小孔眼。
气泡将影响钢的机械性能,减小金属的截面,在热处理中有扩大纹的倾向。
3、疏松:钢锭和铸件在凝固过程中,因部分的液体最后凝固和放出气体,形成许多细小孔隙而造成钢的一种不致密现象,称为疏松。
疏松将降低钢的机械性能,影响机械加工的光洁度。
4、偏析:钢中由于某些因素的影响,而形成的化学成份不均匀现象,称为偏析。
如碳化物偏析是钢在凝固过程中,合金元素分别与碳元素结合,形成了碳化物。
碳化物(共晶碳化物)是一种非常坚硬的脆性物质,它的颗粒大小和形状不同,以网状、带状或堆集不均匀地分布于钢的基体中。
根据碳化物颗粒大小、分布情况、几何形状、数量多少将它分为八级。
一级的颗粒最小,分布最均匀且无方向性。
二级其次,八级最差。
碳化物偏析严重将显著降低钢的机械性能。
这种又常常出现于铸造状态的合金具钢和高速钢中。
对热处理工艺影响很大,如果有大块碳化物堆集或严重带状分布,聚集处含碳量较高,当较高温度淬火时,工件容易因过热而产生裂纹。
但为了避免产生裂纹,而降低淬火温度,结果又会使硬度和红硬性降低。
碳化物偏析严重将直接影响产品质量,降低使用寿命或过早报废。
5、非金属夹杂物:钢在冶炼、浇铸和冷凝等过程中,渗杂有不溶解的非金属元素的化合物,如氧化物、氮化物、硫化物和硅酸盐等、总称为非金属夹杂物。
钢中非金属夹杂物存在将破坏基体金属的连续性,影响钢的机械性能、物理性能、化学性能及工艺性能。
在热处理操作中降低塑性和强度而且夹杂物处易形成裂纹。
在使用过程中也容易造成局部应力集中,降低工件使用寿命。
夹杂物的存在还降低钢的耐腐蚀性能。
6、白点:钢经热加工后,在纵向断口上,发现有细小的裂纹,其形状为圆形或椭圆形的,呈银亮晶状斑点。
在横向热酸宏观试样上呈细长的发裂,显微观察裂缝穿过晶粒,裂缝附近不发现塑性变形,裂缝处无氧化与脱碳现象。
这种缺陷称为白点。
白点将显著降低横向塑性与韧性,在热处理中易形成开裂。
7、氧化与脱碳:钢铁在空气或氧化物气氛中加热时,表面形成一层松脆的氧化皮,称为氧化。
表面的碳被“燃烧”使表面的碳分减少或完全失去。
这种现象称为脱碳。
钢的表面脱碳将降低表层机械性能。
对需淬火的钢得不到所需的硬度,尤其工具钢和轴承钢热处理时会形成淬火软点。
高速工具钢会降低红硬性。
氮化零件氮化前表面脱碳,使氮在表层具有很大的饱和度,形成脆性。
8、过热和过烧:钢在加热时,超过正常加热温度或保时间过长,使奥氏体晶粒过于粗大的现象称为过热。
这将影响钢的机械化性能和工艺性能。
锻造时过热是形成裂纹的原因之一。
淬火过热后具有粗大的针状马氏体组织,韧性较低,也往往使淬火零件的内应力增大,产生变形与开裂。
过热还使钢出现严重的氧化与脱碳。
钢的加热温度接近于熔化温度,沿晶界处产生熔化或氧化现象,称为过烧。
过烧后钢的强度很低,脆性很大。
在锻造或热处理时必然会裂开,断口失去金属光泽。
钢的过烧是无法用热处理或其它方法补救。
9、脆性:金属材料,由于某些原因受力突然断裂,其韧性(有时是塑性)强烈下降,其它机械性能下降不大或不变(有的性能甚至反而上升如硬度),在断裂的过程中没有明显的变形特征,这种现象称为脆性。
脆性将显著地降低钢的冲击韧性与塑性,产生一次断裂。
10、疲劳:金属长期受不同形式的交变负荷作用时,在工作应力显著低于抗拉强度的应力下发生断裂的现象称为疲劳。
二、热处理基本应力:热处理基本的内应力可分为:工件因内外温差所引起的内应力称为“热应力”;工件内外组织不同时转变,或同一截面存在着组织不同造成比容差异所引起的内应力称为“组织应力”。
热处理后工件中的残留应力,就是在急冷过程中由于上述应力叠加作用的结果,所以又叫“残余应力”。
1、热应力:将钢件加热到组织转变点(A1)以下,随即急冷到室温,工件中的内应力是“热应力“。
热应力在工件上有三个方向情况,沿直径方向心部为拉应力,表面为零,一般不予考虑。
沿心轴方向和切线方向表面都是压应力,心部也同是拉应力,特别是心部轴向应力很大。
常见的大型轴类零件如轧辊等,因轴向残余热应力最大值是在工件半径的中心部位附近;再加上心部往往存在着气孔、夹杂、白点、锻造裂纹等缺陷,因些,在巨大轴向拉应力的作用下,成为断裂的起点,最终发展为横向断裂。
这是热应力对大工件造成不利的一面;但在急冷时热应力使工件表面产生压应力,对提高一般形状简单的小轴类零件抗疲劳能力是有利的。
急冷热应力有二个特点:一是使工件表面产生压应力,心部产生拉应力。
二是大型轴类零件心部轴向拉应力特别大。
2、组织应力:将奥氏体稳定性很高的铁镍合金试样自900℃缓冷至马氏体转变点(Ms)点330℃以上时,热应力可以认为在缓慢冷却并通过塑性变形等过程松驰掉。
当试样在330℃冰水中淬火,表面首先转变为马氏体,而心部仍然是奥氏体。
因马氏体比容大于奥氏体的比容。
所以表面先膨胀,而未发生组织转变的心部却阻碍其膨胀,这时表面承受心部的反抗作用是压应力而心部受拉应力。
在这两种比容不同所产生应力的作用下,引起心部不均匀塑性变形。
变形情况是工件体积在最大线度方向伸长工件表面趋向凹形,尖角突出。
心部继续冷却时,奥氏体也开始转变为马氏体要发生体积膨胀,因此,心部承受压应力,表面为拉应力。
这种应力一直残留到室温又叫残余组织应力。
组织应力的特点是工件表面受拉应力,心部受压应力。
而且靠近表面层切向拉应力大于轴向拉应力。
此外,工件在淬火时,由于钢的淬透性以及冷却速度不同往往不可能完全淬透,淬火后表面获得马氏体,心部仍然是珠光体型,因在同一截面上出现不同组织,所以比容有差别,这种由比容所引起的内应力也是组织应力。
其特点是在不同组织交界处附近产生很大的内应力,比容大的淬透层与心部交界处外产生压应力,界内产生拉应力。
从以上所讨论的情况来看,在急冷过程中,组织应力与热应力的分布恰好相反。
一般钢件加热到相变温度以下如奥氏体不锈钢、高锰钢无相变工件加热到淬火温度,急冷时都只能产生热应力;而对于急冷时有相变的工件则是组织应力和热应力同时产生。
所以一般工件淬火后产生的残余应力,是由热应力和组织上应力综合作用的结果。
还由于原材料化学成份和冶金质量差异,工件结构尺寸和形状的不同,冷却速度的快慢等等,影响因素远比上述分析复杂,困此在解决实际问题时,要做全面的分析,找出是热应力还是组织应力起主导作用,来判别变形趋向和裂纹产生的可能性。
通过各种措施以控制变形和防止裂纹的产生。
三、淬火变形产生的原因及防止方法工件因热处理引起的变形,可分为:形状变化——弯曲和翘曲。
体积变化——胀大和收缩。
由组织转变而引起的体积变化是热处理中不可避免的。
1、弯曲变形:(1)影响弯曲变形的因素:工件加热不均、冷却不当、形状特殊、冷加工时残余应力过大以及加热过程中工件自重等因素,都对产生弯曲变形有一定影响。
在热应力和组织应力的作用下,上述因素更促使变形的产生。
现结合生产中遇到的情况加以说明:(2)实例:(a)、加热不均造成变形:见附图“龙门剪刀片变形示意图,材料为GCr15,要求硬度为HRC58~60。
因为工件较长,在燃油炉中水平放置加热,淬火后发现侧弯3~5mm,校直困难。
分析原因:在炉中加热时靠炉底这个侧面加热缓慢,温度稍低,上部加热充分,温度较高,又因工作时翻动不够,使上下两面因温度差别而膨胀不一致淬油前就产生一定弯曲。
另外淬火后加热充那一面,奥氏体化均匀,溶入碳量较多,使上下两面马氏体比容差大,更加大了弯曲变形量。
所以在淬火时加热要均匀,保温要充分。
(b)、冷却浸入方式不对引起弯曲:见附图为棒状或平板形工件,不是垂直浸入冷却剂,造成先下水那一面先冷却收缩(热应力作用),当继续冷却时组织转变发生膨胀,上部冷却收缩成图b所示,工件再继续冷却时,上部也发生组织转变,弯曲只能得到稍有恢复。
(c)、截面形状不对称造成弯曲:工件截面不对称,淬入冷却剂后会产生截面各处冷却快慢的差别造成弯曲变形。
(d)、由于工件自重引起加热时弯曲:工件在炉中放置的方法不对,或者因为炉底的凹凸不平,以及工件的捆扎方法不正确,都会因自重而在加热时产生弯曲变形。
(e)、其它变形:高速钢、CR12等合金钢工件,在作分级淬火时,如分级温度较高,出炉后冷却不当,也会引起工件变形。
如高速钢薄片刀,一次500度分级淬火,出热浴后平放在地上,结果靠地面一边凸起,分析原因:从热浴中取出后,工件内部组织仍为过冷奥氏体,当平放于地面时,下面靠地面因先冷使组织先发生转变引起体积膨胀,引起变形。
如果出浴后悬挂空冷不注意,靠鼓风机一侧也会产生类似的情况。
又如几个工件捆扎或紧靠在一起时也会发生弯曲变形。
如两零件紧靠浸入冷却剂中冷却时因两内侧面冷却不良工件两面冷却速度不同便产生向外侧凸起弯曲变形。
靠边外侧硬度高,内侧硬度低。
(f)、冷加工残余应力引起热处理变形:如工件在热处理前存在着加工残余应力,则在热处理中加工残余应力会使工件发生变形:强烈磨削加工之后使工件在热处理时产生较大变形,在车削时产生的塑性变形造成热处理时有更大变形。
解决的方法是淬火前工件应进行550~600度低温退火以消除加工残余应力。
(3)、减少弯曲变形的措施:弯曲变形虽然可以校直,但增加了工作量,有时还会发生废品。
减少变形常用方法如下:(A)、正确选材和合理设计:对于形状复杂截面悬殊的零件,最好采用合金结构钢用油淬,以减少变形。
复杂的模具、量具可采用微变形钢用分级或等温淬火来减少变形。
在设计零件时不仅考虑承受外力和结构的需要,而且要考虑到热处理时变形和开裂,因此尽量采用对称截面。
(B)、正确选择浸入方式:正确的浸入方式主要考虑通过调整冷却顺序达到均匀冷却和防止汽泡产生目的。
(C)、采用加强筋:在预知淬火后的变形方向时,可在易变形方向上增加补强筋防止变形。