化工传递过程
化工传递过程四大方程和诗歌
化工传递过程四大方程和诗歌
化工传递过程四大方程是描述物质在化工过程中传递规律的基本方程,它们分别是:
1. 质量传递方程(Mass Transfer Equation):描述了物质在传递过程中的质量守恒。
2. 动量传递方程(Momentum Transfer Equation):描述了物质在传递过程中的动量守恒。
3. 热量传递方程(Heat Transfer Equation):描述了物质在传递过程中的热量守恒。
4. 组分传递方程(Species Transfer Equation):描述了物质在传递过程中的组分守恒。
这四大方程是化工传递过程分析的基础,通过它们可以解决化工过程中的各种传递问题。
关于诗歌,它是文学的一种形式,通过有节奏、韵律的语言表达情感、描绘景物、抒发思想等。
诗歌具有丰富的表现力和艺术魅力,可以激发人们的想象力和创造力。
诗歌与化工学科看似无关,但实际上,诗歌中的修辞手法、意象、节奏等都可以为化工学科的研究和学习提供启示。
例如,通过学习诗歌,可以提高自己的语言表达能力,更好地理解和掌握化工知识;同时,诗歌中的审美观念和人文精神也有助于培养化工工程师的综合素质。
化工传递(第一章)
※ u和d称为流体流动的特征速度和特征尺寸
当量直径
4
流道截面积 润湿周边长
当量直径
圆截面 d
矩形截面
2ab ab
环形截面 d2 - d1
※ Re<2000,总是层流;
Re>10000,一般都为湍流;
2000<Re<10000,过渡状态。若受外界条件影响,如管道直径或方向的改变、 外来的轻微振动都易促使过渡状态下的层流变为湍流
第一章 传递过程概论
第二节 流体流动导论
※ 流体:气体和液体的统称
一、静止流体的特性
(一)流体的密度(ρ)
均质流体:
※ 非均质流体: f x,y ,z
图1-1 均质水溶液
密度: M
V
方法:取一微元,设微元 质量为dM,体积为dV
图1-2 非均质溶液 ρ:点密度 dM:微元质量 dV:微元体积
欧拉平衡微分方程
p x
ห้องสมุดไป่ตู้
X
p Y
y
质量力:X = 0,Y = 0,Z = - g
p Z
z
p 0 x
p 0 y
p dp g
z dz
p
h
积分得: dp g dz
p0
0
流体静力学方程
p p0 gh
h p p0
g
流体平衡微分方程(欧拉平衡微分方程)的推导
流体平衡条件:
FB+ Fs = 0
x方向平衡条件: dFBx dFsx 0
x方向作用力:
质量力(dFBx): dFBx Xdxdydz
F 表面力(dFsx 静压力产生): d sx
化工传递过程讲义
《化工传递过程》讲稿【讲稿】第一章 传递过程概论(4学时)传递现象是自然界和工程技术中普遍存在的现象。
传递过程:物理量(动量、热量、质量)朝平衡转移的过程即为传递过程。
平衡状态:物系内具有强度性质的物理量如速度、温度、组分浓度等不存在梯度。
*动量、热量、质量传递三者有许多相似之处。
*传递过程的研究,常采用衡算方法。
第一节 流体流动导论流体:气体和液体的统称。
微元体:任意微小体积。
流体质点:当考察的微元体积增加至相对于分子的几何尺寸足够大,而相对于容器尺寸充分小的某一特征尺寸时,便可不计分子随机运动进出此特征体积分子数变化所导致的质量变化,此一特征体积中所有流体分子的集合称为流体质点。
可将流体视为有无数质点所组成的连续介质一、静止流体的特性(一)流体的密度流体的密度:单位体积流体所具有的质量。
对于均质流体 对于不均质流体点密度dVdM d =ρ *流体的点密度是空间的连续函数。
*流体的密度随温度和压力变化。
流体的比体积:单位流体质量的体积。
MV =υ (二)可压缩流体与不可压缩流体可压缩流体:密度随空间位置和时间变化的流体,称为可压缩流体。
(气体)不可压缩流体:密度不随空间位置和时间变化的流体,称为不可压缩流体。
(液体)(三)流体的压力流体的压力(压强,静压力):垂直作用于流体单位面积上的力。
A P p =(四)流体平衡微分方程1.质量力(重力)单位流体质量所受到的质量力用B f 表示。
在直角坐标z y x ,, 三个轴上的投影分量分别以 X ﹑Y ﹑Z 表示。
B F V M =ρ2.表面力:表面力是流体微元的表面与其临近流体作用所产生的力用Fs 表示。
在静止流体中,所受外力为重力和静压力,这两种力互相平衡,利用平衡条件可导出流体平衡微分方程。
916:16化工传递过程基础黄山学院化学系首先分析x 方向的作用力,其质量力为由静压力产生的表面力为XdxdydzdF Bx ρ=dydz dx x p p pdydz dF sx ⎪⎭⎫ ⎝⎛∂∂+-=12(五)流体静压力学方程流体静压力学方程可由流体平衡微分方程导出。
《化工传递过程》课程思政优秀案例
《化工传递过程》课程思政优秀案例(一)教学设计:“化工传递过程”课程主要论述动量、热量以及质量传递过程的基本原理、数学模型及速率计算,以及这些理论和计算结果的工程应用。
课程思政的目的是帮助和引导学生树立正确的人生观、价值观和世界观,是达成课程素质目标的重要环节,但直接引入往往会引起学生的反感。
为此,团队通过不断探索,创新提出“深化、扩展、引入、升华”的课程思政模式,让学生在润物无声中感悟其哲理之美。
(一)案例名称:化工传递过程-边界层积分动量方程(二)案例教学目标培养学生爱党爱国情怀与科学精神,引导学生树立正确的人生观、价值观和世界观。
(三)案例教学实施过程课程的一个重要知识模块是边界层理论,但教材讲授内容仅限于不可压缩流动的边界层流动。
钱学森同志在可压缩流体边界层流动领域为世界做出了巨大贡献,并带领、推动了我国航空航天及相关工程技术领域的发展。
通过在授课过程中进行内容扩展,引入钱学森同志的相关研究成果,开阔了学生视野,并通过“润物无声”的方式,引入钱学森同志爱党爱国的思政案例。
通过“深化、扩展、引入、升华”的创新模式,以爱党、爱国为主题开展课程思政。
(1)深化:在讲完卡门边界层积分动量方程推导之后,首先设置有关该方程适用范围分组讨论,深化学生对该重点知识的理解,得出该方程仅适用于不可压缩流体的重要结论;(2)拓展:引入钱学森同志在可压缩流体边界层研究方向的博士论文及“冯卡门-钱学森”公式核心内容,扩展教学相关内容;(3)衔接:介绍钱学森同志在航空航天及工程控制理论的巨大贡献和突出成就;(4)引入:播放钱学森同志获得“国家杰出贡献科学家”荣誉时刻的获奖感言及其一生中三次激动时刻的故事;(5)升华:指出钱学森同志激动时刻均与党和国家相关联,鼓励学生向钱学森同志学习。
(四)教学效果及反思专业基础知识与思政案例之间往往具有天然的割裂,直接引入容易导致学生反感,思政效果适得其反。
团队通过不断探索,挖掘课程内容与思政案例的衔接点,通过润物细无声的方式推进思想政治教育,培养学生爱党爱国情怀,民族自豪感。
化工原理三传
化工原理三传化工原理三传指的是质量传递、能量传递和动量传递。
在化工过程中,这三种传递过程起着至关重要的作用。
首先,我们来看质量传递。
质量传递是指物质在不同相之间的传递过程。
常见的质量传递包括气体与气体之间的质量传递、气体与液体之间的质量传递、液体与液体之间的质量传递等。
质量传递的驱动力主要包括浓度差、温度差、压力差等。
例如,在气体吸收液体的过程中,质量传递的驱动力就是气体与液体之间的浓度差。
质量传递的速率可以通过质量传递系数来描述,该系数取决于传递物质、传递相和传递条件等。
其次,能量传递是指能量在系统中的传递过程。
在化工过程中,能量可以以热量的形式传递,也可以以功的形式传递。
能量传递的方式主要有传导、对流和辐射。
传导是指能量在物体内部通过分子的热运动传递的过程,对流是指物体间通过流体的对流传递能量的过程,辐射是指能量通过辐射波传递的过程。
能量的传递方式取决于能量传递介质的性质和传递条件等。
例如,在反应器内部,化学反应释放的热量可以通过对流和辐射的方式传递到反应器壁上,进一步散发到周围环境中。
最后,动量传递是指物质在不同相之间的动量传递过程。
动量传递通常与质量传递和能量传递同时发生。
在化工过程中,常见的动量传递包括气体与气体之间的动量传递、气体与液体之间的动量传递、液体与液体之间的动量传递等。
动量传递的驱动力主要是流体之间的速度差。
例如,在化工设备中,常常需要通过泵、风机等设备来提供动力,推动流体在设备内部传递动量。
在化工过程中,质量传递、能量传递和动量传递常常同时存在,彼此相互影响。
例如,在气-液质量传递过程中,气体的传递速率受到气-液界面上气体浓度的变化影响,而气-液界面上的气体浓度受到气体和液体之间的质量传递、能量传递和动量传递的相互作用影响。
总结而言,化工原理三传是化工过程中不可或缺的三个重要传递过程。
质量传递、能量传递和动量传递相互作用,共同决定了化工过程的效率和产品质量。
深入理解和掌握这三种传递过程的规律,对于优化化工过程、提高生产效率具有重要意义。
化工传递过程总复习
动量传递设备
01
泵与风机
泵与风机是化工生产中常用的动量传递设备,用于输送液体或气体。根
据工作原理和结构形式的不同,泵可分为离心泵、往复泵、旋转泵等;
风机可分为离心风机、轴流风机等。
02
搅拌设备
搅拌设备是化工生产中用于混合、分散、传热和传质等操作的重要设备
。根据搅拌器的结构形式和搅拌原理的不同,搅拌设备可分为机械搅拌
对流传质的驱动力
对流传质的驱动力可以是压力差或浓度差等。
吸附与吸收
01
吸附的定义
吸附是指物质在相界面上的浓集 现象,分为物理吸附和化学吸附 两种类型。
吸收的定义
02
03
吸附与吸收的应用
吸收是指物质从一个相态进入到 另一个相态中的过程,如气体被 液体吸收等。
吸附和吸收在化工过程中有广泛 应用,如分离、纯化、储存和催 化等。
对流传热
对流传热的定义
01
流体流过固体壁面时,流体与固体壁面之间的热量传递过程称
为对流传热。
对流传热的基本公式
02
牛顿冷却公式,表示单位时间内通过单位面积所传递的热量与
流体和固体壁面之间的温差成正比。
对流传热的影响因素
03
流体的流动状态(层流或湍流)、流体的物理性质(密度、粘
度、导热系数等)、固体壁面的形状和尺寸等。
设备安全性评估
传递过程原理可以用于评估化工设备的安全性。例如,通 过分析管道内的流体流动和压力分布,可以预测管道的破 裂风险,从而采取相应的安全措施。
传递过程原03
工艺条件优化
通过分析工艺过程中的动量、热量和质量传递规律,可以 优化工艺条件,提高产品质量和产量。例如,在反应过程 中调整温度、压力和物料配比等参数,可以提高反应速率 和选择性。
化工传递过程基础知识(ppt 63页)
第二节 湍流传递条件下传递通量的通用表达 式
一、涡流传递的通量表达式
在湍流流体中,质点的脉动、混合和旋涡运动,使动、热、质量的传
递程度大大加剧。仿照分子传递的方程式,1877年Boussinesq提出了涡流
d (ux )
dy
——在y方向上的动量浓度梯度,kg m / s m
。
“-”表示动量通量的方向与动量浓度梯度的方向相反,即动量朝着速度降 低的方向传递。 动量通量 = -动量扩散系数×动量浓度梯度
四、动量通量与剪应力
两层流体以ux1和 ux2向前运动,且分子运动引起分子在流层间交换。若质 量为m的流体从1层跳到2层,动量由mux1 增到 mux2 ,同时质量为m的流体 从2层下到1层,动量由mux2减少到 mux1 。从宏观上表现为1层受到2层的 推力,2层受到1层的阻力,动量交换的结果产生了剪应力。
d (cpt)
dy
——在y方向上的热量浓度梯度,
J
/ m3 m
。
“-”表示热量通量的方向与热量浓度梯度的方向相反,即热量朝着 温度降低的方向传递。 热量通量 = -热量扩散系数×热量浓度梯度
三、动量通量
dux d (ux ) d (ux )
dy dy
dy
式中:τ——动量通量(kg·m/s)/(m2·s);ν ——动量扩散系数,m2/s;
传递方式:由微观分子热运动所产生的传递为分子传递; 依靠宏观的流体质点的运动造成的传递,称为湍流传递。
传递过程的大小常用传递速率或通量(传递量/m2 s)描述。
第一节 分子传递条件下传递通量的通用表达式
《化工传递过程》教学大纲
化工传递过程教学大纲一、课程的基本信息适应对象:化学工程与工艺专业四年制本科学生课程代码:41E02127学时分配:28赋予学分:1.5先修课程:高等数学、物理化学、化工原理、化工热力学后续课程:化工过程开发,化工设计与计算二、课程性质与任务《化工传递过程》是针对化学工程与工艺专业的专业特色课程,是学生学习专业课和从事本专业的科研、生产工作必备的理论基础。
本课程是一门探讨自然现象和化工过程中动量、热量和质量传递速率的课程。
化学工程中各个单元操作均被看成传热、传质及流体流动的特殊情况或特定的组合,对单元操作的任何进一步的研究,最终都是归结为这几种传递过程的研究。
将化工单元操作(化工原理)的共性归纳为动量、热量和质量传递过程("三传")的原理系统地论述,将化学工程的研究方法由经验分析上升为理论分析方法。
各传递过程既有独立性又有类似性,虽然课程中概念、定义和公式较多,基本方程又相当复杂给学习带来一定的困难,但可运用"三传"的类似关系进行研究理解,可使学生掌握化学工程专业中有关动量、热量和质量传递的共性问题。
该课程的学习有助于学生深入了解各类传递过程的机理,为改进各种传递过程和设备的设计,操作和控制提供理论基础;为今后的科学研究提供各种的基础数学模型;为速度、温度、浓度分布及传递速率的确定提供必要的帮助。
为分析和解决过程工程和强化设备性能等问题提供坚实的理论基础。
三、教学目的与要求本课程的教学目的是了解和掌握化工过程中三传现象的机理及其数学描述。
确定边界条件从而分别求出过程的解析、数值解或转化为准数关联式,培养学生分析和解决化学工程中传递问题的能力,为在工程上进一步改善各种传递过程和设备的设计、操作及控制过程打下良好的理论基础。
通过学习加深对化学工程基本原理的理解,使学生能顺利学习后续的专业课,提高自学与更新本专业知识的能力。
四、教学内容与安排第一章传递过程概论(2学时)1.1 流体流动导论1.2 动量、热量和质量传递的类似性1.3 传递过程的衡算方法第二章动量传递概论与动量传递微分方程(4学时)2.1 动量传递概论2.2 描述流动问题的观点与时间导数2.3 连续性方程2.4 运动方程第三章动量传递方程的若干解(3学时)3.1 曳力系数与范宁摩擦因数3.2 平壁间与平壁面上的稳态层流3.3 圆管与套管环隙间的稳态层流3.4 爬流3.5 势流3.6 平面流与流函数的概念第四章边界层流动(4学时)4.1 边界层的概念4.2 普朗特边界层方程4.3 边界层积分动量方程4.4 管道进口段内的流体流动4.5 边界层分离第五章湍流(3学时)5.1 湍流的特点、起因及表征5.2 湍流时的运动方程5.3 湍流的半经验理论5.4 无界固体壁面上的稳态湍流5.5 圆管中的湍流5.6 平板壁面上湍流边界层的近似解5.7 量纲分析在动量传递中的应用第六章热量传递概论与能量方程(3学时)6.1 热量传递的基本方式6.2 能量方程第七章热传导(2学时)7.1 稳态热传导7.2 不稳态热传导第八章对流传热(3学时)8.1 对流传热的机理与对流传热系数8.2 平板壁面对流传热8.3 管内对流传热8.4 自然对流传热第九章质量传递概论与传质微分方程(2学时)9.1 质量传递概论9.2 传质微分方程第十章分子传质(扩散) (2学时)10.1 一维稳态分子扩散的通用速率方程10.2 气体中的分子扩散10.3 液体中的分子扩散10.4 固体中的扩散10.5 伴有化学反应的分子扩散过程第十一章对流传质(2学时)11.1对流传质的机理与对流传质系数11.2 平板壁面对流传质11.3 管内对流传质11.4 对流传质模型第十二章多种传递同时进行的过程(2学时)12.1 热量和质量同时传递的过程12.2 平板壁面层流边界层中同时进行动量、热量和质量传递的过程五、教学设备和设施教室,黑板,投影仪,多媒体电脑。
化工传递过程基础
化工传递过程基础概述化工传递过程是指在化工工艺过程中,物质的质量、能量、动量等通过传递方式从一个系统传递到另一个系统的过程。
化工传递过程是化工工艺的基础,对于化工工艺的设计、优化和控制都起着重要的作用。
在化工过程中,常见的传递过程包括质量传递、能量传递和动量传递。
质量传递是指物质在化工过程中的传递过程,常用的传递方式包括传递过程基础(如扩散、对流和反应等)及相关的传递机制(如浓度差、温度差、压力差等)。
能量传递是指热能在化工过程中的传递过程,常用的传递方式包括传导、对流和辐射。
动量传递是指动量在化工过程中的传递过程,常用的传递方式包括流动、压力和阻力。
质量传递扩散扩散是质量在化工过程中传递的一种基本方式。
在扩散过程中,物质会沿着浓度梯度从高浓度区域向低浓度区域传递。
扩散过程的速度与浓度差、扩散系数和传递距离等因素有关。
常见的扩散方程有弥散方程和菲克定律。
对流对流是质量传递中常用的一种方式,通过流体的运动将物质从一个地方传递到另一个地方。
对流传递可以分为自然对流和强制对流两种方式。
在自然对流中,传递过程由于密度差产生的浮力驱动;而在强制对流中,传递过程由外部施加的力(如搅拌、泵送等)驱动。
反应是化工过程中重要的一种质量传递方式。
在化学反应中,物质通过反应转化成另一种物质,并伴随着质量的传递过程。
反应速率常常与反应的浓度、温度和反应物之间的反应机理等因素有关。
能量传递传导传导是能量传递中的一种方式,是指通过物质的直接接触将热能从一个地方传递到另一个地方。
传导过程的速度与热传导系数、温度差和传递距离等因素有关。
常见的传导方程有傅里叶定律和斯廷定律。
对流对流也是能量传递中常用的一种方式,通过流体的运动将热能从一个地方传递到另一个地方。
对流传递可以分为自然对流和强制对流两种方式,原理与质量传递中的对流类似。
辐射是能量传递中的一种方式,是指通过电磁辐射将能量从一个地方传递到另一个地方。
辐射能量的传递与物体的温度、表面特性和辐射波长等因素有关。
化工传递过程基础总结
化工传递过程基础总结化工传递过程是化学工程学科的基础,它是研究化学物质在不同状态下的传递现象的学科。
化工传递过程包括物质的传质、热传、动量传递等。
在化学工程中,化工传递过程是实现化学反应和物料加工的关键环节。
本文将介绍化工传递过程的基础知识,包括传质、热传和动量传递。
一、传质传质是指物质在不同相之间的传递现象,包括气体、液体、固体之间的传递。
传质过程是化学反应、物料加工等过程中的重要环节。
传质的速率取决于传质物质的性质、传质界面的性质、传质系统的温度、压力、浓度等因素。
1. 传质的基本概念传质过程可以分为扩散、对流和传递过程的组合。
扩散是指物质通过分子扩散的方式在不同相之间传递,其速率与浓度梯度成正比。
对流是指物质在流体中的传递,其速率与流体速度成正比。
传递过程是扩散和对流的组合,其速率取决于扩散和对流的贡献。
2. 传质的速率传质速率可以用传质通量来表示,传质通量是单位时间内通过传质界面的物质量。
传质通量可以用菲克定律来计算,菲克定律是指在扩散过程中,单位时间内通过单位面积传递物质的量与浓度梯度成正比,与传质物质的性质和传质界面的性质有关。
传质速率还可以用对流传质公式来计算,对流传质公式是指在对流过程中,传质通量与速度梯度成正比,与流体的性质和传质界面的性质有关。
3. 传质的机理传质的机理包括分子扩散、对流传递和物理吸附等。
分子扩散是指物质通过分子间的碰撞在不同相之间传递。
对流传递是指物质在流体中的传递,其速率受到流体的速度、流动方式、物质的性质等因素的影响。
物理吸附是指物质在传质界面上的吸附现象,吸附物质的性质、传质界面的性质等因素会影响吸附的速率。
二、热传热传是指热量在不同相之间的传递现象,包括传导、对流和辐射三种方式。
热传过程是化学反应、物料加工等过程中的重要环节。
热传的速率取决于热传物质的性质、热传界面的性质、热传系统的温度、压力等因素。
1. 热传的基本概念热传过程可以分为传导、对流和辐射三种方式。
化工传递过程基础知识
第一章 传递过程概述
体系内部具有强度性质的物理量存在梯度时的状态称为
不平衡状态。任何处于不平衡状态的物系都有向平衡状态转 移的倾向,这些物理量朝平衡方向转移的过程称传递过程。 质量传递指物系中的组分由高浓区向低浓区扩散或通过相界 面的转移;热量传递指热量由高温区向低温区的转移;动量 传递则是在垂直于流动方向上,动量由高速区向低速区的转 移。
第二章 总动量、总热量、总质量衡算
在化工中需对系统或某一过程的总动量(对过程包含的力进行分析)、 总热量(了解过程热量和其它能量间的转化关系)、总质量(掌握过程物 料的变化)进行衡算,为研究动、热、质量传递和单元操作的基础,同时 对推导微分动、热、质量衡算也有指导作用(依据定律相同)。
前提:规定衡算范围、基准和对象。在流动过程,通常将进行总衡算 时所 限定的空间区域称为控制体,包围此空间区域的边界面称控制面。
流传r递的通 量d(表u达x式) :
dy
qe
H
d(cPt)
dy
jAe
M
dA
dy
其中:涡流扩散系数ε、εH 、εM 非流体物性参数,与流动条件有关。
二、湍流传递的动量、热量、质量通量表达式
t r
()d(ux)
dy
qt qqe(H)d(dcPyt)
jAtjAjA e(DAB M)ddAy
因此,不仅层流时的三种传递过程之间具有类似性,而且湍流时的三 种传递过程之间也具有类似性,同时层流与湍流传递过程之间均具有类似 性。故可采用类比的方法研究动、热、质量传递过程,在许多场合可用类 似的数学模型来描述动、热、质量传递过程的规律。
3、通量为单位时间内通过与传递方向相垂直的单位面积上的动、热、质量, 各量的传递方向均与该量的浓度梯度方向相反,故普遍式中加“-”号。
化工传递过程 —第一章 传递过程概论
∫∫ u ( ρu)conαdA
A
∫∫∫ ρudV
V
+ ∫∫ u ( ρu)conαdA
A
d dθ
∫∫∫ ρudV
V
在x、y、z三方向的分量
• ∑Fx= ∫∫
A
d u x ( ρu )conαdA + dθ d u y ( ρu )conαdA + dθ d u z ( ρu )conαdA +dθ
A
①为正时,有质量的净输出; ②为负时,有质量的净输入; ③为0时,无质量输入和输出。
简单情况
∫∫ ρuconα .dA= A
∫∫ ρucon α .dA+
A1 A1 A2
∫∫ ρuconα .dA
A2
= - ∫∫ ρudA + ∫∫ ρudA = ρ2ub2A2 — ρ1ub1A 1 ρ2ub2A2 — ρ1ub1A1 +
动量、热量质量传递相似
• 形式相似:
du x τ = −µ dy
q dt = −k A dy
j A = − DAB
dρ A dy
– 各过程所传递的物理量与其相应的强度梯度成正比; – 沿负梯度(降度)的方向传递; – 各式的系数(µ、α、DAB)只是状态函数,与传递 的物理量或梯度无关(传递性质和速率的物性常 数)。
∵ H=U+pv ∴
= q-Ws*
dEt u2 ∫∫ ρuconα .( H + 2 + gz +)dA + dθ A
= q-Ws*
总动量衡算
• 动量守恒:系统的动量变化速率等于作 用在系统上,方向为净力方向的合外力 • 牛顿第二定律: F=ma=m*(u2-u1)/∆t • 动量 mu
化工传递过程课件
详细描述
制药工程涉及药物合成、分离纯化、 制剂制备等技术,旨在开发安全、有 效、质量可控的药物。
04 化工传递过程的优化与控 制
优化方法与策略
数学模型法
建立传递过程的数学模型,通过求解数学模型得到最优解,实现 过程的优化。
实验研究法
通过实验研究传递过程中的各种参数和操作条件,找出最优的参数 和操作条件。
详细描述
分离工程涉及蒸馏、萃取、吸附、膜分离等多种 分离技术,旨在实现高效、低能耗的物质分离。
具体应用
广泛应用于石油化工、精细化工、食品工业等领 域,如石油炼制、合成橡胶、味精生产等过程。
生物反应工程
总结词
生物反应工程是利用生物催化剂 进行物质转化的过程,主要研究 生物催化剂的活性、选择性以及
反应条件。
详细描述
生物反应工程涉及酶动力学、微生 物培养和发酵技术等方面,旨在实 现高效生物转化和产物分离。
具体应用
广泛应用于生物医药、食品添加剂、 燃料乙醇等领域,如抗生素发酵、 维生素C合成等过程。
制药工程
总结词
具体应用
制药工程是研究药物制备和生产过程 的学科,主要关注药物分子传递和分 离技术。
广泛应用于新药研发、药物生产、药物 质量控制等领域,如抗生素、抗病毒药 物、肿瘤药物的研发和生产过程。
智能化技术
智能传感器与控制系统
采用先进的传感器和智能控制系统,实时监测和调控化工传递过程,提高生产效 率和产品质量。
人工智能与大数据技术
利用人工智能和大数据技术对化工传递过程进行优化和预测,实现智能化生产和 管理。
THANKS FOR WATCHING
感谢您的观看
流体动力学研究流体运动的基本 规律,包括流体静力学、一维流
化工传递过程-
u0
2
2
2
d
dx
3
d
dx
d 140 dx 13 u0
4.64
x u0
280 13
x u0
1/ 2
14 13
3
4x
2
d
dx
1
d 3
3 dx
13 3 4 x
14Pr
二、平板壁面上层流传热旳近似解
积分上式,得
ln
3
13 14Pr
3 4
ln
x
ln
C
3 13 Cx3/ 4
0
fd )d ]1
一、平板壁面上层流传热旳精确解
温度分布方程
T *
ts t
0
exp
Pr 2
0
fd d
ts t、0
0 exp
Pr 2
0
fd d
Pohlhausen 采用数值 法求解上式其解如图 所示:
T
50 15 Pr=1 0.6
一、平板壁面上层流传热旳精确解
3.局部对流传热系数 d ( t ts )
u0
3
2t
d[ t ts ] t0 ts dy
y0
3
2t
y0
二、平板壁面上层流传热旳近似解
令 t
d dx
[
3 20
2
3 280
4
]
u0
3
2
设 t , 则 1,故 4 2
二、平板壁面上层流传热旳近似解
1 d ( 2 )
10 dx
u0
1 10 u0
2
d
dx
2
d
dx
1 10
化工传递过程(第三版)第一节
一、守恒定律与衡算方法
(3)分子水平上描述
根据分子结构、分子间的相互作用,作分子水平 上的考察,对于动量、热量与质量传递的理解是有 帮助的。如各种传递系数(黏度、扩散性、导热性 等)可以应用流体的分子运动理论求解。
一、守恒定律与衡算方法
总衡算的方法在其他课程已学过。本课程主要 讨论微分衡算的方法,通过建立描述各种过程的 数学模型,研究动量、热量与质量传递的速率。
第一章 传递过程概论
传递现象普遍存在于自然界和工程领域, 三种传递过程有许多共同规律。
本章介绍与课程有关的基本概念。
第一章 传递过程概论
1.1 传递过程的分类
一、平衡过程与速率过程 二、扩散传递与对流传递
一、平衡过程与速率过程
大量的物理、化学现象中,同时存在着正反两个 方向的变化,如:
固体的溶解和析出,升华与凝华、可逆化学反应
总衡算的方法在化工设计计算中常用—物料衡 算与热量衡算等。
一、守恒定律与衡算方法
(2)微观水平上描述
微观衡算(微分衡算)—在研究对象内部选择 一个有代表性的微分点,将守恒定律应用于该点。 通过衡算,得出一组描述动量、热量与质量变化的 微分方程,成为变化方程(Equation of change)。 然后通过积分,获得系统内部的速度、温度及浓度 的变化规律。这些变化规律对于传递速率的求解必 不可少。
质点(质量固定)
三、拉格朗日观点和欧拉观点
原则上讲,两种方法所得结果一致,都可采用。
四、几个常用算子
所谓算子是一种数学符号缩写的算符。本课程中 常用的算子有: (1)哈密尔顿算子▽;
(2)拉普拉斯算子Δ;
(3)随体导数算子
四、几个常用算子 1、▽算子 (Hamilton Operators)
化工传递过程基础(第三版)
1.1流体的定义和特征
液体和气体虽都属于流体,但两者之间也有所不同。液体的 分子间距和分子的有效直径相当。当对液体加压时,只要分子 间距稍有缩小,分子间的排斥力就会增大,以抵抗外压力。所 以液体的分子间距很难缩小,即液体很难被压缩。以致一定质 量的液体具有一定的体积。液体的形状取决于容器的形状,并 且由于分子间吸引力的作用,液体有力求自己表面积收缩到最 小的特性。所以,当容器的容积大于液体的体积时,液体不能 充满容器,故在重力的作用下,液体总保持一个自由表面,通 常称为水平面。
1.4 与其他课程之间的联系 • 流体力学是继《高等数学》、《大学物理》《理论
力学》之后开设,同时又成为学习许多后续专业课 程计算流体力学和从事专业研究的必备基础。
• 高等数学要求复习掌握:微分(偏导数、导数)、 积分(曲面积分、定积分、曲线积分)、多元函数 的泰勒公式、势函数、微分方程。
• 理论力学要求复习掌握:质量守恒定律、能量守恒 定律、动量定律。
• 两个相邻流体层的动量传递
平衡过程和传递过程
2.热量传递过程: • 物体各部分存在温度差,热量由高温区向
低温区传递
平衡过程和传递过程
3. 质量传递:当体系中的物质存在化学势差 异时,则发生由高化学势区向低化学势区 域的传递
• 化学势的差异可以由浓度、温度、压力或 电场力所引起。常见的是浓度差引起质量 传递过程,即混合物种某个组分由高浓度 向低浓度区扩散
平衡过程和传递过程
• 传递过程:物理量向平衡转移 • 平衡状态:强度性质的物理量不存在梯度
化工传递过程课程教学大纲
《化工传递过程》课程教学大纲第一部分:课程基本信息一、课程名称:化工传递过程/TRANSPORT PROCESSES IN CHEMICAL ENGINEERING二、课程性质:硕士研究生学位课(专业方向课)三、适用专业:应用化学、化学工程、生物化工等专业四、先修课程:化工原理、化工热力学、化工数值计算等课程五、学时学分:36学时,2学分六、教学方法:课堂讲授七、考核方法:考试第二部分:教学目标本课程为技术基础课,是化学工程与工艺专业的骨干课程。
通过该课程的学习,使学生掌握动量、热量传递和质量传递的基本原理、传递速率的计算、相关数学模型的建立及求解,掌握速度、浓度及温度分布规律,能针对具体问题对模型方程进行简化,了解解决实际传递问题的方法,为未来的科研和教学工作打下坚实的理论基础。
第三部分:教学内容第一章传递过程概论一、传递过程的基本概念第二章动量传递的变化方程一、动量传递的两种方式二、对流传递系数的定义式三、对流传递系数求解的一般途径第三章动量传递方程的若干解一、层流流动时的动量传递方程二、层流流动时的动量传递方程的典型求解第四章传热概论与能量方程一、热量传递的基本方式二、传热过程的机理三、能量方程的推导第五章热传导方程一、热传导方程的推导二、热传导方程的求解方法第六章对流传热方程一、对流传热方程的推导二、对流传热方程的求解方法第七章传质概论与传质微分方程一、质量传递的基本方式二、传质的速度与通量三、传质微分方程的推导第八章分子传质一、气体、液体和固体内部的分子扩散速率与通量二、稳态扩散与等分子反方向扩散第九章对流传质一、平壁对流传质方程的求解二、管内对流传质方程的求解三、动量、热量与质量传递的类似性第四部分:教材及参考书目一、推荐教材《化工传递过程》,谢舜韶,谷和平,肖人卓,化学工业出版社,2008年二、参考书目1.《化工传递过程基础》,王绍亭,化学工业出版社,1987年2.《动量、热量与质量传递》,王绍亭,天津科技出版社,1988年3.《传递现象导论》,戴干策,化学工业出版社,1996年。
化工传递过程
相界面-----------
液相
NB 易挥发组分
10.2.2 等分子反方向稳态扩散
20:07:22
10.2.2 等分子反方向稳态扩散
扩散的数学模型
NA
D
AB
dcA dz
xA (N A
NB )
对于等分子反方向扩散
20:07:22
NA=-NB
NA
D
AB
dcA dz
B.C (1) z = z1, cA = cA1 (2) z = z2, cA = cA2
代入边界条件解得 指数型
C cA
(
C
cA2
)
z z1 z2 z1
C cA1 C cA1
P pA
(
P
pA2
)
z z1 z2 z1
P pA1 P pA1
浓度分 布方程
10.2.1 组分A通过停滞组分B的稳态扩散 20:07:22
压力P
pB1 pA1
P=pA+pB
NB pB pA
pB2
P pA
气相 相界面 液相
NA
NB
NB=0
NA ≠ 0
10.2.1 组分A通过停滞组分B的稳态扩散
Laboratory absorber 1a): CO2 inlet 1b): H2O inlet 2): outlet
3): absorption column
4): packing
Absorption, in chemistry, is a physical or chemical phenomenon or a process in which atoms, molecules, or ions enter some bulk phase - gas, liquid or solid material.
化工传递过程基础2
化工传递过程基础21. 引言化工传递过程是指在化工工程中,物质、能量、动量等在不同系统或阶段之间的传递、转化和变换过程。
了解和研究化工传递过程的基础原理对于化工工程师至关重要。
本文将进一步讨论化工传递过程的基础知识和关键概念,以增强读者对化工传递过程的理解。
2. 传质基础2.1 传质现象传质现象是指物质在不同相之间的传递过程,包括溶质的扩散、萃取、吸附、蒸馏等。
在化工工程中,传质过程是实现物质分离、浓缩、净化等操作的关键环节。
传质过程的速率和效率直接影响着工程操作的效果和经济性。
2.2 传质模型传质模型是描述传质过程的理论框架,用来预测和优化传质过程的性能。
常见的传质模型包括离散模型和连续模型。
离散模型是指将传质过程离散化分析,使用数学方程描述物质传递的离散步骤。
连续模型则是将传质过程连续化分析,使用连续方程描述物质传递的连续流动过程。
2.3 传质速率传质速率是指单位时间内物质传递的量,通常以质量或摩尔单位表示。
传质速率受到物质浓度差异、传质介质的性质、传质界面的特性等因素的影响。
了解和控制传质速率对于实现高效的传质过程至关重要。
3. 传热基础3.1 传热现象传热现象是指能量在物体之间的传递过程,包括传导、对流和辐射等。
传热过程在化工工程中广泛应用于反应器的温度控制、能量回收等方面。
了解和控制传热过程对于化工工程的安全和效益都有着重要意义。
3.2 传热模型传热模型是描述传热过程的理论框架,用来预测和优化传热过程的性能。
常见的传热模型包括四面体模型、无量纲模型等。
通过建立合适的传热模型,可以更准确地预测传热过程的温度分布、传热速率等关键参数。
3.3 传热传质耦合在化工工程中,传热和传质往往是同时进行的。
传热传质耦合是指传热和传质过程之间相互影响的现象。
传热传质耦合的研究对于提高工程操作的效率和经济性具有重要意义。
4. 传动基础4.1 传动现象传动现象是指力、质量和动量等在物体之间的传递过程,包括动力学传动、液力传动、电力传动等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工传递过程主观题
简述题
1. 如何从分子传递的角度理解三传之间存在的共性。
1. 答:从分子传递的角度出发,动量、热量、质量传递可分别以牛顿粘性定律,傅立叶定律和费克定律表示, ()dy
u d ρντ-=、()dy t c d A q p ρα-=、dy d D J A AB A ρ-=,其物理意义分别为(动量、能量、质量)在(速度、温度、浓度)梯度的作用下从(高速、高温、高浓)区向(低速、低温、低浓)区转移,转移量与浓度梯度成正比。
在数学上其可统一采用现象方程表示为:
物理量的通量=(-扩散系数)×(物理量的浓度梯度)
2.简述气液相间传质双膜模型。
2. 答:怀特曼(Whitman)1923年提出。
在气液接触传质时,气液相间存在稳定的界面,界面两侧分别有一层稳定、停滞的气液膜。
气液在界面上达到平衡,在膜内为分子扩散,传质系数正比于分子扩散系数,传质阻力集中于膜内。
计算题
1. 试求与速度势=2534x xy y ϕ-++相对应的流函数ψ。
1. 解:由4352++-=y xy x ϕ 可得y
y x u x ∂ψ∂=-=∂∂=53ϕ,通过此式对y 积分得 )(2522x g y y +-
=ψ x g x x y u y ∂∂-=∂ψ∂-=-=∂∂=
53ϕ,可得 C x x g +-=
32
52 故 C x x y y +-+-
=ψ32525222
2. 含乙醇(组分A)12%(质量分数)的水溶液,其密度为980kg/m 3,试计算乙醇的摩尔分数及物质的量浓度。
2. 解:乙醇的摩尔分数为:
()0507.018
/88.046/12.046/12.0//21=+==∑=i i i A
A A M a
M a x 溶液的平均摩尔质量为:
kmol kg /42.19189493.0460507.0M =⨯+⨯= 乙醇的物质的量浓度为:
3/558.20507.042.19980m kmol x M Cx c A A A =⨯===ρ。