图2差分放大电路静态工作点解读

合集下载

典型差分放大电路

典型差分放大电路

典型差分放大电路 1、典型差分放大电路的静态分析1电路组成2静态工作点的计算静态时:v s1=v s2=0, 电路完全对称,所以有I B Rs1+U BE +2I E Re=V EE 又∵ I E =1+βI B ∴ I B1=I B2=I B =通常Rs<<1+βRe,U BE =硅管: I B1=I B2=I B = 因: I C1=I C2=I C =βI B 故: U CE1=U CE2=V CC -I C Rc静态工作电流取决于V EE 和Re;同时,在输入信号为零时,输出信号电压也为零u o= Vc1-VC2=0,即该差放电路有零输入——零输出; 2、差分放大电路的动态分析 1差模信号输入时的动态分析如果两个输入端的信号大小相等、极性相反,即()es BEEE R 12R U V β++-v s1=- v s2= 或v s1- v s2= u idu id称为差模输入信号;在输入为差模方式时,若一个三极管的集电极电流增大时,则另一个三极管的集电极电流一定减小;在电路理想对称的条件下,有:i c1=- i c2; Re上的电流为:i E=i E1+i E2=I E1+ i e1+I E2+ i e2电路对称时,有I E1= I E2= I E、i e1=- i e2,使流过Re上的电流i E=2I E不变,则发射极的电位也保持不变;差模信号的交流通路如图:差模信号下不同工作方式的讨论:①双端输入—双端输出放大倍数:当输入信号从两个三极管的基极间加入、输出电压从两个三极管的集电极之间输出时,称之为双端输入—双端输出,其差模电压增益与单管放大电路的电压增益相同,无负载的情况下:当两集电极c1、c2间接入负载电阻RL时,双端输入—双端输出时的差模电压放大倍数为:bescs1o1s2s1o2o1idoud rRR22uuA+-==--==βvvvvvvbeLrR+-==s'idoud RuuAβ2R//RR'LcL=❖ 输入电阻: 输出电阻:Rod ≈2Rc ② 双端输入—单端输出 ❖ 放大倍数:❖ 输入电阻:Rid=2rbe❖ 单端输出时的等效电阻为: Rod ≈Rc 2共模输入时的动态分析如果两个输入端信号大小相等、相位相同,即: v s1=v s2=u ic 则称为共模输入信号,用u ic 表示 ;其共模交流通路如图:① 双端输入—双端输出输出的共模电压u oc=v c1-v c2=0,双端输出时的共模电压增益为: ② 双端输入—单端输出其共模电压增益为 计算共模放大倍数Av c 时,由于两个输入信号相等,R e 等效为2R e;Av c 的大小,取决于差分电路的对称性,双端输出时等于零;单端输出时交流通路如图所示;()be bs b be s b bs b d dr2i R i 2R i 2i R i 2u R =-+=-=r i i 0u u u A icc2c1ic oc uc =-==v v ec ic c2ic c1ic oc uc 2R Ru u u u A -≈===v v ()be u u r R 2R 2A s cs1o1s2s1o1id o ud +-==-==βv v v v v综上: 2 双端输入单端输出差模电压放大倍数21111d -i i o id o v v v v v v A ==be L c )//(21-r R R β=be'21-r R Lβ= 共模抑制比K CMR 或双端输出时由于Avc 等于零,K CMR 可认为等于无穷大,单端输出时共模抑制比:恒流源电路的基准电流为:I REF ≈I E4= 又因I E3R3≈I E4R2,所以有I0≈I E3≈ 即三极管V3、 V4及R1、R2、R3等值确定,则I0为一定值;差模特性 741型运放A v O 的频率响应 -()dB lg20VCVDCMR A A K =beeeL be L 11CMR ≈2/'2/'r R R R r R A A K vc vd ββ==21BE4EECCRR UV V +-+REF 32E432I R R I R R =bes cs1o1s2s1o2o1ido udr R R 22u u A +-==--==βv v v v v v 0u u u A icc2c1ic oc uc =-==v v VCVD CMR A A K =开环差模电压增益Av O 开环带宽BW f H 单位增益带宽 BW G f T差模特性2. 差模输入电阻r id 和输出电阻r o➢ BJT 输入级的运放r id 一般在几百千欧到数兆欧 ➢ MOSFET 为输入级的运放r id >1012Ω ➢ 超高输入电阻运放r id >1013Ω、I IB ≤➢ 一般运放的r o <200Ω,而超高速AD9610的r o =Ω 3. 最大差模输入电压V idmax 共模特性1. 共模抑制比K CMR 和共模输入电阻r ic一般通用型运放K CMR 为80~120dB,高精度运放可达140dB,r ic ≥100M Ω;2. 最大共模输入电压V icmax一般指运放在作电压跟随器时,使输出电压产生1%跟随误差的共模输入电压幅值,高质量的运放可达± 13V;功率放大器性能分析 1 输出功率:cem cm cem cm o V I V I P 2122=•=L cemL cm R V R I 222121==如果输入足够大,使输出达到最大值 VCC-VCES ,此时的功率为最大不失真输出功率 Pom ()LCC L CES CC om R VR V V P 2221≈-21=2 电源提供的功率每个电源只提供半个周期的电流,电源提供的平均功率为:)(sin 2120t d t I V P cm CCV ωωππ⎰•=πcmCC I V 2=3 电路的效率电路的效率是指输出功率与电源提供的功率之比:在输出最大V om ≈VCC 时得到最大输出功率:4 管耗时t V v om o ωsin = ⎰=πωπ1)-(21t d R v v V P L o o CCT )4-(12omom CC L V V V R π=V om=0时管耗为0 V om= VCC 时管耗为: ππ4421-=L CC T R V P5 最大管耗与输出功率的关系乙类互补对称电路输入为0时,输出为0,管耗也为0,所以输入较小时管耗较小;但输出信号越大并不意味着管耗也越大; 管耗最大发生在0/1=om T dV dP 时 此时:CC CCom V V V 6.0≈2π=om CCL T P V R P 2.0122max 1≈=πCC cemCCL cm cm CC L cm V o V V V R I I V RI P P •=•===442212πππη%5.78≈42/2ππη===cm CC CC cm Vom I V V I P P。

静态工作点的图解分析

静态工作点的图解分析

静态工作点的图解分析
2. 图解法求解Q点
斜率为-1/RC
• 在输出特性曲线上, 作出直流负载线
vCE=VCC-iCRC,与IB 曲线的交点即为Q点, 从而得到VCE 和IC。
静态工作点的图解分析
3. 交流负载线
短路
vi
VCC RC
RB
RL
由于隔直电容的 作对用地,RL的接入 短对路Q点无影响
Hale Waihona Puke 短路接入负载电阻RL的共射极放大电路
vi
RB
RC RL
交流通路
XC 0,C可看作短路。 忽略直流电源的内阻,
直流电源的端电压恒定, 直流电源对交流可看 作 短路。
静态工作点的图解分析
3. 交流负载线
VCC
AC:过Q点, 斜率为-1/RLˊ
RC
RB
vi
RL
接入负载电阻RL的共射极放大电路
DC Q
vi
RB
模拟电子技术
知识点: 静态工作点的图解分析
静态工作点的图解分析
➢ 没有输入信号(vi=0)时,放大电路 中各处的电压和电流都是不变的直流, 称为直流工作状态或静止状态,简称 静态。
➢ 静态时,BJT各电极的直流电压和直 流电流的数值将在管子的特性曲线上 确定一点,称为Q点。
静态分析的第一步: 画出直流等效电路!
vBE VCC iBRb
300k
RB
vi
C1
1.5k
VCC
RC
+12V
C2
β=100
vo
•列输出回路方程(直 流负载线)
vCE=VCC-iCRC
静态工作点的图解分析
2. 图解法求解Q点 负载线,斜率为-1/Rb

图解法分析放大电路的静、动态掌握放大电路的失真分析

图解法分析放大电路的静、动态掌握放大电路的失真分析

则电压放大倍数:
Au =
ΔuCE Δ uBE
电流放大倍数:
Δ iC Ai = Δ iB
iB/μА
iB
60
IBQ
40
20
O
0
t
iC/mA 4
iC
Q
ΔiB
2
O
0
0.7 uBE/V
t
ΔuBE
UBE
uBE
0.68Q 0.72
交流负载线
iB=80μА
60
Q 40
20
直流负载线
0
4.5 6 7.5 12 uCE/V
-
Q 40
20
直流负载线
N
ΔuCE = - Δic(RC // RL)
0
0
6
12 uCE/V
∵动态时△uCE~ △iC是叠加在直流值UCEQ、ICQ基础上变化的
∴这条直线通过Q点
画法:过静态工作点Q ,作一条斜率为-1/(Rc//RL)的 直线。
交流负载线:描述放大电路的动态工作情况。
[例2.4.2 ] 在单管共射放大电路中,已知输出特性曲线如 下图
+
+
VT ΔuCE
ΔuCE Rc
-
-
N 交流通路的输出回路
——为线性关系。
RL
即交流电压uce、电流ic 是沿
着斜率为:-1/(RL//RC)的直
线轨迹变化的。
上页 下页 首页
(2)画交流负载线
Δ iC +
M ΔiC
+
iC/mA 4
交流负载线
iB=80μA 60
VT ΔuCE -
ΔuCE Rc RL 2

3.3差分放大电路(二)

3.3差分放大电路(二)

例3.3.3 下图中, = 100,试求 (1) Q ;(2) Aud,Rid,Ro
解:(1) 求Q 点
I REF
6 0.7 VEE U BE4 mA 6.2 0.1 R1 R2
RC 7.5 k +VCC +6 V
uo
100 IC3
RC 7.5 k
V2
I 0 I REF
原理电路
采用 V3 管代替 R
当 V1、V2 几何尺寸相同时: I0 = IREF=(VDD+VSS-UGS)/R 当 V1、V2 几何尺寸不同时: I0 IREF
二、具有电流源的差分放大电路
二、具有电流源的差分放大电路 续
MOS管差分放大电路
例3.3.3 下图中, = 100,试求 (1) Q ;(2) Aud,Rid,Ro
3.3.3 差分放大电路的输入、输出方式
一、四种输入输出方式
单端输入是双端输入的特例而言 即 ui1 = ui , ui2 = 0 故单端输入时的分析方法与双端输入时一样
休 息
例3.3.4
下图中,已知 =120,UBEQ=0.7V,rbb′=200 , VCC=VEE =12V ,求:(1)V1、V2的静态工作点ICQ1、 UCQ1和ICQ2、UCQ2 ;(2)求单端输出的Aud1 、Rid 、Ro、 Auc1 、KCMR 。
讨论小结
1. 差分放大电路的结构和性能有何特点? 答: 电路结构左右对称,具有两个输入端,可以双 端输出。 对差模输入电压具有放大作用,对共模信
号和零点漂移具有很强的抑制作用。
返回
2. 差分放大电路中,公共发射极电阻RE对共模信号有何影响,为什么?对差
模信号有何影响,为什么?为何要用恒流源代替公共发射极电阻RE ?

放大电路的图解分析

放大电路的图解分析

华中科技大学电信系 张林
4.3 放大电路的分析方法
4.3.1 图解分析法 1. 静态工作点的图解分析 2. 动态工作情况的图解分析 3. 非线性失真的图解分析 4. 图解分析法的适用范围
4.3.2 小信号模型分析法 1. BJT的H参数及小信号模型 2. 用H参数小信号模型分析基本共射极放大电路 3. 小信号模型分析法的适用范围
2
Lec 04-3
华中科技大学电信系 张林
4.3.1 图解分析法
1. 静态工作点的图解分析
• 列输入回路方程 vBE =VCC-iBRb
• 列输出回路方程(直流负载线) vCE=VCC-iCRc
VCC
Rc Rb
IB b

c IC

T VCE
e VBE


直流通路
3
Lec 04-3
华中科技大学电信系 张林
t
vCE/V
vCE/V
VBEQ t
VCEQ t
# 动态工作时, iB、 iC的实际电流方向是否改变,vCE的实 际电压极性是否改变?
7
Lec 04-3
华中科技大学电信系 张林
4.3.1 图解分析法
2. 动态工作情况的图解分析
• BJT的三个工作区 饱和区特点:
iC/mA 饱和区
240A
iC不再随iB的增加而线 性增加,即
ICM
Q1
200A 160A
iC iB 此时 iB ICM vCE= VCES ,典型值为0.3V 。
放大区 Q
120A 80A
iB=40A
截止区特点:
Q2
0
iB=0, iC= ICEO 。
VCES 截止区

放大电路的静态工作点

放大电路的静态工作点

放大电路的静态工作点
静态工作点是指三极管放大电路中,三极管静态工作点就是交流输入信号为零时,电路处于直流工作状态,这些电流、电压的数值可用bjt特性曲线上一个确定的点表示,该点习惯上称为静态工作点q 。

原因:
可以通过发生改变电路参数去发生改变静态工作点,这就可以设置静态工作点
若静态工作点设置的不合适,在对交流信号放大时就可能会出现饱和失真(静态工作点偏高)或截止失真(静态工作点偏低)。

所谓静态工作点,是指当放大电路处于静态时,电路所处的工作状态。

在ic/uce 图上表现为一个点,即当确定的vcc、rb、rc和晶体管状态下产生的电路工作状态。

当其中一项改变时引起ib变化而引起q点沿着直流负载线上下移动。

静态
当放大电路没有输入信号时的工作状态,因为vcc、rb、rc、和晶体管不变,所以电路中各参数都是不变的。

这就是静态。

1-2差分放大电路

1-2差分放大电路

差分放大电路一般有同两,则个反该输之输入,入端如端:果称所为得同到相的输输入出端。
同相输入端,
信号的极性与其相反,则该输
反相输入端。
入端称为反相输入端。
信号的输入方式:若信号同时加到同相输入端
和反相输入端,称为双端输入; 若信号仅从一个
输入端对地加入,称为单端输入。
差分放大电路可以有两个输出端,一个是集电 极C1,另一个是集电极C2。
2.0抑制零漂的原t 理
(1)零DV漂D 的R3产生
Rc3
+VCC
C3
b1
D1
T1
+
C-
R C1 2
b2
D2
VCC/2 K
T2
uo
ui
b3 R
ui=
0 1
Re3
T3
Ce
RL
注:零漂现象在如上图所示的直接耦合 电路中危害尤甚 , IC 内部电路大都采用直 接耦合方式,必须有效地抑制零漂。
4.抑制零点漂移的原理
R’L=RC // ( RL / 2 )
只由一个 管输出电压
VC
C
(1)差模差电分压放大增器益必 共射电
AuD1=(须1/配2)以A单uD端=输-出 R’路L 是/ (单2r端be
)
适应后级。
输入的
双入单出差模电压增益推导
双入b1 单Tic11c出1压带R-+增Cu负o益1 载u-RR+o2CL时c差2icT22模b电2
VC
C
单b1入Ti+c1+1双cu1i1 出电/R-++Cu带压ou1o负增-u-R+o2载益C c-时2uicTi-12差2/ b模2

差分放大电路

差分放大电路

+Vcc
R3
R4 +15V
15k + Vo - 15k
RL 10k
+ R1 Vi 1k
T1
T2
R2
1k
-
Re 1K
差动放大电路
当两个输入端并接到一起,
且加入共模信号Vic时,
Vc1
Vc2
R1
rbe
Rc
(1
)2Re
Vic
即仍有Vo=Vc1−Vc2=0V,
+Vcc
R3
R4 +15V
15k + Vo - 15k
端信号中不同的部分
差分放大电路——一般结构
1、差模信号和共模信号的概念 +
vi1 +

+vid/2
差模电压增益
Avd
=
vo vid
+ vic



vid
-vid/2


差放
vo -
vi2
vo ——差模信号产生的输出 差分式放大电路输入输出结构示意图
共模电压增益
Avc
=
vo vic
vo ——共模信号产生的输出
差分放大电路——一般结构
1、差模信号和共模信号的概念
差模信号
vid = vi1 vi2
共模信号
+
+-vid
vi1
+
vi2
--
差放
+-vo
+
+
vo1
vo2 -
-
vic
=
1 2
(vi1
vi2 )
差分式放大电路输入输出结构示意图

基本放大电路的静态分析

基本放大电路的静态分析

2.静态工作状态的图解分析法 静态工作状态的图解分析法
上述静态工作点的计算,是将UBE视为常数,如果 不视为常数,则需要用图解法来求解静态工作点。由 于三极管的非线性,所以可以使用输入特性曲线来表 示,与基极回路的直流通方程式进行图解,见图3-2-3。
IB =
V 'CC U BE R ' b + (1 + β ) R e
放大电路的静态是指输入信号为零时的状态, 放大电路的静态是指输入信号为零时的状态,电路中只包 含直流量,因此可以用放大电路的直流通路来分析。 含直流量,因此可以用放大电路的直流通路来分析。具体的 分析方法有计算法和图解法的方法。 分析方法有计算法和图解法的方法。 由于三极管的特性曲线是非线性的, 由于三极管的特性曲线是非线性的,不能用数学表达式 来描述,只能用特性曲线来表示。 来描述,只能用特性曲线来表示。在分析放大电路时可采用 图解的方法。 图解的方法。 在放大电路的输入回路,三极管的一方, 在放大电路的输入回路,三极管的一方,可以用三极管 的输入特性曲线表示;外电路的一方, 的输入特性曲线表示;外电路的一方,可以用基极回路直流 通路方程式来描述。 通路方程式来描述。 在放大电路的输出回路, 在放大电路的输出回路,可以用三极管的输出特性曲线 和输出侧直流通路的方程式来描述。 和输出侧直流通路的方程式来描述。
3.2.1 静态和动态
静态—— u i = 0 时,放大电路的工作状态,也称直流工作状态。 放大电路的工作状态,也称直流工作状态 直流工作状态。 静态 动态—— u i ≠ 0 时,放大电路的工作状态,也称交流工作状态。 放大电路的工作状态,也称交流工作状态 交流工作状态。 动态 放大电路建立正确的静态,是保证动态工作的前提。 放大电路建立正确的静态,是保证动态工作的前提。分析放大电 路必须要正确地区分静态和动态,正确地区分直流通道和交流通道。 路必须要正确地区分静态和动态,正确地区分直流通道和交流通道

模电实验-差分放大电路

模电实验-差分放大电路

实验三—差分式放大电路实验内容:一、典型差分式放大电路性能测试实验电路如图,开关K拨向左边构成典型差分式放大电路。

1.测量静态工作点①调节放大电路零点信号源不接入。

将放大电路输入端A、B与地短接,接通±12V直流电源,用万用表测量输出电压Vo,调节调零电位器Rp,使Vo=0.调节要仔细,力求准确。

②测量静态工作点零点调好后,用万用表测量T1、T2管各电极电位及射极电阻RE两端的电压VBE,记录表中。

2.测量差模电压增益断开直流电源,将函数信号发生器的输出端接放大电路输入A端,地端接放大电路输入B端构成差模输入方式,调节输入信号为频率f=1KHz的正弦信号,并使输出旋钮置零,用示波器监视输出端(集电极C1或C2与地之间)。

接通±12V直流电源,逐渐增大输入电压Vi(约100mV),在输出波形无失真的情况下,用交流毫伏表Vi,V C1,V C2,记录在表中,并观察vi,vc1,vc2之间的相位关系及V BE 随Vi改变而变化的情况。

2.测量共模电压增益将差分放大电路A、B短接,信号源接在A端与地之间,构成共模输入方式,调节输入信号f=1KHz,Vi=1V,在输出电压无失真的情况下,测量V C1、V C2的值记录下表,并观察vi,vc1,vc2之间的相位关系及V RE随Vi改变而改变的情况。

二、具有恒流源的差分放大电路性能测试将电路图中的开关K拨向右边,构成具有恒流源的差分式放大电路,重复一——2、3实验内容的要求,记录入上表。

典型差分式放大电路vi,vc1,vc2的图像:共模输入左图——vi与vc1相位关系右图——vc1与vc2相位关系差模输入左图——vi与vc1相位关系右图——vc1与vc2相位关系具有恒流源的差分放大电路vi,vc1,vc2的图像:差模输入vi与vc1相位关系左图——vi与vc1相位关系右图——vc1与vc2相位关系在共模输入时,V i增大,V RE增大;差输入时,V RE很小,V i变化时,V RE变化不明显。

差分放大电路解读

差分放大电路解读

差分放⼤电路解读实验三差分放⼤电路⼀、实验⽬的1、加深对差动放⼤器性能及特点的理解2、学习差动放⼤器主要性能指标的测试⽅法⼆、实验原理图3-1是差动放⼤器的基本结构。

它由两个元件参数相同的基本共射放⼤电路组成。

当开关K拨向左边时,构成典型的差动放⼤器。

调零电位器RP⽤来调节T1、T2管的静态⼯作点,使得输⼊信号Ui=0时,双端输出电压UO=0。

RE为两管共⽤的发射极电阻,它对差模信号⽆负反馈作⽤,因⽽不影响差模电压放⼤倍数,但对共模信号有较强的负反馈作⽤,故可以有效地抑制零漂,稳定静态⼯作点。

图3-1 差动放⼤器实验电路当开关K 拨向右边时,构成具有恒流源的差动放⼤器。

它⽤晶体管恒流源代替发射极电阻R E ,可以进⼀步提⾼差动放⼤器抑制共模信号的能⼒。

1、静态⼯作点的估算典型电路EBEEE E R U U I -≈(认为U B1=U B2≈0)E C2C1I 21I I ==恒流源电路E3BEEE CC 212E3C3R U )U (U R R R I I -++≈≈ C3C1C1I 21I I ==2、差模电压放⼤倍数和共模电压放⼤倍数当差动放⼤器的射极电阻R E ⾜够⼤,或采⽤恒流源电路时,差模电压放⼤倍数A d 由输出端⽅式决定,⽽与输⼊⽅式⽆关。

双端输出: R E =∞,R P 在中⼼位置时,Pbe B CiO d β)R (12r R βR △U △U A +++-==单端输出d i C1d1A 21△U △U A ==d i C2d2A 21△U △U A -==当输⼊共模信号时,若为单端输出,则有若为双端输出,在理想情况下0△U △U A iOC ==实际上由于元件不可能完全对称,因此A C 也不会绝对等于零。

3、共模抑制⽐CMRR为了表征差动放⼤器对有⽤信号(差模信号)的放⼤作⽤和对共模信号的抑制能⼒,通常⽤⼀个综合指标来衡量,即共模抑制⽐ cd A A CMRR =或()dB A A20Log CMRR c d =差动放⼤器的输⼊信号可采⽤直流信号也可采⽤交流信号。

差分放大电路 全篇

差分放大电路 全篇

Rb
Uoc
Rb
T1
T2
Uic1
Iec1 Rc Uoc1 Uoc2 Rc Iec2
2Ree
2Ree
Uic2
Uoc 0
A Uc(双)
U oc U ic
Uoc1 Uoc2 0 Uic
差放的特点: 输入无差别,输出就不动;输入有差别,输出就变动。
共模抑制比CMRR—衡量差放的一个重要指标。
CMRR A Ud A Uc
差分电路的输入输出方式
单端输入 输入方式
双端输入
单端输出
输出方式
双端输出
Uo
+
差模信号和共模信号 +
Uo Uo
-
差模信号
Ui1
Ui2
一对大小相等,极性 -
+
相反的信号,用Uid1、Uid2
表示, Uid1= - Uid2
共模信号 一对大小相等,极性相同的信号, 用Uic1、Uic2表示,Uic1= Uic2
5. 双端输入/单端输入 指标比较
输出方式
双出
单出
AUD
(Rc
//
1 2
RL )
rbe
(Rc // RL )
2rbe
Rid
2rbe
双出
单出
(Rc
//
1 2
RL )
rbe
(Rc // RL )
2rbe
2rbe
Ro
2 Rc
Rc
2 Rc
Rc
集成运算放大器概述
集成运算放大器结构特点 集成运算放大器组成及各部分作用 集成运算放大器主要参数 理想集成运算放大器及两个工作区域
2. 当V+>V-时,Vo为正向输出饱和电压VOH 当V+<V-时,Vo为负向输出饱和电压VOL 其数值接近运放的正负电源电压

模拟电子技术基础 3.3差分放大电路PPT课件

模拟电子技术基础 3.3差分放大电路PPT课件
uod = 2ic1RL
ic2 = ic1
而(对镜像源):
二、双端变单端的转换电路
对共模信号:
ic4 = ic3 ≈ ic1
iL = ic4 – ic2 = 0
uoc = 0
ic2 = ic1

具有双端输出的效果!
3.3.4 差分放大电路的差模传输特性
O
ui
iC
iC1
iC2
I0
UT
-UT
4UT
采用 V3 管代替 R
4 FET管电流源
I0 = IREF
2、有源负载
以电流源取代电阻作放大电路的负载。
优点:既提高了电压放大倍数,又设置了合适的工作点。
一、电流源与有源负载
二、具有电流源的差分放大电路
二、具有电流源的差分放大电路
CMOS差分放大电路
V1、V2构成差放, V3、V4构成电流源作有源负载, V5、V6 、V7构成电流源提供偏置。
第3章 放大电路基础
3.1 放大电路的基础知识 3.2 基本组态放大电路 3.3 差分放大电路 3.4 互补对称功率放大电路 3.5 多级放大器
3.3 差分放大电路
3.3.1 基本差分放大电路
3.3.2 电流源与具有电流源的差分放大电路
3.3.3 差分放大电路的输入、输出方式
差分放大电路又称差动放大电路,简称差放,具有输出电压近似与两个输入电压之差成正比的特性,是集成运放中重要的基本单元电路。
3.3.3 差分放大电路的差模传输特性及应用
一、电路组成及静态分析
一般
3.3.1 基本差分放大电路
结构特点: 1 两个输入端,两个输出端; 2 电路结构和元件参数对称; 3 双电源供电; 4 RE是公共发射极电阻。

放大电路的静态分析

放大电路的静态分析

VCC
IC UCE
说明:1)求直流负载线两点坐标作出直 流负载线, (VCC, 0 ), (0 ,VCC /Rc);
2)直流负载线和输出特性曲线有多个交 点,只有与IB=IBQ对应的那条曲线的交 点才是静态工作点。
57/131
小结:改变IBQ,即可改变静态工作点的位置,静态工作点的 位置将直接影响放大电路的放大质量。
Ci
iB
iC+
+
+
Rs +
ui
T1
+
uBE
uC RL
uo
us
-
-
-
-
-
54/131 1)解析法 (即计算法 )
条件:已知发射结压降UBEQ和CE电流增益 β
步骤:(1) 画直流通;
VCC
(2)求静态值,求解顺序为: IBQ→ICQ→UCEQ
IB UBE
IC UCE
分析:IBQ

VCC
UBEQ Rb
I
B

f
U
UBE VCC
BE


IB
→ Rb→
输入特性曲线 输入直流负载线
IBQ
Q
UBE
UBEQ VCC
56/131 步骤③:由输出特性曲线和输出直流负载线交点求ICQ、UCEQ
输出特性曲线 IC f UCE IBIBQ
输出直流负载线 UCE VCC ICRC
IB UBE
ICQ βIBQ
UCEQ=VCC-ICQRC
其中:Si管一般取UBEQ≈0.7V Ge管一般取UBEQ≈0.3V
55/131 2) 图解法 (即作图的方法)

静态工作点分析讲解

静态工作点分析讲解

设计单级共基极放大电路——静态工作点分析1 绪论本课程设计的基本要求是对静态工作点分析(白冰);输入信号的变化对放大电路输出的影响(师晓辉);测量放大电路的放大倍数(闫斌);输入电阻(刘特);输出电阻(齐帅)。

本论文针对静态工作点的分析,静态工作点是在分析放大电路时提出来的,它是放大电路正常工作的重要条件。

当把放大器的输入信号短路,把IN 直接接地,则放大器处于无信号输入状态,称为静态。

如果静态工作点选择不合适,则输出波形会失真,因此设置合适静态工作点是放大电路正常工作的前提。

静态分析就是求解静态工作点Q,再输入信号为零时, 晶体管和场效应管各电极间的电流和电压就是Q点。

可用估算法和图解法求解。

Multisim 软件是一个专门用于电子线路仿真与设计的EDA 工具软件。

作为Windows 下运行的个人桌面电子设计工具,Multisim 是一个完整的集成化设计环境。

Multisim 计算机仿真与虚拟仪器技术可以很好地解决理论教学与实际动手实验相脱节的这一问题。

学生可以很方便地把刚刚学到的理论知识用计算机仿真真实的再现出来,并且可以用虚拟仪器技术创造出真正属于自己的仪表。

它具有直观的图形界面, 丰富的元器件,强大的仿真能力,丰富的测试仪器,完备的分析手段,独特的射频模块,强大的MCU模块,完善的后处理,详细的报告,兼容性好的信息转换特点。

所以NI Multisim 软件电子学教学的首选软件工具。

2设计任务(一)目的:1.了解单极共基极放大电路的基本工作原理;2.学会运用软件模拟设计电路、应用各种仪器。

了解电路在不同状态下的变化特点,学会对电路的变化分析;3.了解设置静态工作点分析的必要性4.熟悉静态工作点与动态参数的估算5.了解稳定静态工作点的措施(二)原理:1. 共基极放大电路中,输入信号是由三极管的发射极与基极两端输入的,再由三极管的集电极与基极两端获得输出信号因为基极是共同接地端,所以称为共基极放大电路。

差动放大电路

差动放大电路

差动放大电路一、概述差动放大电路又叫差分电路,他不仅能有效的放大直流信号,而且能有效的减小由于电源波动和晶体管随温度变化多引起的零点漂移,因而获得广泛的应用。

特别是大量的应用于集成运放电路,他常被用作多级放大器的前置级。

基本差动放大电路由两个完全对称的共发射极单管放大电路组成,该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。

设想这样一种情景,如果存在干扰信号,会对两个输入信号产生相同的干扰,通过二者之差,干扰信号的有效输入为零,这就达到了抗共模干扰的目的。

二、基本电路图差动放大电路的基本电路图上图为差动放大电路的基本电路图[1]三、差动放大电路的工作原理1、差动放大电路的基本形式对电路的要求是:两个电路的参数完全对称两个管子的温度特性也完全对称。

它的工作原理是:当输入信号Ui=0时,则两管的电流相等,两管的集点极电位也相等,所以输出电压Uo=UC1-UC2=0。

温度上升时,两管电流均增加,则集电极电位均下降,由于它们处于同一温度环境,因此两管的电流和电压变化量均相等,其输出电压仍然为零。

它的放大作用(输入信号有两种类型)(1)共模信号及共模电压的放大倍数 Auc共模信号---在差动放大管T1和T2的基极接入幅度相等、极性相同的信号。

如图(2)所示共模信号的作用,对两管的作用是同向的,将引起两管电流同量的增加,集电极电位也同量减小,因此两管集电极输出共模电压Uoc为零。

因此:。

于是差动电路对称时,对共模信号的抑制能力强字串3(2)差模信号及差模电压放大倍数 Aud差模信号---在差动放大管T1和T2的基极分别加入幅度相等而极性相反的信号。

如图(3)所示差模信号的作用,由于信号的极性相反,因此T1管集电极电压下降,T2管的集电极电压上升,且二者的变化量的绝对值相等,因此:此时的两管基极的信号为:所以:,由此我们可以看出差动电路的差模电压放大倍数等于单管电压的放大倍数。

实验二 差分放大电路

实验二 差分放大电路

实验二差分放大电路
一.实验电路图如下图所示:
二.实验内容:恒流源式差分放大器静态工作点的测试与调整;
差模电压放大倍数的测试。

1. 静态工作点的测试与调整。

连接电路,并进行适当调整,使差分放大电路对称,并保证三极管工作在放大状态。

将测量值记于表1中。

表1
2. 差模电压放大倍数A VD的测量。

调节信号源,f=1KHz,Vi=0.3V;电路结构选择单端输入,双端输出的方式,将信号源接入电路;用示波器分别观察电路中V C1和V C2的波形,并读取幅值。

将结果填入表2中。

画出示波器观察到的V C1和V C2的波形图。

三.回答问题:
差分放大电路的作用是什么?差分放大电路常见的电路形式有哪几种?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图2 差分放大电路静态工作点摘要:简要介绍Multisim8软件的特点,并对差分放大电路进行仿真分析,研究其如何实现对差模信号放大和对共模信号抑制。

仿真结果与理论分析计算一致,在课堂上使模拟电子技术教学更形象、灵活、更贴近工程实际,达到帮助学生理解原理,更好地掌握所学的知识的目的。

对提高学生动手能力、分析问题和解决问题的能力具有重要的意义。

关键词:Multisim;差分放大电路;仿真分析;差模信号;共模信号中图分类号:TN707 文献标识码:B 文章编号:1004-373X(2009)04-014-02Analysis of Differential Amplifier Circuit Simulation Based onMultisimXIONG Xujun(Lanzhou City College,Lanzhou,730070,China)Abstract:Features ofMultisim8 software and differential amplifierfor the simulation analysis are introduced,research on how to enlarge differential mode signal and restrain common mode signal.Thesimulation results calculated in line with the theoreticalanalysis,in the classroom teaching of electronic technology tosimulate more image,flexible and closer to actual projects,to help students understand theory,a better grasp of the knowledge acquiredby the purpose It has great significance to enhance studentspractical ability and analysis of issues and problem-solving abilitie.Keywords:Multisim;differential amplifier;simulationanalysis;differential mode signal;common mode signal差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。

但是差分放大电路结构复杂、分析繁琐,特别是其对差模输入和共模输入信号有不同的分析方法,难以理解,因而一直是模拟电子技术中的难点[1,2]。

Multisim 作为著名的电路设计与仿真软件,它不需要真实电路环境的介入,具有仿真速度快、精度高、准确、形象等优点。

因此,Multisim被许多高校引入到电子电路实验的辅助教学中,形成虚拟实验和虚拟实验室。

通过对实际电子电路的仿真分析,对于缩短设计周期、节省设计费用、提高设计质量具有重要意义。

1Multisim8软件的特点Multisim是加拿大IIT (Interactive Image Technologies)公司在EWB (Electronics Workbench)基础上推出的电子电路仿真设计软件,Multisim现有版本为Multisim2001,Multisim7和较新版本Multisim8。

它具有这样一些特点:(1) 系统高度集成,界面直观,操作方便。

将电路原理图的创建、电路的仿真分析和分析结果的输出都集成在一起。

采用直观的图形界面创建电路:在计算机屏幕上模仿真实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。

操作方法简单易学。

(2) 支持模拟电路、数字电路以及模拟/数字混合电路的设计仿真。

既可以分别对模拟电子系统和数字电子系统进行仿真,也可以对数字电路和模拟电路混合在一起的电子系统进行仿真分析。

(3) 电路分析手段完备,除了可以用多种常用测试仪表(如示波器、数字万用表、波特图仪等)对电路进行测试以外,还提供多种电路分析方法,包括静态工作点分析、瞬态分析、傅里叶分析等。

(4)提供多种输入/输出接口,可以输入由PSpice等其他电路仿真软件所创建的Spice网表文件,并自动形成相应的电路原理图,也可以把Multisim环境下创建的电路原理图文件输出给Protel等常见的印刷电路软件PCB进行印刷电路设计[3,4]。

2 差分放大电路仿真分析运行Multisim 8,在绘图编辑器中选择信号源、直流电源、三极管、电阻,创建双端输入双端输出差分放大电路(双入双出差分放大电路)如图 1所示,标出电路中的结点编号。

该次仿真中,采用虚拟直流电压源和虚拟晶体管,差分输入信号采用一对峰值为5 mV、频率为1 kHz的虚拟正弦波信号源。

设置虚拟晶体管的模型参数BF=150,RB=300 Ω[5]。

图1 双入双出差分放大电路2.1 差模放大性能仿真分析2.1.1 直流分析直流分析实际上就是确定静态工作点。

选择Simulate菜单中的Analysis命令,然后选择DC Operating Point子命令,分析结果如图2所示。

用静态工作点分析方法得UBEQ1?=UBEQ2?=0.69 V,UCEQ1?=UCEQ2?=V3-V2?8.94 V,与题中理论计算结果完全相同。

2.1.2 差模放大倍数分析加差模信号?ui1?,ui2?,分别接入电路的左右输入端,电阻R1作为输出负载,则电路的接法属于双入双出。

将四通道示波器XSC1的3个通道分别接在信号源ui1?和负载R1两端,?如图1所示[6,7]。

运行并双击示波器图标XSC1,调整各通道显示比例,得差分放大电路的输入/输出波形如图3所示。

用示波器观察和测量输入电压和输出电压值,差模信号单边电压V1?-3.597 mV(5 mV/Div),单边输出交流幅值约为170.124 mV(500 mV/Div),所以双入双出差分放大电路的差模放大倍数Au?-170.124/3.597?=-47,与单管共射的放大倍数相同,即差分放大电路对差模信号具有很强的放大能力。

仿真结果与题中理论计算结果相同。

2.2 共模抑制特性仿真分析2.2.1 共模放大倍数分析在图1中,将信号源ui2?的方向反过来,即加上共模信号,运行并双击示波器图标XSC1,调整A,B通道显示比例,可得如图4所示波形[4]。

由图4波形可知,在峰-峰14 mV(有效值为5 mV?)的共模信号作用下,输出的峰值极小,峰-峰值为13 mV,?因此单边共模放大倍数小于1。

且uc1?和uc2?大小相等,极性相同。

所以,在参数对称且双端输出时,共模放大倍数等于0,说明差分放大电路对共模信号具有很强的抑制能力。

显然,仿真结果与理论分析结果一致。

图2 差分放大电路静态工作点图3 双入双出差分放大电路输入输出波形图4 差分放大电路共模信号输入输出波形2.2.2 共模抑制比分析选择Simulate菜单中的Analysis命令,然后选择Transient Analysis子命令,选择结点3,4作为输出,单击Simulate按钮;选择Simulate菜单中的后处理器Postprocessor子命令,在Expression列表框中编辑“V($4)-V ($3)”,?然后打开Graph选项卡,可画出差分放大电路共模输入双端输出波形,见图5。

可见,波形属于噪声信号,且幅值极小,可忽略不计。

因此,差分放大电路双端输出时,其共模抑制比KCMR?趋于无穷大。

如果再将图1所示的电路中发射极电阻R2改为恒流源,重复前面步骤,再分析共模特性,可得出结论:具有恒流源的差分放大电路的共模抑制比KCMR?更高[6,8]。

3 结语应用Multisim8软件对差分放大电路进行仿真分析,结果表明仿真与理论分析和计算结果一致,应用Multisim进行虚拟电子技术实验可以十分方便快捷地获取实验数据,突破了在传统实验中硬件设备条件的限制,大大提高了实验的深度和广度。

利用仿真可以使枯燥的电路变得有趣,复杂的波形变得形象生动,并且不受场地(可以在教室、宿舍),不受时间(课内、课外)的限制,通过教师演示和学生动手设计、调试,不但可以使学生更好地掌握所学的知识,同时提高了学生的动手能力、分析问题和解决问题的能力[9,10]。

图5 差分放大电路共模输入双端输出波形参考文献[1]侯勇严,郭文强.PSpice在差分放大电路分析中的应用研究[J].微计算机信息,2006,22(9):303-305.[2]康华光,陈大钦.电子技术基础(模拟部分)[M].北京:高等教育出版社,1999.[3]叶建波.用Multisim8软件实现电子电路的仿真[J].电子工程师,2005,31(7):18-20.[4]郑步生,吴渭.Multisim2001电路设计及仿真入门与应用[M] .北京:电子工业出版社,2002.[5]华成英.模拟电子技术基本教程[M].北京:清华大学出版社,2006.[6]从宏寿,程卫群,李绍铭.Multisim8仿真与应用实例开发[M].北京:清华大学出版社,2007.[7]王传新.电子技术基础实验[M].北京:高等教育出版社,2006.[8]路而红.虚拟电子实验室[M].北京:人民邮电出版社,2001.[9]毛哲,张双德.电路计算机设计仿真与测试[M].武汉:华中科技大学出版社,2003.[10]钟化兰.Multisim8在模拟电子技术设计性实验中的应用研究[J].华东交通大学学报,2005,22(4):88-89.作者简介熊旭军男,1962年出生,甘肃天水人,副教授。

主要从事电子技术基础教学与研究工作。

注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

(责任编辑:背包走天下)。

相关文档
最新文档