某水电站电气主接线设计
某水电厂电气主接线设计
某水电厂电气主接线设计某水电厂电气主接线设计一、背景介绍水电站作为能够提供可再生能源的设施被广泛应用,而水电站的电气接线则是保障发电能力的关键。
在某水电厂中,电气主接线设计是整个电气系统的关键设计要素之一。
二、电气系统概述某水电厂电气系统主要由发电机组、主变压站、配电房、线路、负载等组成。
发电机组的输出电压在经过主变压站的升压、降压后,按照不同的电压等级进入配电房,经过总开关和控制设备,流向各个用电负载点。
三、电气主接线的设计(一)电缆通道设计电缆通道的设计板块包含了整个电气系统电缆运行的通道,是实现调试和维护的重要路径。
设计时需要考虑耐热、耐腐蚀、抗压等特性,确保通道能够保持压力平衡,防止漏电和火灾。
(二)电气系统的接合板设计针对主接线处,为了确保电能传输的安全性和稳定性,需要使用接合板将不同线径、电压等级的电缆连接在一起。
设计接合板时需要考虑电缆规格、连接方式、电缆走向等因素,确保接合牢靠。
(三)安全措施设计在设计电气主接线时,需要考虑电气设备的运行安全,以及人员和设备的安全。
这包括安装漏电保护器、过载保护器、短路保护器等安全装置,以及设计合理的安全加固措施和避雷措施,确保电气系统的安全稳定运行。
(四)电气设备的选择选择合适的电气设备,是保证电气系统安全和运行稳定的重要因素。
设计中,需要根据实际需要选择合适的开关、控制设备、电缆等设备,并根据不同型号和规格安排合理的装配和安装位置,确保电气系统的高效运行。
四、结论电气主接线设计是整个电气系统的关键设计要素之一,涉及到电缆通道设计、接合板设计、安全措施设计和设备选择等多个方面。
设计时需要注重电气安全,同时也需要考虑线路布置的合理性和设备的高效使用。
因此,在电气主接线设计中,需要综合考虑各个方面,达到设计目的,为电气系统的正常运行提供有力保障。
水电站电气主接线及厂用电接线设计实例
水电站电气主接线及厂用电接线设计案例第一部分电气主接线设计案例变电所电气主接线设计是依据变电所的最高电压等级和变电所的性质,选择出一种与变电所在系统中的地位和作用相适应的接线方式。
变电所的电气主接线是电力系统接线的重要组成部分。
它表明变电所内的变压器、各电压等级的线路、无功补偿设备最优化的接线方式与电力系统连接,同时也表明在变电所内各种电气设备之间的连接方式。
一个变电所的电气主接线包括高压侧、中压侧、低压侧以及变压器的接线。
因各侧所接的系统情况不同,进出线回路数不同,其接线方式也不同。
变电所的电气主接线设计是整个变电所设计的核心技术。
它对变电所内电气设备选择、布置、继电保护及自动装置的设计、变电所总平面布置的设计,都起着决定性作用。
变电所主接线直接影响变电所乃至相关电力系统安全、经济、稳定、灵活的运行。
电气主接线的设计与所在电力系统及所采用的设备密切相关。
随着电力系统的不断发展、新技术的采用、电气设备的可靠性不断提高,设计主接线的观念也应与时俱进、不断创新。
1电气主接线的基本要求主接线设计应满足可靠性、灵活性、经济性、发展性等四方面的要求。
1)可靠性。
为了向用户供应持续、优质的电力,主接线首先必须满足这一可靠性要求。
2)灵活性。
电气主接线的设计,应当适应在运行、热备用、冷备用和检修等各种方式下的运行要求。
3)经济性。
即:投资省、占地面积小、电能损耗小。
4)发展性。
主接线设计可以容易地从初期接线方式过渡到最终接线。
变电所电气主接线的可靠性、灵活性、经济性和发展性是一个综合概念,不能单独强调其中的某一种特性,也不能忽略其中的某一特性。
2主接线选择的主要原则1)变电所主接线要与变电所在系统中的地位、作用相适应。
根据变电所在系统中的地位,作用确定对主接线的可靠性、灵活性、经济性和发展性的要求。
2)变电所主接线的选择应考虑电网安全稳定运行的要求,还应满足电网出故障时应处理的要求。
3)各种配置接线的选择,要考虑该配置所在的变电所性质,电压等级、进出线回路数、采用的设备情况,供电负荷的重要性和本地区的运行习惯等因素。
水电站电气主接线及电气设备布置设计
目录设计说明书 (1)第一章电气主接线设计 (1)1.1 主接线设计基本要求与设计原则 (1)1.2各方案比较 (2)第二章变压器选择 (4)2.1 主变压器选择 (4)2.1.1主变压器容量和台数确定 (4)2.1.2主变压器型式选择 (4)2.1.3绕组连接方式选择 (5)2.1.4调压方式与阻抗选择 (5)2.2 自耦变压器的选择 (5)第三章短路电流计算 (7)3.1短路电流计算目的 (7)3.2 短路电流计算一般规定 (7)3.3 短路电流计算结果 (7)第四章电气设备选择 (9)4.1电气设备选择原则 (9)4.2电气设备选择说明 (10)4.2.1断路器与隔离开关选择 (10)4.2.2母线的选择说明 (11)4.2.3绝缘子选择 (11)4.2.4电流互感器与电压互感器选择 (12)第五章配电装置及总平面布置设计 (13)5.1配电装置设计原则 (13)5.2总平面设计 (15)计算书 (17)第一章短路电流计算 (17)第二章电气设备选择计算 (25)2.1断路器与隔离开关选择计算 (25)2.2母线选择计算 (27)2.3绝缘子选择计算 (28)2.4电流互感器与电压互感器选择计算 (29)参考文献 (31)致谢 (32)设计说明书第一章电气主接线设计1.1 主接线设计基本要求与设计原则电气主接线是水电站由高压电气设备通过连线组成的接收和分配电能的电路。
电气主接线根据水电站在电力系统中的地位、回路数、设备特点及负荷性质等条件确定,并应满足运行可靠、简单灵活、操作方便、易于维护检修、利于远方监控和节约投资等要求。
在电气主接线设计时,综合考虑以下方面:①保证必要的供电可靠性和电能质量安全可靠是电力生产的首要任务,保证供电可靠和电能质量是对主接线最基本的要求。
在设计时,除对主接线形式予以定性评价外,对于比较重要的水电站需要进行定量分析和计算。
本次设计水电站虽然是一个中型水电站,但是由于担负了许多工业企业,及农业抗旱排涝等供电任务,因而必须满足必要的供电可靠性。
水电站电气主接线优化设计研究论文
水电站电气主接线优化设计研究论文摘要:水电站电气主接线设计合理与否直接影响到电力系统、水电站等安全运行。
以某水电站为研究对象,设计了单母线接线、扩大单元接线等几种形式,通过对比其经济性、灵活性和可靠性,获得该电站最优电气主接线。
关键词:水电站;电气主接线;设计电气主接线就是将发电机、变压器、断路器、隔离开关、电抗器、电容器、互感器和避雷器等一次电气设备按照预期的生产流程构成的电能生产、转化、输送和分配的电气回路。
其设计是大中小型水电站电气部分设计的重要组成之一,直接影响各种电气设备的选择、配电装置的布置以及继电保护的确定,对于建成后水电站的安全经济运行有着至关重要的作用。
以往水电站电气主接线设计主要围绕短路计算,变压器、配电装置以及无功补偿装置等开展电气主接线具体设计,即重点在于短路计算和设备选型,对电气主接线方式分析不足。
本文在总结电气主接线理论和工作经验的`基础上,以某水电站为例,具体分析发电机侧和变压器侧均用单母线接线、发电机侧采用单元接线和扩大单元接线而变压器侧采用单母线接线、发电机侧单母线接线而变压器侧角形接线、电源单元及扩大单元而主变角形接线等方案的优劣,获得最优电气主接线设计方案,进而强调了电站电气主接线设计优化的重点。
1电气主接线设计原则主接线设计应满足可靠性、灵活性和经济性等3项基本要求。
具体要求如下:1.1可靠性供电可靠性是电力生产和分配的首要要求,主接线首先满足这个要求。
可靠性的衡量标准具体如下:1)断路器检修时,系统的供电不宜受影响。
2)断路器或者母线发生故障以及母线检修时,尽量减少停运的回路数和停运时间。
3)尽量避免发电厂,变电所全部停运的几率。
1.2灵活性主接线应满足在调度、检修及扩建时的灵活性。
1)调度时,应可以灵活得投入和切除发电机变压器和线路,满足系统在事故运行方式、检修运行方式系统调度,并尽可能减少隔离开关的操作次数。
2)检修时,可以方便的停运断路器和其他继电保护装置,进行安全检修而不至于影响电力系统的管理运行和对用户的供电。
水电站电气主接线优化设计探讨
水电站电气主接线优化设计探讨摘要:水电作为一种绿色能源,在国民经济与社会建设中扮演着十分重要的角色,为了保障水电站可以安全可靠地运行,选择技术可靠、经济合理的电气主接线方案就显得尤为重要,而且在实际应用的过程中,技术工作者还需要对电气设备选用、配电装置布局和继电保护进行优化设计,这样才能全方位保障水电站的安全经济运行。
鉴于此,本文对水电站电气主接线的设计进行了分析探讨,仅供参考。
关键词:小水电站;电气主接线;设计1.水电站电气主接线设计原则1.1灵活性水电站电气主接线设计在满足电力调度和扩容灵活性要求的基础上,应满足以下要求:一是在调度过程中灵活投入,及时调整发电机、变压器和工作线,为了保证系统调度在运行或维护的基础上实现,只有这样才能减少和尽可能减少切换操作次数的增加。
其次,在维护状态下,维护人员可以随时设置断路器停机或调试其他继电保护装置,这样在安全维护过程中不会影响其他系统的运行。
1.2安全在水电站电气主接线的设计中,必须确保在任何运行状态或维护环节,都能最大限度地保证工人和电气设备的安全。
只有这样,才能在减少运营投资的基础上,有效地提高工作质量和效果。
1.3经济在保证水电站安全可靠运行和满足技术性能要求的前提下,主接线设计也应考虑经济性,尽量减少设备和占地面积,减少投资,最大化经济效益。
2水电站电气主接线设计方案2.1升高电压侧的接线模式通常情况下,水电站的主变压器使用两绕组变压器,这样的变压器有着较强的绝缘性能与耐高温能力,特别是在夏季,人们的用电量急剧上升,水电站承受的载荷较高,采用绕组变压器可以在很大程度上缓解水电站的运行压力。
在采用升高电压侧接线方式的过程中,按照接线的不同位置,又可以分为以下三种方式:首先,变压器线路组接线。
这样的接线方式有着简便的显著特点,主要是采用外加导流线路的方式来提升变压器的运转效率,相对变压器而言,连接导线的电阻基本上可以忽略不计,所以有可能出现变压器短路故障再加上主接线电气设计采用的是单线路连接,在具体维修的过程中就要全站进行停电,因此大部分水电站逐步不再采用变压器线路组接线的方式;其次,单母线和单母线分段接线。
水电站电气主接线设计
百龙滩水电站为低水头径流式水电站,无调节能力,只能按上游来水情况发电,电站在系统的基荷和腰荷区运行。
根据电力系统的要求,百龙滩水电站以220 kV和110 kV两级电压接入广西电网,220 kV出线三回,两回就近“π”接入大化至恶滩220 kV线路,一回备用;110 kV出线一回至都安。
2 灯泡贯流式机组的特点与常规机组相比,灯泡贯流式机组的最大特点是整个机组横卧在流道中,由于受水力条件的限制,发电机的外径比较小,因而具有以下特点:(1)机组单机容量小、电站机组台数多。
灯泡贯流式机组的单机容量较小,目前世界上单机容量最大的灯泡贯流式机组仅为65 MW。
在电站总装机容量一定的条件下,机组单机容量越小,电站机组台数越多。
(2)机组转动惯量小。
由于发电机的外径小,定子铁心内径受限制,转动惯量相应减少,因而机组在甩负荷后速率上升很快,容易发生飞逸,运行稳定性较差。
(3)发电机功率因数高。
发电机转子直径小,转子空间有限,机组转速低,因而发电机转子极距小,磁极铁心的高宽比大,使得铁心漏磁大,发电机的功率因数比常规机组高。
(4)机组自用电负荷大,对供电可靠性要求高。
由于发电机的外径小,转子铁芯长度较长,机组转速低,使得发电机的通风冷却比常规机组要困难得多,发电机冷却风机容量较大;另一方面为了防止调速装置失灵时机组发生飞逸,机组调速环的一侧悬挂有重约40 t的重锤,机组导叶的开启,需克服重锤的重力,使得发电机调速装置主电机容量较大。
机组自用电负荷对供电可靠性要求较高,没有厂用电机组无法启动;机组润滑油泵供电中断时间大于5 s时,保护装置将动作停机。
3 电气主接线设计3.1 发电机电压接线发电机电压接线分别比较过单元接线、两机一变和三机一变的扩大单元接线方案。
单元接线方案接线简明清晰,变压器故障或检修不影响其他发电机的运行,但由于电站机组台数多,若采用单元接线,电站的主变压器以及发电机电压母线竖井的数量较多,不利于厂房电气设备布置;三机一变扩大单元接线方案主变台数最少,可减少相应的高压出线回路数,但主变压器故障或检修,3台机组出力受阻,另一方面,发电机出口短路电流高达56.7 kA,发电机断路器选择困难;两机一变扩大单元接线方案主变容量大小适中,发电机出口短路电流较小(约36.9 kA),所有发电机配电装置可选成套开关柜,大大简化电气设备布置,因而发电机电压接线采用两机一变的扩大单元接线方案。
水电站电气主接线优化设计
TECHNOLOGY AND INFORMATION科学与信息化2022年4月上 1水电站电气主接线优化设计王晨曦四川省水利水电勘测设计研究院有限公司 四川 成都 610000摘 要 水电站电气主接线也就是把发电机、变压器、电容器、避雷装置等一次电气设备依照预先设计的生产运作流程组成电能生产、转化、运输、分配使用的电气回路,对于水电站电气管理而言,电气主接线优化设计是非常关键的一项任务,其处理是否得当将会直接影响到电力系统和水电站的平稳运行。
为此,本文针对水电站电气主接线优化设计展开了详细分析,探讨了相关的注意事项以及设计方案,以期能够为水电站有关技术人员提供一定价值的借鉴思路。
关键词 水电站;电气;主接线;优化;设计引言对于传统水电站电气主线路设计工作中,涉及的设计内容主要有短路分析、配电设备、无功补偿、变压器等,其中短路计算和设备的选取是传统电气设计模式下的重点任务,在传统设计思路下,对于电气主接线方式的了解不太深入,而在目前电力技术高速发展的背景下,电气主接线已经成为一项新式的重要接线方式,在水电站电气设计领域获得了大范围运用,同时也逐渐在实际水电建筑中发挥出越来越重要的作用,所以,在开展电气设计时,应当对主接线设计进行重点关注,加强对其设计方案的优化调整。
1 小型水电站电气主接线设计的注意事项1.1 解决近区负荷的供电问题水电站和火电厂之间存在一定差异,通常是一次建设完毕,后续不会进行扩建;而且水电站开机程序非常简单,机组启动速度较快,同时还较易实现自动化与智能化;和负荷中心间隔距离较远,不存在较大的近区负荷,使用升高电压运送电能,出线回路不多,大多数是调峰运作,启停非常频繁[1];和火电厂与降压变电所有所不同,通常不会预先留设出线回路;水电厂内所用电能负荷较低,通常不会从高压侧接线,而且备用厂用电源能够由地区配电网或者是保留施工变电站提供;水电站大多修建在狭小的山区地带,开关站往往不会作为分配或者是中转电能的变电站,对于电气主接线而言愈是简单、清晰愈佳;处于相同河流上的梯级水电站或者是地理位置临近的几处水电站,电站相互间不仅存在电能的联系,同时还在水方面存在联系;水电站在进行电气主接线设计过程中,需要合理解决近区负荷的供电需求。
某小型水电站电气主接线设计毕业论文设计
某小型水电站电气主接线设计摘要随着现代社会经济的发展和水利科学技术的进步,人类对于水能资源开发利用的程度越来越高,调节水资源、利用水能、开发水利的强度越来越大。
在我国,河流众多,径流丰沛、落差巨大,蕴藏着非常丰富的水能资源。
据统计,中国河流水能资源蕴藏量6.76亿KW,年发电量59200亿KWh;可能开发水能资源的装机容量3.78亿KW,年发电量19200亿KWh。
我国水能蕴藏量居世界第一,可能开发量居世界首位,单一国土面积平均,每平方公里的可能开发容量,我国仅居世界第11位。
而以人口平均,我国的位次更低,人均资源量只占世界平均值的70%左右。
对于这种现状,能最大效率地开发和利用水能就显得至关重要。
小水电是指容量为12~0.5MW的小水电站,运行寿命长,坚固耐用,价格稳定,小水电在全国分布也很广泛(在全国2166个县、市中有1573个县有可开发小水电资源),并且可以提高水能综合利用率。
对于用电规模较小的边远地区和中大型水电站的二级工程来说,所有这些优点是小水电站成为最具有吸引力的发展对象。
对于边远地区,长距离供电容易造成电能损耗高或者为了降低损耗而额外的经济投资大,因此对于西南边远地区可以充分地利用当地丰富的水资源建造小型水电站。
这种类型的水电站一般比较边了适应电网的智能化建设,对于监控、信号采集、遥调、遥控等二远,为了减少故障发生的概率,故对电机、断路器、架空线(电缆)、变压器及二次设备的质量要求较高;同时,二次设备设计要功能全面。
由于发电机容量不大,可有两台发电机与一台变压器组成扩大单元接线,减少了变压器及其高压侧断路器的台数,相应的配电装置间隔也减少,节约投资于占地。
本毕业设计有两套方案,采用了很符合本设计低故障的第一套方案。
【关键字】水能资源;小水电;智能化建设;方案大学论文AbstractWith modern social economy development and water conservancy development of science and technology, human for water resources development and utilization degree more and more high, adjust water resources, using the intensity of hydropower, development more and more water In China, with its many rivers, runoff drenched, divide huge, containing the very rich water resources. According to statistics, China's rivers 6.76 billion KW hydropower resources reserves 59200 billion KWh, annual generation; May develop the hydropower resources 3.78 billion KW, installed capacity 19200 billion KWh annual generation capacity. Our country is ranked first in water, may back hurriedly the highest in the world, a single land area per square kilometers, on average, China may develop capacity only the 11th in the world. And the average by population, China, the per capita resource fit lower accounts for only about 70% of the world average. For this kind of situation, can maximum efficiency to develop and make use of the water are very important·The small hydropower capacity of 12 ~ refers to the small hydropower station of 0.5 MW, running long life, durable, price stability, small hydropower in national distribution in the country is also widely (round counties, cities in May have developed counties 1573 small hydropower resources), and can improve water comprehensive utilization. For electricity smaller remote areas and medium-large hydropower station for the secondary engineering, all of these advantages is the small hydropower become the most attractive development object.For remote areas, power loss caused by long distance power supply easy high or to reduce loss and additional economy big investment, so for southwest outlying areas can make full use of the local rich water resources to build small hydropower station. This type of hydropower station is compared commonly edge of intelligent building adapted to grid for monitoring, signal acquisition and remote-sensing attune, remote control, etc, in order to reduce the two far fault the probability of occurrence in the motor, circuit breakers, bus (cable), transformer and secondary equipment quality requirement is higher; Meanwhile, second equipment design should fully functional. Generator capacity is not big, but because there are two generators and composed a transformer, reducing the expanded unit wiring and high voltage side of transformer, the corresponding number circuit breaker switchgears intervals, saving investment in covering reduction. The two sets of graduation design scheme, using a very accord with the design of the first scheme.【Key words】water resources, small hydropower capacity, intelligent building, scheme.目录第一章电气主接线 (1)1.1设计原则 (1)1.2 各方案的比较 (2)第二章厂用电设计 (4)2.1 厂用电设计原则 (4)第三章短路电流计算 (5)3.1 对称短路电流计算 (5)第三章电气主设备选择 (10)4.1高压电气设备选择的一般条件 (10)4.2高压断路器的选择和校验 (11)4.3隔离开关的选择和校验 (14)4.4电流互感器的选择和校验 (15)4.5电压互感器的选择 (17)4.6 高压熔断器的选择 (19)4.7 避雷器的选择 (20)4.8 支柱绝缘子和穿墙套管的选择 (20)4.9 母线的选择与校验 (20)4.10 开关柜的选择 (23)4.11 厂用变压器的选择 (23)第四章发电机继电保护原理设计及保护原理 (24)5.1 初步分析 (24)5.2 对F1 的保护整定计算 (25)第六章计算机监控系统方案论证选择 (29)6.1 系统功能 (29)总结................................................................................................ 错误!未定义书签。
电气工程-某水电厂电气主接线设计 精品
《发电厂电气主系统》课程设计某水电厂电气主接线设计班级、学号:(姓名)指导教师:姚明仁三峡大学科技学院20XX年7月5日三峡大学课程设计任务书20XX年春季学期学院:科技学院目录某水电厂电气主接线设计学生:指导教师:姚明仁(三峡大学科技学院)摘要:关键词:水电厂;电气主接线;短路计算;设备选择前言1 主接线方案的设计主接线应满足可靠性、灵活性和经济性三项基本要求。
(一)可靠性供电可靠性是电能生产和分配的首要要求,主接线首先应该满足这个要求,其具体要求如下:(1)断路器检修时,不宜影响对系统的供电。
(2)断路器或母线故障以及母线检修时,尽量减少停运的回路数和停运时间,并么保证对一级负荷及全部或大部分二级负荷的供电。
(3)尽量避免发电厂、变电所全部停运的可能性。
(4)大机组超高压电气主接线应满足可靠性的特殊要求。
(二)灵活性主接线应满足在调度、检修及扩建的灵活性。
(1)调度时,应可以灵活地投入和切除发电机、变压器和线路,调配电源和负荷,满足系统在事故运行方式、检修运行方式以及特殊运行方式下的系统调度要求。
(2)检修时,可以方便地停运断路器、母线及其继电保护设备,进行安全检修而不致影响电力网的运行和对用户的供电。
(3)扩建时,可以容易地从初期接线过渡到最终接线。
在不影响连续供电或停电时间最短的情况下,投入新装机组、变压器或线路而不互相干扰,并且对一次和二次部分的改建工作量最少。
(三)经济性主接线在满足可靠性、灵活性要求的前提下做到经济合理。
1.投资省(1)主接线应力求简单,以节省断路器、隔离开关、电流和电压互感器、避雷器等一次设备。
(2)要能使继电保护和二次回路不过于复杂,以节省二次设备和控制电缆。
(3)要能限制短路电流,以便于选择价廉的电气设备或轻型电器。
(4)如能满足系统安全运行及继电保护要求,110kV及以下终端或分支变电站可采用简易电器。
2.占地面积小主接线设计要为配电装置布置创造条件,尽量使占地面积减少。
水电站电气主接线优化设计探讨
水电站电气主接线优化设计探讨1. 引言1.1 背景介绍水电站作为清洁能源的重要组成部分,在能源领域发挥着至关重要的作用。
水电站的电气系统是其正常运行的重要组成部分,而电气主接线设计则是保障电气系统正常运行的关键环节。
随着电力需求的不断增加和电网规模的不断扩大,水电站电气主接线的设计也面临着各种挑战。
传统的水电站电气主接线设计往往存在着线路过长、线损较大、运行效率低下等问题。
为了提高水电站的电气系统效率和可靠性,优化电气主接线设计是一个迫切需要解决的问题。
通过优化设计,可以减少线路长度、降低线损,提高能源利用率和系统的稳定性,从而实现水电站电气系统的高效运行。
本文旨在探讨水电站电气主接线设计的优化方案,提出更科学、更合理的设计原则,以期为水电站电气系统的正常运行和发展提供有益的参考。
1.2 问题概述在水电站的电气主接线设计中,存在着一些问题需要我们认真探讨和解决。
目前水电站电气主接线设计存在着结构复杂、接线混乱的情况,导致电路连接不清晰,难以维护和排查故障。
电气主接线设计可能存在着负荷不均衡、电流过大等问题,影响了电力系统的安全稳定运行。
部分水电站电气主接线设计缺乏考虑未来扩建和升级的可能性,导致了后续维护和改造困难重重。
如何优化水电站电气主接线设计,提高电力系统的可靠性和安全性,是当前亟需解决的问题之一。
通过本文的探讨和研究,将针对这些问题提出相应的优化设计方案,为水电站电气主接线设计带来更多的实用性和可操作性。
1.3 研究意义水电站作为我国重要的能源基地,其电气主接线设计的合理与否直接关系到电站的安全运行和经济效益。
对水电站电气主接线进行优化设计探讨具有重要的研究意义。
优化设计能够提高水电站电气系统的可靠性和稳定性,减少电力设备故障频率,延长设备的使用寿命。
通过合理的设计,可以有效降低电力系统的故障率,提高供电的可靠性,保障电网的稳定运行。
优化设计可以提高水电站的经济效益。
一方面,合理的电气主接线设计能够减少线路的损耗和输电损耗,提高输电效率,减少电力资源的浪费。
库什塔依水电站电气主接线设计
Yu Yo g u nh i
(ij n i u eS ie H do o e eeom n o Ld Yl85 0 , ij n, hn) Xni g lK k uRvr yrp w r vlp e t . t. i 3 5 0 Xni gC ia a Yi D C, , i a
Ke o d :man ee t c c n e t n e p n e ntc n e t n w th be sn l - u o n c in u i a y p w rs p l ; yW rs i lcr o n ci ; x a d d u i o n ci ;s i a l i ge b sc n e t ;a x l r o e u py i o o c o i
库 什 塔 依 水 电 站 总 装 机 容 量 1 0 Mw . 共 4台 0
机 ,其 中 2台 1 5 MW , 2 台 3 5 MW 。 根 据 电 力 系 统
或 检 修 时 ,不 会 对 系 统 有 冲 击 。 因 此 主 要 针 对 2台
大 机 组 就 发 电 机 与 变 压 器 组 合 方 式 进 行 比 较 .共 提
第 3 第 4期 8卷
21 02年4 月
水 力 发 电
库什 塔依水 电站 电气 主接线 设计
俞 永辉
( 疆 伊 犁 库 克 苏 河水 电开 发 有 限公 司 ,新 疆 伊 犁 85 0 ) 新 35 0
摘 要:库什塔依水电站作 为流域梯级水 电站 的汇流站 ,涉及不同的 电压 等级 ,其接线方式对电力 系统稳定 和安全
水电站电气主接线及电气设备布置设计
目录设计说明书 ................................................................................. 错误!未指定书签。
第一章电气主接线设计 ........................................................... 错误!未指定书签。
1.1 主接线设计基本要求与设计原则...................................... 错误!未指定书签。
1.2各方案比较........................................................................... 错误!未指定书签。
第二章变压器选择 ................................................................... 错误!未指定书签。
2.1 主变压器选择...................................................................... 错误!未指定书签。
2.1.1主变压器容量和台数确定.................................. 错误!未指定书签。
2.1.2主变压器型式选择 .................................................... 错误!未指定书签。
2.1.3绕组连接方式选择 .................................................... 错误!未指定书签。
2.1.4调压方式与阻抗选择................................................ 错误!未指定书签。
2.2 自耦变压器的选择.............................................................. 错误!未指定书签。
水电站电气主接线的设计
目录➢概述➢电气主接线设计➢主接线方案的拟定与选择➢主变压器选择➢短路电流的计算➢电气设备选择与校验➢参考文献一概述1.1 课程设计的目的:1、复习巩固本课程及其他课程的有关内容,增强工程概念,培养电力工程规划设计的能力。
2、复习《水电站电气设备》相关知识,进一步巩固电气主接线及短路计算,电气设备选择等内容。
3、利用所给资料进行电厂接入系统设计,主接线和自用电方案选择,掌握短路电流计算,会进行电气设备的配置和选型设计。
1.2 课程设计内容:1发电厂主接线的设计2 短路电流的计算3 电气设备的选择1.3 电气主接线的基本要求1.可靠性:电气接线必须保证用户供电的可靠性,应分别按各类负荷的重要性程度安排相应可靠程度的接线方式。
保证电气接线可靠性可以用多种措施来实现。
2.灵活性:电气系统接线应能适应各式各样可能运行方式的要求。
并可以保证能将符合质量要求的电能送给用户。
3.安全性:电力网接线必须保证在任何可能的运行方式下及检修方式下运行人员的安全性与设备的安全性。
4.经济性:其中包括最少的投资与最低的年运行费。
5.应具有发展与扩建的方便性:在设计接线方时要考虑到5~10年的发展远景,要求在设备容量、安装空间以及接线形式上,为5~10年的最终容量留有余地。
二电气主接线设计2.1原始资料:1、待设计发电厂类型:水力发电厂;2、发电厂一次设计并建成,计划安装2×15 MW 的水力发电机组,利用小时数 4000 小时/年;3、待设计发电厂接入系统电压等级为110kV,距系统110kV发电厂45km;出线回路数为4回;4、电力系统的总装机容量为 600 MVA、归算后的电抗标幺值为 0.3,基准容量Sj=100MVA;5、发电厂在电力系统中所处的地理位置、供电范围示意图如下所示。
6、低压负荷:厂用负荷(厂用电率) 1.1 %;7、高压负荷: 110 kV 电压级,出线 4 回,为 I 级负荷,最大输送容量60 MW, cosφ = 0.8 ;8、环境条件:海拔 < 1000m;本地区污秽等级2 级;地震裂度< 7 级;最高气温 36°C;最低温度−2.1°C;年平均温度28°C;最热月平均地下温度20°C;年平均雷电日T=56 日/年;其他条件不限。
水电站电气主接线优化设计探讨
水电站电气主接线优化设计探讨水电站是利用水能发电的厂房,而水电站电气主接线的优化设计是保障水电站安全可靠运行的重要环节。
本文将就水电站电气主接线的优化设计进行探讨,分析其影响因素和优化方法,旨在提高水电站的电气系统运行效率和可靠性。
一、水电站电气主接线的基本概念和要求水电站电气主接线是指从发电机组输出端到变压器输入端之间的线路,主要包括主变压器、断路器、接地设备、控制装置等组成部分。
其作用是将发电机组产生的电能传输到变压器,再通过变压器升压送出,最终输送到用户端。
水电站电气主接线的设计应考虑安全、可靠、经济等因素。
1. 保障安全可靠运行水电站是一个重要的能源供应设施,其电气系统的安全可靠运行对保障国家能源供应和社会经济的稳定运行具有重要意义。
水电站电气主接线的设计应考虑线路的承载能力、过载保护、短路保护等方面,以保证系统在各种运行工况下的安全可靠。
2. 提高运行效率水电站的电气系统运行效率对能源利用和环保具有重要影响。
良好的电气主接线设计能够降低线路损耗、提高能量传输效率,从而降低水电站的运行成本,提高能源利用效率。
3. 改善系统负荷特性水电站在电力系统中起着重要的调峰和调频作用,其电气主接线的设计应考虑系统的负荷特性,减小负荷波动对系统的影响,提高系统的稳定性和可靠性。
以上要求为水电站电气主接线优化设计的基本原则,下文将围绕这些原则进行深入探讨。
二、影响水电站电气主接线设计的因素水电站的电气主接线设计应根据不同的负荷特性进行设计。
负荷特性分为稳定负荷和可变负荷两种情况,水电站应根据实际情况选择合适的线路设计方案。
对于稳定负荷,应设计合适的电气主接线,使得系统在高负荷运行时保持稳定;对于可变负荷,应考虑线路的灵活性和可调性,以适应负荷的变化。
2. 线路长度和电压等级水电站的电气主接线长度和电压等级是影响电气主接线设计的重要因素。
线路长度越长,线路损耗越大,需要配置更大容量的电缆或导线;电压等级越高,输送损耗越小,但也增加了系统的安全风险。
《水电站电气主接线方案的确定案例1800字》
水电站电气主接线方案的确定案例综述目录水电站电气主接线方案的确定案例综述 (1)1.1 电气主接线概述 (1)1.2 电气主接线方案的技术和经济比较 (2)1.2.1技术比较 (2)1.2.2经济比较 (3)1.1 电气主接线概述在电站中,使用指定的图形和符号,可以代表电源布线的电路图根据每个电气设备的实际连接称为主电线图。
电气主接线的主体是入口和线外电路。
当进出线路数量超过 4 倍时,需要设置下沉总线以收集和分配电源以方便连接。
设置母线可以使操作方便、灵活,也有利于安装、扩建和维护,另一方面,使断路器等设备增加,设备覆盖面积增加,投资增加,因此没有对流母线主接线。
对电气主接线的基本要求是:(1)根据系足供户的基求,保供性便证作不当的现自动检。
(2)具有一定运单布性。
要求主靠成电可接线能适应各行,不但正电可靠下运行,而且在电障时,尽量保证非故能够继电,并保证安修。
(3)尽可能简尽技线,使线选操电站以及作步骤最小化,减少因操造电的可的事故,实济合化。
(4)在满行灵活靠全电站方性、灵力系及运力系济和技活性便的基体条件础上,应术资使先进,经电初理。
(5)在分投期统和用建程尽障回量做到路设投同的接产时,对不影响发本要常情况期的工量延种体条路故运期用。
在水主续供接择时,通常提行灵电站活出若干不线方案,进行经术比行方较。
根据电统、水用户的具件。
根据电统、水以及用户的具,从保证必须的供性和运性的观点出发。
方案一采用单母线的扩大单元接线,如图2-1所示,三台发电机共用一个变压器的线路。
每个发电机回路均设有断路器,断路器与主变压器之间设有隔离开关,确保安全接入。
方案二同样采用单母线的扩大单元接线,如图2-2所示,三台发电机共用并联的两台变压器。
这种接线方式,任何电路出现故障,断路器都能将电路的故障切断,使其供电和接线能够继续工作。
图2-1 方案一电气主接线图图2-2 方案二电气主接线图1.2 电气主接线方案的技术和经济比较1.2.1技术比较技较主要从供性、操备的投便性、运活性及经等几个方面进行比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言
电力系统是由发电厂、变电站、线路和用户组成。
变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。
为满足生产需要,变电站中安装有各种电气设备,并依照相应的技术要求连接起来。
把变压器、断路器等按预期生产流程连成的电路,称为电气主接线。
电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气主系统。
用规定的设备文字和图形符号并按工作顺序排列,详细地表示电气设备或成套装置的全部基本组成和连接关系的单线接线图,称为主接线电路图。
一、主接线的设计原则和要求
主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。
它表明了变压器、线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。
它的设计,直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。
由于电能生产的特点是发电、变电、输电和用电是在同一时刻完成的,所以主接线设计的好坏,也影响到工农业生产和人民生活。
因此,主接线的设计是一个综合性的问题。
必须在满足国家有关技术经济政策的前提下,正确处理好各方面的关系,全面分析有关影响因素,力争使其技术先进、经济合理、安全可靠。
Ⅰ. 电气主接线的设计原则
电气主接线的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。
1.接线方式:对于变电站的电气接线,当能满足运行要求时,其高压侧应尽可能采用断路器较少或不用断路器的接线,如线路—变压器组或桥形接线等。
若能满足继电保护要求时,也可采用线路分支接线。
在110-220KV 配电装置中,当出线为2 回时,一般采用桥形接线;当出线不超过4 回时,一般采用分段单母线接线。
在枢纽变电站中,当110-220KV 出线在4 回及以上时,一般采用双母接线。
在大容量变电站中,为了限制6-10KV 出线上的短路电流,一般可采用下列措施:
a.变压器分列运行;
b.在变压器回路中装置分裂电抗器或电抗器;
c.采用低压侧为分裂绕组的变压器。
d.出线上装设电抗器。
2.主变压器选择
a.主变压器台数:为保证供电可靠性,变电站一般装设两台主变压器。
当只有个电源或变电站可由低压侧电网取得备用电源给重要负荷供电时,可装设一台。
对于大型枢纽变电站,根据工程具体情况,当技术经济比较合理时,可装设两台以上主变压器。
b.主变压器容量:主变压器容量应根据5-10 年的发展规划进行选择,并应考虑变压器正常运行和事故时的过负荷能力。
对装设两台变压器的变电站,每台
变压器额定容量一般按下式选择
Pm为变电站最大负荷。
这样,当一台变压器停用时,可保证对60%负荷的供电,考虑变压器的事故过负荷能力40%,则可保证对84%负荷的供电。
由于一般电网变电站大约有25%的非重要负荷,因此,采用 nMS=0.6P,对变电站保证重要负荷来说多数是可行的。
对于一、二级负荷比重大的变电站,应能在一台停用时,仍能保证对一、二级负荷的供电。
d.主变压器的型式:一般情况下采用三相式变压器。
具有三种电压的变电站,如通过主变压器各侧绕组的功率均达到15%Sn 以上时,可采用三绕组变压器。
其中,当主网电压为110-220KV,而中压网络为35KV 时,由于中性点具有不同的接地形式,应采用普通的三绕组变压器;当主网电压为220KV及以上,中压为110KV 及以上时,多采用自耦变压器,以得到较大的经济效益。
e.断路器的设置
根据电气接线方式,每回线路均应设有相应数量的断路器,用以完成切、合电路任务。
f.为正确选择接线和设备,必须进行逐年各级电压最大最小有功和无功电力负荷的平衡。
当缺乏足够的资料时,可采用下列数据:
①最小负荷为最大负荷的60%-70%,如主要是农业负荷时则宜取20%-30%;
②负荷同时率取0.85-0.9,当馈线在三回以下且其中有特大负荷时,可取
0.95~1;
③功率因数一般取0.8;
④线损平均取5%。
Ⅱ. 设计主接线的基本要求
在设计电气主接线时,应使其满足供电可靠,运行灵活和经济等项基本要求。
1.可靠性:供电可靠是电力生产和分配的首要要求,电气主接线也必须满足这个要求。
在研究主接线时,应全面地看待以下几个问题:
a.可靠性的客观衡量标准是运行实践,估价一个主接线的可靠性时,应充分考虑长期积累的运行经验。
我国现行设计技术规程中的各项规定,就是对运行实践经验的总结。
设计时应予遵循。
b.主接线的可靠性,是由其各组成元件(包括一次设备和二次设备)的可靠性的综合。
因此主接线设计,要同时考虑一次设备和二次设备的故障率及其对供电的影响。
c.可靠性并不是绝对的,同样的主接线对某所是可靠的,而对另一些所则可能还不够可靠。
因此,评价可靠性时,不能脱离变电站在系统中的地位和作用。
2.通常定性分析和衡量主接线可靠性时,均从以下几方面考虑:
a.断路器检修时,能否不影响供电。
b.线路、断路器或母线故障时,以及母线检修时,停运出线回路数的多少和停电时间的长短,以及能否保证对重要用户的供电。
3.变电站全部停运的可能性。
a.灵活性:主接线的灵活性要求有以下几方面。
①调度灵活,操作简便:应能灵活的投入(或切除)某些变压器或线路,调
配电源和负荷,能满足系统在事故、检修及特殊运行方式下的调度要求。
②检修安全:应能方便的停运断路器、母线及其继电保护设备,进行安全检修而不影响电力网的正常运行及对用户的供电。
③扩建方便:应能容易的从初期过渡到最终接线,使在扩建过渡时,在不影响连续供电或停电时间最短的情况下,投入新装变压器或线路而不互相干扰,且一次和二次设备等所需的改造最少。
b.经济性:在满足技术要求的前提下,做到经济合理。
①投资省:主接线应简单清晰,以节约断路器、隔离开关等一次设备投资;要使控制、保护方式不过于复杂,以利于运行并节约二次设备和电缆投资;要适当限制短路电流,以选择价格合理的电器设备;在终端或分支变电站中,应推广采用直降式(110/6-10KV)变压器,以质量可靠的简易电器代替高压断路器。
②占地面积小:电气主接线设计要为配电装置的布置创造条件,以便节约用地和节省构架、导线、绝缘子及安装费用。
在运输条件许可的地方,都应采用三相变压器。
③电能损耗少:在变电站中,正常运行时,电能损耗主要来自变压器。
应经济合理的选择主变压器的型式、容量和台数,尽量避免两次变压而增加电能损耗。