06钢筋混凝土轴向受力构件承载力计算PPT课件

合集下载

钢筋混凝土教学课件—第6章受压构件的截面承载力

钢筋混凝土教学课件—第6章受压构件的截面承载力
2.受压破坏形态(如下图)
N
e0
N N
e0
e0
实际重心轴
s As
f y As
s As
f y As
f y As
s As
h0
(a )
h0
( b)
h0
(c)
10
有三种情况:
(1)如上图(a)所示:相对偏心距稍大且远侧钢筋较多;
A.N较小时,远侧受拉,近侧受压;
B.破坏时,远侧钢筋受拉但不能屈服,近侧钢筋受压屈服,
B.N较小时,全截面受压(远侧和近侧钢筋均受压);
C.近侧受压程度小于远侧受压程度;
D.破坏时,近侧钢筋受压但不能屈服,远侧钢筋受压屈服,
远侧混凝土压碎; 综合(1)~(3)可知: (1)远侧钢筋均不能受拉且屈服;以混凝土受压破坏为标志,称 为“受压破坏”; (2)相对偏心距较小,称为“小偏心受压”;
1
3.本章重点:单向偏心受压构件(或简称偏心
受压构件) 二.工程应用 1.轴心受压构件:结构的中间柱(近似); 2.单向偏心受压构件:结构的边柱; 3.双向偏心受压构件:结构的角柱; 如下图所示。
2
3
围范的载恒 受承柱的应相为分部影 阴,置布面平构结架框
柱边
柱角
柱间中
§6.1 受压构件一般构造要求
17
§6.5 矩形截面偏心受压构件正截面
受压承载力基本计算公式
一.区分大、小偏心受压破坏形态的界限
由下图可知:
1.受拉破坏时,远侧钢筋先受拉屈服,然后近侧钢筋受压屈服和近
侧混凝土压坏;
2.受压破坏时,近侧钢筋受压屈服和混凝土压坏时,远侧钢筋不能 受拉屈服; 3.界限破坏时,远侧钢筋受拉屈服和近侧混凝土压坏同时发生; 4.受压区太小(如 x 2a ),远侧钢筋先屈服,然后混凝土压坏, 但近侧钢筋不能受压屈服。

第6章 轴向受力构件承载力

第6章 轴向受力构件承载力

34.5 36.5 139 146
0.52 0.48 0.44 0.40 0.36 0.32 0.29 0.26 0.23 0.21 0.19
b为矩形截面短边尺寸; d为圆形截面直径; i为回转半径。
6.2.2 配有普通箍筋的轴心受压构件正截面承载力计算 (3) 承载力计算公式
N
轴心受压柱截面承载力计算简图, 见图。轴心受压柱的正截面承载力计 算公式为:
6.2.2 配有普通箍筋的轴心受压构件正截面承载力计算 (2) 轴心受压长柱的破坏形态 钢筋混凝土受压构件的稳定系数
l0/b ≤8 10 12 14 16 18 20 22 24 26 28
l0/d
l0/i
≤7
≤28
8.5
35
10.5
42
12
48
14
55
15.5
62
17
69
19
76
21
83
22.5
箍筋:侧向约束 纵筋、抗剪
纵筋
6.2.2 配有普通箍筋的轴心受压构件正截面承载力计算 根据轴压构件长细比(l0/i)的不同,轴压构件分为短 柱(l0/i≤28,i为任意截面的回转半径;对矩形而言等价于 l0/b≤8)和长柱。
6.2.2 配有普通箍筋的轴心受压构件正截面承载力计算 (1) 轴心受压短柱的应力分布及破坏形态 对短柱,试验表明,在轴心荷载作用下,整个截面的 应变基本上是均匀分布的,当荷载较小时,混凝土和钢筋都处 于弹性阶段,柱子压缩变形的增加与荷载的增长成正比,但荷 载稍大后,由于混凝土塑性变形的发展,压缩变形增加的速度 快于荷载的增长速度。 混凝土压碎 钢筋屈服 随着荷载继续增加,柱 Nc 中开始出现细微的纵向裂缝, 在临近破坏荷载时,纵向裂 缝变得更明显,箍筋间的纵 筋发生压屈,向外凸出,呈 灯笼状,混凝土被压碎,而 整个柱破坏,破坏是以混凝 o 土被压碎为标志的(初偏心 无影响),见图。

钢筋混凝土轴心受力构件承载力计算

钢筋混凝土轴心受力构件承载力计算

图5.3
5.2.2 轴心受拉构件承载力计算
5.2.2.1 截面形式
轴心受压柱以方形为主,也可选用矩形、圆形或 正多边形截面;柱截面尺寸一般不宜小于 250mm×250mm,构件长细比应控制在l0/b≤30、 l0/h≤25、l0/d≤25。
此处l0为柱的计算长度,b为柱的短边,h为柱的 长边,d为圆形柱的直径。
l0 垂直排架方向 有柱间支撑 无柱间支撑
1.2H
1.0H
1.0H
1.2H
有吊车房屋 柱
上柱 下柱
2.0Hu 1.0Hl
1.25Hu 0.8Hl
1.5Hu 1.0Hl
露天吊车柱和栈桥柱
2.0Hl
1.0Hl

表5.3 框架结构各层柱的计算长度
楼盖类型 现浇楼盖 装配式楼盖
柱的类别 底层柱
其余各层柱 底层柱
图5.5 柱中箍筋的构造要求
5.2.3 配有普通箍筋轴心受压柱的承载力计算
根据构件的长细比(构件的计算长度l0与构件截 面回转半径i之比)的不同,轴心受压构件可分为短柱 (对矩形截面l0/b≤8,b为截面宽度)和长柱。
5.2.3.1 试验研究分析
钢筋混凝土短柱经试验表明:在整个加载过程 中,由于纵向钢筋与混凝土粘结在一起,两者变形 相同,当混凝土的极限压应变达到混凝土棱柱体的 极限压应变ε0=0.002时,构件处于承载力极限状态, 稍再增加荷载,柱四周出现明显的纵向裂缝,箍筋 间的纵筋向外凸出,最后中部混凝土被压碎而宣告 破坏(图5.6)。因此在轴心受压柱中钢筋的最大压 应变为0.002,故不宜采用高强钢筋,对抗压强度高 于400N/mm2者,只能取400N/mm2
【例5.2】某现浇多层钢筋混凝土框架结构,底层中柱按轴

第4章轴心受力构件的承载力计算

第4章轴心受力构件的承载力计算

柱的长细比较大,柱的极限承载力将受侧向变形所引起的附加弯矩影响而 降低。
第4章 轴心受力构件的承载力计算
1. 受力分析及破坏特征 ⑴受压短柱 第Ⅰ阶段——弹性阶段 轴向压力与截面钢筋和混凝土的应力 基本上呈线性关系
第Ⅱ阶段——弹塑性阶段 混凝土进入明显的非线性阶段,钢筋 的压应力比混凝土的压应力增加得快, 出现应力重分布。
Asso
d cor Ass1
s
计算螺旋筋间距s, 选螺旋箍筋为
12,Assl=113.1mm2
s
d cor Assl
Asso

3.14 450 113.1 69.4mm 2303
取s=60mm,满足s ≤ 80mm(或1/5dcor)
第4章 轴心受力构件的承载力计算
截面验算 一
由混凝土压碎所控制,这一阶段是计算轴心受压构件极限强度的依据。
第4章 轴心受力构件的承载力计算
⑵受压长柱
初始偏心距
附加弯矩和侧向挠度
加大了原来的初始偏心距
构件承载力降低
破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压 碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵 轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。
第4章 轴心受力构件的承载力计算
2.配有普通箍筋的轴心受压构件正截面承载力计算方法
f c A) N 0.9 ( f y As
N-轴向力设计值;
N
-钢筋混凝土构件的稳定系数;
f y-钢筋抗压强度设计值; fc f y A s
A s-全部纵向受压钢筋的截面面积;
f c-混凝土轴心抗压强度设计值; A -构件截面面积,当纵向配筋率大于0.03时, A改为Ac, Ac =A- A s; 0.9 -可靠度调整系数。 h

混凝土钢筋混凝土受拉构件承载力计算PPT课件

混凝土钢筋混凝土受拉构件承载力计算PPT课件

fy'A's
h0-as'
fyAs as
as‘
远离轴力N一侧的钢筋As’是达不到屈服的。
第14页/共24页
大偏拉构件正截面承载力计算
• 截面设计 • 截面复核
第15页/共24页
截面复核
1、不对称配筋
N f y As f yAs 1 fcbx
2a '
x
b h0
x
b h0
x
b h0
x 2a '
第六章 受拉构件承载力的计算
• 概述 • 轴心受拉构件承载力计算 • 偏心受拉构件承载力计算
第5页/共24页
轴心受拉构件承载力计算
受力过程
第6页/共24页
轴心受拉构件承载力计算
轴心受拉构件的承载力计算是以上述第三阶段的应 力状态作为依据的,此时截面上的裂缝已经贯通,混凝 土已不再承受拉力,纵向受拉钢筋达到其受拉屈服强度 fy,正截面承载力公式如下:
• 难点为大偏心受拉正截面承载力计算。
第1页/共24页
第六章 受拉构件承载力的计算
• 概述 • 轴心受拉构件承载力计算 • 偏心受拉构件承载力计算
第2页/共24页
第六章 受拉构件承载力的计算
• 概述 • 轴心受拉构件承载力计算 • 偏心受拉构件承载力计算
第3页/共24页
概述
轴心受拉
偏心受拉
第4页/共24页
计算公式:
V
1.75
1.0
ft bh0
f yv
Asv s
h0
0.2N
第21页/共24页
思考题
6-1 大小偏心受拉的界限是如何划分的?试写出对称配筋矩形截面大小偏心受拉界 限时的轴力和弯矩。

钢筋混凝土受拉构件承载力计算课件

钢筋混凝土受拉构件承载力计算课件
若2as′≤x≤0.85ξbh0时,将x代入式(6-7)复核承载力,当 式(6-7)满足时,截面承载力满足要求,否则不满足要求。
若x>0.85ξbh0时,取x=0.85ξbh0代入式(6-8)复核承载 力,当式(6-8)满足时,截面承载力满足要求,否则不满 足要求。
图3–28 输水涵洞截面与A-A截面配筋图
解:
(1)判别偏心受拉构件类型 h0 =h-as = 550-60= 490mm
e0 = M/N = 36.4/338.8 = 0.107m = 107mm <h/2-as = 550/2-60 = 215mm
属于小偏心受拉构件。 (2)计算纵向钢筋As和As′
e0≤h/2-as时,称为小偏心受拉。如图6-4(b)所示。
因此,只要拉力N作用在钢筋As与As′之间,不管偏心距 大小如何,构件破坏时均为全截面受拉,拉力由As与As′共 同承担,构件受拉承载力取决于钢筋的抗拉强度。
可见,轴向拉力是作用在钢筋As和As′之外还是作用在 As和As′之间,是划分大小偏心受拉的界限。
轴心受拉构件破坏时截面的应力状态如图6-2所示。按照承 载力极限状态设计原则及内力平衡条件可得:
K N ≤ fy As
K N ≤ fy As
式中N——轴向拉力设计值;
K——承载力安全系数;
As——全部纵向受拉钢筋截面面积。
受拉钢筋截面面积按式(6-1)计算得:
As = KN/fy
(6-2)
注意:轴心受拉构件的钢筋用量并不完全由强度要求决定,
在许多情况下,裂缝宽度对纵筋用量起决定作用。
案例6-1
某2级水工建筑物,压力水管内半径r=800mm,管 壁厚120mm,采用C25混凝土和HRB335级钢筋,水 管内水压力标准值pk=0.2N/mm2,承载力安全系数K =1.20,试进行配筋计算。

钢筋混凝土构件受压构件承载力计算

钢筋混凝土构件受压构件承载力计算

轴心受压、偏心受压和受弯构件截面极限应力状态

构件截面应力随偏心距变化
矩形截面偏心受压

心 受
计算基本假定
重心轴
压 平截面假定

计算中和轴
件 不考虑混凝土的抗拉作用

实际中和轴
截 混凝土和钢筋的应力应变关系

承 受压区混凝土采用等效矩形应力图形。 载
力 x 2 a 时,受压钢筋达到抗压设计强度。



N与M线性关系

N与M曲线关系

dN/dM=0








短柱、长柱和细长柱 e0相同、长细比不同时Nu的变化
长细比增加,附加弯矩增大, 长柱承载力Nu降低。(同轴压)

偏心距增大系数法是一个传统的方法,使

用方便,在大多数情况下具有足够的精度,至
受 压
今被各国规范所采用。

式(5-11)是由两端铰支、计算长度为l0 、

x) 2
f cbx f y As
KV
Vu
0.7 ftbh0
1.25 f yv
Asv s
h0

fy Asb sins
1.正截面承载力(N、M)

KN

Nu

fcbx
f
' y
As

s
As
向 偏
KNe
Nue
fcbx h0

x 2
f
' y
As'

推导
适筋、超筋、界限破坏时的截面平均应变图

06钢筋混凝土轴心受压构件承载能力极限状态计算

06钢筋混凝土轴心受压构件承载能力极限状态计算

fcd2f1E'scd'
Ic l02A
r IAc, lr0 fcd2f1E'scd'
1
2
钢筋混凝土结构设计原理
3、轴压构件的破坏形态分析
3.2 普通箍筋长柱
钢筋混凝土结构设计原理
3、轴压构件的破坏形态分析
3.2 普通箍筋长柱
长细比:矩形截面: l 0 b 圆形截面: l 0 2 r 任意截面: l 0 i
防止构件的突然脆性破坏,提高构件延性。 普通箍筋的作用:
防止纵筋局部压屈; 与纵筋形成钢筋骨架,便于施工。 螺旋箍筋的作用: 使截面中间部分(核心)砼成为约束砼,有效限制核心砼的 横向变形,提高构件承载力和延性。
钢筋柱设计与复核
N
基本假定
基本图式
kfsdAso/Acor fcd
f ’sdA’s f ’sdA’s
基本公式
0 N d N u 0 . 9 f c A c d k o s A s f 0 r d f ' s A ' s d
考虑0.9的轴压构件安全系数; 间接钢筋影响系数k=2.0(C50及以下), k=2.0~1.7(C50~C80)
4
fsAs01
2
fsAs01
Aco r
dcor2
4
,核心混凝土面积
As0
As01dcor,螺旋箍筋换算截面积
s
NufcAcork'fs2As0f'sA's
钢筋混凝土结构设计原理
4、轴压构件承载力设计与复核
Nu
4.2 螺旋箍筋柱设计与复核
基本假定
砼截面压应力均布
破坏时,砼、纵向钢筋和箍筋应力均达 到材料极限抗压强度

钢筋混凝土轴心受力构件正截面承载力计算优秀课件.ppt

钢筋混凝土轴心受力构件正截面承载力计算优秀课件.ppt

主页 目录 上一章 下一章 帮助
混凝土结构设计原理
第3 章
2. 构造要求
❖ 不得采用绑扎的搭接接头。
❖ 纵筋一侧配筋率 0.2%,且 45ft fy。
( f t为混凝土轴心抗拉强度设计值)
❖ 纵筋应沿截面周边均匀对称布置,并宜优先 采用直径较小的钢筋。
❖ 箍筋直径 d≥6mm, 间距s ≤200mm (腹杆中 s ≤150mm)。
混凝土结构设计原理
第3 章
§3.1 概 述
轴线
N
(轴拉) 轴线
N
(轴压)
主页
N
目录
理想的轴心受力构
件不存在。
上一章
N
下一章
帮助
钢筋混凝土轴心受力构件正截面承 载力计算优秀课件
混凝土结构设计原理
第3 章
§3.2 轴心受拉构件
3.2.1 受力过程及破坏特征
N
N
N
Nu Ncr
o
钢筋混凝土轴心受力构件正截面承 载力计算优秀课件
4. 构造要求
❖ 材料:混凝土宜高一些,钢筋宜用HRB400级。 ❖ 截面: b≥250mm, l0 /b≤30 。
❖ 纵筋: d≥12mm, 圆柱中根数 ≥6, ≤ 5%;
50mm ≤ @ ≤ 350mm, c≥25mm。
钢筋混凝土轴心受力构件正截面承 载力计算优秀课件
主页 目录 上一章 下一章 帮助
钢筋混凝土轴心受力构件正截面承 载力计算优秀课件
主页 目录 上一章 下一章 帮助
混凝土结构设计原理
第3 章
3.2.2 桥梁工程中的轴拉构件
0 Nd
} fsd As
X0
oNd fsdAs
…3-2

钢筋混凝土受压构件承载力计算

钢筋混凝土受压构件承载力计算

ey
fy Es
e ey
c
f
c
2e e0
e e0
2
0 e e0
平衡条件:
N c Ac s As
s
c
500
100
400
80
300
60
200
40
100
20
s
c
钢筋混凝土之间的应力重分 布:
初期(荷载小),钢筋与混 凝土应力之比等于弹模之比。
后期(荷载增加),混凝土 塑性变形发展,弹模降低, 钢筋应力增长加快,混凝土 应力增长变慢。
需考虑纵向弯曲的影响,查表得0.8。
As
1 f y
dN
f c A
1 310
650 10 0.8
3
10.0 250 250
605mm2
As 605 0.97%
A 250 250
满足要求,选用4 14,排列于 柱子四周。箍筋选用f6@200
0
200
400
弹性阶段
600 800 1000 N(kN)
弹塑性阶段
应力-荷载曲线示意图
素混凝土短柱
矩形截面轴心受压长柱
长柱在轴向力作用下,不仅发生压缩变形,同 时还发生纵向弯曲,产生横向挠度。破坏时, 凹侧混凝土被压碎,纵向钢筋被压弯而向外弯 凸,凸侧则由受压突然变为受拉,出现水平受 拉裂缝。原因:钢筋混凝土柱不可能是理想的 轴心受压构件,轴向力多少存在一个初始偏心。
轴心受压构件 偏心受压构件
方形或矩形、圆形或多边形 矩形、工字形
方形柱的截面尺寸不宜小于250mm×250mm,长细比 l0/b<=30或l0/h<=25。截面尺寸符合模数要求,800mm以下的 取50mm的倍数,800mm以上的取100mm的倍数。

06轴向受力构件承载力

06轴向受力构件承载力
凝土的抗压强度,增加构件的延性。
7
2.3 普通箍当筋轴纵压筋柱配正筋截率面大承于载3力%时,A中应扣 除纵筋截面的面积。
轴心受压短柱
Nus fc A f yAs
轴心受压长柱
N
l u

N
s u
稳定系数


Nul Nus
稳定系数 主要与柱的
长细比l0/b有关
L0为柱的计算高度;
N Nu 0.9 ( fc A b为f矩y形A截s )面短边尺寸;
12
=N e0
As = As
3. 偏心受压构件正截面承
e0 N
载力计算
N M=N e0
As
As
As = As
偏压构件破坏特征
受拉破坏 tensile failure
受压破坏 compressive failure
13
偏心受压构件的破坏形态与偏心距e0和纵筋配筋率有关
e0

M N
14
3.1 大偏心破坏的特征
变形条件: 物理关系:
s c
s Es
s fy

y

fy Es
y
c

f
c

2 0


0
2


0 0
平衡条件: N c Ac s As
5
s c
500
100
400
80
300
60
fy=540MP0
20
c
0
0.001
0.002
6
2.2 受压构件中钢筋的作用
ÆÕ Í¨¸Ö ¹¿ Öù
ÂÝ Ðý ¸Ö ¹¿ Öù

【精】06第五章钢筋混凝土受压构件承载力计算(1)(免费阅读)

【精】06第五章钢筋混凝土受压构件承载力计算(1)(免费阅读)

第五章钢筋混凝土受压构件承载力计算以承受轴向压力为主的构件称为受压构件(柱)。

理论上认为,轴向外力的作用线与构件轴线重合的受压构件,称为轴心受压构件。

在实际结构中,真正的轴心受压构件几乎是没有的,因为由于混凝土材料组成的不均匀,构件施工误差,安装就位不准,都会导致压力偏心。

如果偏心距很小,设计中可以略去不计,近似简化为按轴心受压构件计算。

若轴向外力作用线偏离或同时作用有轴向力和弯矩的构件称为偏心受压构件。

在实际结构中,在轴向力和弯矩作用的同时,还作用有横向剪力,如单层厂房的柱、刚架桥的立柱等。

在设计时,因构件截面尺寸较大,而横向剪力较小,为简化计算,在承载力计算时,一般不考虑横向剪力,仅考虑轴向偏心力(或轴力和弯矩)的作用。

§5-1 轴心受压构件承载力计算轴心受压构件按其配筋形式不同,可分为两种形式:一种为配有纵向钢筋及普通箍筋的构件,称为普通箍筋柱(直接配筋);另一种为配有纵向钢筋和密集的螺旋箍筋或焊接环形箍筋的构件,称为螺旋箍筋柱(间接配筋)。

在一般情况下,承受同一荷载时,螺旋箍筋柱所需截面尺寸较小,但施工较复杂,用钢量较多,因此,只有当承受荷载较大,而截面尺寸又受到限制时才采用。

(一)普通箍筋柱1、构造要点普通箍筋柱的截面常采用正方形或矩形。

柱中配置的纵向钢筋用来协助混凝土承担压力,以减小截面尺寸,并用以增加对意外弯矩的抵抗能力,防止构件的突然破坏。

纵向钢筋的直径不应小于12mm,其净距不应小于50mm,也不应大于350mm;对水平浇筑的预制件,其纵向钢筋的最小净距应按受弯构件的有关规定处理。

配筋率不应小于0.5%,当混凝土强度等级为C50及以上时应不小于0.6%;同时,一侧钢筋的配筋率不应小于0.2%。

受压构件的配筋率按构件的全截面面积计算(图5.1-1)。

柱内除配置纵向钢筋外,在横向围绕着纵向钢筋配置有箍筋,箍筋与纵向钢筋形成骨架,防止纵向钢筋受力后压屈。

柱的箍筋应做成封闭式,其直径应不小于纵向钢筋直径的1/4,且不小于8mm。

混凝土受压构件承载力计算

混凝土受压构件承载力计算

x= xn s=Eses
s
Ese
c
u
(
x
/ h0
1)
Ese
c
u
(
1)
为避免采用上式出现 x 的三次方程
es
es
考虑:当 =b,s=fy;当 =,s=0 ey
s
fy
b
xn
xn
ecu
h0
ecu
h0
xnb
ecu
h0
5.2 偏心受压构件正截面受力性能
26
第五章 钢筋混凝土受压构件承载力
s
400 300 200 100
f'yA's
Mu
Nu 1 fcbx f yAs s As
Mu
1

c
bx(
h 2
x 2
)
s
As
(
h 2
a)
f
y
As
(
h 2
a)
sAs
5.2 偏心受压构件正截面受力性能
f'yA's
25
第五章 钢筋混凝土受压构件承载力
“受拉侧” 钢筋应力 s
由平截面假定可得:
es ecu
h0 xn xn
砼徐变将使构件中钢筋和砼的应力发生变化。随时间的增长, 徐变增大,钢筋的压应力 s,t不断增大,砼中的压应力c,t则不断 减小。这种应力的变化是在外荷载没有变化的情况下产生的,称 为徐变引起的应力重分布。
因此,徐变产生的应力重分布,对混凝土的压应力起着卸荷 作用,配筋率r 越大,s,t的增长越少,c,t的卸载越多。
800
600 400 200
0
b×h=200×200

钢筋混凝土轴心受力构件正截面承载力计算

钢筋混凝土轴心受力构件正截面承载力计算

54 第八章 钢筋混凝土构件正常使用极限状态验算本章学习要点:1、了解裂缝出现、分布和开展的过程;2、掌握影响裂缝宽度的主要因素(钢筋直径、配筋率);3、掌握裂缝宽度计算公式的应用;4、掌握挠度计算公式计算挠度的过程;5、掌握最小刚度原则、ψ的含义,减小挠度最有效的措施。

重点:深入理解梁在纯弯区段内的应力重分布全过程,开裂后钢筋和混凝土应变分布规律及其影响因素,ψ等主要参数的物理意义。

难点:裂缝宽度及截面抗弯刚度计算原理。

§8-1 抗裂验算一般要求(1)抗裂就是不允许混凝土开裂。

(2)钢筋混凝土构件正截面抗裂验算应满足下式 tk ct t f ασ≤ (8-1)式中,t σ——由荷载标准组合或准永久组合计算的验算截面的混凝土拉应力值;tk f ——混凝土抗拉强度标准值;ct α——混凝土拉应力限制系数(对水工混凝土结构构件,荷载标准组合时,ct α=0.85;荷载准永久组合时,ct α=0.70)。

§8-2 钢筋混凝土结构裂缝宽度的验算一、裂缝产生的原因:1、荷载引起的裂缝:占20%,t ct f >σ计算[]lim max ωω≤,式中,lim ω −最大裂缝宽度限值。

552、非荷载引起的裂缝:材料收缩、温度变化、混凝土碳化后引起钢筋锈蚀、地基不均匀沉降。

占80%,而为防止温度应力过大引起的开裂,规定了最大伸缩缝之间的间距;为防止由于钢筋周围砼过快的碳化失去对钢筋的保护作用,出现锈胀引起的沿钢筋纵向的裂缝,规定了钢筋的混凝土保护层的最小厚度。

通常,裂缝宽度和挠度一般可分别用控制最大钢筋直径和最大跨高比来控制,只有在构件截面尺寸小,钢筋应力高时进行验算。

二、裂缝宽度的计算方法1、裂缝出现与分布规律图8-2 第一条裂缝至将出现第二条裂缝间混凝土及钢筋应力56 (1)在裂缝未出现前:受拉区钢筋与混凝土共同受力;沿构件长度方向,各截面的受拉钢筋应力及受拉区混凝土拉应力大体上保持均等。

06+钢筋混凝土轴向受力构件承载力计算

06+钢筋混凝土轴向受力构件承载力计算

① 纵向钢筋
纵筋直径与根数:
通常采用 12~32mm, 直径宜粗不宜细,根数宜少不宜多,保证对称配置。
方形和矩形截面柱中纵向受力钢筋不少于4根, 圆柱中不宜少于8根且不应少于6根。 净距≥50mm, 中距≤300mm
配筋率:0.8%~2%
A 100% s bh
② 箍筋 箍筋的作用是为了防止纵筋压屈和保证纵筋的正确位 置。在受压构件截面周边,箍筋应做成封闭式,但不可采 用有内折角的形式。 末端做成135°弯钩, 平直段长度≥10d
例6.2 已知轴心受压构件, 截面尺寸b×h=300mm×300mm, 已配置4φ 18的HRB335级钢筋, 混凝土为C20, 柱的计算长度 l0=3.9m, 计算该柱能承受的轴向压力设计值N。
解: 查附表1、附表3、附表6得 ⑴ 验算纵筋配筋率
fc 9.6 N mm2 , f y 300 N mm2 , A 1017mm2 s
满足要求!
2 dcor 4402 152053mm2 A 6872.6mm2 Acor 4 s 4
由轴心受力平衡条件, 其正截面 受压承载力:
⑵ 承载力计算 考虑到构件可靠度的调整系数0.9 及高强混凝土的特性, 《混凝土结构 设计规范》规定采用下列公式计算配 有螺旋式(或焊接环式)间接钢筋柱 正截面受压承载力:
s N ≤ 0.9 fc Acor f y A 2 f y Ass0 dcor Ass1 间接钢筋的换算截面面积: Ass0 s 2 dcor 构件的核心截面面积: Acor 4
混凝土C25<C50, α=1.0
由公式(6.2)得:
例6.3 某展示厅内一根钢筋混凝土柱, 按建筑设计要求截 面为圆形, 直径不大于500mm。该柱承受的轴心压力设计值 N=4500kN, 柱的计算长度l0=5.4m, 采用C25混凝土, 纵筋采用 HRB335, 箍筋采用HPB235。试按螺旋箍筋设计该柱。

钢筋混凝土 第四章轴心受压构件的截面承载力计算

钢筋混凝土   第四章轴心受压构件的截面承载力计算

一、轴心受拉构件的受力性能
N N
轴心受拉构件受力特点
由于混凝土抗拉强度很低,轴向拉力还很小时,构件即已 裂通,所有外力全部由钢筋承担。最后,因受拉钢筋屈服而导 致构件破坏。
三个受力阶段:
第Ⅰ阶段为从加载到混凝土受拉开裂前; 第Ⅱ阶段为混凝土开裂后至钢筋即将屈服; 第Ⅲ阶段为受拉钢筋开始屈服到全部受拉钢筋 达到屈服。
◆ 另一方面,考虑到施工布筋不致过多影响混凝土的浇筑质
量,全部纵筋配筋率不宜超过5%。
◆ 全部纵向钢筋的配筋率按ρ =(A's+As)/A计算,一侧受压钢筋
的配筋率按ρ '=A's/A计算,其中A为构件全截面面积。
配筋构造:
◆ 柱中纵向受力钢筋的的直径d不宜小于12mm,且选配钢筋时宜
根数少而粗,但对矩形截面根数不得少于4根,圆形截面根数 不宜少于8根,且应沿周边均匀布置。
第一节
思考题
1.轴心受压普通箍筋短柱与长柱的破坏形态有何不 同? 2.轴心受压长柱的稳定系数ϕ如何确定? 3.轴心受压普通箍筋柱与螺旋箍筋柱的正截面受压 承载力计算有何不同? 作业题: 6.1、6.2
第二节 轴心受拉构件的承载力计算
轴心受拉构件
钢筋混凝土桁架或拱拉杆、受内压力作用的环形 截面管壁及圆形贮液池的筒壁等,通常按轴心受 拉构件计算。 矩形水池的池壁、矩形剖面料仓或煤斗的壁板、 受地震作用的框架边柱,属于偏心受拉构件。 受拉构件除轴向拉力外,还同时受弯矩和剪力作 用。
承载力计算
N ≤ f y As
N为轴向拉力的设计值; fy为钢筋抗拉强度设计值; As为全部受拉钢筋的截面面积, 应满足As≥(0.9ft/fy)A,A为构件截面面积。
小 结

钢筋混凝土受弯构件截面承载力计算PPT课件

钢筋混凝土受弯构件截面承载力计算PPT课件

荷载效应的标准组合为:
n
Sk SGk SQ1k
Sci Qik
i2
荷载效应的准永久组合为:
n
Sq SGk
Sqi Qik
i 1
第7页/共47页
主页
目录
上一章 下一章 帮助
第4章
4.16 裂缝宽度验算
裂缝的控制等级分为三级,钢筋混凝土结构构件 进行裂缝宽度的验算。
4.16.1 验算公式
w w max
第4章
第4 章
钢筋混凝土受弯构件截面承载力计算
第1页/共47页
第4章
重点
主页
➢ 了解受弯构件竖向弯曲裂缝的出现和开展 过程;
➢ 掌握受弯构件裂缝宽度的验算方法;
目录
上一章
➢ 掌握受弯构件截面刚度计算与变形验算方 下一章
法。
帮助
第2页/共47页
第4章
4.15 概 述
❖ 构件的裂缝宽度和挠度验算属于正常使用极限状态。 主 页
④随加载时间的增长而减小。构件在长期荷载作用下,变形会加大, 在变形验算中,除了要考虑短期效应组合,还应考虑荷载的长期效应的 影响,故有长期刚度Bs 和短期刚度Bl 。
第27页/共47页
c
c c
s c
h0
s s
第28页/共47页
Bs
Ms
第4章
用材料力学的公式:
对于简支梁承受均布荷载作用时,其跨中挠度:
③裂缝宽度随受拉钢筋用量增大而减小; ④裂缝宽度与荷载作用时间长短有关。
第11页/共47页
第 4章
2. 平均裂缝宽度wm
❖ 粘结 - 滑移理论:
裂缝宽度等于裂缝间距范围 内钢筋和混凝土的变形差 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例6.1 一钢筋混凝土轴心受压普通箍筋柱, 截面尺寸为 b×h=400mm×400mm, 柱的计算长度l0=5.6m, 轴向压力设计 值N=2500kN, 采用混凝土强度等级为C30, 纵筋采用HRB335 级, 箍筋采用HPB300级, 试配置纵筋和箍筋, 画配筋图。 13
解: 查附表1和附表3确定材料强度设计值。
8
6.2.3 配有普通箍筋和纵筋的轴心受压柱的承载力计算 在同等条件下(即截面相同,配筋相同,材料相同),
长柱受压承载能力低于短柱受压承载能力。 柱的长细比愈大,其承截力愈低,对于长细比很大的长
柱,还有可能发生“失稳破坏”的现象。 《混凝土设计规范》采用稳定系数φ来表示长柱承载力的
降低程度。
9
6.2.3.1 承载力计算公式 混凝土轴心抗
例6.1 一钢筋混凝土轴心受压普通箍筋柱, 截面尺寸为 b×h=400mm×400mm, 柱的计算长度l0=5.6m, 轴向压力设计 值N=2500kN, 采用混凝土强度等级为C30, 纵筋采用HRB335 级, 箍筋采用HPB300级, 试配置纵筋和箍筋, 画配筋图。 14
⑵ 验算纵筋配筋率
A A s402 05 14 3001.6%min0.6%
混凝土:一般柱中采用C25及以上等级,对于高层建筑的底 层柱可采用更高强度等级的混凝土,例如采用C40或以上;
纵向钢筋:一般采用HRB400和HRB335级热轧钢筋。 3
⑶ 钢筋的构造
纵向受力钢筋作用: ① 协助混凝土承受压力
,以减小构件尺寸; ② 承受可能的弯矩,以
及混凝土收缩和温度变形引起 的拉应力;
④ 验算截面配筋ρmin≤ρ≤5%, 若ρ>5%, 说明初选截Байду номын сангаас
面过小; 若ρ<ρmin,说明初选截面过大,则需调整截面尺寸, 再重新计算配筋。
⑤ 选定箍筋直径和根数, 注意满足相应的构造要求, 并配 置箍筋。
⑥ 画配筋图。 12
6.2.3.2 承载力计算方法 ⑵ 截面复核
已知构件的截面尺寸、计算长度及材料强度等级、配筋 量。求构件能承担的轴向压力设计值(即受压承载力),或 验算截面在某已知轴向压力设计值的作用下是否安全。
例6.2 已知轴心受压构件, 截面尺寸b×h=300mm×300mm, 已配置4φ18的HRB335级钢筋, 混凝土为C20, 柱的计算长度 l0=3.9m, 计算该柱能承受的轴向压力设计值N。
N ≤ 0 . 9fcA fy A s
11
6.2.3.2 承载力计算方法
⑴ 截面设计 已知轴向压力N和构件实际高度H, 要求设计构件截面。
其步骤如下: ① 初步选定柱的截面尺寸。结合建筑方案, 根据构造要
求或参考同类结构确定柱的截面尺寸和形状。 ② 求稳定系数φ, 查表6.1可得。 ③ 求纵向钢筋截面面积, 由式(6.1)求出。
配筋率:0.8%~2%
bAhs 100%
5
② 箍筋 箍筋的作用是为了防止纵筋压屈和保证纵筋的正确位置。
在受压构件截面周边,箍筋应做成封闭式,但不可采用有内 折角的形式。 末端做成135°弯钩, 平直段长度≥10d
6
②搭接箍钢筋筋受拉时,箍筋间距S
不应大于5d,且不应大于 100mm; 搭接钢筋受压时,箍筋间距S 不应大于10d,且不应大于 2偏0压0m柱mh。≥ 600mm时, 应设置10~16mm的纵向构造钢 筋。
为保证与偏心受压构件
压强度设计值
正截面承载力计算有相
构件截面面积
近可靠度的调整系数
轴向压力设计值 N ≤ 0 . 9fcA fy A s
钢筋混凝土构件的稳定系数 纵向钢筋的抗压强度设计值
全部纵向受压钢筋截面面积
10
6.2.3.1 承载力计算公式
对于受压构件计算长度l0的取值, 与构件两端支承情况及与有 无侧移等因素有关。一般多层房屋中梁柱为刚接的框架结构, 各 层柱的计算长度l0可按表6.2取用。
点击此处输入相 关文本内容
点击此处输入 相关文本内容
2
6.2 轴心受压构件
6.2.1 轴心受压构件的构造要求 ⑴ 截面形式及尺寸
轴心受压柱以方形为主, 偏心受压柱以矩形为主。
一般应符合: l0/b≤30 以及 l0/d≤26(d为圆形直径) 方形与矩形截面的边长尺寸不宜小于250mm。有抗震 要求时不小于300mm。 ⑵ 材料的选择
受压构件复合井字箍筋
7
6.2.2 轴心受压构件的破坏形态
1. 轴心受压短柱
临近破坏时,柱子表面 出现纵向裂缝,箍筋之 间的纵筋压屈外凸,混 凝土被压碎崩裂而破坏。
2. 轴心受压长柱
破坏时首先在凹边出现 纵向裂缝,接着混凝土 压碎,纵筋压弯外凸, 侧向挠度急速发展,最 终柱子失去平衡,凸边 混凝土拉裂而破坏。
③ 防止构件突然的脆性 破坏。
箍筋作用: 保证纵向钢筋的位置正
确,防止纵向钢筋压屈,从 而提高柱的承载能力。
4
① 纵向钢筋
纵筋直径与根数:
通常采用 12~32mm, 直径宜粗不宜细,根数宜少不宜多,保证对称配置。
方形和矩形截面柱中纵向受力钢筋不少于4根, 圆柱中不宜少于8根且不应少于6根。
净距≥50mm, 中距≤300mm
6 钢筋混凝土轴向受力构件承载力计算
6.1 概述
根据受力的方向是指向截面,还是离开截面,可分为 纵向受压构件和纵向受拉构件;
根据力的作用线与截面轴线的位置关系,可分为轴心 受力构件和偏心受力构件。
其中,偏心受力构件,又可以分为和。
1
标题添加
点击此处输入相 关文本内容
前言
点击此处输入 相关文本内容
标题添加
⑶ 配置箍筋(根据构造要求) φ6@200 ⑷ 画配筋图
配 置 纵 向 钢 筋 8 2 0 , A s 2 5 1 3 m m 2
例6.1 一钢筋混凝土轴心受压普通箍筋柱, 截面尺寸为 b×h=400mm×400mm, 柱的计算长度l0=5.6m, 轴向压力设计 值N=2500kN, 采用混凝土强度等级为C30, 纵筋采用HRB335 级, 箍筋采用HPB300级, 试配置纵筋和箍筋, 画配筋图。 15
fc 1 4 .3 N m m 2 ,fy 3 0 0 N m m 2
⑴ 计算配置纵向钢筋
lb 05 4 6 0 0 0 0 1 4 , 查 表 6 .1 得 = 0 .9 2
由公式(6.1)可得:
As
N
0 .9
f y
fcA
205.90 0 0.1902331040.3400400
2438mm2
配 置 纵 向 钢 筋 8 2 0 , A s 2 5 1 3 m m 2
相关文档
最新文档