(冀教版)数学八年级上册章节专项训练试题及答案(全册)
初中数学冀教版八年级上册第十三章 全等三角形13.4 三角形的尺规作图-章节测试习题(1)
章节测试题1.【答题】下列关于尺规作图的语句错误的是().A. 作,使B. 以点为圆心作弧C. 以点为圆心,线段的长为半径作弧D. 作,使【答案】B【分析】根据基本作图的方法,逐项分析,从而得出结论.【解答】作弧不仅需要确定圆心,还需要确定半径,B选项错误.选B.2.【答题】已知三边作三角形时,用到所学知识是( )A. 作一个角等于已知角B. 作一个角使它等于已知角的一半C. 在射线上取一线段等于已知线段D. 作一条直线的平行线或垂线【答案】C【分析】根据三边做三角形用到作一条线段等于已知线段的基本作图方法.【解答】已知三边作三角形时,用到的三角形的判定方法是SSS定理,而第一条边的作法,需要在射线上截取一条线段等于已知的线段。
故C。
方法总结:作一个三角形等于已知的三角形,有多种方法,本题是其中的三边作图,用的是SSS判定定理。
3.【答题】已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为( )A. 作一条线段等于已知线段B. 作一个角等于已知角C. 作两条线段等于已知三角形的边,并使其夹角等于已知角D. 先作一条线段等于已知线段或先作一个角等于已知角【答案】D【分析】利用基本作图先要作一个线段等于已知线段,再作一个角等于已知角或先作一个角等于已知角,然后便于作边.【解答】已知三角形的两边及其夹角,求作这个三角形,可以先A法,也可以先B法,但是都不全面,因为这两种方法都可以,故选D.。
4.【答题】利用尺规进行作图,根据下列条件作三角形,画出的三角形不是唯一的是()A. 已知三条边B. 已知三个角C. 已知两角和夹边D. 已知两边和夹角【答案】B【分析】看是否符合所学的全等的公理或定理即可.【解答】A、符合全等三角形的判定SSS,能作出唯一直角三角形;B、不正确,已知三个角可画出无数个三角形;C、正确,符合ASA判定;D、正确,符合SAS判定.选B.方法总结:此题主要考查由已知条件作三角形,可以依据三角形全等的判定来做.5.【答题】用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A. 三角形的两条边和它们的夹角B. 三角形的三边C. 三角形的两个角和它们的夹边D. 三角形的三个角【答案】A【分析】由已知条件可判定已知条件为两边和它们的夹角作三角形.【解答】由已知条件可判定已知条件为两边和它们的夹角作三角形.选A.6.【答题】已知∠AOB,用尺规作一个角∠A’O’B’等于已知角∠AOB的作图痕迹如图所示,则判断∠AOB=∠A’O’B’所用到的三角形全等的判断方法是()A. SASB. ASAC. AASD. SSS【答案】D【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS得到三角形全等,由全等三角形的性质,可得全等三角形的对应角相等.【解答】如图,连接CD、C’D’,∵在△COD和△C’O’D’中,∴△COD≌△C’O’D’(SSS),∴∠AOB=∠A’O’B’选D.7.【答题】用尺规作图,已知三边作三角形,用到的基本作图是( )A. 作一个角等于已知角B. 作已知直线的垂线C. 作一条线段等于已知线段D. 作角的平分线【答案】C【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】已知三边作三角形实质就是把三边的长度用圆规画出,选C.8.【答题】一个角的平分线的尺规作图的理论依据是( )A. SASB. SSSC. ASAD. AAS【答案】B【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】连接NC,MC,在△ONC和△OMC中,∵ ON=OM ,NC=MC,OC=OC ,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,选B.9.【答题】如图,小敏做试题时,不小心把题目中的三角形用墨水弄污了一部分,她想在一块白纸上作一个完全一样的三角形,然后粘贴在上面,她作图的依据是( )A. SSSB. SASC. ASAD. AAS【答案】C【分析】图中的三角形已知一条边以及两个角,利用全等三角形的判定(ASA)可作图.【解答】根据图形,可以确定两角及其夹边.选C.10.【答题】根据下列已知条件,能唯一画出△ABC的是( )A. ∠A=36°,∠B=45°,AB=4B. AB=4,BC=3,∠A=30°C. AB=3,BC=4,CA=1D. ∠C=90°,AB=6【答案】A【分析】看是否符合所学的全等的公理或定理及三角形三边关系即可.【解答】A.∠A=36°,∠B=45°,AB=4,利用原理“ASA”可以画出唯一的三角形;B、C、D都不能唯一的作出三角形.选A.11.【答题】利用基本作图方法,不能作出唯一三角形的是( )A. 已知两边及其夹角B. 已知两角及其夹边C. 已知两边及一边的对角D. 已知三边【答案】C【分析】三角形全等的判定定理有SAS,ASA,AAS,SSS,根据以上内容判断即可.【解答】A. 已知两边及其夹角,作图依据“SAS”;B. 已知两角及其夹边,作图依据“ASA”;C. 已知两边及一边的对角,不能做出唯一的三角形;D. 已知三边,作图依据“SSS”.选C.12.【答题】已知三边作三角形,用到的基本作图是( )A. 作一个角等于已知角B. 作已知直线的垂线C. 作一条线段等于已知线段D. 作一条线段等于已知线段的和【答案】C【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】已知三角形的三边,求作符合要求的三角形,其作图依据是“SSS”.故用到的基本作图是:作一条线段等于已知线段.选C.13.【答题】已知:∠AOB作法:(1)作射线O'A'.(2)以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.(3)以点O'为圆心,以OC长为半径作弧,交O’A'于C'.(4)以点C'为圆心,以CD长为半径作弧,交前弧于D'.(5)经过点D'作射线O'B'.∠A'D'B'就是所求的角.这个作图是()A. 平分已知角B. 作一个角等于已知角C. 作一个三角形等于已知三角形D. 作一个角的平分线【答案】B【分析】这个作图题属于基本作图中的作一个角等于已知角.【解答】选:B .14.【答题】如图所示,点在的边上,用尺规作出了,作图痕迹中,是().A. 以点为圆心,为半径的弧B. 以点为圆心,为半径的弧C. 以点为圆心,为半径的弧D. 以点为圆心,为半径的弧【答案】D【分析】根据同位角相等两直线平行,要想得到CN∥OA,只要作出∠BCN=∠AOB 即可,然后再根据作一个角等于已知角的作法解答.【解答】根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.选D.方法总结:本题主要考查了作图-基本作图,解题的关键是熟习作一个角等于已知角的方法.15.【答题】下列各条件中,能作出唯一的△ABC的是( )A. AB=4,BC=5,AC=10B. AB=5,BC=4,∠A=40°C. ∠A=90°,AB=10D. ∠A=60°,∠B=50°,AB=5【答案】D【分析】要能做出唯一三角形,则需要已知三边,两边及夹角,两角及夹边,【解答】本题中A选项中的三边不能确定三角形,B选项中不是夹角,C选项中缺少一个条件,选D.16.【答题】已知点C在∠AOB的OB边上,用尺规过点C作CN∥OA,作图痕迹如图所示.下列对弧FG的描述,正确的是( )A. 以点C为圆心,OD的长为半径的弧B. 以点C为圆心,OM的长为半径的弧C. 以点E为圆心,DM的长为半径的弧D. 以点E为圆心,CE的长为半径的弧【答案】C【分析】根据同位角相等两直线平行,要想得到CN∥OA,只要作出∠BCN=∠AOB 即可,然后再根据作一个角等于已知角的作法解答.【解答】解:根据题意,所作出的是∠BCN=∠AOB,根据作一个角等于已知角的作法,弧FG是以点E为圆心,DM为半径的弧.选C.17.【答题】用直尺和圆规作一个角等于已知角,如图,能得出的依据是 ( )A.B.C.D.【答案】B【分析】过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边,判定△OCD≌△O′C′D′,根据全等三角形对应角相等得出∠A′O′B′=∠AOB.【解答】作图的步骤:①以O为圆心,任意长为半径画弧,分别交OB、OA于点C、D;②任意作一点O′,作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′A′,所以∠A′O′B′就是与∠AOB相等的角;理由:在△OCD与△O′C′D′中,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS,选B.18.【答题】下列选项所给条件能画出唯一的是()A. ,,B. ,,C. ,D. ,,【答案】A【分析】要能做出唯一三角形,则需要已知三边,两边及夹角,两角及夹边,【解答】A中两角夹一边,形状固定,所以可作唯一三角形;B中∠B并不是AB,AC的夹角,所以可画出多个三角形;C中两个锐角也不确定,也可画出多个三角形;D中AC与BC两边之差大于第三边,所以不能作出三角形,选A.19.【答题】用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是( )A.B.C.D.【答案】D【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】A、由图示可知应用了垂径定理作图的方法,所以CD是Rt△ABC斜边AB上的高线,不符合题意; B、由直径所对的圆周角是直角可知∠BDC=90°,所以CD是Rt△ABC斜边AB上的高线,不符合题意; C、根据相交两圆的公共弦被连接两圆的连心线垂直平分可知,CD是Rt△ABC斜边AB上的高线,不符合题意; D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.选D.方法总结:本题主要考查尺规作图,能正确地确定作图的步骤是解决此类问题的关键.20.【答题】一个角的平分线的尺规作图的理论依据是( )A. SASB. SSSC. ASAD. AAS【答案】B【分析】连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案.【解答】解:连接NC,MC,在△ONC和△OMC中,∵,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,选B.。
冀教版数学八年级上册第十二章综合测试(含答案)
第十二章综合测试班级: 姓名: 成绩:一、选择题1.如果把5x x y+中的x 与y 都扩大为原来的10倍,那么这个代数式的值( ) A .扩大为原来的10倍 B .扩大为原来的5倍C .缩小为原来的12D .不变 2.在85 ,3m n ,3x y +,1x ,3a b +中,分式的个数是( ) A .1 B .2 C .3 D .43.使分式22(2)(9)x x x ---有意义的x 应取( ) A .x ≠3且x ≠﹣3B .x ≠2或x ≠3或x ≠﹣3C .x ≠3或x ≠﹣3D .x ≠2且x ≠3且x ≠﹣34.不改变分式的值,下列分式变形正确的是( )A .223322x x y y= B .221a b a b a b +=++ C .22142x x x -=-+ D .222x x x y xy y -=- 5.若分式方程1x a x +-=a 无解,则a 的值为( ) A .﹣1B .1C .±1D .﹣2 6.计算2x 3÷1x 的结果是( ) A .2x 2 B .2x 4 C .2x D .47.为保证某高速公路在2018年底全线顺利通车,某路段规定在若干天内完成修建任务. 已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务. 若设规定的时间为x 天,由题意列出的方程是( )A .111104014x x x +=--+B .111101440x x x +=-+-C.111104014x x x-=++-D.111+104014x x x=++-8.若分式34xx-+的值为0,则x的值是()A.3 B.0 C.-3 D.-49.不改变分式52223x yx y-+的值,把分子、分母中各项系数化为整数,结果是()A.2154x yx y-+B.4523x yx y-+C.61542x yx y-+D.121546x yx y-+10.若31x-与4x互为相反数,则x的值是()A.1 B.2 C.3 D.411.若分式22423xx x---无意义,则()A.x=-1 B.x=3 C.x=-1且x=3 D.x=-1或x=3 12.下列各式成立的是()A.22b ba a=B.b b ca a c+=+C.222()a b a ba b a b--=++D.22a aa b a b=++13.下列变形错误的是()A.32364422x yx y y-=-B.33()1()x yy x-=--C.32312()4()27()9x a b x a ba b--=-D.22223(1)9(1)3x y a xxy a y-=--14.当x=__________时,424xx--的值与54xx--的值相等()A.-1 B.4 C.5 D.015.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元16.已知18x x -=,则2216x x +-的值是( ) A .60 B .64 C .66 D .7217.对于分式2||24x x --,下列说法正确的是( ) A .x =2时,它的值为0 B .x =-2时,它的值为0C .x =2或x=-2时,它的值为0D .不论x 取何值,它的值都不可能为018.下列说法正确的是( )A .3-的倒数是13B .2-的绝对值是2-C .()5--的相反数是5-D .x 取任意实数时,4x都有意义 19.已知关于x 的分式方程的根为正数,则m 的取值范围为( )A .B .C .D .20.在物理并联电路里,支路电阻R 1、R 2与总电阻R 之间的关系式为=+,若R ≠R1,用R 、R1表示R2正确的是( )A .R 2=B .R 2=C .R 2=D .R 2=21.若a b s b a+=-,则b 为( ) A .1a as s ++; B .1a as s -+ ; C .2a as s +- ; D .1a as s +-; 22.已知a-b 0≠,且2a-3b=0,则代数式2a b a b --的值是( ) A .-12 B .0 C .4 D .4或-1223.在数学活动课中老师出了这样一道题目让同学们讨论:现有铁丝重m 1克,铜丝重m 2克,铁丝、铜丝的截面半径分别为r 1cm 和r 2 cm,不用直接测量长度,分别计算它们的长度(铁的密度为7.8g/cm 3,铜的密度为8.9g/cm 3)正确的回答是( ) A .铁丝为 1217.8m r πcm 铜丝为2228.9m r πcm B .铁丝为 121m r cm 铜丝为222m r πcmC .铁丝为 121m r cm 铜丝为 222m r cmD .铁丝为 11m r cm 铜丝为 22m r cm 24.对于分式11x + 的变形永远成立的是( ) A .1212x x =++ B .21111x x x -=+- C .2111(1)x x x +=++ D .1111x x -=+- 25.甲从A 地到B 地要走m 小时,乙从B 地到A 地要走n 小时,若甲、乙二人同时从A 、B 两地出发,经过几小时相遇( )A .(m+n)小时B .2m n +小时C .m n n m +小时D .mn m n +小时 二、填空题26.计算xx x 111的结果是__________.27.计算:232()x y-=____. 28.方程4044033x x-= 的解是______. 29.若ab a b -=34,则1a ﹣1b的值是_____. 30.不改变分式的值,把分子分母的系数化为整数:0.50.20.3a b a b +=-____________. 31.若方程 23(1)k x =- 的解是x=5,则k= ________. 32.当x=____时,分式无意义;当x________时,分式有意义.33.已知关于x 的分式方程211a x x +--=1的解是非负数,则a 的取值范围是__________. 34.已知1xy =,则11x y x y+=++_________________. 35.马小虎的家距离学校1 800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,则马小虎的速度为_________米/分钟.三、解答题36.解分式方程:(1)23133x x x --=+-; (2)22222222x x x x x x x++--=--. (3) 11x 3x 22x-+=-- . 37.计算: (1)212293m m --- (2)222299369x x x x x x x +-++++ (3) 22m n 2mn m n m n m n -+-+- ; 38.已知分式2218x 3x -+ (1)当x 取什么值时,分式有意义?(2)当x 取什么值时,分式为零?(3)当x 取什么值时,分式的值为负数?39.已知关于x 的方程4433x m m x x---=--无解,求m 的值. 40.阅读材料:关于x 的方程: 11x a x a +=+的解为:1x a =,21x a = 11x a x a -=-(可变形为11x a x a --+=+)的解为:1x a =,21x a -= 22x a x a +=+的解为:1x a =,22x a = 33x a x a +=+的解为:1x a =,23x a= …………根据以上材料解答下列问题:(1)①方程1122xx+=+的解为________________.②方程111313xx-+=+-的解为________________.(2)解关于x方程:①2211x ax a+=+--(1a≠)②3322x ax a-=---(2a≠)41.注意:为了使同学们更好的解答本题,我们提供了一种解题思路,你可以依照这个解题思路按下面的要求填空,完成本题的解答;也可以选用其它的解答方案,此时不必填空,只需按解答题的一般要求,进行解答.甲、乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?解题方案设甲每天加工x个玩具,(1)用含x的代数式表示:①乙每天加工____个玩具,甲加工90个玩具所用的时间为______,乙加工120个玩具所用的时间为_______;②根据题意,列出相应方程__________________;③解这个方程得___________;④检验:____________;⑤答:甲每天加工________个玩具,乙每天加工_________个玩具.42.某施工队承包了高速公路上300米路段的维护施工任务,施工80米后,接上级指示,在保证施工质量的前提下,要求加快施工速度,在6天内完成施工任务。
冀教版八年级数学上册第十二章分式与分式方程练习题(附答案)
冀教版八年级数学上册第十二章分式与分式方程练习题(附答案)1.已知=3,求的值.2.(1)计算:(﹣2)3÷()﹣1+()﹣2﹣|﹣2|+(2022﹣π)0;(2)解分式方程:=1.3.(1)化简:;(2)下面是小明计算分式的过程,请认真阅读,完成下列任务:解:原式=……第一步=……第二步=x﹣x……第三步=0.……第四步任务一:①第一步变形采用的方法是;②第步开始出现错误;任务二:③请直接写出正确的结果,该结果是.4.先化简,再求值:,其中x=1.5.“芒果正宗,源自田东”.田东的桂七芒果,皮薄肉细,多汁香甜、营养丰富、品质上乘,被誉为“果中一绝,果之上品”.现某芒果园有甲、乙两支专业采摘队,已知甲队比乙队每天多采摘600公斤芒果,甲队采摘28800公斤芒果所用的天数与乙队采摘19200公斤芒果所用的天数相同.问甲、乙两队每天分别可采摘芒果多少公斤?6.(1)计算:;(2)解分式方程:.7.阅读以下材料,并解答下列问题:下列一组方程:①x+=3,②x+=5,③x+=7,…,小贤通过观察,发现了其中蕴含的规律,并顺利地求出了前三个方程的解,他的解答过程如下:由①x+=1+2得x=1或x=2;由②x+=2+3得x=2或x=3;由③x+=3+4得x=3或x=4.(1)若n为正整数,请直接写出第n个方程及其方程的解.(2)若n为正整数,关于x的方程x+=2n﹣2的一个解是x=7,求n的值.8.嵊州榨面是嵊州美食的一张名片,某面馆推出两款经典美食榨面,一款是色香味俱全的“炒榨面”,另一款是清香四溢的“汤水榨面”.已知2份“炒榨面”和1份“汤水榨面”需46元;1份“炒榨面”和2份“汤水榨面”需38元.(1)求“炒榨面”、“汤水榨面”的单价.(2)鸭蛋是两款美食必不可少的配料,该面馆老板发现本月的每千克鸭蛋价格比上个月涨了25%,同样花160元买到的鸭蛋数量比上个月少了2千克,求本月鸭蛋的价格.9.先化简,再求值:,其中x=2.10.先化简,再求值:,其中a=﹣1.11.(1)解分式方程:=+1;(2)先化简(﹣)÷,然后从2,0,﹣1三个数中选一个合适的数代入化简后的结果中进行求值.12.某工厂计划招聘甲、乙两种工人生产同一种零件,每小时甲种工人比乙种工人多生产10个零件,甲种工人生产150个这种零件所用时间与乙种工人生产120个这种零件所用时间相等.(1)甲、乙两种工人每小时各生产多少个这种零件?(2)若该工厂计划招聘90名工人,且甲种工人人数不超过乙种工人人数的2倍,如何招聘才能在10小时内生产最多的这种零件?最多能生产多少个这种零件?13.某村计划对面积为1600m2的农场进行数字化硬件改造升级,经投标由甲、乙两个工程队来完成.已知甲队每天能完成改造的面积是乙队每天能完成改造面积的3倍,如果两队各自独立完成面积为720m2区域的改造时,甲队比乙队少用8天.(1)求甲、乙两工程队每天各能完成多少面积的改造;(2)若甲队每天改造费用是2.7万元,乙队每天改造费用为0.8万元,要使这次改造的总费用不超过22万元,则至少应安排乙工程队改造多少天?14.已知,关于x的分式方程=1.(1)当a=2,b=1时,求分式方程的解;(2)当a=1时,求b为何值时分式方程=1无解;(3)若a=3b,且a、b为正整数,当分式方程=1解为整数时,求b的值.15.对于一些特殊的方程,我们给出两个定义:①若两个方程有相同的一个解,则称这两个方程为“相似方程”;②若两个方程有相同的整数解,则称这两个方程为“相伴方程”.(1)判断一元一次方程3﹣2(1﹣x)=4x与分式方程是否是“相似方程”,并说明理由;(2)已知关于x,y的二元一次方程y=mx+6与y=x+4m是“相伴方程”,求正整数m 的值.16.为响应阳光体育运动的号召,某中学从体育用品商店购买一批足球和篮球,购买足球花费了2500元,购买篮球花费了2000元,且购买足球数量是购买篮球数量的2倍,已知购买一个篮球比购买一个足球多花30元.(1)求购买一个足球和篮球各需要花费多少元?(2)该中学决定再次购进足球和篮球共50个,且此次购买足球和篮球的总费用不超过3100元,则该中学此次最多可购买多少个篮球?17.2022年北京冬奥会的吉祥物“冰墩墩”以其呆萌可爱、英姿飒爽形象,深受大家喜爱.某商店第一次用3600元购进一批“冰墩墩”玩具,很快售完;该商店第二次购进该“冰墩墩”玩具时,进价提高了20%,同样用3600元购进的数量比第一次少了10件.(1)求第一次购进的“冰墩墩”玩具每件的进价是多少元;(2)若两次购进的“冰墩墩”玩具每件售价均为80元,求该商店两次购进的“冰墩墩”玩具全部售完的总利润是多少元?18.为了满足市民的物质需求,某超市准备购进甲、乙两种绿色袋装食品.其中甲、乙两种绿色袋装食品的进价和售价如下表:甲乙进价(元/袋)m m﹣2售价(元/袋)2013已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.(1)求m的值;(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价﹣进价)不少于5200元,问至少购进甲种袋装食品多少袋?19.京东快递仓库使用机器人分拣货物,已知一台机器人的工作效率相当于一名分拣工人工作效率的20倍,若用一台机器人分拣8000件货物,比原先16名工人分拣这些货物要少用小时.(1)求一台机器人一小时可分拣多少件货物?(2)受“双十一”影响,石家庄某京东仓库11月11日当天收到快递72万件,为了在8小时之内分拣完所有快递货物,公司调配了20台机器人和20名分拣工人,工作3小时之后,又调配了15台机器人进行增援,该公司能否在规定的时间内完成任务?请说明理由.20.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用30天时间完成整个工程.当一号施工队工作10天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前8天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?。
初中数学冀教版八年级上册第十四章 实数14.4 近似数-章节测试习题(13)
章节测试题1.【答题】请将用四舍五入精确到,则______.【答案】0.62【分析】本题考查近似数.【解答】把按四舍五入精确到0.01得0.62,即0.618≈0.62.故答案为0.62.2.【答题】小明的身高约为1.60米,这个近似数是()A. 精确到B. 精确到C. 精确到十分位D. 精确到百位【答案】A【分析】本题考查近似数,近似数的末尾数字在哪一位,这个近似数就精确到什么位.根据近似数的精确度求解.【解答】小明的身高约为1.60米,这个近似数精确到了百分位或0.01.3.【答题】用四舍五入法,把精确到百分位,取得的近似数是()A. B. C. D.【答案】D【分析】本题考查近似数,解答本题的关键是明确近似数的定义.根据题目中的数据可以写出把7.9463精确到百分位的近似数,本题得以解决.【解答】精确到百分位,选D.4.【答题】12.004≈______.(精确到百分位)【答案】12.00【分析】本题考查了近似数,经过四舍五入得到的数为近似数;近似数与精确数的接近程度,可以用精确度表示.把千分位上的数字4进行四舍五入即可.【解答】12.004≈12.00(精确到百分位),故答案为12.00.5.【答题】近似数209.05万是由四舍五入得到的,其精确到()A. 万位B. 百位C. 个位D. 百分位【答案】B【分析】本题考查近似数.【解答】∵近似数209.05万精确到5所表示的数位,且209.05万=2090500,∴209.05万精确到百位.选B.6.【答题】近似数3.5的准确值a的取值范围是()A. B.C. D.【答案】C【分析】本题考查近似数.【解答】近似数3.5的准确值a的取值范围是.选C.7.【答题】将=2.23606797…精确到千分位是()A. 2.2B. 2.24C. 2.236D. 2.237【答案】C【分析】本题考查近似数.【解答】精确到千分位是2.236,选C.8.【答题】下列说法正确的是()A. 近似数4.60与4.6的精确度相同B. 近似数5千万与近似数5000万的精确度相同C. 近似数4.31万精确到0.01D. 1.45×104精确到百位【答案】D【分析】本题考查近似数.【解答】A选项中,∵近似数4.60是精确到百分位的,近似数4.6是精确到十分位的,∴A中说法错误;B选项中,∵近似数5千万是精确到千万位的,近似数5000万是精确到万位的,∴B 中说法错误;C选项中,∵近似数4.31万精确到百位的,∴C中说法错误;D选项中,∵近似数1.45×104是精确到百位的,∴D中说法正确.选D.9.【答题】某校女生的平均身高约为1.6米,则该校全体女生的平均身高的范围是()A. 大于1.55米且小于1.65米B. 不小于1.55米且小于1.65米C. 大于1.55米且不大于1.65米D. 不小于1.55米且不大于1.65米【答案】B【分析】本题考查近似数.【解答】∵女生的平均身高约为1.6米是一个近似值,∴身高的取值范围是不小于1.55米且小于1.65米,选B.10.【答题】用四舍五入法按要求对3.1415926分别取近似值,其中错误的是()A. 3.1(精确到0.1)B. 3.141(精确到千分位)C. 3.14(精确到百分位)D. 3.1416(精确到0.0001)【答案】B【分析】本题考查近似数.【解答】A.3.1(精确到0.1),正确;B.3.142(精确到千分位),故本选项错误;C.3.14(精确到百分位),正确;D.3.1416(精确到0.0001),正确.选B.11.【答题】用四舍五入法按要求对1.06042取近似值,其中错误的是()A. 1.1(精确到0.1)B. 1.06(精确到0.01)C. 1.061(精确到千分位)D. 1.0604(精确到万分位)【答案】C【分析】本题考查了近似数,根据要求结合近似数的定义正确求解是解题的关键.【解答】1.06042≈1.1(精确到0.1),故A选项正确,不符合题意;1.06042≈1.06(精确到0.01),故B选项正确,不符合题意;1.06042≈1.060(精确到千分位),故C选项错误,符合题意;1.06042≈1.0604(精确到万分位),故D选项正确,不符合题意,选C.12.【答题】按括号内的要求,用四舍五入法,对1022.0099取近似值,其中错误的是()A. 1022.01(精确到0.01)B. 1.0×103(保留2个有效数字)C. 1020(精确到十位)D. 1022.010(精确到千分位)【答案】C【分析】本题考查近似数.【解答】A.1022.0099(精确到0.01)≈1022.01,正确;B.1022.0099(保留2个有效数字)≈1.0×103,正确;C.1022.0099(精确到十位)≈1022,故错误;D.1022.0099(精确到千分位)≈1022.010,正确.选C.13.【答题】用四舍五入按要求对分别取近似值,其中错误的是()A. 0.1(精确到0.1)B. 0.06(精确到千分位)C. 0.06(精确到百分位)D. 0.0602(精确到0.0001)【答案】B【分析】本题考查近似数.【解答】A.0.06019≈0.1(精确到0.1),∴A选项的说法正确;B.0.06019≈0.060(精确到千分位),∴B选项的说法错误;C.0.06019≈0.06(精确到百分),∴C选项的说法正确;D.0.06019≈0.0602(精确到0.0001),∴D选项的说法正确.选B.14.【答题】小亮的体重为47.95kg,用四舍五入法将47.95精确到0.1的近似值为()A. 48B. 48.0C. 47D. 47.9【答案】B【分析】本题考查近似数.【解答】47.95精确到0.1的近似值为48.0.选B.15.【答题】3.14159精确到千分位为()A. 3.1B. 3.14C. 3.142D. 3.141【答案】C【分析】本题考查近似数.【解答】3.14159精确到千分位为3.142.选C.16.【答题】用四含五入法对0.03049取近似值,精确到0.001的结果是()A. 0.0305B. 0.04C. 0.030D. 0.031 【答案】C【分析】本题考查近似数.【解答】0.03049取近似值,精确到0.001的结果是0.030.选C.17.【答题】近似数304.25精确到()A. 十分位B. 百分位C. 十位D. 百位【答案】B【分析】本题考查近似数.【解答】近似数304.25精确到百分位;选B.18.【答题】按括号内的要求用四舍五入法取近似数,下列正确的是()A. 0.0234≈0.0(精确到0.1)B. 2.604≈2.60(精确到十分位)C. 403.53≈403(精确到个位)D. 0.0136≈0.014(精确到0.0001)【答案】A【分析】本题考查近似数.【解答】A.0.0234≈0.0(精确到0.1),选项A正确;B.2.604≈2.6(精确到十分位),选项B错误;C.403.53≈404(精确到个位),选项C错误;D.0.0136≈0.014(精确到0.001),选项D错误.选A.19.【答题】小亮用天平称得一个鸡蛋的质量为50.47g,用四舍五入法将50.47精确到0.1的近似值为()A. 50B. 50.0C. 50.4D. 50.5【答案】D【分析】本题考查近似数.【解答】50.47≈50.5(精确到0.1),选D.20.【答题】用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.0502(精确到0.0001)【答案】C【分析】本题考查近似数.【解答】A.0.05019≈0.1(精确到0.1),∴此选项正确;B.0.05019≈0.05(精确到百分位),∴此选项正确;C.0.05019≈0.050(精确到千分位),∴此选项错误;D.0.05019≈0.0502(精确到0.0001),∴此选项正确;故选C.。
初中数学冀教版八年级上册第十三章 全等三角形13.3 全等三角形的判定-章节测试习题(1)
章节测试题1.【答题】根据下列已知条件,能画出唯一的△ABC的是( )A. ,,B. ,,C. ,D. ,,【答案】B【分析】要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一.【解答】A、不符合三角形三边之间的关系,不能作出三角形,错误;B、符合全等三角形判定中的SSS,正确;C、只有两个条件,不足以构成三角形,错误;D、三个角不能画出唯一的三角形,错误,选B.2.【答题】若≌,且△ABC的周长为20,AB=5,BC=8,则DF=( )A. 5B. 8C. 7D. 5或8【答案】C【分析】根据三角形的周长可得AC长,然后再利用全等三角形的性质可得DF 长.【解答】∵△ABC的周长为20,AB=5,BC=8,∴AC=7,∵△ABC≌△DEF,∴DF=AC=7,选C.【方法总结】本题主要考查全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.3.【答题】如图,在△ABC中,AQ=PQ,PR=PS,∠RAP=∠SAP,PR⊥AB于点R,PS⊥AC于点S,则下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中( )A. 全部正确B. 仅①和②正确C. 仅①正确D. 仅①和③正确【答案】B【分析】易证RT△APR≌RT△APS,可得AS=AR,∠BAP=∠1,再根据AQ=PQ,可得∠1=∠2,即可求得QP∥AB,即可解题.【解答】:PR=PS,AP=AP可得:Rt△APR≌Rt△APS,则AS=AR,则①正确;根据AQ=PQ可得:∠PAQ=∠APQ,根据∠RAP=∠SAP可得:∠RAP=∠APQ,则PQ∥AR,则②正确,根据已知条件无法得出△BPR和△QPS全等,选B.4.【答题】如图要测量河两岸相对的两点A、B的距离,先在AB 的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长就是AB的长;判定△EDC≌△ABC的理由是( )A. SSSB. ASAC. AASD. SAS【答案】B【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【解答】由题意得:根据ASA得:△EDC≌△ABC.选B.5.【答题】如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是( )A. SSSB. SASC. AASD. HL【答案】A【分析】根据定义判断.【解答】在△ABD和△ACD中,,∴△ABD和△ACD(SSS);选A.6.【答题】如图,小王做试题时,不小心把题目中的三角形用墨水弄污了一部分,他想在一张白纸上作一个完全一样的三角形,然后粘贴在上面,他作图的依据是( )A.B.C.D.【答案】C【分析】图中的三角形已知一条边以及两个角,利用全等三角形的判定(ASA)可作图.【解答】解:图中的三角形已知一条边以及两个角,则他作图的依据是AS A. 选C.7.【答题】根据下列条件作出的三角形不唯一是( )A. AB=6,∠A=60°,∠C=40°B. AB=5,BC=4,CA=6C. AB=5,AC=4,∠C=40°D. ∠A=50°,AB=8,AC=6【答案】C【分析】根据全等三角形的判定方法来判断.【解答】解:C.∠C并不是AB,AC的夹角,所以可画出多个三角形,故此选项错误;选C.8.【答题】根据下列条件能作出唯一的三角形的是( )A. AB=5,BC=7,∠A=30°B. AB=4,BC=7,CA=9C. ∠A=60°,∠B=45°,∠C=75°D. ∠C=90°,AB=8【答案】B【分析】根据全等三角形的判定方法来判断.【解答】解: A. ∠A并不是AB,BC的夹角,所以可画出多个三角形,故此选项错误;B. 三边确定,则形状固定,所以可作唯一三角形,故此选项正确;C. 三个角相等的三角形有无数个,故此选项错误;D. 可画出多个三角形,故此选项错误.选B.9.【答题】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是( )A. AE=DFB. ∠A=∠DC. ∠B=∠CD. AB=DC【答案】D【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),选D.10.【答题】如图,在矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,则图中全等的直角三角形共有( )A. 6对B. 5对C. 4对D. 3对【答案】C【分析】先找出图中的直角三角形,再分析三角形全等的方法,然后判断它们之间是否全等.【解答】E是CD中点,DE=EC,矩形ABCD,可得AD=BC,AB=CD,∠DCB=∠DCF=90∘,AD∥BF,∠DAE=∠EFC,图中全等的直角三角形有:∠DEA=∠CEF,∠DAE=∠EFC,DE=EC,在△AED和△FEC中则△AED≌△FEC(AAS),∴CF=AD=BC,在△BDC和△FDC中,△BDC≌△FDC(SAS),同理,△BDC≌△DBA,即,△BDC≌△FDC≌△DBA,△AED≌△FEC,△BDC≌△FDC≌△DBA,共4对。
冀教版数学八年级上册-第十七章-特殊三角形-巩固练习(含答案解析)
A(3,4).连接 OA,若在直线 a 上存在点 P,使△AOP 是等腰三角形,那么所有满足条件的
点 P 的坐标是________.
11.若等腰三角形的顶角为
,则它腰上的高与底边的夹角是________度.
12.现有 A、B 两个大型储油罐,它们相距 2km,计划修建一条笔直的输油管道,使得 A、B
【解析】【解答】解:当腰为 6 时,则三角形的三边长分别为 6、6、5,满足三角形的三边 关系,周长为 17; 当腰为 5 时,则三角形的三边长分别为 5、5、6,满足三角形的三边关系,周长为 16; 综上可知,等腰三角形的周长为 16 或 17. 故选 C. 【分析】分腰为 6 和腰为 5 两种情况,再求其周长. 6.【答案】C 【解析】【解答】解:由题意可得, 3cm 作腰,6cm 作底或 12cm 作底,则三边分别为 3cm,3cm,6cm,不能构成三角形, 3cm,3cm,12cm,不能构成三角形; 6cm 作腰,3cm 作底或 12cm 作底,则三边分别为 6cm,6cm,3cm,能构成三角形, 6cm,6cm,12cm,不能构成三角形; 12cm 作腰,3cm 或 6cm 作底,则三边分别为 12cm,12cm,3cm,能构成三角形, 12cm,12cm,6cm,能构成三角形, 故最多能组成 3 个等腰三角形, 故选:C. 【分析】由题意,可分情况:3cm 作腰,6cm 作底或 12cm 作底;6cm 作腰,3cm 作底或 12cm 作底;12cm 作腰,3cm 或 6cm 作底;再根据三角形的三边关系定理:任意两边之和 大于第三边,判定等腰三角形的个数. 7.【答案】B
的关键是学生熟练掌握三角形内角和定理.
二、填空题
10.【答案】 (8,4)或(-2,4)或(-3,4)或(- ,4) 【解析】【解答】∵A(3,4), ∴OB=3,AB=4,
初中数学冀教版八年级上册第十三章 全等三角形13.2 全等图形-章节测试习题(1)
章节测试题1.【题文】已知以下基本事实:①对顶角相等;②一条直线截两条平行线所得的同位角相等;③两条直线被第三条直线所截,若同位角相等,则这两条直线平行;④经过直线外一点,有且只有一条直线平行于已知直线.(1)在利用以上基本事实作为依据来证明命题“两直线平行,内错角相等”时,必须要用的基本事实有____(填入序号即可);(2)根据在(1)中的选择,结合所给图形,请你证明命题“两直线平行,内错角相等”,已知:如图,_____________________________.求证:________.证明:____________________.【答案】详见解析.【分析】(1)利用图示:根据平行线的性质,证明“两直线平行,内错角相等”的过程解答;(2)根据“两直线a∥b,判定同位角∠1=∠3”,然后由对顶角∠3=∠2及等量代换证得∠1=∠2.【解答】解:(1)①②;(2)已知:a∥b,直线a、b被直线c所截.求证:∠1=∠2.证明:∵a∥b,∴∠1=∠3.∵∠3 =∠2,∴∠1 =∠2.2.【题文】如图,在△ABC中,∠B≠∠C.求证:AB≠AC.【答案】见解析【分析】首先假设AB=AC,从而得出与已知条件矛盾,从而得出答案.【解答】解:假设AB=AC,则∠B=∠C,∴与已知矛盾,∴AB≠AC.3.【题文】如图所示,D、E分别为△ABC的边AB、AC上点,•BE与CD相交于点O.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下作结论,写一个正确的命题:命题的条件是_______和_______,命题的结论是_______和________(均填序号)(2)证明你写的命题.【答案】(1)条件①、③结论②、④,(2)证明见解析【分析】(1)选①③作为题设时,可证明②④正确;(2)用ASA证明△ABE≌△ACD可得BE=CD,在△OBC,证∠OBC=∠OCB可得OB=OC.【解答】解:(1)∵∠A=∠A,AB=AC,∠ABE=∠ACD,∴△ABE≌△ACD,∴BE=CD.故④正确.∵AB=AC,∴∠ABC=∠ACB.∵∠ABE=∠ACD,∴∠OBC=∠OCB,∴OB=OC,故②正确.4.【题文】下列语句哪些是命题?对于命题,请先将它改写为“如果……那么……”的形式,再找出命题的条件和结论,并指出是真命题还是假命题,并说明为什么是假命题.(1)小亮今年上八年级,明年一定上九年级;(2)作一条线段的垂直平分线;(3)互为倒数的两个数的积为1;(4)内错角相等;(5)不等式的两边同时乘以一个数,不等号的方向改变.【答案】(2)不是命题,(1)(3)(4)(5)都是命题,(3)是真命题.【分析】命题是具有判断语句的陈述句,任何一个命题都可以改写成,”如果…那么…”的形式, 如果后面为题设,那么后面为结论,正确的命题称为真命题,错误的命题称为假命题.【解答】 (2)不是命题,(1)(3)(4)(5)都是命题,(1)如果小亮今年上八年级,那么明年一定上九年级,条件是小亮今年上八年级,结论是明年一定上九年级,有可能留级,所以是假命题,(3)如果两个数互为倒数,那么它们的积为1,条件是,两个数互为倒数,结论是它们的积为1,是真命题,(4)如果两个角是内错角,那么它们相等,条件是两个角是内错角,结论是它们相等,因为两直线不一定平行,所以是假命题,(5)如果不等式的两边同时乘以一个数,那么不等号的方向改变,条件是不等式的两边同时乘以一个数,结论是不等号的方向改变,只有乘以的是负数才改变,乘以正数不改变,所以是假命题.方法总结:本题考查了命题,真命题的概念,解决本题的关键是要熟练掌握命题和真命题的概念.5.【题文】写出下列命题的条件与结论.(1)两条直线平行,同位角相等;(2)同角或等角的补角相等;(3)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.【答案】答案见解析.【分析】(1),(2)把命题改写为”如果…那么…”的形式,则如果后面的为题设,那么后面的为结论,(3)如果后面为题设,那么后面为结论.【解答】(1)条件:两条直线平行,结论:同位角相等(2)条件:同角或等角的补角,结论:相等(3)条件:两条直线被第三条直线所截,内错角相等,结论:两条直线平行.6.【答题】下列说法正确的是( )A. 两个周长相等的长方形全等B. 两个周长相等的三角形全等C. 两个面积相等的长方形全等D. 两个周长相等的圆全等【答案】D【分析】能够完全重合的两个图形叫做全等形,D、两个周长相等的圆的半径必然相等,半径相等则两圆重合,故全等.【解答】A.长方形周长相等,但面积、长、宽不一定相等,错;B.三角形周长相等,但不一定对应边完全相等,错;C.长方形面积相等,但长、宽不一定相等,错;D.圆的周长相等,就可知道半径相等,两圆可完全重合,正确。
冀教版2020-2021学年八年级数学上册第十七章 特殊三角形 单元测试卷(含答案)
八年级冀教版数学《特殊三角形》测试卷考生注意:1.本试卷共6页,总分100分,考试时间90分钟.题号一二三总分21 22 23 24 25 26 27得分一、选择题(本大题共10个小题;每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的序号填在题中的括号内)1.等腰三角形两边长为4和8,它的周长是_____.()A 16B 18C 20D 16或182.等腰三角形的一个外角为140º,则它的底角为()A 100ºB 40ºC 70ºD 70º或40º3. 直角三角形中,若斜边长为5cm,周长为12cm,则它的面积为()A 、12㎝²B 、6㎝²C 、8㎝²D 、9㎝²4. 如图,D为等边三角形ABC的AC边上一点,BD=CE, ∠1=∠2,那么三角形ADE是()A、钝角三角形B、等腰三角形C、等边三角形D、直角三角形5.三角形三边长分别为6、8、10,那么它的最短边上的高为()A、 4 B 、5 C 、6 D 、86.边长为7、24、25的三角形ABC内有一点P到三边的距离相等,则这个距离是()A、1 B 、3 C 、4 D 、67..如图,△ABC中,AB=AC,∠C=30º,AB的垂直平分线交BC于E,则下列结论正确的是()得分阅卷人A、BE=½CEB、BE=1/3CEC、BE=¼CED、不能确定8. 如图,在等边△ABC 中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是( )A、4 B 、5 C 、6 D 、89. 如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB, ∠AFD=158°,则∠EDF等于()A、68° B 、58°C 、78°D 、86°10. 如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,DE⊥AC于E,若DE=2,CD=25,则BE的长为()A、42 B 、32C 、33D 、8得分阅卷人二、填空题(本大题共10个小题;每小题2分,共20分.把答案写在题中横线上)11.等腰三角形的腰长为10,底边长为12,则其底边上的高为______.12.在△ABC中,AB=AC,BD是∠ABC的平分线,且BD=AD,则∠A=_____ 13.E、F分别是Rt△ABC的斜边AB上的两点,AF=AC,BE=BC,则∠ECF=______14. 有一根长7cm的木棒,要放进长、宽、高分别为5cm、4cm、3cm的木箱,_______(填“能”或“不能”)放进去。
初中数学冀教版八年级上册第十四章 实数14.4 近似数-章节测试习题(10)
章节测试题1.【答题】下列各数中,是准确数的是()A. 小明身高大约165cmB. 天安门广场约44万平方米C. 天空中有8只飞鸟D. 国庆长假到北京旅游的有60万人【答案】C【分析】本题考查近似数.只要是测量得到的数据以及大型的统计中得到的数据,都是近似数.【解答】A,B中都有标志性的词语:约.故都是近似数,D.国庆长假到北京旅游的人数为近似数;C中,8是一个准确数.选C.2.【答题】下列各数中,是近似数的是()A. 七(1)班共有65名同学B. 足球比赛每方共有11名球员C. 光速是300000000米/秒D. 小王比小华多2元【答案】C【分析】本题考查近似数.只要是测量得到的数据以及大型的统计中得到的数据,都是近似数.【解答】A,C,D都是准确数,只有C光的速度为近似数,选C.3.【答题】用四舍五入法,分别按要求取0.06018的近似值,下列四个结果中错误的是()A. 0.1(精确到0.1)B. 0.06(精确到0.001)C. 0.06(精确到0.01)D. 0.0602(精确到0.0001)【答案】B【分析】本题考查近似数和有效数字.【解答】A.0.06018≈0.1(精确到0.1),正确;B.正确;C.0.06018≈0.060(精确到0.001),错误;D.正确.选C.4.【答题】下列各题中的数是准确数的是()A. 初一年级有400名同学B. 月球与地球的距离约为38万千米C. 毛毛身高大约158cmD. 今天气温估计30℃【答案】A【分析】本题考查近似数.只要是测量得到的数据以及大型的统计中得到的数据,都是近似数.【解答】B,C,D都是近似数,只有A是准确数.选A.5.【答题】由四舍五入法得到近似数0.09330,它的有效数字的个数是()A. 3B. 4C. 5D. 6【答案】B【分析】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.【解答】近似数0.09330的有效数字为9、3、3、0.选B.6.【答题】把0.0975取近似数,保留两个有效数字的近似值是()A. 0.10B. 0.097C. 0.098D. 0.98【答案】C【分析】本题考查了近似数和有效数字.【解答】0.0975≈0.098.选C.7.【答题】某种鲸的体重约为1.36×105千克.关于这个近似数,下列说法正确的是()A. 精确到百分位,有3个有效数字B. 精确到个位,有6个有效数字C. 精确到千位,有6个有效数字D. 精确到千位,有3个有效数字【答案】D【分析】本题考查了近似数和有效数字.用科学记数法表示的数字的精确到什么数位及有效数字的判断主要就是10的n次幂前面的那部分.【解答】1.36×105精确到千位,有3个有效数字.8.【答题】对于20.55与2.055这两个近似数,下列说法中,正确的是()A. 它们的有效数字与精确位数都不相同B. 它们的有效数字与精确位数都相同C. 它们的精确位数不相同,有效数字相同D. 它们的有效数字不相同,精确位数相同【答案】C【分析】本题考查了近似数和有效数字.【解答】20.55有四个有效数字,精确到百分位;2.055有四个有效数字,精确到千分位.选C.9.【答题】下列各题中的各数是近似数的是()A. 初一新生有680名B. 圆周率πC. 光速约是3.0×108米/秒D. 排球比赛每方各有6名队员【答案】C【分析】本题考查了近似数.【解答】A、B、D都是准确数,C是近似数.选C.10.【答题】-31.999精确到百分位的近似数的有效数字的个数是()A. 2B. 3C. 4D. 5【答案】C【分析】本题考查了近似数和有效数字.【解答】-31.999≈-32.00,有效数字为3,2,0,0,共4个,选C.11.【答题】如果由四舍五入得到的近似数为45,那么在下列各题中不可能是()A. 44.49B. 44.51C. 44.99D. 45.01【答案】A【分析】本题考查了近似数.【解答】A.44.49≈44;B.44.51≈45;C.44.99≈45;D.45.01≈45.选A.12.【答题】对于6.3×103与6300这两个近似数,下列说法中,正确的是()A. 它们的有效数字与精确位数都不相同B. 它们的有效数字与精确位数都相同C. 它们的精确位数不相同,有效数字相同D. 它们的有效数字不相同,精确位数相同【答案】A【分析】本题考查了近似数和有效数字.【解答】6.3×103=6300有效数字为:6,3,共2个,精确到百位;6300有效数字为:6,3,0,0,共4个,精确到个位.选A.13.【答题】毕节地区水能资源丰富,理论蕴藏量达221.21万千瓦,己开发156万千瓦,把已开发水能资源用四舍五入法保留两个有效数字并且用科学记数法表示应记为()千瓦.A. B. C. D.【答案】B【分析】本题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.【解答】156万=.选B.14.【答题】下列说法中,正确的是()A. 近似数3.76与3.760表示的意义一样B. 近似数13.2亿精确到亿位C. 3.0×103精确到百位,有4个有效数字D. 近似数30.000有5个有效数字【答案】D【分析】本题考查近似数和有效数字.【解答】A.近似数3.76精确到百分位,3.760精确到千分位,表示的意义不同,故A错误;B.近似数13.2亿精确到千万位,故B错误;C.3.0×103精确到百位,有2个有效数字,故C错误;D.近似数30.000有5个有效数字,正确.选D.15.【答题】8708900精确到万位是()A. 870万B. 8.70×106C. 871×104D. 8.71×106【答案】D【分析】本题考查近似数.【解答】8708900=8.7089×106≈8.71×106,选D.16.【答题】下列由四舍五入法得到近似数,各精确到哪一位:0.0233______;3.10______;4.50万______;3.04×104______.【答案】万分位百分位百位百位【分析】本题考查近似数.【解答】0.0233精确到万分位;3.10精确到百分位;4.50万精确到百位;3.04×104精确到百位.17.【答题】用四舍五入法,按括号内的要求对下列各数求近似值:3.5952(精确到0.01)______;60340(保留两个有效数字)______;23.45(精确到个位)______;4.736×105(精确到千位)______.【答案】3.60 6.0×104 23 4.74×105【分析】本题考查近似数.【解答】3.5952(精确到0.01)≈3.60;60340(保留两个有效数字)≈6.0×104;23.45(精确到个位)≈23;4.736×105(精确到千位)≈4.74×105.18.【答题】把0.002048四舍五入保留两个有效数字得______,它是精确到______位的近似数.【答案】0.0020 万分位【分析】本题考查近似数.【解答】0.002048≈0.0020,它是精确到万分位的近似数.19.【答题】被誉为“中国第一馆”的南通博物苑建造于1905年,年接待量达30万人次.在这题中,准确数是______,近似数是______.【答案】1905 30万【分析】本题考查近似数.【解答】准确数是1905,近似数是30万.20.【答题】0.00100精确到______位(或精确到______),有效数字是______.【答案】十万分位;0.00001;1,0,0【分析】本题考查近似数和有效数字.【解答】0.00100精确到十万分位(或精确到0.00001),有效数字是1,0,0.。
初中数学冀教版八年级上册第十四章 实数14.4 近似数-章节测试习题(6)
章节测试题1.【答题】由四舍五入得到的近似数2.6万,精确到( )A. 千位B. 万位C. 个位D. 十分位【答案】A【分析】近似数2.6万精确到0.1万位.【解答】先还原2.6万这个数为26000,所以近似数2.6万精确到千位.选A.2.【答题】用四舍五入法将0.0257精确到0.001结果是( )A. 0.03B. 0.026C. 0.025D. 0.0257【答案】B【分析】把万分位上的数字7进行四舍五入即可求解.【解答】把万分位上的数字7进行四舍五入即可得0.0257≈0.026(精确到0.001).选B.3.【答题】宜昌市2015年中考学生人数约为2.83万人,近似数2.83万是精确到( )A. 十分位B. 百分位C. 千位D. 百位【答案】D【分析】将2.83万化为原始数据,即可解答本题.【解答】2.83万=28300,因此可得近似数2.83万是精确到百位,选D.4.【答题】估计的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】B【分析】根据9<13<16可判断结果.【解答】根据9<13<16,可知32<13<42,可知3<<4.故选:B。
方法总结:此题主要考查了二次根式的估算,解题关键是要找到被开方数相接近的平方数,即找到附近的平方数,确定开方的结果即可.5.【答题】估计代数式的运算结果应在( )A. 1到2之间B. 2到3之间C. 3到4之间D. 4到5之间【答案】B【分析】先化成最简二次根式,再合并,最后求出的范围即可.【解答】 ==,∵,∴.选B.6.【答题】全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15000000用科学记数法表示为( )A. 15×106B. 1.5×107C. 1.5×108D. 0.15×108【答案】B【分析】【解答】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.即15 000 000=1.5×107选B.7.【答题】由四舍五入法得到的近似数6.8×103,下列说法中正确的是( )A. 精确到十分位,有2个有效数字B. 精确到个位,有2个有效数字C. 精确到百位,有2个有效数字D. 精确到千位,有4个有效数字【答案】C【分析】103代表1千,那是乘号前面个位的单位,那么小数点后一位是百.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字,用科学记数法表示的数a×10n的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:个位代表千,那么十分位就代表百,乘号前面从左面第一个不是0的数字有2个数字,那么有效数字就是2个.选C.8.【答题】估计的值在( )A. 7和8之间B. 6和7之间C. 3和4之间D. 2和3之间【答案】D【分析】再化简,根据4<7<9可判断结果.【解答】 .,∴的值在2和3之间.选D.9.【答题】估算的值是在( ).A. 和之间B. 和之间C. 和之间D. 和之间【答案】B【分析】根据16<19<25可判断结果.【解答】,,.选B.10.【答题】下列各数中,界于6和7之间的数是( )A.B.C.D.【答案】B【分析】依据算术平方根、立方根的性质进行解答即可.【解答】由,可得界于6和7之间,选B.11.【答题】估计介于( )之间.A. 1.4与1.5B. 1.5与1.6C. 1.6与1.7D. 1.7与1.8【答案】C【分析】先估算的范围,再进一步估算原式的范围,即可解答.【解答】解:∵2.2<<2.4∴3.2<+1<3.4∴1.6<<1.7选C.12.【答题】近似数3.50万精确到______位.【答案】百【分析】首先将3.50万还原,然后确定0所表示的数位即可【解答】解:万精确到百位.故答案为:百.13.【答题】由四舍五入得到的近似数8.7亿,精确到______位.【答案】千万【分析】精确到最后一位.【解答】8.7亿,单位是亿,所以精确到千万位.14.【答题】6.435 8精确到0.01的近似数是______,精确到个位的近似数为______,精确到0.001为______.【答案】6.44,6, 6.436【分析】【解答】(1)6.435 8精确到0.01,看千分位是5,所以四舍五入得6.44;精确到个位,看十分位是4,舍去,得6;精确到0.001看0.0001,是8,所以进位6.436.方法总结:用四舍五入法按精确到哪一位取近似值时,先找到相应的数位,再将其后紧跟的一位数字四舍五入取近似值.15.【答题】用四舍五入法,按括号中的要求对下列各数取近似数:(1)0.34082(精确到千分位)≈______(2)64.8(精确到个位)≈______(3)1.5046(精确到0.001)≈______【答案】0.341,65,1.505【分析】(1)0.34082精确到千分位,即对万分位上的8进行四舍五入,则0.34082≈0.341;(2)64.8精确到个位,即对十分位上的8进行四舍五入,则64.8≈65;(3)1.5046精确到0.001,即对万分位上的6进行四舍五入,则1.5046≈1.505.【解答】答案为(1)0.341;(2)65;(3)1.505.16.【答题】近似数1.5指这个数不小于______,而小于______【答案】1.45,1.55【分析】用四舍五入法取近似数的时候,即对下一位数字进行四舍五入.【解答】根据近似数的定义,可知1.5是四舍五入后得到的,当近似数1.5是由原数的百分位舍时,原数十分位为5,百分位需小于5才能舍,则原数小于1.55;当近似数1.5是由原数的百分位入时,原数十分位为4,百分位需大于等于5才能入,则原数不小于1.45.故答案为1.45;1.55.17.【答题】我国古代数学家祖冲之在公元5世纪就算得圆周率的近似值在3.1415926•与3.1415927之间,3.1415927精确到______位.【答案】千万分【分析】就是精确到千分位,根据圆周率π的近似值在3.1415926与3.1415927之间,可得结果.【解答】3.1415927中末位数字7在千万分位,则此数精确到千万分位.故答案为千万分.方法总结:一个近似数,四舍五入到哪一位,就说这个数精确到哪一位.18.【答题】20.94 (精确到0.1)______,这时精确到______位, 1.61精确到______位【答案】20.9,十分,百分【分析】20.94 精确到0.1,则对4进行四舍五入,则20.94≈20.9,0.1是十分位,则精确到十分位, 1.61中末位数字1在百分位,则精确到百分位.【解答】答案为20.9;十分;百分19.【答题】按要求用四舍五入法对下列各数取近似数:① 1.804(精确到0.1)______② 1.804(精确到0.01)______思考:这里①、②的结果一样吗?它们的精确度是否相同?______【答案】 1.8 1.80 ①、②的大小一样,精确度不同【分析】精确到某一位,对紧邻该位后的第1个数字进行四舍五入,表示近似数时,小数点最后一位如果是0,不能去掉.【解答】① 1.804精确到0.1,则对0进行四舍五入,则1.804≈1.8;② 1.804精确到0.01,则对4进行四舍五入,则1.804≈1.80.1.8和1.80的大小一样,但近似数1.8精确到0.1,近似数1.80精确到0.01,即它们的精确度不同.故答案为1.8;1.80;①、②的大小一样,精确度不同.20.【答题】0.00100精确到______位(或精确到______),有效数字是______个;【答案】十万分位,0.00001 ,3【分析】精确到最后一位,有效数字是一个数从左边第一个不为0的数起,往后全是有效数字.【解答】解:0.00100精确到十万分位(或精确到0.00001),有效数字是1,0,0,一共3个.。
新冀教版八年级数学上册第十六章分式单元测试(附答案)
新冀教版八年级数学上册第十六章分式单元测试【知识要点】一、分式的概念1形如__________________________________________________叫做分式.2.分式有意义的条件是_____________,分式的值为零的条件是____________.二、分式的基本性质1.分式的基本性质:分式的分子与分母____________________________,分式的值不变.用式子表示为:_________________________,(其中A、B、C是整式,0C≠).2.分式的变号法则:_______________________________,可简记为“________,值不变”.3.通分:根据分式的基本性质,分子和分母同乘以适当的整式,不改变分式的值.把几个异分母的分式化成同分母的分式,这样的分式变形叫做分式的通分.通分的关键是__________________.最简公分母用下面的方法确定:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取(3) 相同字母的幂的因式取指数最大的特别注意:为了确定最简公分母,通常先将各分母分解因式.4.约分:根据分式的基本性质,把一个分式的分子和分母的________约去,这样的分式变形叫做分式的约分.约分的关键是确定分子与分母的__________.约分的结果应化为最简分式.三、分式的运算法则1.分式的乘法法则:_________________________________________用式子表示为:a c a cb d b d⋅⋅=⋅.2.分式的除法法则:__________________________________________用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.3.分式的乘方法则:___________________________,用式子表示为:()n nna ab b=.4.分式的加减法法则:同分母分式相加减,_________________异分母分式相加减,_______________________________用式子表示为:a c a bc d c±±=;a c ad bc ad bcb d bd bd bd±±=±=.5.分式的混合运算分式的混合运算,关键是弄清楚运算顺序.进行运算时要先算__________,再算___________,最后算__________;有括号要先算括号里面的;计算结果_________________________.四、分式方程1.分式方程的特征是_________________,这是分式方程与整式方程的根本区别. 2.解分式方程的基本思路是“___________”,即把分式方程化为我们熟悉的____________,转化的途径是“____________”,即方程两边都乘以____________.3.解分式方程的一般步骤:①_________________________________________;②_____________;③_______________,把整式方程的解代人__________________,使__________________不等于零的解是原分式方程的解,使__________________等于零的解不是原分式方程的解.注意:因为解分式方程时可能产生_____________,所以解分式方程必须_________.【例题精析】考点一:分式的有关概念 1、分式的概念例1:在 x 1 ,32ba ,-0.5xy+y2,a cb + ,yzx +-5 , πa 3中,是分式的有 ;练习1:在下列有理式中,哪些是整式?哪些是分式?43a ,a 34,3n m +,n m a -8,xx 2,π45-x2、分式有意义:例2:当x 取什么值时,下列分式有意义:(1) 32-x x (2) 141+-x x (3) 422+x x(4)1212+-+x x x (5) 4-x x(6)21102x x -+3、分式的值为零:例3:当x 为什么数时,下列分式的值为零(1) 5412+-x x (2) 221--x x练习2:(1) 13+x x (2) 392--x x例4:(1)当x 时,分式x -84的值为正; (2)当x 时,分式1212+-x x的值为负.练习3:(1) 若分式122+--m m m 的值为零,则m=(2) 若分式x417--的值为正数,则x 范围是 (3) 若分式122+-x x 的值为负,则x 范围是(4) 若分式632-x x无意义,则x= 考点二:分式的性质: 1、基本性质例5:下列等式的右边是怎样从左边得到的?(1)22a acb bc=;(0)c ≠ (2)32x x xy y =.例6:在什么条件下,下列各等式中的左式可以化为右式? (1)22(3)2(3)(2)x x x x +=-+-; (2)232132x x x x-=-. 练习4:填空:(1)b a ab b a 2)(=+ (2)ba ab a 22)(2=- (3))(22yx x xy x +=+ (4)2)(22-=-x x x x (5))()(222yx y x y x -=+- (6))(232622=-++x x x例7:不改变分式的值,把下列分式的值,把下列各式的分子与分母中各项的系数都化为整数:(1)=-+y x yx 32213221 (2)=+-+7.04.03.02.01.0b a b a2、分式的符号法则:例8:不改变分式的值,使下列分子与分母都不含“-”号: (1)=-yx52 (2)=-n m 2 (3)=--b a 73 (4)=--n m 310例9:不改变分式的值,使下列各式的分子与分母按降幂排列,并使最高次项系数是正数:(1)22;3x x --+ (2)22132x x x +--- (3)22312x x x--+--练习5: 1、填空:)()()(-+=+--=+-=-+yx y x y x y x y x 2、(1)如果把分式63xx y-中的x,y 都扩大10倍,那么分式的值一定( )A.扩大10倍B.扩大100倍C.缩小10倍D.不变 (2)在分式a bab+(a 、b 为正数)中,字母a 、b 的值分别扩大为原来的2倍,则分式的值是原来的( )倍? 3.下列从左到右的变形正确的是( ).A .122122x y x y x y x y --=++ B .0.220.22a b a b a b a b ++=++ C .11x x x y x y+--=-- D .a b a b a b a b +-=-+ 3、分式的通分、约分:例10:下面的等式中右式是怎样从左式得到的?这种变换的根据是什么?(1)23326384a b b a b a =; (2)222x xy xx y x y+=--. 最简分式:例11:约分:(1)2322515a bc ab c - (2)22969x x x -++ (3)2239m mm --例12:通分: (1)2232a b a b ab c -与 (2)2355x x x x -+与 (3)2142x x -与214x -. 最简公分母是:考点三、分式的运算例13.计算:(1))(22a b abb a -÷-; (2)a a --+242;(3)a a a 2)441(2+⋅-+; (4))242(2222aa a a a a -+-⋅+;(5)11)1211(22-÷-++-x x x x x ; (6)x x x x xx x --+⋅+÷+--36)3(446222.考点四、分式的化简求值例14.(1)已知:a =3,2b =-,求222)11(b ab a ab b a ++⋅+的值.(2)先化简xx x x x x x 1)121(22÷+---+,再选择一个适当的x 值代入并求值.例15.(1)已知(3)(2)0x x -=,求xx x x x x x x 36)431(22+-+÷----的值.(2)已知12x x -+=,求22x x -+的值.考点五、零指数和负整指数练习6:(1)3132)2(b a b a - (2)3132)()(---bc a(3)2322123)5()3(z xy z y x --- (4)33222)4()3(----mn n m例16:计算:(1)2231)32(--÷x xy (2)3323)25()23(--÷-y x xy例17:计算:(1)2321326)3(------b a b a b a (2)23232222)()3()()2(--⋅⋅ab b a b a ab考点五、科学记数法例18.一种细胞的直径约为61.5610-⨯米,那么它的一百万倍相当于( ).A .玻璃跳棋棋子的直径B .数学课本的宽度C .初中学生小丽的身高D .五层楼房的高度练习7:用科学计数法表示下列小数:0.1= 0.01= 0.001= 0.0001= 0.00001= 0.000001= 0.000 000 000 001= 0.0012= 0.000 000 345= -0.00003= 0.000 000 010 8=310102112)1(,,)384(,1,)1.0(,3,)21(,1001----------a 、计算例19:把下列科学计数法表示的数还原成小数: =⨯-4105.3 =⨯-81034.2考点六、解分式方程 例20.解方程:(1)132x x =-; (2)11522xx x-+=--.例21.解关于x 的方程:01m nx x-=-(m n ≠).例22.已知:公式21111R R R +=中,(R )1R ≠,求出表示R 2的公式.练习14:解下列分式方程(4)2142111x x x x x -+-=+--(5)11114736x x x x -=-++++3(1)2122x x x =---33(2)122x x x -+=--22(3)1212x x x =--+例23:(1)关于x 的方程2323=---x a x x 有增根,那么增根是多少?此时a 是多少?(2)当a 为何值时,关于x 的方程234222+=-+-x x ax x 有增根?(3)当a 为何值时,关于x 的方程21122---+=--x x x x x x m 的解为正数?【创新题型】例24.请你阅读下列计算过程,再回答所提出的问题.23311x x x---- =()()33111x x x x --+-- (A ) = ()()()()()3131111x x x x x x +--+-+- (B ) = x - 3 - 3 (x +1) (C ) = -2x - 6 (D )(1) 上述计算过程中, 哪一步开始出现错误? __________;(2) 从(B )到(C )是否正确? _________;若不正确,错误的原因是 _________. (3) 请你写出正确的解答过程.例25.对于正数x ,规定f(x)=1x x +.例如33(3)134f ==+,1113()13413f ==+; 计算:++)20061()20071(f f …+++++)2()1()1()21(f f f f …+)2007()2006(f f += .【专题复习】一、分式的条件求值例1.已知43x y =,则分式3223x yx y --的值为 . 例2.已知2232x y xy -=(x 、y 均为正数),则22x yx y+-的值为 .例3.已知115a b a b +=+,求b aa b+的值.例4.若2210a a --=,求代数式441a a +的值.二、含字母系数的分式方程例5.m 为何值时,关于x 的方程361(1)x m x x x x ++=--有解? 例6.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ). A .1a < B .1a <且0a ≠ C .1a ≤ D .1a ≤且0a ≠ 例7.已知关于x 的方程233x m x x -=--有正数解,则( ). A .0m >且3m ≠ B .6m <且3m ≠ C .0m < D .6m > 例8.当m 为何值时,关于x 的方程223242mx x x x +=--+无解?.。
冀教版数学八年级上册13章专项训练试题及答案
专训1六种常见的实际应用名师点金:利用三角形全等解决实际问题的步骤:(1)明确应用哪些知识来解决实际问题;(2)根据实际问题抽象出几何图形;(3)结合图形和题意分析已知条件;(4)找到已知与未知的联系,寻求恰当的解决途径,并表述清楚.利用三角形全等测量能到两端的距离1.如图,为了测量出池塘两端A,B之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,那么只要测量出AD 的长度就得到了A,B两点之间的距离.你能说明其中的道理吗?(第1题)利用三角形全等求两端的距离2.【中考·宜昌】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC,BD相交于O,OD⊥CD垂足为D.已知AB=20米.请根据上述信息求标语CD的长度.(第2题)利用三角形全等测量物体的内径3.如图,已知零件的外径为a,要求它的厚度x,动手制作一个简单的工具,利用三角形全等的知识,求出x.(第3题)利用三角形全等解决工程中的问题4.如图,工人师傅要在墙壁的点O处用钻打孔,要使孔口从墙壁对面的点B处打开,墙壁厚35 cm,点B与点O的垂直距离AB长20 cm,在点O处作一直线平行于地面,再在直线上截取OC=35 cm,过点C作OC的垂线,在垂线上截取CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从点B处打出,这是什么道理?(第4题)利用三角形全等解决面积问题5.育新中学校园内有一块直角三角形(Rt△ABC,∠BAC=90°)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,求两种花草的种植面积各是多少.(第5题)利用角平分线的判定和性质设计方案6.如图,湖边的三条公路两两相交于A,B,C三点,现计划修建一个商品超市,要求这个超市到三条公路的距离相等,则可供选择的地方有多少处?【导学号:42282024】(第6题)答案1.解:因为∠ACB =90°, 所以∠ACD =180°-∠ACB =90°. 在△ABC 和△ADC 中, ⎩⎪⎨⎪⎧BC =DC ,∠ACB =∠ACD ,AC =AC ,所以△ABC ≌△ADC(SAS ). 所以AB =AD. 2.解:∵AB ∥DC , ∴∠ABO =∠CDO. 又∵DO ⊥CD , ∴∠CDO =90°,∴∠ABO =90°,即BO ⊥AB , ∵相邻两平行线间的距离相等, ∴BO =DO.又∵∠AOB =∠COD , ∴△BOA ≌△DOC. ∴CD =AB =20米.(第3题)3.解:可设计如图所示的工具,其中O 为AC ,BD 的中点. 在△AOB 和△COD 中, ⎩⎪⎨⎪⎧AO =CO ,∠AOB =∠COD ,BO =DO ,所以△AOB ≌△COD(SAS ).所以AB =CD ,即CD 的长就是A ,B 间的距离. 因为AB =a -2x , 所以x =a -AB 2=a -CD 2.4.解:在△AOB 和△COD 中,⎩⎪⎨⎪⎧OA =OC ,∠OAB =∠OCD =90°,AB =CD ,所以△AOB ≌△COD(SAS ). 所以∠AOB =∠COD.又因为∠AOB +∠BOC =180°, 所以∠BOC +∠COD =180°,即∠BOD =180°.所以D ,O ,B 三点在同一条直线上. 所以钻头沿着DO 的方向打孔,一定从点B 处打出. 5.解:由已知,AB =20 m ,AC =10 m .在Rt △ABC 的边AB 上取点E ,使AE =AC =12AB.连接DE.∵AD 是∠BAC 的平分线, ∴∠CAD =∠BAD.又∵AD 是△ACD 和△AED 的公共边, ∴△ACD ≌△AED(SAS ). ∴S △ACD =S △AED .又易得S △AED =S △BED =12S △ABD .∴S △ACD =13S △ABC =16×20×10=1003 m 2.S △ABD =2003m 2. 答:一串红的种植面积是2003 m 2,鸡冠花的种植面积是1003 m 2.6.解:如图所示.①作出△ABC 的两个内角的平分线,其交点为O 1; ②分别作出△ABC 外角平分线,其交点分别为O 2,O 3. 故满足条件的修建点有三处,即点O 1,O 2,O 3.(第6题)点拨:解题的关键是分情况讨论:分所选位置在三条公路所围三角形的内部和外部两种情况.本章角平分线的性质和判定定理尚未学到,但结合全等三角形的判定及性质,很容易理解角平分线的性质及判定定理.前后呼应相得益彰.专训2证明三角形全等的四种思路名师点金:全等三角形是初中几何的重要内容之一,是几何入门最关键的一步,学习了判定三角形全等的几种方法之后,如何根据已知条件证明三角形全等,掌握证明全等的几种思路尤为重要.条件充足时直接用判定方法1.【中考·武汉】如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.(第1题)条件不足时添加条件用判定方法2.如图,点A,F,C,D在一条直线上,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由.(第2题)非三角形问题中构造全等三角形用判定方法3.如图,在四边形OACB中,CM⊥OA于M,∠1=∠2,CA=CB,求证:(1)∠3+∠4=180°;(2)OA+OB=2OM.(第3题)实际问题中建立全等三角形模型用判定方法4.如图,要测量AB的长,因为无法过河接近点A,可以在AB所在直线外任取一点D,在AB的延长线上任取一点E,连接ED和BD,并且延长BD到G,使DG=BD,延长ED到F,使DF=ED,连接FG,并延长FG到H,使H,D,A在一条直线上,则HG=AB,试说明理由.(第4题)答案1.证明:在△AOB 和△COD 中, ⎩⎪⎨⎪⎧OA =OC ,∠AOB =∠COD ,OB =OD ,∴△AOB ≌△COD.∴∠A =∠C. ∴AB ∥CD.2.解:补充条件:BC =EF ,可使得△ABC ≌△DEF.理由如下: ∵AF =DC ,点A ,F ,C ,D 在一条直线上, ∴AF +FC =DC +FC ,即AC =DF. ∵BC ∥EF ,∴∠BCA =∠EFD. 在△ABC 和△DEF 中, ⎩⎪⎨⎪⎧BC =EF ,∠BCA =∠EFD ,AC =DF ,∴△ABC ≌△DEF(SAS ). 点拨:答案不唯一.3.证明:如图,过C 点作CE ⊥OB ,交OB 的延长线于E 点, (1)∵∠1=∠2,CM ⊥OA ,CE ⊥OE , ∴∠CEO =∠CMO , 又∵OC =OC. ∴△OCE ≌△OCM.∴CE =CM ,又∵CB =CA ,此时△BCE 可看作由△ACM 绕点C 旋转得到的.即旋转后两三角形可以重合. ∴∠3=∠CBE ,∴∠3+∠4=∠CBE +∠4=180°.(第3题)(2)由(1)知△OCE ≌△OCM , ∴OE =OM. 由(1)知BE =AM ,∴OA +OB =OM +AM +OB =OM +BE +OB =OM +OE =2OM. 4.解:在△DEB 和△DFG 中,∵DB =DG ,∠BDE =∠GDF ,DE =DF , ∴△DEB ≌△DFG(SAS ). ∴∠E =∠F ,∴AE ∥FH , ∴∠DBA =∠DGH.又∵点H ,D ,A 在同一条直线上,点B ,D ,G 在同一条直线上,∴∠ADB =∠HDG . 在△ADB 和△HDG 中, ⎩⎪⎨⎪⎧∠DBA =∠DGH ,DB =DG ,∠ADB =∠HDG ,∴△ADB ≌△HDG(ASA ),∴HG =AB.专训3 四种常见的几何关系的探究名师点金:全等三角形的性质和判定是初中数学的重点内容,也是学习其他几何知识的基础,三角形全等的判定和性质是证明线段相等、角相等的重要依据,并由此获得直线之间的垂直(平行)关系,线段(面积)的和、差、倍、分关系.位置关系1.如图,已知BE ⊥AC ,CF ⊥AB ,BM =AC ,CN =AB.求证:AM ⊥AN.(第1题)相等关系2.【中考·珠海】已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图①,连接BD,AF,则BD________AF.(填“>”“<”或“=”)(2)如图②,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF.求证:BH=GF.(第2题)和差关系3.如图,∠BCA=α,CA=CB,C,E,F分别是直线CD上的三点,且∠BEC=∠CFA =α,请提出对EF,BE,AF三条线段之间数量关系的合理猜想,并证明.(第3题)不等关系4.【中考·贵阳】(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断.中线AD的取值范围是________________________________________________________________________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF 交AC于点F,连接EF,求证BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD, ∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF 之间的数量关系,并加以证明.【导学号:42282025】(第4题)答案1.证明:如图,∵BE⊥AC,CF⊥AB,∴∠1+∠BAC=90°,∠2+∠BAC=90°.∴∠1=∠2.又∵BM=CA,AB=NC,∴△ABM≌△NCA.∴∠3=∠N.∵∠N+∠4=90°,∴∠3+∠4=90°,即∠MAN=90°.∴AM⊥AN.(第1题)2.(1)=(2)证明:将△DEF沿FE方向平移,使点E与点C重合,设ED平移后与MN相交于R,如图,∵MN∥BC,RC∥EH,∴∠GRC=∠RHE=∠DEF,∠RGC=∠GCB,易得∠GRC=∠RGC,∴△CGR是等腰三角形.∴CG=CR.又∵MN∥BF,CR∥EH,∴四边形RCEH为平行四边形,∴CR=EH.∴CG=HE.(第2题)由平移的性质得BC=EF,∴BC+CE=CE+EF,即BE=CF.易得∠HEB=∠GCF,∴△BEH≌△FCG(SAS),∴BH=FG.3.解:猜想:EF=BE+AF.证明:∵∠BCE+∠CBE+∠BEC=180°,∠BCE+∠ACF+∠BCA=180°,∠BCA=α=∠BEC,∴∠CBE=∠ACF.又∵∠BEC=∠CFA=α,CB=AC,∴△BEC≌△CFA(AAS).∴BE=CF,EC=FA.∴EF=CF+EC=BE+AF.4.(1)2<AD<8(2)证明:方法一:如图,延长FD至点G,使DG=DF,连接BG,EG.[第4(2)题方法一]∵点D是BC的中点,∴DB=DC.∵∠BDG=∠CDF,DG=DF,∴△BDG≌△CDF(SAS).∴BG=CF.∵ED⊥FD,∴∠EDF=∠EDG=90°,又∵ED=ED,FD=DG,∴△EDF≌△EDG(SAS),∴EF=EG.∵在△BEG中,BE+BG>EG,∴BE+CF>EF.方法二:如图,作∠EDG=∠EDB,在DG边上截取DG=DB,连接EG,FG,[第4(2)题方法二]∵DE=DE,∠EDG=∠EDB,DG=DB,∴△EDG≌△EDB(SAS).∴BE=EG.∵点D是BC的中点,∴DC=DB.∴DG=DC.∵ED⊥FD,∴∠EDF=90°.∴∠EDG+∠FDG=90°,∠BDE+∠FDC=90°,∴∠FDG=∠FDC.∵DF=DF,∴△FDG≌△FDC(SAS).∴FG=FC.∵在△EFG中,EG+FG>EF,∴BE+CF>EF.(3)解:BE+DF=EF.理由如下:方法一:如图,延长AB至点G,使BG=DF,连接CG.[第4(3)题方法一]∵∠ABC+∠D=180°,∠ABC+∠CBG=180°,∴∠CBG=∠D.∵CB=CD,∴△CBG≌△CDF(SAS).∴CG=CF,∠BCG=∠DCF.∵∠BCD=140°,∠ECF=70°,∴∠DCF+∠BCE=70°.∴∠BCE+∠BCG=70°.∴∠ECG=70°.∴∠ECG=∠ECF=70°.∵CG=CF,CE=CE,∴△ECG≌△ECF(SAS).∴EG=EF.∴BE+DF=EF.方法二:如图,作∠ECG=∠ECB,在CG边上截取CG=CB,连接EG,FG.[第4(3)题方法二]∵CE=CE,∠ECG=∠ECB,CG=CB,∴△ECG≌△ECB(SAS).∴EG=BE,∠CGE=∠B.∵∠BCD=140°,∠ECF=70°,∴∠ECG+∠FCG=70°,∠BCE+∠FCD=70°.∴∠FCG=∠FCD.∵CB=CD,∴CG=CD.∵CF=CF,∴△FCG≌△FCD(SAS).∴FG=DF ,∠CGF=∠D.∵∠B+∠D=180°,∴∠CGE+∠CGF=180°.∴点E,G,F三点共线.∴EG+FG=EF.∴BE+DF=EF.专训1全等三角形判定的六种应用名师点金:一般三角形全等的判定方法有四种:SSS,SAS,ASA,AAS.具体到某一道题目时,要根据题目所给出的条件进行观察、分析,选择合适的、简单易行的方法来解题.已知一边一角型应用1一次全等型1.如图,在△ABC中,BD=DC,∠1=∠2.求证:AD平分∠BAC.(第1题)2.如图,在△ABC中,D是BC边上一点,连接AD,过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F,且BE=CF.求证:AD是△ABC的中线.(第2题)应用2二次全等型3.如图,在△ABC中,BD=DC,ED⊥DF.求证:BE+CF>EF.(第3题)4.如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠BAE=∠CAE.求证:∠ABE=∠ACE.(第4题)已知两边型应用3一次全等型5.【中考·河北】如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D 在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.(第5题)应用4两次全等型6.如图,AB=CB,AD=CD,E是BD上任意一点.求证:AE=CE.7.如图,已知AD=AE,AB=AC.求证:BF=FC.(第7题)应用5一次全等型8.如图,已知∠BDC=∠CEB=90°,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.(第8题)应用6两次全等型9.如图,在△ABC与△DCB中,AC与BD交于点E,且∠BAC=∠CDB,∠ACB=∠DBC,分别延长BA与CD交于点F.求证:BF=CF.(第9题)答案1.证明:∵BD =DC ,∴∠DBC =∠DCB.又∵∠1=∠2,∴∠1+∠DBC =∠2+∠DCB ,即∠ABC =∠ACB.∴AB =AC.在△ABD 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,BD =CD ,∴△ABD ≌△ACD(SAS ).∴∠BAD =∠CAD.∴AD 平分∠BAC.2.证明:∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD =90°.又∵∠BDE =∠CDF ,BE =CF ,∴△DBE ≌△DCF.∴BD =CD.∴D 是BC 的中点,即AD 是△ABC 的中线.3.证明:如图,延长FD 至点G ,使DG =DF ,连接BG ,EG .(第3题)在△BDG 和△CDF 中,⎩⎪⎨⎪⎧BD =CD ,∠BDG =∠CDF ,DG =DF ,∴△BDG ≌△CDF(SAS ).∴BG =CF.∵ED ⊥DF ,∴∠EDG =∠EDF =90°.在△EDG 和△EDF 中,⎩⎪⎨⎪⎧DG =DF ,∠EDG =∠EDF ,DE =DE ,∴△EDG ≌△EDF(SAS ).∴EG =EF.在△EBG 中,BE +BG >EG ,∴BE +CF >EF.4.证明:过E 作EF ⊥AB 于F ,EG ⊥AC 于G ,则∠AFE =∠AGE =90°.在△AFE 和△AGE 中,⎩⎪⎨⎪⎧∠AFE =∠AGE ,∠FAE =∠GAE ,AE =AE ,∴△AFE ≌△AGE(AAS ),∴EF =EG.又∵EB =EC ,此时△BFE 可看作由△CGE 翻折得到,即△CGE 翻折可与△BFE 重合.∴△CGE ≌△BFE ,∴∠ABE =∠ACE.5.(1)证明:∵BF =EC ,∴BF +FC =EC +CF ,即BC =EF.又∵AB =DE ,AC =DF ,∴△ABC ≌△DEF.(2)解:AB ∥DE ,AC ∥DF.理由如下:∵△ABC ≌△DEF ,∴∠ABC =∠DEF ,∠ACB =∠DFE.∴AB ∥DE ,AC ∥DF.6.证明:在△ABD 和△CBD 中,⎩⎪⎨⎪⎧AB =CB ,AD =CD ,BD =BD ,∴△ABD ≌△CBD(SSS ).∴∠ABE =∠CBE.在△ABE 和△CBE 中,⎩⎪⎨⎪⎧AB =CB ,∠ABE =∠CBE ,BE =BE ,∴△ABE ≌△CBE(SAS ).∴AE =CE.7.证明:在△ACD 和△ABE 中,⎩⎪⎨⎪⎧AD =AE ,∠A =∠A ,AC =AB ,∴△ACD ≌△ABE(SAS ),∴∠B =∠C.又∵AD =AE ,AB =AC ,∴AB -AD =AC -AE ,即BD =CE.在△DBF 和△ECF 中,⎩⎪⎨⎪⎧∠B =∠C ,∠BFD =∠CFE ,BD =CE ,∴△DBF ≌△ECF(AAS ),∴BF =FC.8.证明:在△DOB 和△EOC 中,∵∠BDC =∠CEB =90°,∠DOB =∠EOC ,∴∠B =∠C.又∵AO 平分∠BAC ,∴∠BAO =∠CAO.在△ABO 和△ACO 中,⎩⎪⎨⎪⎧∠BAO =∠CAO ,∠B =∠C ,AO =AO ,∴△ABO ≌△ACO(AAS ).∴OB =OC.9.证明:在△ABC 和△DCB 中,⎩⎪⎨⎪⎧∠BAC =∠CDB ,∠ACB =∠DBC ,BC =CB ,∴△ABC ≌△DCB(AAS ).∴AC =DB.又∵∠BAC =∠CDB ,∴∠FAC =∠FDB.在△FAC 和△FDB 中,⎩⎪⎨⎪⎧∠F =∠F ,∠FAC =∠FDB ,AC =DB ,∴△FAC ≌△FDB(AAS ).∴BF =CF.专训2 构造全等三角形的六种常用方法名师点金:在进行几何题的证明或计算时,需要在图形中添加一些辅助线,辅助线能使题目中的条件比较集中,能比较容易找到一些量之间的关系,使数学问题较轻松地解决.常见的辅助线作法有:构造法、平移法、旋转法、翻折法、倍长中线法和截长补短法,目的都是构造全等三角形.翻折法1.如图,在△ABC 中,BE 是∠ABC 的平分线,AD ⊥BE ,垂足为D.求证:∠2=∠1+∠C.(第1题)构造法2.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,CE⊥AD于点E,其延长线交AB于点F,连接DF.求证:∠ADC=∠BDF.(第2题)旋转法3.如图,在正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.(第3题)平移法4.在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于点P,BQ平分∠ABC 交AC于点Q,且AP与BQ相交于点O.求证:AB+BP=BQ+AQ.(第4题)倍长中线法5.如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.(第5题)截长(补短)与旋转法6.如图,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系并证明.【导学号:42282022】(第6题)答案1.证明:如图,延长AD交BC于点F.(相当于将AB边向下翻折,与BC边重合,A 点落在F点处,折痕为BE)∵BE平分∠ABC,∴∠ABE=∠CBE.∵BD⊥AD,∴∠ADB=∠BDF=90°.在△ABD和△FBD中,⎩⎪⎨⎪⎧∠ABD =∠FBD ,BD =BD ,∠ADB =∠FDB =90°, ∴△ABD ≌△FBD(ASA ).∴∠2=∠DFB.又∵∠DFB =∠1+∠C ,∴∠2=∠1+∠C.(第1题)2.证明:如图,过点B 作BG ⊥BC 交CF 的延长线于点G.∵∠ACB =90°,∴∠2+∠ACF =90°.∵CE ⊥AD ,∴∠AEC =90°,∴∠1+∠ACF =180°-∠AEC =180°-90°=90°.∴∠1=∠2.在△ACD 和△CBG 中,⎩⎪⎨⎪⎧∠1=∠2,AC =CB ,∠ACD =∠CBG =90°, ∴△ACD ≌△CBG(ASA ).∴∠ADC =∠G ,CD =BG .∵点D 为BC 的中点,∴CD =BD.∴BD =BG.∵∠ACB =90°,AC =BC ,∴∠DBF =45°,又∵∠DBG =90°,∴∠GBF =∠DBG -∠DBF =90°-45°=45°.∴∠DBF =∠GBF.在△BDF 和△BGF 中,⎩⎪⎨⎪⎧BD =BG ,∠DBF =∠GBF ,BF =BF ,∴△BDF ≌△BGF(SAS ).∴∠BDF =∠G.∴∠ADC =∠BDF.(第2题)点拨:本题运用了构造法,通过作辅助线构造△CBG 和△BGF 是解题的关键.3.解:如图,延长CB 到点H ,使得BH =DF ,连接AH.∵∠ABE =90°,∠D =90°,∴∠D =∠ABH =90°.在△ABH 和△ADF 中,⎩⎪⎨⎪⎧AB =AD ,∠ABH =∠ADF =90°,BH =DF ,∴△ABH ≌△ADF.∴AH =AF ,∠BAH =∠DAF.∴∠BAH +∠BAF =∠DAF +∠BAF ,即∠HAF =∠BAD =90°.∵BE +DF =EF ,∴BE +BH =EF ,即HE =EF.在△AEH 和△AEF 中,⎩⎪⎨⎪⎧AH =AF ,AE =AE ,EH =EF ,∴△AEH ≌△AEF.∴∠EAH =∠EAF.∴∠EAF =12∠HAF =45°.(第3题)点拨:图中所作辅助线,相当于将△ADF 绕点A 顺时针旋转90°,使AD 边与AB 边重合,得到△ABH.4.证明:过点O 作OD ∥BC 交AB 于点D ,∴∠ADO =∠ABC.∵∠BAC =60°,∠C =40°,∴∠ABC =80°.∴∠ADO =80°.∵BQ 平分∠ABC ,∴∠QBC =40°.∴∠AQB =∠C +∠QBC =80°.∴∠ADO =∠AQB.易知∠DAO =∠QAO ,又∵OA =OA ,∴△ADO ≌△AQO.∴OD =OQ ,AD =AQ.又∵OD ∥BP ,∴∠PBO =∠DOB.又∵∠PBO =∠DBO ,∴∠DBO =∠DOB.∴△DOB 是等腰三角形.∴BD =OD.∴BD =OQ.∵∠BAC =60°,∠ABC =80°,BQ 平分∠ABC ,AP 平分∠BAC ,∴∠BAP =30°,∠ABQ =40°,∴∠BOP =70°.∵∠BAP =30°,∠ABC =80°,∴∠APB =70°.∴∠BOP =∠APB ,∴△BOP 是等腰三角形,∴BO =BP.∴AB +BP =AD +DB +BP =AQ +OQ +BO =AQ +BQ.5.证明:延长AD 至点G ,使DG =AD ,连接BG ,在△BDG 和△CDA 中,⎩⎪⎨⎪⎧BD =CD ,∠BDG =∠CDA ,DG =DA ,∴△BDG ≌△CDA(SAS ),31 ∴BG =AC ,∠CAD =∠G ,又∵AE =EF ,∴∠CAD =∠AFE ,又∵∠BFG =∠AFE ,∴∠CAD =∠BFG ,∴∠G =∠BFG ,∴BG =BF ,∴AC =BF.6.解:EF =BE +FD.证明如下:延长FD 到点G ,使DG =BE ,连接AG.此时,可看作将△ABE 绕点A 旋转到△ADG.(第6题)∴AE =AG ,∠BAE =∠DAG .又∵∠BAD =120°,∠EAF =60°,∴∠BAE +∠FAD =60°,∴∠DAG +∠FAD =60°,即∠GAF =60°,∴∠EAF =∠GAF =60°.在△EAF 和△GAF 中,⎩⎪⎨⎪⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△EAF ≌△GAF.∴EF =GF =FD +DG∴EF =FD +BE.点拨:证明一条线段等于两条线段的和的方法:“截长法”或“补短法”.“截长法”的基本思路是在长线段上取一段,使之等于其中一短线段,然后证明剩下的线段等于另一短线段;“补短法”的基本思路是延长短线段,使之延长部分等于另一短线段,再证明延长后的线段等于长线段.。
新冀教版八年级数学上册第十二章单元试卷(附答案)
新冀教版八年级数学上册第十二章单元试卷一、选择题 1.要使分式211x x +-无意义,则x 的值是( ) A .1B .-1C .-1或1D .02.若将分式2xx y-的分子、分母中的字母的系数都扩大10倍,则分式的值( ) A.扩大10倍 B.扩大10倍 C.不变D.缩小10倍3.化简分式2bab b +的结果为( ) A.1a b+ B.11a b + C.21a b +D.1ab b+ 4.计算33bab a÷的结果是( )A.b 2B.18aC.9aD.9a 25.下列计算正确的是( ) A.11123x x x+= B.111x y x y-=- C.1111x x x +=++D.aa a 123-=+-6.将161-⎪⎭⎫ ⎝⎛,(-2)2,(-3)2这三个数按从小到大的顺序排列,正确的结果是( )A .()02-<161-⎪⎭⎫ ⎝⎛<()23-B .161-⎪⎭⎫ ⎝⎛<()02-<()23-C .()23-<()02-<161-⎪⎭⎫ ⎝⎛ D .()02-<()23-<161-⎪⎭⎫ ⎝⎛7.下列方程是分式方程的是( )A.2513x x =+- B.315226y y -+=-C.212302x x +-= D.81257x x +-=8.若x=-3是分式方程312axx=-的解,则a 的值为( ) A.95- B.95 C.59 D.59-9.方程04142=----xxx 的解是 ( )A.x=-3B.x=3C.x=4D.x=3或x=4 10.某工地调来72人挖土或运土,已知3人挖出的土恰好被1人全部运走.怎样分配好劳动力才能使挖出来的土及时运走且不窝工?设派x 人挖土,根据题意,列出方程: ①3172=-x x ; ②372x x =-;③723=+x x ;④372=-xx. 则正确的方程的个数为( ).A .1个B .2个C .3个D .4个二、填空题 1.代数式11+-x x 有意义,则x 的取值范围是___________. 2.若分式1(3)(1)x x x --+的值为零,则x 等于 .3.在下列三个不为零的式子44,2,4222+---x x x x x 中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 .4.化简:111x x -=+ . 5. 实验表明,人体内某种细胞的形状可近似地看作球,它的直径为0.00000156m ,则这个数用科学记数法表示是_______________.6.若使23--x x 与232+-x x 互为倒数,则x 的值是________. 7.若关于x 的分式方程4155x ax x=---的增根,那么增根是 ,这时a= .8.为了在教师节给老师送贺卡,小红用a 天共做了b 张,同桌的小明每天做n 张共做了m 天,他们两人平均每天做________张贺卡.9. (2008青海改编)为响应承办“绿色奥运”的号召,八年级(1)班全体师生义务植树300棵.原计划每小时植树x 棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的 1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是____________________.10.观察下面等式:①22))((b a b a b a -=+-;②)())(())()((44222222b a b a b a b a b a b a -=+-=++-;……猜想:)1()1)(1)(1)(1)(1(10241024884422xx x x x x x x x x x x +++++- =__________.三、解答题1.阅读下列题目的计算过程:23211x x x---+ 3(1)(1)x x x -=+-2(1)(1)(1)x x x --+- (A )32(1)x x =--- (B )322x x =--+ (C ) 1x =-- (D )(1)上述计算过程,从哪一步开始出现错误?请写出该步的代号_____; (2)错误的原因:________________;(3)本题目正确的结论为_____________________.2. 已知两个分式:A=442-x ,B=x x -++2121,其中x≠±2. 下面有三个结论:①A=B; ②A、B 互为倒数; ③A、B 互为相反数.请问哪个正确?为什么? 3.计算:3)3(32-+-x xx x .4.(2008广东深圳)先化简代数式⎪⎭⎫ ⎝⎛-++222a a a ÷412-a ,然后选取一个合适..的a 值,代入求值.5.有这样一道数学题:“己知:a=2005,求代数式a(1+a1)-112--a a 的值”,王东在计算时错把“a=2005”抄成了“a=2050”,但他的计算结果仍然正确,请你说说这是怎么回事.6.解分式方程:(1)232x x =+; (2)43231-=-+--xx x .7. (2008湖北咸宁)A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?8.(2008江苏无锡改编)在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000㎡和乙种板材12000㎡的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30㎡或乙种板材20㎡.问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?设安排x 人生产甲种板材,则生产乙种板材的人数为_________人.根据题意列方程,得_____________________________.并解答这个方程.(2)某灾民安置点计划用该企业生产的这批板材搭建A 、B 两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材及能安置的人数如下表所示:板房型号 甲种板材 乙种板材 安置人数A 型板房 54 ㎡ 26 ㎡ 5B 型板房78 ㎡41 ㎡8问:能建造A 型板房多少间?(用不等式组解答)(3)这400间板房最多能安置多少灾民?答案:一、1C ;2C ;3A ;4D ;5D ;6A ;7A ;8D ;9B ;10C ;二、1.x ≥1;2.1;3.答案不唯一,如x x ,x x x 22422+--或24222+--x x ,x x x ;或2244422-++--x x ,x x x ;或2244422+--+-x x ,x x x ;或244222-+--x x ,x x x x ;或x x ,xx x x 224422--+-等;4.1(1)x x +;5.1.56×10-6;6.41;7.x=5,-20;8.m a mn b ++;9.3002030060 1.2x x -=;10.)1(20482048xx +. 三、1.B ;对分式运算法则理解错;11x --.2.解:B=x x -++2121=4442422121222--=-+---=--+x x x x x x x , 比较可知,A 与B 只是分式本身的符号不同, 所以A 、B 互为相反数.即③正确. 3.解:原式223(3)(3)(3)x x x x x -=+--2233(3)x x xx +-=-22(3)x x =- 4. 解: 方法一: 原式=41)2)(2()2(2)2)(2()2(2-÷⎥⎦⎤⎢⎣⎡-+++-+-a a a a a a a a=)2)(2()2)(2(42-+-++a a a a a =42+a方法二:原式=)2)(2(222-+⎪⎭⎫⎝⎛-++a a a a a=)2(2)2(++-a a a=42+a取a =1,得 原式=55.解:原式=1)1)(1(1--+-+⋅a a a a a a =a+1-(a+1) =0 . 因为原式的值与a 无关,所以a=2005与a=2025时代数式的值都一样.6.解:(1)两边同时乘以(2)x x +,得23(2)x x =+. 解这个方程,得6x =-.检验:将6x =-代入原方程,得左边12=-=右边. 所以6x =-是原方程的根.(2)解:两边同时乘以(3)x -,得)3(421--=--x x . 解这个方程,得3x =.检验:将3x =代入原方程,得左边3133-=-. 分母为0,无意义.所以3x =是原方程的增根,原方程无解.7. 解:设 A 型机器人每小时搬运化工原料x 千克,则B 型机器人每小时搬运(x -20)千克,依题意得:100080020x x =-,解这个方程得:100x =,经检验90x =是方程的解,所以x -20=80. 答:A、B两种机器人每小时分别搬运化工原料100千克和80千克. 8.解:(1)(140)x -人,24000120003020(140)x x =-, 解得:80x =.经检验,80x =是方程的根,且符合题意.即应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤. 即能建造板房300~400间.(3)这400间板房可安置灾民5m +8(400-m )=-3m +3200 ∴当m=300时,-3m +3200=2300(名) 当x=400时,-3m +3200=2000(名)所以,这400间板房最多能安置灾民2300名.备用题1.当x 为任何实数时,下列分式一定有意义的是( )CA.221x x+ B.211x x -- C.211x x ++ D.11x x -+2.化简211x x x⎛⎫-÷ ⎪+⎝⎭的结果是( )A A .1x --B .1x -+C .11x -+ D .11x + 3.将方式方程23122x x x +=--去分母,得( )D A.2(2)3(2)1x x x -+-=B.231x +=C.2(2)3(2)2x x x x -+-=-D.232x x +=-4.分式22212121x xx x x x x +---++,,的最简公分母是( )C A.2()(1)x x x -+ B.22(1)(1)x x -+ C.2(1)(1)x x x -+D.2(1)x x +5.方程333x x x-=++的解的情况为( )C A.3x = B.3x =- C.无解 D.解为除3-以外的任意数6.已知37(1)(2)12y A By y y y +=+----,则( )AA .10,13AB =-= B .10,13A B ==C .10,13A B ==-D .10,13A B =-=-7.若125x y z 3++=,3217x y z++=,则111x y z ++=.38. 先化简代数式211()1211a aa a a a ++÷--+-,然后选取一个使原式有意义的a 值代入求值.解:原式2111[]1(1)a a a a a+-=+⋅-- 221(1)a a a a-=⋅- 1aa =-. 例如,当2a =时,原式2=.9.建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n,但窗户的面积与地面面积的比值越大,采光条件越好,小明提出把房间的窗户和地面都增加相同的面积a,以改变采光条件,他这样做能达到目的吗? 解:因为nm a n a m -++=)()()()()(a n n aman a n n ma mn na mn a n n a n m a m n +-=+--+=++-+>0, 所以他小明这样做可以改变采光条件.。
初中数学冀教版八年级上册第十四章 实数14.4 近似数-章节测试习题(12)
章节测试题1.【答题】近似数2.30万精确到______位,用科学记数法表为______.【答案】百,2.3×104【分析】本题考查近似数和有效数字.【解答】2.30万=2.30×104,则2.30中“0”在原数中的百位,故近似数2.30万精确到百位.2.【答题】用四舍五入法对3.07069取近似值,结果是(精确到十分位)______.【答案】3.1【分析】本题考查近似数和有效数字.【解答】3.07069≈3.1.3.【题文】某同学测得一本书的长、宽、厚分别为x=23.7cm、y=16.8cm、z=0.9cm,试推断x、y、z的取值范围.【答案】23.65≤x<23.75,16.75≤y<16.85,0.85≤z<0.95.【分析】根据四舍五入的方法可知23.77cm、16.8cm、0.9cm可能是后一位入1得到,也可能是舍去后一位得到,找到其最大值和最小值即可确定范围.【解答】当x舍去百分位得到23.7,则它的最大值不超过23.75;当x的百分位进1得到23.7,则它的最小值是23.65.∴x的范围是23.65≤x<23.75;当y舍去百分位得到16.8,则它的最大值不超过16.85;当y的百分位进1得到16.8,则它的最小值是16.75.∴y的范围是16.75≤y<16.85;当z舍去百分位得到0.9,则它的最大值不超过0.95;当z的百分位进1得到0.9,则它的最小值是0.85.∴z的范围是0.85≤z<0.95.故x、y、z的取值范围是23.65≤x<23.75,16.75≤y<16.85,0.85≤z<0.95.4.【题文】我们常用“水滴石穿”来说明一个人只要持之以恒地做某件事,就一定能成功.经测算,当水滴不断地滴在一块石头上时,经过10年,石头上可形成一个深为1厘米的小洞,那么平均每个月小洞的深度增加多少米?(结果保留三个有效数字,并用科学记数法表示)【答案】8.33×10﹣5米.【分析】本题考查科学记数法以及近似数.首先分别求出10年共有120个月,1厘米=10-2米,然后根据除法计算法则进行求解,然后根据科学计数法的法则进行计算.【解答】∵10年=120个月,1厘米=10-2米,∴平均每个月小洞的深度增加10-2÷120=(1÷120)×10-2≈0.00833×10-2=8.33×10-3×10-2=8.33×10-5(米).5.【题文】按要求用四舍五入法对下列各数取近似数:①1.804(精确到0.1)≈______;②1.804(精确到0.01)≈______.思考:这里①②的结果一样吗?它们的精确度是否相同?【答案】1.8,1.80;①②的大小一样,精确度不同.【分析】本题考查近似数和有效数字.【解答】①1.804精确到0.1,则对0进行四舍五入,则1.804≈1.8;②1.804精确到0.01,则对4进行四舍五入,则1.804≈1.80.8和1.80的大小一样,但近似数1.8精确到0.1,近似数1.80精确到0.01,即它们的精确度不同.6.【答题】20.94(精确到0.1)≈______,这时精确到______位,1.61精确到______位.【答案】20.9 十分百分【分析】本题考查近似数和有效数字.【解答】20.94精确到0.1,则对4进行四舍五入,则20.94≈20.9,0.1是十分位,则精确到十分位,1.61中末位数字1在百分位,则精确到百分位.7.【答题】我国古代数学家祖冲之在公元5世纪就算得圆周率的近似值在3.1415926与3.1415927之间,则3.1415927精确到______位.【答案】千万分【分析】一个近似数,四舍五入到哪一位,就说这个数精确到哪一位.【解答】3.1415927中末位数字7在千万分位,则此数精确到千万分位.故答案为千万分.8.【答题】用四舍五入法,按括号中的要求对下列各数取近似数:0.34082(精确到千分位)≈______,64.8(精确到个位)≈______,1.5046(精确到0.001)≈______.【答案】0.341 65 1.505【分析】本题考查近似数.【解答】0.34082精确到千分位,即对万分位上的8进行四舍五入,则0.34082≈0.341;64.8精确到个位,即对十分位上的8进行四舍五入,则64.8≈65;1.5046精确到0.001,即对万分位上的6进行四舍五入,则1.5046≈1.505.9.【答题】下列数据中,准确数是()A. 王敏体重40.2千克B. 初一(3)班有47名学生C. 珠穆朗玛峰高出海平面8848.13米D. 太平洋最深处低于海平面11023米【答案】B【分析】生活中的表示测量的数据往往是近似数,如测量的身高、体重等;准确数往往是生活中可以用自然数来表示的人数或物体的个数等;一般数字前带“约”的是近似数.【解答】A中,王敏体重40.2千克,40.2为近似数,∴A选项错误;B中,初一(3)班有47名学生,人数只能是正整数,则47为准确数,∴B选项正确;C中,珠穆朗玛峰高出海平面8848.13米,8848.13为近似数,∴C选项错误;D中,太平洋最深处低于海平面11023米,11023为近似数,∴D选项错误.选B.10.【答题】把30974四舍五入,使其精确到千位,那么所得的近似数是()A. 3.10×105B. 3.10×104C. 3.10×103D. 3.09×105【答案】B【分析】本题考查了用科学记数法表示一个数的方法及精确度的意义,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【解答】由于30974整数位数有5位,∴可以确定n=5-1=4.精确到哪一位,就是四舍五入到哪一位.精确到个位以上的数,应用科学记数法取近似数.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.把30974写成科学记数法为3.09745×104,精确到百位为3.10×104.选B.11.【答题】下列数中,不是近似数的是()A. 七年级(1)班共有学生50人,其中男生28人,女生22人B. 今天到蒙山公园参观的人游客有一万多C. 某工厂共有职工约1500人D. 某中学共有师生约3000人【答案】A【分析】生活中的表示测量的数据往往是近似数,如测量的身高、体重等;准确数往往是生活中可以用自然数来表示的人数或物体的个数等;一般数字前带“约”的是近似数.【解答】A中,七年级(1)班共有学生50人,其中男生28人,女生22人,其中50、28和22都是非常具体的个数,是准确数,故A错误;B中,今天到蒙山公园参观的游客有一万多,一万多是近似数,故B正确;C中,某工厂共有职工约1500人,由1500是大约的,∴1500人是近似数,故C正确;D中,某中学共有师生约3000人,由于3000是大约的,∴3000人是近似数,故D正确.选A.12.【题文】下列由四舍五入法得到的近似数,各精确到哪一位?(1)132.4;(2)0.0572;(3)5.08×103.【答案】(1)十分位;(2)万分位;(3)十位.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.对科学记数法表示的近似数a×10n中,a的末位数字对应的数位即精确到的数位.【解答】(1)132.4的末位数字4在十分位,故近似数132.4精确到十分位;(2)0.0572的末位数字2在万分位,故近似数0.0572精确到万分位;(3)5.08×103=5080,5.08的末位数字8在十位,故近似数5.08×103精确到十位.13.【题文】用四舍五入法,按括号里的要求对下列各数取近似值.(1)0.9541(精确到十分位);(2)2.5678(精确到0.01);(3)14945(精确到万位);【答案】(1)0.1;(2)2.57;(3)10000.【分析】精确到某一位,对紧邻该位后的第1个数字进行四舍五入.表示近似数时,小数点最后一位如果是0,不能去掉.【解答】(1)0.9541精确到十分位,则对5进行四舍五入,则0.9541≈1.0;(2)2.5678精确到0.01,则对7进行四舍五入,则2.5678≈2.57;(3)14945精确到万位,则对千位上的4进行四舍五入,则14945≈10000.14.【题文】讨论:近似数1.6与1.60相同吗?【答案】不相同.【分析】近似数有精确度,所以看近似数是否相同除了看大小外还要看精确度,1.6精确到十分位,而1.60精确到百分位.【解答】不相同.近似数1.6表示精确到十分位,也就是保留一位小数;而近似数1.60表示精确到百分位,也就是保留两位小数.∴近似数1.60比1.6精确.15.【题文】据统计:我国西部10个省(市、区)的人口约为284700000人,土地面积约为537196000平方千米,请回答:(1)用四舍五入法取上述两数的近似值(精确到百万位);(2)求西部10个省(市、区)人均占有的土地面积(精确到0.1平方千米).【答案】(1)2.85×108;5.37×108;(2)1.9.【分析】注意精确到个位以上的数的结果应用科学记数法表示,其中科学记数法表示的数a×10n中,a的末位数字对应的数位即要精确到的数位.(1)精确到百万位,则对十万位进行四舍五入;(2)精确到0.1,即精确到十分位,则对百分位进行四舍五入.【解答】(1)284700000精确到百万位,则对十万位的7进行四舍五入,则284700000≈2.85×108;537196000精确到百万位,则对十万位的1进行四舍五入,则537196000≈5.37×108;(2)人均占有的土地面积约为537196000÷284700000≈1.9(平方千米).16.【答题】用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.0502(精确到0.0001)【答案】C【分析】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【解答】A.0.05019精确到0.1是0.1,正确;B.0.05019精确到百分位是0.05,正确;C.0.05019精确到千分位是0.050,错误;D.0.05019精确到0.0001是0.0502,正确故选C.17.【答题】近似数1.460×105精确到______位.【答案】百【分析】本题考查了近似数,精确到了哪一位,一定要看最后一个数字实际落在了哪一位.用科学记数法表示的数,要确定精确到哪位,首先要把这个数还原成一般的数,然后看a中的最后一个数字在还原的数中是什么位,则用科学记数法表示的数就精确到哪位.【解答】其中的0实际在百位上,∴是精确到了百位,故答案为百.18.【答题】把精确到百分位的近似数是()A. B. C. D.【答案】D【分析】本题考查近似数.【解答】精确到百分位,需要看千分位,千分位是7,四舍五入,即得近似数为.选D.19.【答题】由四舍五入法得到的近似数8.30万,它是精确到()A. 百分位B. 百位C. 千位D. 万位【答案】B【分析】本题考查近似数.【解答】近似数8.30万,它是精确到百位.选B.20.【答题】精确到______位.【答案】千【分析】本题考查近似数.【解答】末位数0实际在千位,∴精确到千位.。
【冀教版】八年级数学上册单元测试:第12章《分式和分式方程》单元测试(解析版)
第12章分式和分式方程单元测试一、单选题(共10题;共30分)1.化简分式bab+b2的结果为()A、1a+bB、1a+1bC、1a+b2D、1ab+b2.有理式①,②,③,④中,是分式的有()A、①②B、③④C、①③D、①②③④3.若x=3是分式方程的根,则a的值是().A、5B、﹣5C、3D、﹣34.给出下列式子:1a、3a2b3c4、56+x、x7+y8、9x+10y,其中,是分式的有()A.5个B.4个C.3个D.2个5.在式子y2、x、12π、2x-1中,属于分式的个数是()A.0B.1C.2D.36.如果1a+1b=1,则a-2ab+b3a+2ab+3b的值为()A.15B.-15C.-1D.-37.学校建围栏,要为24000根栏杆油漆,由于改进了技术,每天比原计划多油400根,结果提前两天完成了任务,请问原计划每天油多少根栏杆?如果设原计划每天油x根栏杆,根据题意列方程为()A.= +2B.= ﹣2C.= ﹣2D.= +28.下列分式中最简分式为()A. B. C. D.9.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得()A.25x−30(1+80%)x=1060B.25x−30(1+80%)x=10C.30(1+80%)x−25x=1060D.30(1+80%)x−25x=1010.如果,那么的值是( )A、 B、 C、 D、二、填空题(共8题;共24分)11.计算÷ 的结果是________.12.分式方程= 的解是________.13.方程﹣=0的解是________.14.计算:-3xy24z•-8zy=________。
15.计算:3a22b·4b9a=________ .16.分式方程5x+3=1的解是________.17.关于x的方程mxx-3=3x-3无解,则m的值是________.18.若分式 x2−1x+2 有意义,则x的取值范围是________.三、解答题(共5题;共36分)19.解方程:3xx-1=1+11-x .20.先化简,再求值: (1+1x−1)÷xx2−1 ,其中:x=﹣2.21.某市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,问原计划每小时修路多少米?22.昆明在修建地铁3号线的过程中,要打通隧道3600米,为加快城市建设,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成了任务.问原计划每天打通隧道多少米?23.下面是我校初二(8)班一名学生课后交送作业中的一道题:计算: x3x −1−x2−x−1 .解:原式= x3x−1−(x2−x−1)=x3−(x−1)(x2+x+1)=x3−(x3−1)=1 .你同意她的做法吗?如果同意,请说明理由;如果不同意,请把你认为正确的做法写下来.四、综合题(共1题;共10分)24.解方程:(1)1x=5x+3;(2)xx−1−2=32x−2 .答案解析一、单选题1、【答案】A【考点】约分【解析】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】原式=bb(a+b)=1a+b .故选:A.【点评】分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.2、【答案】C【考点】分式的定义初中数学精品资料【解析】【解答】①③中分母中含有字,所以为分式. ②④中不含有字母.【分析】本题考查分式的定义,区分关键是分母中是否含有字母.3、【答案】A【考点】分式方程的解【解析】【分析】首先根据题意,把x=3代入分式方程,然后根据一元一次方程的解法,求出a的值是多少即可.【解答】∵x=3是分式方程的根,∴,∴,∴a﹣2=3,∴a=5,即a的值是5.故选:A.4、【答案】C【考点】分式的定义【解析】【解答】解:3a2b3c4、x7+y8的分母中均不含有字母,因此它们是整式,而不是分式.1a、56+x、9x+10y,分母中含有字母,因此是分式.故选C.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.5、【答案】B【考点】分式的定义【解析】【解答】解:式子y2、x、12π、2x-1中,属于分式的有2x-1, 只有1个.故选B.【分析】根据分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式,可得答案.6、【答案】B【考点】分式的化简求值【解析】【解答】解:∵1a+1b=1,即a+bab=1,∴a+b=ab,则原式=a+b-2ab3a+b+2ab=ab-2ab3ab+2ab=-ab5ab=-15 .故选B.【分析】已知等式左边通分并利用同分母分式的加法法则计算整理得到a+b=ab,代入原式计算即可得到结果.7、【答案】D【考点】由实际问题抽象出分式方程【解析】【解答】解:设每天油x根栏杆,根据题意列方程:24000x= 24000x+400+2故选:D.【分析】如果设每天油x根栏杆,要为24000根栏杆油漆,开工后,每天比原计划多油400根,结果提前2天完成任务,根据原计划天数=实际天数+2可列出方程.8、【答案】B【考点】最简分式【解析】【解答】解:A、 42x=2x 可以约分,错误; B、 2xx2+1 是最简分式,正确;C、 x−1x2−1=1x+1 可以约分,错误;D、 1−xx−1=1 可以约分,错误;故选:B【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.9、【答案】A【考点】由实际问题抽象出分式方程【解析】【解答】解:设走路线一时的平均速度为x千米/小时,25x ﹣30(1+80%)x = 1060 .故选:A.【分析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.10、【答案】D【考点】分式的基本性质【解析】【解答】解:∵,,故选D.二、填空题11、【答案】【考点】分式的乘除法【解析】【解答】÷ = = .故答案为:.【分析】利用分式的乘除法求解即可.12、【答案】x=9【考点】解分式方程【解析】【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】方程的两边同乘x(x﹣3),得3x﹣9=2x ,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.13、【答案】x=6【考点】解分式方程【解析】【分析】先去分母,然后求出整式方程的解,继而代入检验即可得出方程的根.【解答】去分母得:3(x﹣2)﹣2x=0,去括号得:3x﹣6﹣2x=0,整理得:x=6,经检验得x=6是方程的根.故答案为:x=6.14、【答案】6xy【考点】分式的乘除法【解析】【解答】解:原式=24xy2z4yz=6xy.故答案为:6xy.【分析】原式利用分式相乘的方法计算,约分即可得到结果.15、【答案】23a【考点】约分,分式的乘除法【解析】【解答】解:原式=23a .故答案为23a【分析】两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.然后进行约分、化简即可.16、【答案】x=2【考点】分式方程的解【解析】【解答】解:方程的两边同乘(x+3),得5=x+3,解得x=2.检验:把x=2代入(x+3)=5≠0.所以原方程的解为:x=2.故答案为x=2.【分析】观察可得最简公分母是(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.17、【答案】1或0【考点】分式方程的解【解析】【解答】解:去分母得mx=3,∵x=3时,最简公分母x﹣3=0,此时整式方程的解是原方程的增根,∴当x=3时,原方程无解,此时3m=3,解得m=1,当m=0时,整式方程无解∴m的值为1或0时,方程无解.故答案为:1或0.【分析】先把分式方程化为整式方程得到mx=3,由于关于x的分式方程mxx-3=3x-3无解,当x=3时,最简公分母x﹣3=0,将x=3代入方程mx=3,解得m=1,当m=0时,方程也无解.18、【答案】x≠2【考点】分式有意义的条件【解析】【解答】解:由题意得:x+2≠0, 解得:x≠2,故答案为:x≠2.【分析】根据分式有意义的条件可得x+2≠0,再解即可.三、解答题19、【答案】解:去分母得:3x=x﹣1﹣1,解得:x=﹣1,经检验x=﹣1是分式方程的解.【考点】解分式方程【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.20、【答案】解:, = ,= ,=x+1,当x=﹣2时,原式=﹣2+1,=﹣1【考点】分式的化简求值【解析】【分析】本题需先对要求的式子进行整理,再把x的值代入即可求出答案.21、【答案】解:设原计划每小时修路x米, ,解得,x=50,经检验x=50时分式方程的解,即原计划每小时修路50米【考点】分式方程的应用【解析】【分析】根据题意可以列出相应的分式方程,然后解分式方程即可,本题得以解决.22、【答案】解:设原计划每天打通隧道x米,由题意得:﹣=20,解得:x=80,经检验:x=80是原分式方程的解,答:原计划每天打通隧道80米【考点】分式方程的应用【解析】【分析】首先设原计划每天打通隧道x米,则实际每天打通隧道1.8x 米,根据题意可得等量关系:原计划所用时间﹣实际所用时间=20天,根据等量关系列出方程,再解即可.23、【答案】解:原式= ﹣﹣﹣=【考点】分式的加减法【解析】【分析】根据分式的加减,可得答案。
2020冀教版数学八年级上册16章专项训练试题及答案
专训图形的变换——平移、对称、旋转在几何证明中的巧用名师点金:在进行与图形变换有关的计算或证明时,往往需要在图形中添加一些辅助线,添加辅助线后能使题目中的分散条件集中,较容易找到一些量之间的关系,使数学问题较轻松地解决.常见的辅助线作法有平移法、旋转法、翻折法等.翻折法1.如图,在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为 D.求证:∠2=∠1+∠C.(第1题)平移法2.如图,在△ABC中,E,F分别为AB,AC上的点,且BE=CF,请判断EF与BC 的大小关系,并说明理由.(第2题)旋转法3.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作60°角,角的两边分别交AB,AC于点M,N,连接MN,试探究BM,MN,NC之间的关系,并加以证明.【导学号:42282061】(第3题)4.如图所示,在△ABC中,M是BC的中点,E,F分别在AC,AB上,且ME⊥MF,求证:EF<BF+CE.【导学号:42282062】(第4题)答案(第1题)1.证明:如图,延长AD交BC于点 F.(相当于将AB边向下翻折,与BC边重合,A 点落在点F处,折痕为BE)∵BE平分∠ABC,∴∠ABE=∠CBE.∵BD⊥AD,∴∠ADB=∠FDB=90°.在△ABD和△FBD中,∠ABD=∠FBD,BD=BD,∠ADB=∠FDB,∴△ABD≌△FBD(ASA).∴∠2=∠DFB.又∵∠DFB=∠1+∠C,∴∠2=∠1+∠C.2.解:EF<BC.理由:如图,将EF平移到BM,连接MF,则MF可看成由BE平移得到,所以CF=BE=MF,考虑到MF与CF的对称关系,作∠MFC的平分线交BC于点D,连接DM,易得DM=DC.∵BD+DM>BM,∴BD+CD>BM,∴BC>EF,即EF<BC.点拨:本题从平移的角度来思考问题,降低了求解的难度.(第2题)(第3题)3.解:MN=BM+NC.证明如下:如图,延长NC到点E,使CE=BM,连接DE(相当于将△DBM绕点D旋转至△DCE).∵△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,∴∠ABC=∠ACB=60°,∠DBC=∠DCB=180°-120°2=30°.∴∠DBM=∠DCE=90°.又∵DB=DC,BM=CE,∴△DBM≌△DCE.∴DM=DE,∠BDM=∠CDE.已知∠MDN=60°.∴∠EDN=∠CDN+∠CDE=∠CDN+∠BDM=∠BDC-∠MDN=120°-60°=60°,即∠EDN=∠MDN.∵DM=DE,∠MDN=∠EDN,DN=DN,∴△DMN≌△DEN.∴MN=EN.∴MN=EN=CE+NC=BM+NC.4.证明:由题意可知BM=MC,∴可将△BFM绕点M旋转180°得到△CNM,如图所示.(第4题)∴BF=CN,FM=MN.连接EN,又∵ME⊥MF,∴EN=EF.又∵在△ENC中,EN<NC+CE,∴EF<BF+CE.专训1轴对称与轴对称图形的应用名师点金:轴对称图形是指一个图形.....在某种情况....的位置关系.....,成轴对称是指两个图形下,二者可以相互转换.利用轴对称的性质解决几何图形中的问题.轴对称的作图和△ABC关于直线MN,使△A′B′C′1.如图,已知△ABC和直线MN,求作△A′B′C′对称.(不要求写作法,只保留作图痕迹)(第1题)轴对称图形的折叠与展开的关系2.如图,将一个正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去一个三角形和一个形如“”的图形,将纸片展开,得到的图形是()(第2题)轴对称与轴对称图形的面积3.如图,正方形的边长为 2 cm,则图中阴影部分的面积为________cm2.(第3题)平面成像与轴对称4.小亮在不同时刻看到身后墙上的时钟在镜子中的像如图所示,你认为实际时间最接近8:00的是()(第4题)轴对称的实际运用5.如图,要在燃气管道l上修建一个泵站,分别向A,B两镇供气,则泵站修建在管道的什么地方,可使所用的管线最短?(第5题)轴对称与折叠6.把一张长方形纸片ABCD按图中的方式折叠,使点A与点E重合,点C与点F重合(E,F两点均在BD上),折痕分别为BH,DG.求证:△BHE≌△DGF.(第6题)答案1.解:如图所示.(第1题)2.D 3.24.D点拨:根据轴对称的性质,一个图形与它在平面镜中的像具有下列特点:①在沿对称轴的方向上,图形的方向与其像的方向一致;②在与对称轴垂直的方向上,图形的方向与其像的方向左右对调.5.解:如图,作点B关于直线l的对称点B′,连接AB′,与直线l交于点C,则点C 即为泵站的位置.(第5题)6.证明:由折叠可知∠ABH=∠EBH=12∠ABD,∠CDG=∠GDF=12∠CDB,∠HEB=∠A=∠GFD=∠C=90°,AB=BE,CD=FD.∵AB∥CD,∴∠ABD=∠CDB.∴∠EBH =∠GDF.∵AB=CD,∴BE=DF.在△BHE和△DGF中,∠EBH=∠FDG,BE=DF,∠HEB=∠GFD,∴△BHE≌△DGF(ASA).点拨:用轴对称的性质解决折叠问题,解决这类问题的关键是折叠前后重合的部分全等,所以对应角相等、对应线段相等.专训2线段垂直平分线的四种应用名师点金:线段的垂直平分线与线段的两种关系:位置关系——垂直,数量关系——平分,利用垂直平分线的这些性质可以求线段的长度、角的度数等,还可以解决实际生活中的选址等问题.线段垂直平分线的性质在求线段中的应用(第1题)1.如图,在△ABC中,AB,AC的垂直平分线分别交BC于点D,E,垂足分别为F,G,已知△ADE的周长为12 cm,则BC=________.2.如图,AB比AC长3 cm,BC的垂直平分线交AB于D,交BC于E,△ACD的周长是14 cm,求AB和AC的长.(第2题)线段垂直平分线的性质在求角中的应用3.【中考·乐山】如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE =40°,则∠DBC=________°.(第3题)。