变压器的工作原理

合集下载

变压器的工作原理

变压器的工作原理

变压器的工作原理一、引言变压器是电力系统中常见的电气设备,用于改变交流电的电压和电流。

本文将详细介绍变压器的工作原理,包括基本原理、结构和工作过程。

二、基本原理1. 电磁感应定律根据法拉第电磁感应定律,当一个导体在磁场中运动或者磁场变化时,会在导体中产生感应电动势。

变压器利用这一原理实现电压的转换。

2. 互感现象互感现象是指两个或者多个线圈通过磁场相互耦合时,其中一个线圈中的电流变化会在其他线圈中产生感应电动势。

变压器中的两个线圈分别称为主线圈和副线圈。

三、变压器的结构1. 铁心变压器的铁心是由硅钢片叠压而成,主要作用是提高磁通的传导性能,并减少铁损耗。

2. 主线圈主线圈是变压器的输入线圈,通常由较粗的导线绕制而成。

当主线圈中通过交流电流时,会在铁心中产生磁场。

3. 副线圈副线圈是变压器的输出线圈,通常由较细的导线绕制而成。

副线圈通过互感现象与主线圈相连,将主线圈中的磁场转换为感应电动势。

四、变压器的工作过程1. 变压器的工作原理可以分为两个阶段:磁场建立和磁场消失。

2. 磁场建立阶段当交流电通过主线圈时,产生的交变电流会在主线圈中产生交变磁场。

由于主线圈和副线圈之间的互感作用,副线圈中也会产生交变电动势。

3. 磁场消失阶段当交流电的方向改变时,主线圈中的交变磁场也会改变方向。

这个变化的磁场会在副线圈中产生感应电动势,导致副线圈中的电流方向发生变化。

4. 变压器的电压转换根据互感现象,变压器中主线圈和副线圈的匝数比可以决定输出电压与输入电压的比例关系。

当主线圈匝数较大时,输出电压相对较低;当主线圈匝数较小时,输出电压相对较高。

五、总结变压器是一种基于电磁感应和互感现象的电气设备,用于改变交流电的电压和电流。

它由铁心、主线圈和副线圈组成。

变压器的工作过程包括磁场建立和磁场消失两个阶段,通过互感现象实现电压的转换。

变压器在电力系统中起到了重要的作用,广泛应用于输电、配电和电子设备中。

变压器能量传递的基本原理

变压器能量传递的基本原理

变压器能量传递的基本原理变压器是一种电磁装置,可将电能从一个交流电路传递到另一个交流电路。

它的基本原理是利用电磁感应现象,通过变换电压和电流的比率来实现能量传递。

变压器一般由铁芯和两个相互绝缘的线圈组成,其中一个线圈称为主线圈,另一个线圈称为副线圈。

变压器的基本原理可以概括如下:1.电磁感应:当主线圈通电时,会在铁芯中产生一个交变磁场。

这个交变磁场会穿过副线圈,通过电磁感应作用,在副线圈中产生感应电动势。

2.感应电动势:根据法拉第电磁感应定律,当磁通量通过一个线圈时,如果磁通量发生变化,就会在该线圈中产生感应电动势。

由于变压器中主线圈中的电流是交流的,因此主线圈中的磁场也是交变的,从而在副线圈中产生交变的感应电动势。

3.恒定磁通量:为了保持副线圈中的感应电动势恒定,需要保持铁芯中的磁通量恒定。

变压器铁芯的设计和选择是为了确保尽量减小能量损耗,以提高能量传输的效率。

4.比例关系:根据法拉第电磁感应定律,感应电动势的大小与磁通量的变化率成正比。

副线圈中的感应电动势与主线圈中的电压成正比,而与主线圈中的电流成反比。

这就是为什么可以通过变压器来改变交流电压的原因。

5.能量传输:变压器通过改变线圈的匝数比,实现从低电压到高电压(步升变压器)或从高电压到低电压(步降变压器)的能量传输。

两个线圈之间的能量传递通过磁场的交感作用来实现,而不是直接通过导线连接。

总结起来,变压器能量传递的基本原理是通过电磁感应现象,利用交变磁场在副线圈中产生感应电动势,然后通过改变线圈的匝数比例实现从一个交流电路向另一个交流电路的能量传输。

变压器在电力输电和电子设备中广泛应用,对于能源的高效利用和稳定供电起着重要作用。

变压器工作原理

变压器工作原理
一、二次绕组感应电动势有效值为: E1=4.44fN1Φm E2=4.44fN2Φm
由此,对某台具体的变压器而言,f及N1均为常数,因 此当加在变压器上的交流电压有效值U1恒定时,则变压器铁 心中的磁通Φm基本保持不变。
三、变压器空载运行时的电动势平衡方程式和电压比
一次绕组电动势平衡方程式
若不计一次绕组中的阻抗,则外加电压几乎全部用来平
❖ 一次绕组(也称原绕组或初级绕组):接交 流电源,其匝数为Nl;
❖ 一、二次绕组中其感应电动势瞬时值分别为
二、变压器的应用与分类 1、变压器的应用 ❖ 变压器能够变换交变电压、变换交变电流、变换阻抗的作
用 2、变压器的种类很多,按用途不同主要分为:
1)电力变压器:供输配电系统中升压或降压用。 2)特殊变压器:如电炉变压器、电焊变压器 3)仪用互感器:如电压互感器与电流互感器。 4)试验变压器:高压试验用。 5)控制用变压器:控制线路中使用。 6)调压器:用来调节电压。 三、电力变压器的基本结构 (一)铁心、(二)绕组 、(三)绝缘套管 、(四)油箱

绝缘套管是变压器绕组的引出装置,
将其装在变压器的油箱上,实现带电的变压
器绕组引出线与接地的油箱之间的绝缘。
❖ 4.油箱及其附件

油箱安装变压器的铁心与绕组。变压
器油起绝缘和冷却作用。电力变压器附件还
有安全气道、测温装置、分接开关、吸湿器
与油表等。
额定值
❖ 原边额定电流I1N
变压器额定容量下原边绕组允许长期通过的电流, 对于三相变压器,为原边额定线电流。
变压器
❖ 1.变压器:是一种静止的电气设备。它是 根据电磁感应的原理,将某一等级的交流电 压和电流转换成同频率的另一等级电压和电 流的设备。

变压器基本工作基础学习知识原理

变压器基本工作基础学习知识原理

第1章 变压器的基本知识和结构1.1变压器的基本原理和分类一、变压器的基本工作原理变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。

变压器工作原理图当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。

原、副绕组的感应分别表示为dt d N e Φ-=11 dtd Ne Φ-=22 则k N N e e u u ==≈212121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。

改变变压器的变比,就能改变输出电压。

但应注意,变压器不能改变电能的频率。

二、电力变压器的分类变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。

按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器;按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等;按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。

三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构一、铁心1.铁心的材料采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。

为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。

变压器用的硅钢片其含硅量比较高。

硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

2.铁心形式铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构。

二、绕组1.绕组的材料铜或铝导线包绕绝缘纸以后绕制而成。

2.形式圆筒式、螺旋式、连续式、纠结式等结构。

为了便于绝缘,低压绕组靠近铁心柱,高压绕组套在低压绕组外面,两个绕组之间留有油道。

变压器铁心工作原理

变压器铁心工作原理

变压器铁心工作原理
变压器是一种利用电磁感应原理来实现电压变换的设备。

其核心部件被称为铁心,其工作原理如下:
1. 电流通过一根称为"初级线圈"的导线,产生一个产生交变磁
场的电流。

2. 交变磁场穿过被初级线圈包围的铁心。

铁心由磁导率高的铁材质构成,可以有效地集中和传导磁场。

3. 初级线圈产生的交变磁场通过铁心的磁导效应传递给"次级
线圈"。

次级线圈的匝数和初级线圈不同,从而导致电压的变换。

4. 次级线圈的导线中通过的磁通量产生一定的电动势,导致次级线圈的两端产生不同的电压。

根据电压和匝数之间的关系,可以通过改变线圈的匝数比来实现所需的电压变换。

除了电压变换外,铁心也起到了密封和固定线圈的作用,同时还减小了漏磁损耗并提高了变压器的效率。

总之,铁心在变压器中起到了传导、集中和改变磁场的作用,实现了电压的变换。

三相变压器怎么工作的原理

三相变压器怎么工作的原理

三相变压器怎么工作的原理
三相变压器是一种将电能按照一定比例变换电压的电气设备。

其工作原理如下:
1. 三相供电:三相变压器通常接受三相交流电源供电,其中每相电源的相位差120度。

2. 线圈结构:三相变压器由三个相互独立的线圈组成,其中一个为主线圈(也称为高压线圈),另外两个为副线圈(也称为低压线圈)。

3. 磁感应:当高压线圈通电时,会产生一个交变磁场。

由于低压线圈与高压线圈都处于相同的磁场中,所以它们也会感应到同样的磁场。

4. 电磁感应定律:根据电磁感应定律,低压线圈中感应到的磁场会产生电动势,进而产生电流。

由于低压线圈的匝数比高压线圈多(变比大于1),所以低压线圈中的电流将比高压线圈
中的电流大。

5. 能量传递:高压线圈传输的电能通过磁感应传递给低压线圈,从而实现电能的变压。

根据能量守恒定律,变压时,电压降低,则电流增加;电压升高,则电流降低,从而实现电能的平衡传输。

总结起来,三相变压器工作的原理是通过变压器的线圈结构和
磁感应现象,在电能传输过程中,通过变比的转换,实现电能的变压降、升压作用。

变压器升压与降压的工作原理

变压器升压与降压的工作原理

变压器升压与降压的工作原理变压器是一种电气设备,用于改变交流电的电压大小。

它有两种工作方式,一种是升压,可以将原始电压提高到更高的电压值;另一种是降压,可以将原始电压降低到较低的电压值。

下面将详细介绍升压和降压的变压器工作原理。

一、升压变压器工作原理升压变压器主要由两个线圈组成,一个是输入线圈称为初级线圈,另一个是输出线圈称为次级线圈。

初级线圈和次级线圈之间相互绝缘,但它们通过一个铁芯连接在一起。

当输入线圈中有交流电流通过时,铁芯就会产生一个交变磁场。

交变磁场会导致次级线圈中的电流产生感应。

根据法拉第电磁感应定律,当磁通量改变时,就会在线圈中产生感应电动势。

实际上,次级线圈的匝数比初级线圈大,因此,感应电动势在次级线圈中的电压值会高于初级线圈中的电压值。

升压变压器的升压倍数可以通过以下公式计算:升压倍数=次级线圈匝数/初级线圈匝数所以,当次级线圈的匝数大于初级线圈的匝数时,输出电压就会高于输入电压。

二、降压变压器工作原理降压变压器的工作原理与升压变压器相似,但其次级线圈的匝数较少。

当输入线圈中有交流电流通过时,铁芯产生的交变磁场会感应到次级线圈中的电流。

根据法拉第电磁感应定律,交变磁场导致次级线圈中的电流产生感应电动势。

但由于次级线圈的匝数较少,感应电动势在次级线圈中的电压值会低于初级线圈中的电压值。

降压变压器的降压倍数可以通过以下公式计算:降压倍数=初级线圈匝数/次级线圈匝数所以,当初级线圈的匝数大于次级线圈的匝数时,输出电压就会低于输入电压。

三、变压器的效率在变压器中,输入功率等于输出功率,即有功损耗可以忽略不计。

变压器的损耗主要来自于两个方面:铁损耗和铜损耗。

铁损耗是由于变压器中铁芯产生的涡流和磁滞损耗而产生的。

涡流损耗是由于交变磁场引起铁芯中的涡电流而产生的热量。

磁滞损耗是由于铁芯中磁化和去磁化过程中产生的热量。

铜损耗是由于线圈的电阻而产生的。

当电流通过线圈时,会有一部分电能转化为热能。

变压器升压与降压的工作原理

变压器升压与降压的工作原理

变压器升压与降压的工作原理变压器是一种利用电磁感应原理,将交流电能从一个电路传输到另一个电路中的装置。

它主要由两个互相绝缘的线圈(即主线圈和副线圈)组成,这两个线圈之间通过铁心进行磁耦合。

变压器有两种基本的工作方式,即升压和降压。

1.升压变压器的工作原理:升压变压器主要由两个线圈组成,一个是主线圈(较多匝数)和一个是副线圈(较少匝数)。

当输入交流电流通过主线圈时,产生的磁场将传导到副线圈中,从而在副线圈上产生电动势。

根据法拉第定律,当磁通量发生变化时,将在副线圈上产生电势差。

根据电磁感应原理,副线圈的电压与主线圈的匝数之比等于主线圈电流与副线圈电流之比。

因此,当主线圈的匝数较多时,即主线圈电流较小,而副线圈的匝数较少时,即副线圈电流较大,从而输出电压高于输入电压。

这样就实现了升压变压器的功能。

2.降压变压器的工作原理:降压变压器也由两个线圈组成,一个是主线圈和一个是副线圈。

与升压变压器不同的是,主线圈的匝数较少,而副线圈的匝数较多。

当输入交流电流通过主线圈时,产生的磁场将通过铁心传导到副线圈中,进而在副线圈上产生电动势。

同样根据法拉第定律,副线圈的电压与主线圈的匝数之比等于主线圈电流与副线圈电流之比。

因此,当主线圈的匝数较少时,即主线圈电流较大,而副线圈的匝数较多时,即副线圈电流较小,从而输出电压低于输入电压。

这样就实现了降压变压器的功能。

总结:变压器通过磁耦合将输入电流产生的磁场导引到另一个线圈上,从而实现了电能的传输。

通过改变主线圈和副线圈的匝数比例,可以实现不同的电压变换。

当主线圈的匝数较多时,即升压变压器,输出电压高于输入电压;当主线圈的匝数较少时,即降压变压器,输出电压低于输入电压。

这样,变压器实现了对电能的有效控制和传输。

变压器基本工作原理

变压器基本工作原理

第1章 变压器的基本知识和结构变压器的基本原理和分类一、变压器的基本工作原理变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能;当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组;原、副绕组的感应分别表示为则 k N N e e u u ==≈212121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比; 改变变压器的变比,就能改变输出电压;但应注意,变压器不能改变电能的频率;二、电力变压器的分类变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类; 按用途分类:升压变压器、降压变压器;按相数分类:单相变压器和三相变压器;按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器;按铁心结构分类:心式变压器和壳式变压器;按调压方式分类:无载无励磁调压变压器、有载调压变压器;按冷却介质和冷却方式分类:油浸式变压器和干式变压器等;按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器;三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部;电力变压器的结构一、铁心1.铁心的材料采用高磁导率的铁磁材料—~厚的硅钢片叠成;为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗;变压器用的硅钢片其含硅量比较高;硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘;2.铁心形式铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构;二、绕组1.绕组的材料铜或铝导线包绕绝缘纸以后绕制而成;2.形式圆筒式、螺旋式、连续式、纠结式等结构;为了便于绝缘,低压绕组靠近铁心柱,高压绕组套在低压绕组外面,两个绕组之间留有油道;变压器绕组外形如图所示;三、油箱及其他附件1.油箱变压器油的作用:加强变压器内部绝缘强度和散热作用;要求:用质量好的钢板焊接而成,能承受一定压力,某些部位必须具有防磁化性能;形式:大型变压器油箱均采用了钟罩式结构;小型变压器采用吊器身式;2.储油柜作用:减少油与外界空气的接触面积,减小变压器受潮和氧化的概率;在大型电力变压器的储油柜内还安放一个特殊的空气胶囊,它通过呼吸器与外界相通,空气胶囊阻止了储油柜中变压器油与外界空气接触;;3.呼吸器作用:内装硅胶的干燥器,与油枕连通,为了使潮气不能进入油枕使油劣化;硅胶对空气中水份具有很强的吸附作用,干燥状态状态为兰色,吸潮饱和后变为粉红色;吸潮的硅胶可以再生;4.冷却器作用:加强散热;装配在变压器油箱壁上,对于强迫油循环风冷变压器,电动泵从油箱顶部抽出热油送入散热器管簇中,这些管簇的外表受到来自风扇的冷空气吹拂,使热量散失到空气中去,经过冷却后的油从变压器油箱底部重新回到变压器油箱内;5.绝缘套管作用:使绕组引出线与油箱绝缘;绝缘套管一般是陶瓷的,其结构取决于电压等级;1kV以下采用实心磁套管,10~35kV采用空心充气或充油式套管,110kV及以上采用电容式套管;为了增大外表面放电距离,套管外形做成多级伞形裙边;电压等级越高,级数越多;6.分接开关作用:用改变绕组匝数的方法来调压;一般从变压器的高压绕组引出若干抽头,称为分接头,用以切换分接头的装置叫分接开关;分接开关分为无载调压和有载调压两种,前者必须在变压器停电的情况下切换;后者可以在变压器带负载情况下进行切换;分接开关安装在油箱内,其控制箱在油箱外,有载调压分接开关内的变压器油是完全独立的,它也有配套的油箱、瓦斯继电器、呼吸器;7.压力释放阀作用:为防止变压器内部发生严重故障而产生大量气体,引起变压器发生爆炸;8.气体继电器瓦斯继电器作用:变压器的一种保护装置,安装在油箱与储油柜的连接管道中,当变压器内部发生故障时如绝缘击穿、匝间短路、铁芯事故、油箱漏油使油面下降较多等产生的气体和油流,迫使气体继电器动作;轻者发出信号,以便运行人员及时处理;重者使断路器跳闸,以保护变压器;变压器的名牌数据一、型号型号表示一台变压器的结构、额定容量、电压等级、冷却方式等内容; 例如:SL-500/10:表示三相油浸自冷双线圈铝线,额定容量为500kVA,高压侧额定电压为10kV级的电力变压器;二、额定值额定运行情况:制造厂根据国家标准和设计、试验数据规定变压器的正常运行状态;表示额定运行情况下各物理量的数值称为额定值;额定值通常标注在变压器的铭牌上;变压器的额定值主要有:额定容量S N :铭牌规定在额定使用条件下所输出的视在功率;原边额定电压U 1N :正常运行时规定加在一次侧的端电压,对于三相变压器,额定电压为线电压; 副边额定电压U 2N :一次侧加额定电压,二次侧空载时的端电压;原边额定电流I 1N :变压器额定容量下原边绕组允许长期通过的电流,对于三相变压器,I 1N 为原边额定线电流;副边额定电流I 2N :变压器额定容量下原边绕组允许长期通过的电流,对于三相变压器,I 2N 为副边额定线电流;单相变压器额定值的关系式: N N N N N I U I U S 2211== 三相变压器额定值的关系式:NN N N N I U I U S 221133==额定频率f N :我国工频:50Hz ;还有额定效率、温升等额定值; 变压器的空载运行变压器空载运行是指变压器原边绕组接额定电压、额定频率的交流电源,副边绕组开路时的运行状态;变压器空载运行图一、 空载时各物理量产生的因果关系二、电势与磁通的大小和相位关系设主磁通按正弦规律变化,根据电磁感应定律可推导出原绕组感应电势同理可得所以,变压器原、副绕组的感应电势大小与磁通成正比,与各自的匝数成正比,感应电势在相位上滞后磁通90°;三、原边漏电抗和激磁电抗1.原边漏电抗2.激磁电抗四、原副边回路方程和等效电路1.电动势平衡方程变压器空载运行时,各物理量的正方向通常按上图标定,根据基尔霍夫电压定律,原边回路方程为对于电力变压器,空载时原绕组的漏阻抗压降I0Z1很小,其数值不超过U1的%,将I0Z1忽略,则有副边回路方程2.空载时的等效电路Z1<<Z m、r m<<x m ;空载时电路功率因数都很小,空载电流I0主要是无功性质,由于铁磁材料的磁饱和性,引起空载电流I0的波形是尖顶波;希望空载电流越小越好,因此变压器采用高导磁率的铁磁材料,以增大Z m减少I0 ;变压器空载时既吸收无功功率,也吸收有功功率,无功功率主要用于建立主磁通,有功功率主要用于铁耗;变压器负载运行变压器负载运行是指变压器原边绕组接额定电压、额定频率的交流电源,副边绕组接负载时的运行状态;变压器负载运行图一、负载时电磁关系1.磁动势平衡关系从空载到负载,由于变压器所接的电源电压U1不变,且U1≈E1 ,所以主磁通不变,负载时的磁动势等于与空载时的磁动势相等;即磁动势平衡关系这表明,变压器原、副边电流与其匝数成正比,当负载电流I2增大时,原边电流I1将随着增大,即输出功利增大时,输入功率随之增大;所以变压器是一个能量传递装置,它在变压的同时也在改变电流的大小;2.原、副边回路方程式按上图所规定的正方向,根据基尔霍夫电压定律,可写出原、副边回路方程式二、折算折算的目的:由于原、副边回路只有磁路的耦合,没有电路的直接联系,为了得到变压器的等效电路,需对变压器进行绕组折算;折算:就是把副边绕组匝数看成与原边绕组匝数相等时,对副边回路各参数进行的调整;折算原则是折算前后副边磁动势不变、副边各部分功率不变,以保持变压器内部电磁关系不变;副边各物理量的折算方法:折算后的基本方程式为三、负载时的等效电路形等效电路根据折算后的基本方程式可以构成变压器的T形等效电路2.较准确等效电路由于Z m>>Z1,可把“T”形等效电路中的激磁支路移到电源端,便得变压器的较准确等效电路,较准确等效电路的误差很小;3.简化等效电路在电力变压器中,I0<<I N ,因此,在工程计算中可忽略I0,即去掉激磁支路,将原、副边的漏阻抗合并,而得到变压器的简化等效电路 ;对于简化等效电路,可写出变压器的方程组简化等效电路所对应的相量图在工程上,简化等效电路及其方程式、相量图给变压器的分析和计算带来很大的便利,得到广泛应用;变压器参数的测定一、空载试验1.变压器的空载试验目的:求出变比k、空载损耗p k和激磁阻抗Z m;2.空载试验的接线通常在低压侧加电压,将高压侧开路3.空载试验的过程电源电压由零逐渐升至,测取其对应的U1、I0、p0;变压器原边加不同的电压,建立的磁通不同,磁路的饱和程度不同,激磁阻抗不同,由于变压器正常运行时原边加额定电压,所以,应取额定电压下的数据来计算激磁阻抗;由变压器空载时等效电路可知,因Z1<<Z m、r1<<r m,所以式中 p0—空载损耗,可作为额定电压时的铁耗;若要得到以高压侧为原边的激磁参数,可将所测得的激磁参数乘以k2,k等于变压器高压侧一相的电压除以低压侧一相的电压;对于三相变压器,试验中测定的数据是线电压、线电流和三相总功率,只要换算成一相的数据,就可直接代入上式计算;二、短路试验1.短路试验的目的:可测出短路阻抗Z k和变压器的铜耗p k;2.短路试验的接线:通常在高压侧加电压,将低压侧短路3.短路试验的过程电源电压由零逐渐升高,使短路电流由零逐渐升高至,测取其对应的U k、I k、p k;注意:由于变压器短路阻抗很小,如果在额定电压下短路,则短路电流可达~20I1N,将损坏变压器,所以做短路试验时,外施电压必须很低,通常为~U1N,以限制短路电流;取额定电流点计算,因所加电压低,铁心中的磁通很小,铁耗和励磁电流可以忽略,使用简化等效电路进行分析p kN:短路损耗,指短路电流为额定电流时变压器的损耗,p kN可作为额定电流时的铜耗;一般认为:r1=r2′=;x1=x2′=将室温下测得的短路电阻换算到标准工作温度75℃时的值,而漏电抗与温度无关;短路试验在任何一方做均可,高压侧参数是低压侧的k2倍,k等于变压器高压侧一相的电压除以低压侧一相的电压;对于三相变压器,试验中测定的数据是线电压、线电流和三相总功率,只要换算成一相的数据,就可直接按单相变压器计算;三、短路电压短路电压:在短路试验中,当短路电流为额定电流时,原边所加的电压与额定电压之比的百分值,即短路电压是变压器一个很重要的参数,其大小反映了变压器在额定负载时漏阻抗压降的大小;从运行角度来看,希望U k小一些,使变压器输出电压随负载变化波动小一些;但U k太小,变压器由于某种原因短路时短路电流太大,可能损坏变压器;一般中、小型电力变压器的U k=4%~%,大型电力变压器的U k=%~%;四、标么值标么值:实际值与该物理量某一选定的同单位的基值之比通常取各物理量对应的额定值作为基值;取一、二次侧额定电压U1N、U2N作为一、二次侧电压的基值;取一、二次侧额定电流I1N、I2N作为一、二次侧电流的基值;一、二次侧阻抗的基值分别为U1N/I1N、U2N/I2N;在各物理量原来的符号上加上一上标“”来表示该物理量的标么值;例如,U1=U1/U1N;一、外特性和电压变化率1.外特性外特性:指原边加额定电压,负载功率因数一定时,副边电压U2随负载电流变化的关系,即U2=fI2;变压器在纯电阻和感性负载时,副边电压U2随负载增加而降低,容性负载时,副边电压随负载增加而可能升高;2.电压变化率用变压器的简化相量图可推导出电压变化率的参数表达式电压变化率的大小与负载的大小成正比;在一定的负载系数下,短路阻抗的标么值越大,电压变化率也越大;当负载为感性时,△U为正值,说明副边电压比空载电压低;当负载为容性时△U有可能为负值;当△U为负值时,说明副边电压比空载电压高; 为了保证变压器的副边波动在±5%范围内,通常采用改变高压绕组匝数的办法来调节副边电压;二、变压器的损耗和效率1.变压器的损耗变压器的损耗包括铁耗和铜耗两大类;铁耗不随负载大小变化,也称为不变损耗;铜耗随负载大小变化,也称为可变损耗;2.变压器的效率通过变压器的空载试验和短路试验,测出变压器的空载损耗和短路损耗,就可以方便的计算出任意负载下的效率;变压器效率大小与负载大小、性质及空载损耗和短路损耗有关;对已制成的变压器,效率与负载大小、性质有关;当负载功率因数一定时,效率特性的效率曲线;当铁耗不变损耗等于铜耗可变损耗时效率最大;由于变压器总是在额定电压下运行,但不可能长期满负载;为了提高运行的经济性,设计时,铁损应设计得小些,一般取βm=~,对应的铜耗与铁耗之比为3~4;变压器额定时的效率比较高,一般在95~98%之间,大型可达99%以上;。

变压器的结构和工作原理

变压器的结构和工作原理

变压器的结构和工作原理一、引言变压器是电力系统中最常用的电力设备之一,它可以将交流电压从一个电路传输到另一个电路。

变压器的工作原理基于法拉第电磁感应定律,利用互感现象实现了电能的转换和传输。

本文将详细介绍变压器的结构和工作原理。

二、变压器的结构1. 磁心磁心是变压器中最基本的部件之一,它由铁芯和绕组组成。

铁芯是由硅钢片叠成的,这种材料具有高导磁性和低磁滞损耗,能够有效地减少铁芯在交流磁场中产生的能量损失。

绕组则是由导线缠绕在铁芯上形成的,它们分为初级绕组和次级绕组。

2. 外壳外壳是保护变压器内部元件的重要部分,它通常采用金属材料制成,并且具有良好的散热性能。

外壳还可以提供额外的保护措施,例如防止触电或防止灰尘进入内部。

3. 冷却系统冷却系统是变压器的重要组成部分,它可以有效地控制变压器内部的温度。

常见的冷却系统包括油冷却、水冷却和气体冷却等。

其中,油冷却是最常见的一种方式,它不仅可以降低变压器内部的温度,还可以提高绝缘性能。

三、变压器的工作原理1. 电磁感应定律电磁感应定律是变压器工作原理的基础,它表明当磁通量发生改变时会在导体中产生电动势。

在变压器中,当交流电流通过初级绕组时,会在铁芯中产生交流磁场。

这个交流磁场会穿过次级绕组,并在其内部诱导出一定大小的电动势。

2. 互感现象互感现象是指当两个或多个绕组共用同一个磁芯时,在其中一个绕组中产生的电动势会诱导出另一个绕组中的电动势。

在变压器中,初级和次级绕组之间通过铁芯实现了互感作用。

当初级绕组中有交流电流通过时,它所产生的交流磁场会穿过铁芯并诱导出次级绕组中的电动势。

3. 变压器的变比变压器的变比是指初级绕组和次级绕组之间电压的比值。

变压器的变比可以通过不同数量的线圈和不同的绕组方式来实现。

例如,如果次级绕组中有更多的线圈,那么它所产生的电动势就会更高,从而实现了升高电压或降低电压的效果。

4. 功率转移在变压器中,功率可以通过两种方式进行转移。

第一种方式是利用互感作用将初级绕组中的电能转换为磁能,并将其传输到次级绕组中,然后再将磁能转换为电能。

变压器知识点总结总结

变压器知识点总结总结

变压器知识点总结总结一、变压器的基本原理1. 变压器的定义变压器是一种通过电磁感应作用,在电路中实现电压变换的装置,它由铁芯和绕组组成。

2. 变压器的工作原理变压器工作原理基于电磁感应定律和能量守恒定律。

当交流电压加在一端的绕组上时,由于电压的变化导致绕组中产生感应电动势,使得电流流过绕组。

通过铁芯的磁场作用,感应电动势将被传导到另一端的绕组上,从而实现电压的变换。

变压器工作时将功率从一个电路传输到另一个电路,实现了电压和电流的变换。

3. 变压器的结构变压器的主要结构包括铁芯、初级绕组和次级绕组。

铁芯用于传导磁感应,初级绕组受到输入电压,次级绕组输出变压后的电压。

4. 变压器的分类根据用途和结构,变压器可分为电力变压器和专用变压器。

电力变压器广泛应用于电力系统中,用于升压、降压和配电;专用变压器包括焊接变压器、隔离变压器等,用于特定的应用场景。

二、变压器的工作原理1. 变压器的电磁感应当交流电压加在变压器的初级绕组上时,由于电压的变化导致初级绕组中产生感应电动势,使得电流流过初级绕组,产生磁场。

通过铁芯传导,这个磁场将感应到次级绕组上,从而产生次级电压。

2. 变压器的变压原理变压器通过变化绕组的匝数比例来实现电压的变压。

当初级绕组的匝数比次级绕组的匝数大时,变压器为升压变压器;反之为降压变压器。

3. 变压器的运行工况在变压器正常运行时,应保持铁芯和绕组的正常温度和湿度。

同时,变压器应根据电压和电流的变化来调节工作状态,以保证其安全可靠运行。

4. 变压器的能量损失变压器在工作过程中会产生铁损和铜损。

铁损是由于铁芯中涡流和焦耳热导致的能量损失,而铜损是由于绕组电阻导致的能量损失。

这些损失会导致变压器的效率下降,需要及时进行维护和检修。

三、变压器的特点和应用1. 变压器的特点变压器具有电压转换、功率传输、绝缘隔离和运行稳定等特点。

它能够在不改变频率的情况下实现电压的变压,同时转换功率和保证电气设备的安全运行。

变压器的工作原理

变压器的工作原理
解: N1 U1 220 44 N2 U2 5 1
课堂练习
1.下列电路,能够实现降压的( )。
A.
B.
2.已知变压器初级线圈匝数为2200匝,次级匝数为110匝, 接在220V的交流电源上,则变压比K,二次侧电压为多少?
变换交流电流
输入功率与输出功率关系
因所因所为以为以U理理1I想想1cP变变o1 s压压P1器器2无输U2能出I2量功co损率s失应2,等根于1,据输能入2 相量功差守率很恒。小U定1律I1 , U2I2
(2)线圈绕组的电阻不计,无铜损现象.
(3)铁芯中的感应涡流不计,铁芯不发热,无铁 损现象.
变换交流电压
端电压与电动势关系
E1

N1

t
E2

N2

t
忽略线圈内阻
U1 E1 U2 E2
电压比
U1 E1 N1 k U2 E2 N2
k :变压比
结论1 注变意压:器此一公次式、无二次论绕变组压的器端工电作压之在比空等载于还两是个有绕组负的载匝, 都数适比用。。
2.变换交流电压 I1 N2 1
I2 N1 k
3.变换交流电压
Z1

2
N

1
Z2
N 2
k 2 Z2
课后拓展
如果有两个二次测绕组,则 各绕组中电压、电流与匝 数的关系怎样?
作业布置
习题(《电工基础》第2版周绍敏主编) P195 问答与计算题(1)~(3)。
课后拓展
U1
u1
E1
U2
一次绕组
i2 u1 产生交变的磁场
E2 u2 ZL
由电磁感应定律可知, u2 交变磁通在一次、二 二次绕组 次绕组中产生感应电

变压器工作原理

变压器工作原理

变压器工作原理变压器是一种电气设备,用于改变交流电的电压。

它是基于法拉第电磁感应定律和电磁感应定律的原理工作的。

变压器由两个线圈组成,一个称为主线圈或原线圈,另一个称为副线圈或次级线圈。

主线圈和副线圈之间通过一个铁芯连接。

变压器的工作原理如下:1. 电磁感应定律:根据法拉第电磁感应定律,当通过主线圈的电流发生变化时,会在副线圈中产生感应电动势。

这是因为主线圈中的变化电流会产生交变磁场,而交变磁场会穿过副线圈,导致在副线圈中产生感应电动势。

2. 电磁感应定律的应用:当交流电通过主线圈时,主线圈中的电流会不断变化,从而产生交变磁场。

这个交变磁场会穿过副线圈,导致在副线圈中产生感应电动势。

根据电磁感应定律,感应电动势的大小与变化磁场的速率成正比。

3. 变压器的转换比:变压器的转换比定义为主线圈和副线圈的匝数比。

根据电磁感应定律,感应电动势与匝数比成正比。

因此,变压器可以通过改变主线圈和副线圈的匝数比来改变输出电压。

4. 磁通连续性定律:根据磁通连续性定律,变压器的铁芯上的磁通是连续的。

这意味着主线圈和副线圈之间的磁通是相等的。

根据磁通连续性定律,主线圈和副线圈的匝数比等于主线圈和副线圈的电压比。

5. 能量传递:变压器通过电磁感应的原理将能量从主线圈传递到副线圈。

当主线圈中的电流变化时,它会在铁芯中产生磁场,磁场会穿过副线圈并产生感应电动势。

这个感应电动势会导致副线圈中的电流流动,从而将能量从主线圈传递到副线圈。

6. 理想变压器模型:理想变压器模型假设变压器没有能量损耗,也没有磁通漏磁。

在理想变压器模型中,主线圈和副线圈之间的功率比等于电压比。

总结:变压器是一种基于电磁感应定律的设备,用于改变交流电的电压。

通过改变主线圈和副线圈的匝数比,变压器可以实现不同电压的输出。

变压器的工作原理基于电磁感应定律和磁通连续性定律,通过电磁感应将能量从主线圈传递到副线圈。

变压器在电力传输和电子设备中起着重要的作用。

简述变压器工作的基本原理

简述变压器工作的基本原理

简述变压器工作的基本原理变压器,这玩意儿说起来有点复杂,但其实理解起来并不难。

想象一下,你要把一杯热水倒进一个大碗里,水流着流着,温度可就慢慢下降了。

这就是能量转移的过程。

而变压器就像这个过程里的“大碗”,它能把电压从一个地方“倒”到另一个地方,只不过它是用磁场的力量来完成这个神奇的过程。

好吧,我们先来聊聊变压器的基本组成。

变压器的核心部分是两个线圈,称为原线圈和副线圈。

原线圈和副线圈就像是一对好兄弟,互相依靠,彼此支持。

原线圈接收输入的电流,形成一个强大的磁场,想象一下它就像一个超级英雄,召唤出无形的力量。

这股磁场会穿过副线圈,促使副线圈里产生电流。

就这么简单,能量的转移就是通过这个“磁力链接”实现的。

咱们再聊聊变压器的工作原理。

变压器是根据法拉第电磁感应定律工作的。

简单说,就是电流的变化会在周围产生磁场,而这个磁场又能在另一个线圈里诱导出电流。

就好像你在水面上扔石头,水波荡漾开来,影响到周围的一切。

原线圈里的电流变化就像扔石头,副线圈里的电流则是水波的回响,真是妙不可言。

变压器还有一个非常重要的特性,就是可以改变电压。

这就像是你把一块大蛋糕切成了很多小块,大家都能享受到美味。

高电压的电流经过变压器,能够变成低电压,更适合日常生活中使用。

而低电压电流再经过变压器,又可以提升为高电压,适合长距离输送电力。

真是一个聪明的设计,让我们在享受电力的同时,还能保证安全。

有些人可能会问,变压器有什么实际用途?哎呀,这可是大有文章!不管是城市的高楼大厦,还是乡村的小院子,都离不开变压器的帮助。

咱们每天使用的电器,比如冰箱、电视机、空调等等,背后都有变压器在默默工作。

想象一下,没有变压器,家里的电器可能就成了“无米之炊”,根本无法正常工作。

再说说变压器的种类吧。

市面上有很多不同类型的变压器,每种都有自己的“拿手绝活”。

比如,有些专门用来降压,有些则擅长升压,还有些是用于特定用途的隔离变压器,真是各显神通。

像是一支乐队,每个乐器都有自己的旋律,合起来才成就了一首美妙的乐曲。

变压器的主要结构和工作原理

变压器的主要结构和工作原理

变压器的主要结构和工作原理引言概述:变压器是电力系统中常见的电力设备之一,它在电能传输和分配中起着重要的作用。

本文将详细介绍变压器的主要结构和工作原理,以帮助读者更好地理解和应用变压器。

正文内容:一、变压器的主要结构1.1 主要结构组成- 主要由铁芯、一次绕组和二次绕组组成。

- 铁芯是变压器的主要磁路部分,通常由硅钢片叠压而成,以减小磁导率和磁阻。

- 一次绕组是输入侧的绕组,通常由导电材料绕制而成。

- 二次绕组是输出侧的绕组,也由导电材料绕制而成。

1.2 绝缘和冷却系统- 变压器的绝缘系统是保证安全运行的关键,通常使用绝缘材料将绕组和铁芯分隔开。

- 冷却系统对于变压器的正常运行至关重要,常见的冷却方式有自然冷却和强制冷却。

1.3 外壳和配电设备- 变压器通常有一个外壳,用于保护内部部件免受外界环境的影响。

- 配电设备包括开关、熔断器和保护装置等,用于控制和保护变压器的正常运行。

二、变压器的工作原理2.1 电磁感应原理- 变压器的工作基于电磁感应原理,当一次绕组通入交流电时,会在铁芯中产生交变磁场。

- 交变磁场会感应二次绕组中的电动势,从而使电能从一次绕组传递到二次绕组。

2.2 变压器的变压比- 变压器的变压比是指输入电压与输出电压之间的比值,可以通过绕组的匝数比来确定。

- 变压器可以实现电压的升高或降低,根据需要选择合适的变压比。

2.3 损耗和效率- 变压器在工作过程中会产生一定的损耗,包括铁损耗和铜损耗。

- 效率是衡量变压器性能的重要指标,可以通过输出功率与输入功率的比值来计算。

三、变压器的应用领域3.1 电力系统- 变压器在电力系统中用于电能传输和分配,将发电厂产生的高压电能转换为适用于用户的低压电能。

- 在输电过程中,变压器可以实现电压的升高,减少输电损耗。

3.2 工业领域- 变压器在工业领域中广泛应用于电力设备、机械设备和照明系统等。

- 它可以为各种设备提供合适的电压和电流,满足工业生产的需求。

变压器工作原理ppt

变压器工作原理ppt

变压器的能量传输方式
1 互感
变压器通过两个线圈之间的互感传递电能,其中一个线圈是输入端,另一个是输出端。
2 电磁感应
通过电磁感应现象,变压器将输入端的电能传递到输出端,同时改变电压和电流的数值。
变压器的转换率
变压器的转换率定义为输出端电压与输入端电压的比值。转换率高意味着变 压器能有效地改变电压和电流。
变压器的铁芯由磁性材料制成, 用于增强磁通和减少能量损耗。
变压器的工作原理
1磁场会在另一侧线圈中感应出电流。
2
能量传输
通过电磁感应,变压器将电能从一个线圈传输到另一个线圈,同时改变电压和电流。
3
电力转换
变压器根据线圈的匝数比例改变电压和电流的大小,以满足特定的电力需求。
变压器的磁路特性
磁通
变压器中的铁芯通过创造一个闭合的磁通路径来增加磁场的强度。
磁阻
磁阻是铁芯中磁场流动的阻力,直接影响变压器的磁场传导和能量传递效率。
饱和
如果磁通密度超过铁芯的饱和点,变压器的磁路特性可能会变得不稳定。
变压器的损耗
变压器的损耗包括铜损耗和铁损耗,这些损耗会导致能量转化与传输过程中的一定能量损失。
变压器工作原理
欢迎来到本次的变压器工作原理演示,请坐稳并准备好了解变压器的工作原 理、应用领域、组成部分和更多精彩内容。
什么是变压器
变压器是一种电气设备,用于改变电压和电流的大小。它通过电磁感应原理 来实现能量传输和电力转换。
变压器的应用领域
能源行业
变压器在电力传输和分配中 起着关键作用,将电能从发 电厂输送到用户。
工业领域
变压器广泛应用于各种工业 设备中,为机械和设备提供 所需的电力。
建筑领域

变压器原理

变压器原理

第一章变压器的基本原理 (1)1.1 变压器的工作原理 (1)1.1.1 理想变压器的工作原理 (1)1.1.2 变压器实际的工作状态 (2)1.2 变压器的效率 (3)第二章变压器的分类与结构 (4)2.1 变压器的分类 (4)2.2 电力变压器的参数和有关标准 (6)2.2.1 电力变压器的有关标准 (6)2.2.2 变压器型号表示方法中符号代表的意义 (6)2.2.3 电力变压器的重要参数 (9)2.3 变压器的主要结构部件 (11)2.3.1 铁心 (12)2.3.2 绕组 (12)2.3.3 绝缘结构 (13)2.3.4 油箱和其他附件 (14)第一章 变压器的基本原理1.1 变压器的工作原理变压器是一个应用电磁感应定律将电能转换为磁能,再将磁能转换为电能,以实现电压变化的电磁装置。

1.1.1 理想变压器的工作原理对于理想化的变压器,首先假定变压器一、二次绕组的阻抗为零,铁心无损耗,铁心磁导率很大。

图1-1为变压器的工作原理图,在空载状态下,一次绕组接通电源,在交流电压1U 的作用下,一次绕组产生励磁电流μI ,励磁磁势1N I μ ,该磁势在铁心中建立了交变磁通0Φ和磁通密度0B 。

根据电磁感应定律,铁心中的交变磁通0Φ在一次绕组两端产生自感电动势1E,在二次绕组两端产生互感电动势2E 。

40111044.4-⨯=C S B fN E (1-1) 40221044.4-⨯=C S B fN E (1-2)式中 f —频率(Hz );1N —变压器一次绕组的匝数; 2N —变压器一次绕组的匝数; 0B —铁心的磁通密度(T ); C S —铁心的有效截面积(2cm );在理想变压器中,一、二次绕组的阻抗为零,有401111044.4-⨯==C S B fN E U (1-3) 402221044.4-⨯==C S B fN E U (1-4)得到2121N N U U = (1-5) 从上式可见,改变一次绕组与二次绕组的匝数比,可以改变一次侧与二次侧的电压比,这就是变压器的工作原理。

变压器的工作原理简述

变压器的工作原理简述

变压器的工作原理简述变压器是一种用来改变交流电压的电气装置。

它通过变压器的工作原理,将输入的电压变换到所需的输出电压,同时保持输入和输出电功率相等,并且是在高效率的情况下完成这项工作的。

变压器由两个线圈组成,分别是输入线圈(称为初级线圈)和输出线圈(称为次级线圈),线圈之间没有直接的电连接。

根据线圈的数量不同,可以将变压器分为单相变压器和三相变压器。

变压器的工作基于法拉第定律和麦克斯韦方程。

法拉第定律指出,电流在导线中产生的磁场会影响周围的导线。

换句话说,当通过变压器的初级线圈的电流变化时,它会产生一个磁场,这个磁场会穿过次级线圈,从而诱发次级线圈中的电流。

变压器的工作过程可以分为两个阶段:磁场的产生和磁场的感应。

在第一个阶段中,当通过初级线圈的电流变化时,它在周围产生一个磁场。

磁场的强度取决于电流的大小和线圈的绕组数。

根据麦克斯韦方程,磁场的强度与电流成正比。

在第二个阶段中,初级线圈产生的磁场通过磁感应引起次级线圈中的电流感应。

这种感应是基于法拉第定律,即变化的磁场会诱导同样大小和方向的电流。

次级线圈中的电流与产生磁场的初级线圈之间存在一个变压比,这个比率是由两个线圈的绕组数决定的。

由于电能的守恒定律,输入和输出电功率在变压器中保持相等。

根据功率公式,功率等于电流乘以电压,由此可知,当变压器的电压变换比改变时,输出电流也会相应改变,且功率保持不变。

变压器的效率是指变压器输出功率与输入功率的比值。

在理想情况下,没有能量损耗,变压器的效率为100%。

然而,实际变压器中存在一定的能量损耗,主要包括铁损耗和铜损耗。

铁损耗是由于磁场在铁心中产生涡流而引起的,而铜损耗是由于导线中的电阻而产生的热量。

为了减少这些损耗,变压器通常采用铁心和导线的设计。

总之,变压器通过改变输入和输出线圈的绕组数来改变交流电压。

它利用法拉第定律和麦克斯韦方程的原理,将输入电压变换到所需的输出电压,并且在保持输入和输出功率相等的同时,以最高效率完成变压操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程:
一、
导入新课
复习回忆变压器的知识点
二、 讲授新课
变压器的工作原理
一、变压器的工作原理
变压器是按电磁感应原理工作的,原线圈接在交流电源上,在铁心中产生交变磁通,从而在原、副线圈产生感应电动势,如图所示。

1.变换交流电压
原线圈接上交流电压,铁心中产生的交变磁通同时通过原、副线圈,原、副线圈中交变的磁通可视为相同。

设原线圈匝数为N 1,副线圈匝数为N 2,磁通为Φ ,感应电动势为
t
N E t N E ∆∆=∆∆=
Φ
Φ2
211 , 由此得
2
1
21N N E E =
忽略线圈内阻得
K N N U U ==2
1
21 上式中K 称为变压比。

由此可见:变压器原副线圈的端电压之比等于匝数比。

图变压器空载运行原理图
2
2
2
211I U N N Z ⎪⎪⎭⎫ ⎝⎛=
因为
22
2
Z I U = 所以 2
2
22
211Z K Z N N Z =⎪⎪⎭
⎫ ⎝⎛=
可见,次级接上负载|Z 2|时,相当于电源接上阻抗为K 2
|Z 2|的负载。

变压器的这种阻抗变换特性,在电子线路中常用来实现阻抗匹配和信号源内阻相等,使负载上获得最大功率。

解1:次级电流 Α255
110
222===
Z U I 初级电流 Α2110
2202121==≈=
U U N N K Α12
2
21===
K I I 输入阻抗 Ω===
2201220111I U Z 解2:变压比 2110
2202121==≈=U U N N K
【例】有一电压比为220/110 V 的降压变压器,如果次级
接上55 Ω 的电阻,求变压器初级的输入阻抗。

输入阻抗
Ω=⨯==⎪⎪⎭
⎫ ⎝⎛≈22055422
22
211Z K Z N N Z
解:负载电阻 R 2 = 150 Ω,变压器的输入电阻R 1 = R 0 = 600 Ω,则变比应为
2150
600212
1
==≈=
R R N N K 初、次级电流分别为
mA
66.183.02mA
83.0A 1083.0600
6001
12
123101=⨯=≈=⨯≈+=+=
-I N N
I R R E I
二、 变压器的外特性和电压变化率 1.变压器的外特性
变压器外特性就是当变压器的初级电压U 1和负载的功率因数都一定时,次级电压U 2
随次级电流I 2变化的关系,如图11-5所示。

由变压器外特性曲线图可见:
【例】有一信号源的电动势为1V ,内阻为600 Ω,负载电阻为150 Ω。

欲使负载获得最大功率,必须在信号源和负载之间接一匹配变压器,使变压器的输入电阻等于信号源的内阻,如图11-4所示。

问:变压器变压比,初、次级电流各为多少?
图例图
图变压器外特性曲线。

相关文档
最新文档