3-遥感图像预处理
遥感图像预处理操作流程
遥感图像预处理操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!遥感图像预处理操作流程详解遥感图像预处理是遥感数据分析的重要环节,它对提高图像质量、增强特征信息、减少噪声以及提高后续分析的精度具有关键作用。
遥感导论课程报告遥感图像一般预处理流程ppt课件
几何校正模型
主要有: 仿射变换(RST) 多项式 局部三角网(Delaunay Triangulation)
图像配准
经常在实际数据生产中会遇到,同一地区的图像 或者相邻地区有重叠区的图像,由于几何校正误 差的原因,重叠区的相同地物不能重叠,这种情 况对图像的融合、镶嵌、动态监测等应用带来很 大的影响。遇到这种情况,可以利用重叠区的匹 配点和相应的计算模型进行精确配准。
地球曲率及空气折射,地形影响等
几何校正:纠正系统和非系统因素引起的几 何畸变。
背景知识——卫星姿态引起的图 像变形
背景知识——动态扫描图像的变 形
几何校正模型
主要有: 仿射变换(RST) 多项式 局部三角网(Delaunay Triangulation)
几何粗校正
几何粗校正:这种校正是针对引起几何畸变的原 因进行的,地面接收站在提供给用户资料前,已 按常规处理方案与图像同时接收到的有关运行姿 态、传感器性能指标、大气状态、太阳高度角对 该幅图像几何畸变进行了校正。
Modis传感器参数
校 正 前
校 正 后
在google earth上显示校正后 的结果
几何精校正
基于地面控制点,利用几何校正模型,构建图像 与地面坐标/与图像之间的几何关系完成几何校 正,当控制点选择源是图像(有地理坐标)时候, 又属于图像配准范畴。
多项式模型 x=a0+a1x+a2Y+a3x2+a4xy+a5y2+…… y=b0+b1x+b2Y+b3x2+b4xy+b5y2+…… 最少控制点个数 N=(n+1)*(n+2)/2 误差计算 RMS Eerror=sqrt((x’-x)2+(y’-y)2)
遥感图像处理
遥感图像处理1. 简介遥感图像处理是指利用遥感技术获取的卫星或无人机等遥感图像数据进行处理和分析的过程。
遥感图像处理可以应用于多个领域,包括地理信息系统(GIS)、环境监测、农业、城市规划等。
本文将介绍遥感图像处理的基本概念、常用方法和应用案例。
2. 遥感图像处理的基本概念遥感图像处理涉及多个概念和技术,以下是一些常用的基本概念:2.1 遥感图像遥感图像是通过遥感设备获取的图像数据,可以是卫星图像、航空摄影图像或无人机图像等。
遥感图像通常包含多个波段,每个波段代表不同的光谱信息。
2.2 遥感图像预处理遥感图像预处理是指对原始遥感图像数据进行校正、矫正和增强的过程。
预处理的目的是提高图像质量、减少噪声和伪影,并使得图像更适合进行后续处理和分析。
2.3 遥感图像分类遥感图像分类是指将遥感图像根据像素的特征或属性进行划分和分类的过程。
常见的遥感图像分类方法包括基于统计学的分类、基于机器学习的分类和基于深度学习的分类。
2.4 遥感图像变化检测遥感图像变化检测是指对多个时间点的遥感图像进行比较,以检测地物、景观或环境发生的变化。
遥感图像变化检测可以用于监测自然灾害、环境变化等。
2.5 遥感图像分析遥感图像分析是指对遥感图像进行解译和分析,提取图像中的有用信息和特征。
遥感图像分析可以用于土地利用/覆盖分类、植被指数计算等应用。
3. 遥感图像处理的常用方法遥感图像处理常用的方法包括图像增强、图像配准、图像融合和目标检测等。
3.1 图像增强图像增强是指通过对图像进行滤波、对比度拉伸、直方图均衡化等处理,以增强图像的可视化效果和信息提取能力。
常用的图像增强方法包括直方图均衡化、滤波(如中值滤波、高斯滤波)和锐化等。
3.2 图像配准图像配准是指将两幅或多幅遥感图像在坐标系、旋转、尺度和形变等方面进行校正和匹配的过程。
常用的图像配准方法包括特征点匹配、地物匹配和基于控制点的配准方法。
3.3 图像融合图像融合是指将多幅具有不同光谱或分辨率的遥感图像融合成一幅多光谱和高分辨率的遥感图像。
遥感图像处理的基本步骤与技巧
遥感图像处理的基本步骤与技巧遥感技术是指利用航天器、飞机、卫星等高空平台获得的遥感图像进行信息提取和数据分析的过程。
随着科技的不断进步和应用范围的扩大,遥感图像处理已经成为许多领域中的重要工具。
本文将介绍遥感图像处理的基本步骤与技巧,以帮助读者更好地理解和应用这一技术。
一、图像预处理遥感图像预处理是遥感图像处理的第一步,旨在通过去除噪声、辐射校正和几何校正等处理,使图像质量更高,方便后续处理。
其中,去除噪声主要是采用滤波算法,如中值滤波、均值滤波等。
辐射校正主要用于将图像的辐射能量转换为表观反射率,以消除云、阴影等因素的影响。
几何校正是通过对图像进行几何变换,将其与地理坐标系统对齐,以便于后续的地理信息提取。
二、特征提取特征提取是遥感图像处理的核心环节,目的是从遥感图像中提取出具有代表性和区分度的特征信息。
常用的特征包括光谱特征、纹理特征、形状特征等。
光谱特征是指根据图像像素的光谱反射率或辐射能量,提取出不同波段的特征。
纹理特征是指从图像中提取出地物的纹理信息,包括纹理方向、纹理密度等。
形状特征是指从图像中提取出地物的形状信息,包括面积、周长等。
三、分类与识别分类与识别是遥感图像处理中的重要任务,目的是将地物按照其属性进行分类和识别。
常见的分类方法包括监督分类和无监督分类。
监督分类是指根据已知的样本类别信息,通过训练分类器将图像中的地物分到不同的类别中。
无监督分类是指根据图像像素之间的相似性将其分为一定数量的类别。
分类结果可以用于制作地图、监测资源变化等。
四、变化检测变化检测是遥感图像处理中的一项重要任务,主要应用于监测和分析地表物体的变化。
遥感图像在不同时间获取的变化信息可以帮助我们了解自然和人类活动对地表的影响。
常见的变化检测方法包括像素级变化检测和对象级变化检测。
像素级变化检测是指比较两幅图像对应像素之间的差异,以确定变化的位置和类型。
对象级变化检测是指先将图像分割成不同的对象,然后比较不同时间获取的对象之间的差异。
《遥感图像预处理》课件
本课件将介绍遥感图像预处理的定义、步骤、常见方法以及应用领域。同时, 我们将探讨遥感图像预处理的优点、挑战以及未来发展趋势。
遥感图像预处理的定义
遥感图像预处理涉及对获取的遥感图像进行校正、增强和去噪等操作,以提高图像质量和可用性。
遥感图像预处理的步骤
1 图像获取
通过卫星或无人机等手段获得遥感图像。
准确性要求
遥感图像预处理要求高精度的 校正和处理结果,对算法的准 确性有很高要求。
遥感图像预处理的未来发展趋势
1
AI技术应用
人工智能技术的发展将为遥感图像预处
多源数据整合
2
理提供更高效、精确的处理方法。
将多源遥感数据进行整合和融合,提升
信息获取的质量和多样性。
3
自动化处理
自动化算法的应用将进一步提高遥感图 像预处理的效率和可靠性。
2 几何校正
对图像进行几何校正,消除地物形变和畸变。
3 辐射校正
对图像进行辐射校正,将不同波段的图像转 换为表观反射率。
4 增强和去噪
对图像进行增强和去噪处理,以提高视觉效 果和数据质量。
遥感图像预处理的常见方法
直方图均衡化
通过重新分配像素值,增强图 像对比度。
滤波处理
利用滤波器去除图像中的噪声。
遥感图像预处理的优点
1 高效性
遥感图像预处理可以大幅提高图像处理的效率和速度。
2 信息获取
遥感图像预处理可以获取大范围、多时相的地表信息。
3 非侵入性
通过遥感图像预处理,可以获取地表信息而无需实地调查。
遥感图像预处理的挑战
复杂性
遥感图像预处理面临多波段、 高分辨率等复杂图像数据处理。
遥感图像处理的基本步骤和技巧
遥感图像处理的基本步骤和技巧遥感图像处理是利用遥感技术获取的遥感图像数据进行分析、处理和解释的过程。
遥感图像处理技术在环境监测、资源管理、农业和城市规划等领域具有广泛的应用。
本文将介绍遥感图像处理的基本步骤和技巧。
一、图像预处理图像预处理是遥感图像处理的第一步,目的是改善图像质量,消除噪声和其他不必要的干扰。
常见的图像预处理技术包括辐射校正、大气校正和几何纠正。
辐射校正是将原始图像中的数字数值转换为辐射亮度值,以消除由于不同仪器和观测条件引起的辐射差异。
大气校正则是通过对图像进行大气光校正,消除大气吸收和散射效应,获得更准确的地物辐射亮度信息。
几何纠正是校正图像中的几何畸变,使其与实际地面特征对应。
二、图像增强图像增强是通过增加图像的对比度和清晰度,突出感兴趣的地物信息。
常见的图像增强技术包括直方图均衡化、滤波和波段变换。
直方图均衡化是通过调整图像像素的亮度分布,增强图像对比度。
滤波是通过应用各种滤波器来去除图像中的噪声和模糊。
波段变换是将图像从一种波段转换到另一种波段,以提取不同地物特征。
三、特征提取特征提取是从图像中提取与感兴趣地物相关的信息。
常见的特征提取技术包括阈值分割、边缘检测和纹理分析。
阈值分割是将图像分为不同的区域,使每个区域具有相似的亮度或颜色特征。
边缘检测是寻找图像中的边界线,以辅助划分地物边界。
纹理分析是通过提取图像的纹理特征来描述地物的空间结构。
四、分类与识别分类与识别是将特定地物进行分类和识别的过程。
常见的分类与识别技术包括监督分类、无监督分类和目标检测。
监督分类是通过使用已知类别的训练样本,建立分类器对图像进行分类。
无监督分类是根据图像像素的统计特征将图像自动分为不同的类别。
目标检测是在图像中检测和识别特定的目标,例如建筑物、道路等。
五、图像解译与分析图像解译与分析是对处理后的遥感图像进行解释和分析的过程。
通过对图像分析可以获取地表特征的数量和质量信息,用于环境变化监测、资源管理和规划决策。
遥感图像处理的基本流程与技巧
遥感图像处理的基本流程与技巧近年来,随着遥感技术的快速发展,遥感图像处理在各个领域的应用越来越广泛。
遥感图像处理的基本流程和技巧对于正确解读和使用遥感图像至关重要。
本文将探讨遥感图像处理的基本流程与技巧,帮助读者更好地理解和应用这一工具。
一、遥感图像处理的基本流程1. 图像获取与预处理遥感图像处理的第一步是获取图像数据。
常见的获取方式包括卫星、飞机、无人机等。
在获取到图像数据后,还需要进行预处理,包括辐射校正、大气校正、几何校正等,以保证图像的质量和精度。
2. 影像增强影像增强是提高图像质量,使图像更能被人眼感知和解读的过程。
常见的影像增强技术包括直方图均衡化、滤波、图像融合等。
通过适当的增强技术,可以突出图像中的特定目标或信息,提高图像的可读性和解读性。
3. 特征提取与分类特征提取是从图像中提取有意义的信息或特征的过程。
常见的特征包括颜色、纹理、形状等。
在特征提取的基础上,可以进行图像分类,将图像中的不同对象或地物进行分类和识别。
常用的分类方法包括支持向量机、人工神经网络等。
4. 图像分割与目标提取图像分割是将图像划分成若干个具有独立特征的区域的过程。
图像分割既可以基于像素级的颜色和灰度信息,也可以基于纹理和形状等更高级的特征。
通过图像分割,可以提取出感兴趣的目标或地物。
5. 变化检测与监测变化检测是利用多期遥感图像对地物、景观进行比较和分析,以检测和监测地表非凡的变化信息。
变化检测可以应用于城市规划、环境监测等方面。
常见的变化检测方法包括面向对象的变化检测、像素级变化检测等。
二、遥感图像处理的技巧1. 选择合适的图像处理软件选择一款功能强大且适合自己需要的图像处理软件至关重要。
常见的遥感图像处理软件有ENVI、ERDAS、ArcGIS等。
不同的软件具有不同的工具和功能,选择合适的软件可以提高工作效率和图像处理效果。
2. 多源数据融合多源数据融合是将多个遥感图像融合成一幅图像的过程。
通过融合不同传感器或不同时间的图像,可以提高图像质量和信息量。
图像处理遥感图像预处理
图像处理遥感图像预处理实验二遥感图像预处理一、背景知识一幅遥感数据拿到手后,首先要做的常常是赋予遥感图像的地理坐标系统。
方法有地理校正和地理配准两种。
地理校正是在遥感图像上选取控制点,然后赋予控制点的真实坐标达到校正图像和获取地理参考的目的。
地理配准是选取一个有相同覆盖范围的已有坐标系统和假定没有变形的图像或图形为参考系,达到校正原始图像的目的。
第二种方法使用的最多。
图像校正后,由于关心的区域可能只是图像的一部分获分布于几个图像,这时要对图像进行裁减和镶嵌。
二、实验目的1. 了解遥感数据预处理的内容、步骤,需要准备的材料。
2. 能使用常用的预处理内容三、实验内容(2学时)1. 遥感图像校正2. 图像投影变换;3. 图像分幅剪裁;4. 图像拼接处理;四、实验准备(1) 软件ERDAS IMAGINE Professional 8.5版本以上。
(2) 系统样例数据。
需要校正的Landsat TM图像:tmAtlanta.img作为地理参考的校正过的SPOT图像:panAtlanta.img用于拼接处理的图像wasia1_mss.img、wasia2_mss.img五、实验步骤、方法1. 遥感图像校正(1) 分别打开两个视图窗口,在其中分别打开图像tmAtlanta.img和panAtlanta.img。
(2) 选择Image Geometric Correction打开校正选项窗口。
(3) 选择From Viewer,点击Select Viewer,然后在panAtlanta.img视图窗口上单击。
采用影像—影像的校正模式。
校正算法采用多项式方法。
(4) 确定多项式系数为2。
(5) 点选Set Projection from GCP Tool,设置投影参照类型。
(6) 选择Existing Viewer,即以现有视图中的图像投影为配准依据。
(7) 确定后,打开校正对话框布局。
完成控制点的采集后,实行对图像进行校正。
遥感图像处理技术的基本步骤
遥感图像处理技术的基本步骤遥感图像处理技术是利用卫星、飞机等遥感平台获取的图像数据进行分析和处理的一项重要技术。
它可以帮助我们了解地表现象和环境变化,为资源利用、灾害监测和环境保护提供有力的支持。
本文将介绍遥感图像处理技术的基本步骤,并探讨其在不同领域中的应用。
一、图像预处理图像预处理是遥感图像处理的第一步,目的是对原始图像进行校正和增强,以减少噪声、消除系统误差并提高图像质量。
常见的图像预处理方法包括大气校正、辐射校正、几何校正和噪声过滤等。
大气校正可以消除大气传输对图像的影响,使图像更加真实可靠;辐射校正可以将原始图像的辐射值转换为反射率或亮度温度,以便进一步分析;几何校正可以校正图像的几何畸变,使图像与真实地理位置对应准确;噪声过滤可以降低图像的噪声水平,提高图像的清晰度和解译能力。
二、图像数据解译图像数据解译是遥感图像处理的核心环节,它通过对图像的特征提取和分类识别,从图像中提取出我们感兴趣的信息。
特征提取可以通过计算图像的纹理特征、形状特征和光谱特征等,来描述和区分地物的不同属性。
分类识别则是将提取出的特征与已知地物类别进行对比,将图像中的像素进行分类。
常见的分类方法有监督分类和非监督分类。
监督分类需要提供一些训练样本,训练分类器进行分类;非监督分类则是根据图像的统计特性,自动将图像进行分类。
三、图像信息提取图像信息提取是遥感图像处理的下一步,它通过进一步分析图像数据,提取出我们所需要的地理、生态或环境信息。
常见的图像信息提取包括土地利用/覆盖分类、植被指数计算、水体边界提取和灾害监测等。
土地利用/覆盖分类可以对图像中的地物进行识别,如农田、森林、草地等;植被指数计算可以评估植被的生长状况和覆盖度,如归一化植被指数(NDVI);水体边界提取可以通过分析图像的光谱信息,识别出水体的边界和分布;灾害监测可以通过对图像的变化分析,及时发现和评估地质灾害的风险。
四、图像结果分析图像结果分析是遥感图像处理的最后一步,它主要是对处理后的图像结果进行定量或定性分析,验证处理方法的有效性和结果的可靠性。
61-实验三遥感图像预处理(波段合成、裁剪与拼接)
实验三遥感图像预处理(波段合成、裁剪与拼接)一、 实验目的通过实验了解整个图像的预处理过程,从而加深对遥感图像计算机处理的内容及概念的理解。
二、 实验内容1.自定义坐标系2.波段合成(图像融合)3.图像镶嵌(图像拼接)4.图像裁剪三、 实验数据1. TM-30m.img2. bldr_sp.img3. Mosaic1.img4. Mosaic2.img5. bhtmsat.img6. can_tmr.img7. qb_boulder_msi.img8. qb_boulder_pan.img四、 实验操作原理及步骤遥感图像预处理主要包括图像几何校正、图像融合、图像镶嵌、图像裁剪等过程,其处理顺序一般如下图所示。
图 1一般图像预处理流程1.自定义坐标系一般国外商业软件坐标系都分为标准坐标系和自定义坐标系两种。
我国情况较为特殊,往往需要自定义坐标系。
所以,在ENVI第一次使用时,需要对系统自定义北京54坐标系西安80坐标系。
1.1添加参考椭球体找到ENVI系统自定义坐标文件夹—C:\Program Files\ITT\IDL708\products\envi46\map_proj。
根据每台电脑安装的路径以及版本不同而略有不同。
以记事本形式打开ellipse.txt,将“Krasovsky,6378245.0,6356863.0”和“IAG-75,6378140.0,6356755.3”加入文本末端。
(这里主要是为了修改克拉索夫斯基因音译而产生的错误,以便让其他软件识别;另外中间的逗号必须是英文半角。
)1.2添加基准面以记事本格式打开datum.txt,将“Beijing-54, Krasovsky, -12, -113, -41”和“Xi'an-80,IAG-75,0,0,0”加入文本末端。
1.3定义坐标定义完椭球参数和基准面后就可以在ENVI中以我们定义的投影参数新建一个投影信息(Customize Map Projections),在编辑栏里分别定义投影类型、投影基准面、中央子午线、缩放系数等,最后添加为新的投影信息并保存。
遥感图像处理知识点总结
遥感图像处理知识点总结一、遥感概述遥感是利用飞机、卫星等远距传感器获取地球表面信息的科学技术。
遥感图像处理就是处理遥感数据,进行信息提取的过程.二、遥感图像处理流程遥感图像处理的基本流程包括:数据获取、预处理、图像增强、特征提取和分类等环节。
1. 数据获取数据获取是遥感图像处理的第一步,可以通过卫星、飞机等遥感平台获得各种类型的遥感数据。
2. 预处理预处理是遥感图像处理的重要步骤,主要包括大气校正、几何校正、辐射定标等过程,目的是消除数据中的噪声和误差,保证数据质量。
3. 图像增强图像增强是指通过一系列的处理方法,提高遥感图像的视觉效果,突出图像中的信息,以便进行后续的分析和应用。
常见的图像增强方法包括直方图均衡化、滤波、拉普拉斯变换等。
4. 特征提取特征提取是指从原始遥感图像中提取各种地物和地物信息,常见的特征包括形状、纹理、光谱等。
5. 分类分类是将遥感图像中的像素划分到不同的类别中,如水体、植被、建筑等。
常用的分类方法包括最大似然分类、支持向量机(SVM)、人工神经网络等。
6. 应用遥感图像处理的最终目的是为了实现一定的应用目标,如土地利用/覆盖分类、资源调查、环境监测等。
三、遥感图像处理相关算法1. 监督分类监督分类是指在给定训练样本的情况下,采用某种分类算法识别遥感影像中的地物类型。
常用的监督分类算法有最大似然分类、支持向量机(SVM)、随机森林等。
2. 无监督分类无监督分类是指在不需要人工干预的情况下,利用图像自身的统计特性将像元分成若干类别。
常用的无监督分类算法有K均值聚类、ISODATA聚类等。
3. 特征提取特征提取是为了描述地物的形态、光谱、纹理等特性,从而区分不同地物。
常用的特征提取方法有主成分分析(PCA)、线性判别分析(LDA)、小波变换等。
4. 联合处理联合处理是指将多幅遥感影像进行融合,或者将遥感影像与其他数据进行联合处理,从而获取更多的地物信息。
常用的联合处理方法包括影像融合、多源数据融合等。
3-遥感图像预处理
Coordinate System)
(Projected Coordinate System)
3.3自定义坐标系——大地坐标
•
在地面上建立一系列相连接的三角形,量取一段 精确的距离作为起算边,在这个边的两端点,采 用天文观测的方法确定其点位(经度、纬度和方 位角),用精密测角仪器测定各三角形的角值, 根据起算边的边长和点位,就可以推算出其他各 点的坐标。这样推算出的坐标,称为大地坐标。
椭球体参数文件 基准面参数文件 坐标系参数文件
ENVI/IDL
本节收获
• 了地理投影的基本原理,大地坐标的概念
• 了解北京54、西安80坐标系的由来及其参数 • 掌握了在ENVI下如何自定义坐标系,包括添加椭
球体、基准面和定义坐标系
• 在ENVI下自定义了北京54
19度带(6度分带)的 坐标系,以便后续专题的使用
133enviidl35spotpan正射纠正比例尺变化?在影像的铅直方向也有同样的影响房子的宽度是恒定的8m而在影像上的体现却各有不同这说明各处的比例尺是变化的enviidl35spotpan正射纠正传感器姿态方位要进行三角测量就要给定软件计算或估计出的空间传感器的位置和方位123enviidl35spotpan正射纠正推帚扫描透视中心传感器的系统误差?数据是沿扫描线获取的每条扫描线都有自己的透视中心?每条扫描线的传感器位置和方向都不同?多项式的纠正只能针对分辨率比较低的卫星影像而对于高分辨率的卫星影像我们需要严格的物理模型如dim原数据或者是有理函数多项式进行模拟卫星参数如rpc参数
像重采样生成成一副高分辨率多光谱影像遥感的 图像处理技术,使得处理后的影像既有较高的空 间分辨率,又具有多光谱特征。
• 图像融合除了要求融合图像精确配准外,融合方
遥感图像处理方法与技巧
遥感图像处理方法与技巧引言:遥感图像处理是指通过感知、获取地球表面信息的遥感数据,利用计算机技术和图像处理算法对遥感图像进行处理、分析、提取等操作的过程。
这一技术的发展不仅在地理信息系统领域有着广泛的应用,也在农业、环境保护、城市规划等诸多领域发挥着重要作用。
本文将介绍几种常见的遥感图像处理方法和技巧。
一、图像预处理技术在进行进一步的图像处理前,通常需要对原始遥感图像进行预处理,以消除图像中的噪声、增强图像的特定信息等。
图像预处理的主要方法有:1.空间滤波:通过利用滤波器,对图像进行平滑或锐化处理。
常用的滤波器包括均值滤波器、中值滤波器和高斯滤波器。
2.辐射校正:由于不同地表物体对电磁波的反射率不同,遥感图像中的亮度值会受到光照和传感器等因素的影响。
辐射校正可消除这些因素对图像的影响,使得不同遥感图像具有一致的亮度分布。
3.几何校正:由于遥感图像通常受到地球自转、地形起伏等因素的影响,导致图像中的地理信息不准确。
几何校正可以修正图像的位置和形状,使其与真实地理坐标一致。
二、图像分类与分割方法图像分类与分割是遥感图像处理的核心环节,旨在将遥感图像中的不同地物或地物类别进行识别和分离。
常见的分类与分割方法有:1.基于像元的分类:将遥感图像中的每个像元(图像的最小单位)分配给不同的类别。
这种方法基于每个像元的统计特征进行分类,如亮度、颜色和纹理等。
2.分层分类:将遥感图像中的类别按照层级进行分类,从粗粒度到细粒度逐步区分不同地物。
3.聚类分割:通过对遥感图像中的像元进行聚类,将具有相似特征的像元划分到同一类别。
常用的聚类算法有K-means和基于区域的分水岭算法。
4.基于边缘的分割:提取遥感图像中物体的边缘信息,并利用边缘信息对图像进行分割。
这种方法适用于物体之间边缘明显的场景。
三、变化检测技术变化检测是指通过比较不同时期的遥感图像,寻找并分析地表上发生的变化。
变化检测技术在自然灾害监测、城市规划等方面有着广泛的应用。
遥感图像处理技术的基础入门教程
遥感图像处理技术的基础入门教程遥感图像处理技术已经成为当今科学和技术领域中重要的一项技术。
它运用航天器获取的遥感图像数据,通过一系列图像处理手段,提取和分析地球表面的信息。
这些信息广泛应用于地球科学、农业、城市规划、环境保护和资源调查等领域。
本篇文章将为您介绍遥感图像处理技术的基础知识和常用方法。
一、遥感图像基础知识1. 遥感图像的概念:遥感图像是通过航天器或飞机等遥感平台获取的地球表面的图像,能够提供地表物体的空间、光谱和时间信息。
2. 遥感图像的分类:按照波段数量,可以将遥感图像分为单波段图像和多波段图像。
单波段图像只有一个波段的信息,如黑白相片;多波段图像包含多个波段的信息,如红、绿、蓝三个波段的彩色图像。
3. 遥感图像的分辨率:分辨率是指遥感图像中最小可分辨的地表物体的大小,分辨率越高,能够分辨的物体越小。
分辨率可以分为空间分辨率、光谱分辨率和时间分辨率。
二、遥感图像处理方法1. 图像预处理:图像预处理是指在进行后续处理前对原始遥感图像进行一系列处理,以去除噪声、增强图像质量和减少信息损失。
常用的预处理方法包括图像几何校正、辐射定标、大气校正等。
2. 图像增强:图像增强是通过改变图像的亮度、对比度和色彩来改善图像的视觉效果,使地物特征更明显。
常用的图像增强方法包括直方图均衡化、线性增强和非线性增强等。
3. 图像分类:图像分类是将遥感图像中的像元分成不同的类别或地物类型。
常用的分类方法包括基于像素的分类、基于对象的分类和基于深度学习的分类。
分类结果可以用来制作土地利用/覆盖图、植被类型图等。
4. 特征提取:特征提取是通过数学、统计或机器学习等方法,从遥感图像中提取与目标物体或地理现象相关的量化特征。
常用的特征提取方法包括纹理特征提取、形状特征提取和光谱特征提取。
5. 变化检测:变化检测是通过比较不同时刻的遥感图像,发现地表发生的变化,如城市扩张、森林覆盖变化等。
常用的变化检测方法包括基于像元的变化检测、基于对象的变化检测和基于时间序列的变化检测。
如何进行遥感图像的处理与分析
如何进行遥感图像的处理与分析遥感技术是指通过卫星、飞机等远程手段获取地球表面信息的一种技术,它具有广泛的应用领域,包括环境监测、农业、城市规划等。
遥感图像的处理和分析是遥感技术的重要组成部分,它能够帮助我们从海量的遥感数据中提取有效信息,为决策提供科学依据。
本文将介绍如何进行遥感图像的处理与分析。
一、遥感图像的预处理遥感图像的预处理是图像处理的第一步,它主要包括图像校正、辐射校正和大气校正等。
图像校正是将图像转换为常用的坐标系统,如UTM坐标系或地理坐标系,以便进行后续的分析。
辐射校正是将图像的数字值转换为表面反射率,以消除光照条件的影响。
大气校正是消除大气散射对图像的影响,使得图像更加准确和可靠。
二、遥感图像的特征提取特征提取是从遥感图像中提取与研究对象有关的信息特征。
常用的特征包括光谱特征、纹理特征和形状特征等。
光谱特征是指通过对不同波段的遥感图像进行统计和分析,来获取地物的光谱信息。
纹理特征是指通过分析图像中的纹理变化来获取地物的纹理特征。
形状特征是指通过对地物的形状进行测量和分析,来获取地物的形状信息。
这些特征能够帮助我们对地物进行分类和识别。
三、遥感图像的分类与识别遥感图像的分类与识别是将图像中的像素或区域划分成不同的类别,并将其与标志样本进行比较,以实现遥感图像的自动解译和分析。
常用的分类方法包括有监督分类和无监督分类。
有监督分类依赖于标志样本,通过训练分类器来实现图像的分类。
无监督分类则是根据图像的统计特征对图像进行自动聚类。
分类和识别的准确性往往取决于样本的选择和分类器的性能。
四、遥感图像的变化检测遥感图像的变化检测是指通过对多期遥感图像进行比较和分析,来获取地物变化的信息。
常用的变化检测方法包括像元级变化检测和目标级变化检测。
像元级变化检测通过对图像的像素进行比较,来获取地物的变化信息。
目标级变化检测则是通过对地物的目标进行分析,来获取地物变化的信息。
变化检测能够帮助我们了解地表环境的动态变化和变化原因。
遥感图像处理中的常见方法与工具
遥感图像处理中的常见方法与工具遥感图像处理是利用遥感技术获取的遥感图像进行分析和处理的过程。
遥感技术通过获取地球表面的电磁能谱反射、发射、散射等信息,能够提供关于地表的大量数据。
为了从这些图像数据中提取出有用的信息,需要借助一些常见的方法和工具。
一、图像预处理在进行遥感图像处理之前,常常需要对原始图像进行预处理。
预处理的目的是将原始图像中的噪声、失真等干扰因素去除,以提高图像处理的准确性和可信度。
常见的图像预处理方法包括去噪、增强、几何校正等。
去噪方法可以采用滤波器,如均值滤波器、中值滤波器等。
图像增强可以通过直方图均衡、对比度增强等方法进行。
几何校正主要是为了去除图像中的几何形变,例如通过地面控制点来进行地理坐标的校正。
二、图像分类图像分类是将遥感图像中的像素归类到不同的地物类型或类别中的过程。
图像分类的目的是为了提取出图像中的地物信息,以便进行地理信息系统(GIS)分析和资源管理。
常见的图像分类方法包括像素级分类、目标识别和无监督分类等。
像素级分类通过将每个像素点分配到特定的类别中,从而获得整幅图像中不同类别的空间分布。
目标识别则是通过提取目标在图像中的特征,利用模式识别算法进行分类。
无监督分类则是根据图像中像素的统计信息来进行分类,不需要事先提供训练样本。
三、特征提取特征提取是从遥感图像中提取出具有代表性的特征,以进行进一步的分析和应用。
常见的特征包括颜色、纹理、形状等。
颜色特征可以通过提取图像中像素的颜色直方图、色调、饱和度等信息来进行。
纹理特征则是描述图像中不同地物的纹理属性,例如纹理的方向、粗糙度等。
形状特征则是描述地物的几何形状,例如地块的面积、周长等。
特征提取的目的是为了对地物进行更精细的分类和分析。
四、风险评估遥感图像处理还可以应用于风险评估领域。
例如,通过分析遥感图像中的植被指数、土地利用变化等信息,可以对自然灾害(如洪水、干旱等)的风险进行评估。
同时,还可以通过对城市遥感图像中的建筑物密度、道路交通流量等信息进行分析,评估城市规划与发展中的风险,以促进城市可持续发展。
《遥感图像预处理》课件
通过线性或非线性变换来调整像素强度范围,增强图像的对比度。
对比度拉伸
通过增强高频分量来增强图像的边缘和细节信息。
锐化滤波
通过将图像的低频和高频分量分离并分别处理,增强图像的对比度和细节信息。
同态滤波
02
01
03
04
05
遥感图像的融合处理
06
图像融合是将多源信道所采集到的关于同一目标的图像,通过一定的图像处理和信息融合技术,提取各自信道的信息并最终复合在一起,形成高质量、全面、准确的图像。
THANKS
几何校正的方法
遥感图像的噪声去除
04
VS
噪声去除是遥感图像预处理中的重要步骤,旨在减少或消除图像中的噪声,提高图像质量。
意义
噪声是影响遥感图像质量的主要因素之一,去除噪声有助于提高图像的视觉效果、降低后续分析的误差,为遥感应用提供更准确、可靠的数据基础。
定义
基于图像的统计特性,通过滤波、变换等技术手段,将噪声与图像信号分离,从而达到去除噪声的目的。
意义
原理
基于图像的数学模型和物理模型,通过一定的算法和技术,对图像的像素值进行变换和处理,以达到增强图像的目的。
方法
直方图均衡化、对比度拉伸、锐化滤波、同态滤波、傅里叶变换等。
通过拉伸像素强度分布范围来增强图像的对比度。
直方图均衡化
将图像从空间域变换到频率域,通过增强高频分量或抑制低频分量来增强图像的3
几何校正的定义
几何校正是指将原始的遥感图像经过一系列的变换,使其与标准地图或参考地图在几何位置上对齐的过程。
几何校正的意义
几何校正是遥感图像预处理的重要步骤,它能够纠正图像中由于传感器、地球曲率、地球自转等因素导致的几何畸变,提高遥感图像的精度和可靠性,为后续的图像分析和应用提供准确的基础数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,地形起伏较大。可以用正射纠正以达到较高的 精度要求。
ENVI/IDL
3.5 SPOT2/4 PAN正射纠正——常见正射纠正参数文件
传感器 ALOS/PRISM ASTER CARTOSAT-1(P5) FORMOSAT-2 IKONOS OrbView-3 RPC RPC RPC Pushbroom Sensor RPC RPC 模型 文件 RPC文件(. rpc) RPC文件(.met) RPC 文 PRODUCT_RPC.TXT 星 历 参 数 文 (METADATA.DIM) RPC文件(_rpc.txt) RPC文件(_metadata.pvl) 件 件
ENVI/IDL
本节收获
• 掌握了Image
to Image的几何校正方法(图像配
准)
• 掌握了ENVI下从栅格图像上选择控制点来配准另
外一幅图像,进行几何校正的操作
- 主菜单->Map->Registration->Select
GCPs:Image
to Image
• 掌握了ENVI下的自动找点功能
QuickBird
WorldView-1/2 GeoEye-1 KOMPSAT-2 SPOT5 Level 1A and 1B RapidEye
RPC
RPC RPC RPC Pushbroom Sensor RPC
RPC文件(.rpb)
RPC文件(.rpb) RPC文件(.pvl/.rpc) RPC文件(. rpc) 星历参数文件 (METADATA.DIM) 存在metadata文件中ENVI/IDL
- 主菜单->Map->Mosaicking->Georeferenced
ENVI/IDL
3.5 SPOTPAN正射纠正——为什么要进行正射纠正?
• 在卫星影像和航空影像中会有一些几何误差 • 误差主要由以下原因引起:
- 比例尺变化 - 传感器的姿态/方位 - 传感器的系统误差
• 正射纠正可以消除这些误差
- 主菜单->Map->Orthorectification->spot->
Orthorectify SPOT with Ground Control
ENVI/IDL
3.6 Landsat7影像几何校正
• Landsat7影像数据是从网上免费下载的,是LPGS
格式的L1T级别格式,已经经过一定的几何校正和 DEM校正,使用UTM WGS84的坐标系统。
Krasovsky IAG75
•
北京54坐标系、西安80坐标系实际上指的是我国 的两个大地基准面
椭球体名称
WGS84
年代
1984
长半轴(米) 短半轴(米)
6378137.0 6378245.0 6378140.0 6356752.3 6356863.0 6356755.3
扁率
1:298.257 1:298.3 1:298.257
IHS变换 Brovey变换
适用范围
纹理改善,空间保持较好。光谱信息损失较大大, 受波段限制。 光谱信息保持较好,受波段限制。
乘 积 运 算 ( CN ) 对大的地貌类型效果好,同时可用于多光谱与高光 谱的融合。 PCA变换 无波段限制,光谱保持好。第一主成分信息高度集 中,色调发生较大变化, Gram-schmidt 改进了 PCA 中信息过分集中的问题,不受波段限制, (GS) 较好的保持空间纹理信息,尤其能高保真保持光谱 特征。 Pansharpening 专为最新高空间分辨率影像设计,能较好保持影像 的纹理和光谱信息。
PAN数据
• 第三步:高分辨率影像和多光谱影像的配准、融合
- 以SPOT
PAN正射纠正结果作为基准影像,对TM影像进 行图像配准;用工程区矢量数据(河北襄樊市部分区 域)分别裁剪SPOT和TM影像,对裁剪结果进行图像融 合,得到工程区域10米的多光谱影像。
ENVI/IDL
3.2基于影像自带地理定位文件几何校正
ENVI/IDL
课外练习
• 内容:
- MODIS数据、风云三号卫星数据的几何校正
• 数据:
- 《ENVI遥感图像处理方法》数据盘
ENVI/IDL
本节收获
• 掌握基于影像自带地理定位文件的几何校正方法 • 学会了AVHRR、MODIS、ENVISAT等数据的几何校正 • 学会了ENVI中的自动校正工具的使用
ENVI/IDL
练习3
• 内容:
- 扫描地形图的几何校正
• 数据:
- 2-DRG几何校正
ENVI/IDL
练习4
• 内容:
- 扫描地形图外边框裁切
• 数据:
- 3-DRG外边框裁切
ENVI/IDL
练习5
• 内容:
- 扫描地形图镶嵌
• 数据:
- 4-DRG图像镶嵌
ENVI/IDL
本节收获
• 掌握了扫描地形图的预处理,包括几何校正、ROI
ENVI/IDL
3.4扫描地形图的处理
• 扫描地形图是我们常用的标准参考源 • 图上有公里网,从公里网上读取的坐标信息可直
接用于几何校正
• 外围有边框,在做多个地形图镶嵌时候,会发生
各个地形图边缘压盖的现象。因此需要对外边框 无信息部分裁切掉。
• 地形图都会按照标准分幅形式提供,当我们使用
地形图作为基准的时候,为了方便使用,会将地 形图镶嵌成一整张图像
像重采样生成成一副高分辨率多光谱影像遥感的 图像处理技术,使得处理后的影像既有较高的空 间分辨率,又具有多光谱特征。
• 图像融合除了要求融合图像精确配准外,融合方
法的选择也非常重要,同样的融合方法在用在不 同影像中,得到的结果往往会不一样。
ENVI/IDL
3.8 图像融合——ENVI中的融合方法
融合方法
而对于高分辨率的卫星影像我们需要严格的物理 模型(如,dim原数据)或者是有理函数多项式进 行模拟卫星参数(如RPC参数)。
ENVI/IDL
3.5 SPOT2/4 PAN正射纠正——正射纠正使用条件
• 对于分辨率较高(小于或等于15米),且具有RPC
文件或者轨道参数的图像,可以用正射纠正的方 法完成几何校正,以达到更高的精度要求。
遥感图像预处理
ENVI/IDL
3.1图像预处理流程
DRG数据 定义北京 54坐标系 定义感兴 趣区域
第一步: 制作控制 点参考源
几何精校正
外边框裁切
图像镶嵌
作为地面控制点选择源
第二步: 正射纠正 全色影像
正射纠正
提供基准图像
SPOT PAN L1数 据/DEM数据
第三步: 多光谱与全色 影像配准并融 合,得到较高 分辨率的多光 谱影像
- 主菜单->Map
> Georeference <传感器类型>
ENVI/IDL
3.3自定义坐标系——地理坐标系
• 常用到的地图坐标系有2种,即地理坐标
系和投影坐标系。
• 地理坐标系(球面坐标系)是以经纬度为
单位的地球坐标系统,它有2个重要部分 ,即地球椭球体(spheroid)和大地基准 面(datum)。 - 大地基准面指目前参考椭球与WGS84参 考椭球间的相对位置关系(3个平移,3 个旋转,1个缩放),可以用其中3个、 4个或者7个参数来描述它们之间的关系 ,每个椭球体都对应一个或多个大地基 准面。
ENVI/IDL
3.5 SPOTPAN正射纠正——传感器姿态/方位
1 2 3
要进行三角测量,就要给定软件 计算或估计出的空间传感器的位 置和方位
ENVI/IDL
3.5 SPOTPAN正射纠正——推帚扫描透视中心
(传感器的系统误差)
• 数据是沿扫描线获取的,每条扫描线都有自己的
透视中心
• 每条扫描线的传感器位置和方向都不同 • 多项式的纠正只能针对分辨率比较低的卫星影像,
ENVI/IDL
3.3自定义坐标系——北京54和西安80坐标系
•
北京54或者西安80坐标系是投影直角坐标系
坐标名称 北京54 西安80
投影类型
Gauss Kruger(Transverse Gauss Kruger(Transverse
椭球体
基准面
北京54 西安80
Mercator) Mercator)
ENVI/IDL
3.3自定义坐标系——投影坐标系
投影坐标系是利用一定的数学 法则把地球表面上的经纬线网表 示到平面上,属于平面坐标系。 数学法则指的是投影类型,
•
目前我国普遍采用的是高斯— —克吕格投影(圆柱等角投影) ,在英美国家称为横轴墨卡托投 影(Transverse Mercator)。
•
图像配准 TM/SPOT影像 裁剪 图像融合
TM影像 工程区矢 量数据
工程区粗 裁剪
ENVI/IDL
3.1图像预处理流程
• 第一步:制作标准数据,作为控制点参考源
- 这里选择的是地形图,地形图是一种非常可靠的标准
数据,精度高而且处理起来方便。
• 第二步:对高分辨率的全色影像进行正射纠正
- 全色影像是10米的SPOT
高斯—克吕格投影示意
ENVI/IDL
3.3自定义坐标系——大地坐标
•
在地面上建立一系列相连接的三角形,量取一段 精确的距离作为起算边,在这个边的两端点,采 用天文观测的方法确定其点位(经度、纬度和方 位角),用精密测角仪器测定各三角形的角值, 根据起算边的边长和点位,就可以推算出其他各 点的坐标。这样推算出的坐标,称为大地坐标。
- map_proj.txt
椭球体参数文件 基准面参数文件 坐标系参数文件