2.2.1 合并同类项(公开课)--

合集下载

沪科版数学七年级上册2.2.1合并同类项优秀教学案例

沪科版数学七年级上册2.2.1合并同类项优秀教学案例
四、教学内容与过程
(一)导入新课
1.利用生活情境导入:展示一组购物清单,让学生观察并尝试合并同类项。例如,给出以下清单:
-苹果:3元/斤,购买2斤
-香蕉:2元/斤,购买4斤
-橙子:4元/斤,购买1斤
让学生尝试合并同类项,计算总价。通过实际情境的展示,引发学生对合并同类项的兴趣和思考。
2.设计有趣的数学题目:给出一些与合并同类项相关的谜题或趣味性问题,让学生在解决问题的过程中自然而然地引入合并同类项的概念。例如,可以给出以下谜题:
(二)过程与方法
1.通过情境创设和实例分析,引导学生自主探索和理解同类项的概念。
2.利用图示和动画,直观地展示合并同类项的过程,让学生能够清晰地观察和理解。
3.设计一系列练习题,让学生在实际操作中巩固合并同类项的知识,培养学生的解题能力和思维能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和好奇心,激发学生对合并同类项知识的学习欲望。
1.布置作业:布置一些有关合并同类项的练习题,让学生在课后巩固所学知识。例如,可以给出一些表达式,让学生合并同类项,并解释步骤和原理。
2.课堂小结:对本节课的内容进行小结,让学生回顾和巩固所学知识。鼓励学生在课后进行自主学习,深入探究合并同类项的知识,提高学生的学习能力。
2.培养学生的团队合作意识和交流能力,鼓励学生与他人讨论和分享解题经验。
3.培养学生对数学知识的应用能力,让学生认识到数学在实际生活中的重要性。
三、教学策略
(一)情景创设
1.利用生活情境导入:以学生熟悉的生活情境为例,如购物清单、费用计算等,引发学生对合并同类项的兴趣和思考。通过实际情境的展示,让学生感受到合并同类项在生活中的应用,激发学生的学习动机。
2.设计有趣的数学题目:通过设计一些有趣的数学题目,引发学生的思考和探究欲望。例如,可以给出一些与合并同类项相关的谜题或趣味性问题,让学生在解决问题的过程中自然而然地引入合并同类项的概念。

2.2.1合并同类项(教案)

2.2.1合并同类项(教案)
-提供错误示例,让学生分析和纠正,加深对难点内容的理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《合并同类项》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过整理物品时将相同类型的物品放在一起的情况?”比如在超市购物时,我们会把相同种类的商品放在一起,这样便于计算和整理。这个问题与我们将要学习的合并同类项密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索合并同类项的奥秘。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了合并同类项的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对合并同类项的理解。我希望大家能够掌握这些知识点,并在解决代数问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.2.1合并同类项(教案)
一、教学内容
2.2.1合并同类项(教案)
本节课我们将学习人教版数学七年级上册第二章《整式的加减》中的合并同类项。教学内容主要包括以下两点:
1.理解同类项的定义:同类项是指字母相同且相同字母的指数也相同的项。
2.学会合并同类项的方法:将同类项的系数相加(或相减),字母和字母的指数保持不变。
二、核心素养目标
本节课旨在培养学生的数学抽象、逻辑推理和数学运算等核心素养。通过学习合并同类项,使学生能够:
1.抽象出同类项的概念,理解数学的符号表达,提高数学抽象能力。
2.掌握合并同类项的法则,通过逻辑推理,培养严谨的数学思维。

七年级数学上册(人教版)2.2.1合并同类项优秀教学案例

七年级数学上册(人教版)2.2.1合并同类项优秀教学案例
七年级数学上册(人教版)2.2.1合并同类项优秀教学案例
一、案例背景
本教学案例以人教版七年级数学上册第二章第二节“合并同类项”为主题内容。本节课是在学生已经掌握了有理数的加减运算的基础上进行教学的,旨在让学生理解同类项的概念,掌握合并同类项的方法,并能够灵活运用到实际问题中。
在教学过程中,我发现许多学生在理解同类项的概念时存在困难,对于如何判断和合并同类项感到迷茫。同时,他们在解决实际问题时,往往不能将所学的理论知识与实际问题相结合,导致解题困难。针对这些问题,我设计了本节优秀教学案例,旨在通过创设生动有趣的情境,引导学生主动探索,合作交流,从而更好地理解和掌握合并同类项的知识,提高解决实际问题的能力。
5.全方位的教学评价:本节课注重对学生的学习过程进行评价,教师及时反馈学生的学习情况,指导他们发现自身的优点和不足,提高自我认知。同时,组织学生进行互评和自评,培养他们的评价能力,促进他们对知识的深入理解。
为了实现这一目标,我采用了以下教学方法:
1.采用问题驱动的教学模式,让学生在解决问题的过程中,自然地引入同类项的知识;
2.组织小组讨论,鼓励学生发表自己的观点,培养他们的合作精神;
3.利用多媒体展示题目,引导学生运用数形结合的思想,解决实际问题。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们学习数学的积极性;
四、教学内容与过程
(一)导入新课
1.利用生活实例导入:以“购物结算”为例,展示商品的价格,让学生尝试计算总价,引发学生对同类项的思考;
2.利用多媒体展示数学题目:呈现一系列有关同类项的题目,让学生观察、分析,引出同类项的概念;
3.创设问题情境:提问学生“如何快速合并同类项”,激发学生的探究欲望,为新课的展开做好铺垫。

数学课件:2.2.1合并同类项

数学课件:2.2.1合并同类项

——-
====== ~~~~
注意:要连同每一项前面的符号!
大长方形面积=8 n+ 5 n
依据:乘法分配律 =(8 + 5) n
=13 n
把多项式中的同类项合并成一项, 叫做合并同类项。
合并同类项法则:
(1)把同类项的系数相加作为结果的系数
(2)字母及字母的指数不变。
如何合并同类项呢?
瘦身活动
例2:合并同类项:
=( )x +( )y
1 3 ( m m3 2m3 ) (3m 2 n 3m 2 n) 7 解:原式= 2 1 3 2 =( 1 2)m ( 3 3) m n 7 2 3 3 m 7 = 2
1 3 2 3 2 3 m 3m n m 3nm 7 2m 2. 2
当a=2时
原式= -(2+1)2 = -9
我们这节课学到了什么?
同类项
两个标准 (1)所含字母相同
(2)相同字母的指数 分别相同;
合并同类项
法则
(1)系数相加作为
结果的系数。
(2)字母与字母的 指数不变。
(1) (2)
3 3 3x +x
2 2 xy -5xy
(3) -4a3b+4ba3
抢答:
1.合并同类项(看谁做的又快又对)
(1)3x3
ห้องสมุดไป่ตู้
+ = ( ) (2)-6ab + 6ab =( ) (3)xy2 - 7xy2 = ( -6xy2 )
x3
4x3 0
练习
⑴ 下列各题的结果是否正确?
(1)3x + 3y = 6xy × (2)7x - 5x = 2x2 × (3)16y2 - 7y2 = 9 × (4)19a2b - 9a2b = 10a2b √ ⑵ 已知2x2yn+1 与 –3xmy4是同类项, 则 m = 2 ,n = 3 。

2.2.1合并同类项

2.2.1合并同类项
2.2.1合并同类项
石台二中毕建文
课时主题
合并同类项
课时
第1课时
课型
新授
教学目标
1.知识与技能
理解同类项的概念,在具体情境中,认识同类项.
使学生理解合并同类项的概念.
使学生掌握合并同类项的法则,并正确地合并同类项.
2.过程和方法
通过小组讨论,合作学习等方式,经历概念的形成和合并同类项的法则的过程,培养学生自主探索知识和合作交流的能力,让学生进一步体验研究问题由表及里、由浅及深的方法.
学生讨论并回答相关问题
新知总结
1、引导学生讨论总结:
同类项的定义:所含字母_______,并且_______的指数也分别相等的项叫做同类项;另外,所有的常数项都是_______,
2、指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5;
(2)3x2y-2xy2+xy2-yx2.
学生讨论总结填空
3.情感态度与价值观
初步体会数学与人类生活的密切关系.
体验团队的力量,交流的愉快,感受数学来源于生活,最终服务于生活.
教学重点
理解同类项的概念.合并同类项的概念,熟练地合并同类项
教学难点
根据同类项的概念在多项式中找同类项
教学手段
板书、多媒体课件
教学过程
环节
教师活动
学生活动
问题引入
提问:
1、(1)3kg+2kg=();3千克加上2千克等于多少千克?
(2)3km+2km=();3千米加上2千米等于多少千米?
(3)3km+2kg=();那么3千米加上2千克等于多少?
引导学生思考,为什么(3)不能运算呢?

2.2.1同类项及合并同类项课件

2.2.1同类项及合并同类项课件

运用法则,合并同类项
(1)3a 2b 5b b 1 2 1 2 (2) 4ab b 9ab b 3 2
1 ,b=4, 试一试: 已知a= 2
求代数式 2a2b-3a+2-3a2b+2a-1 的值.
练一练:先合并同类项,再求代数式的值.
1 x , y 0.25; (1)2x-7y-5x+11y-1,其中 6 1 -3x+4y-1 2 1
并归纳总结出合并同类项的方法.
合并同类 项的法则
把同类项的系数相加 ,所得结果作为系数 , 字母和字母的指数不变 .
辨一辨:下列各题合并同类项的结果对不对?不对的,请指
出错在哪里. (1)a+a=2a2, × (3)5y2-3y2=2, × (2)3a+2b=5ab, × (4)4x2y-5x2y= -x2y. √
想一想:其它3组代数式 所含的字母相同 是否也有这一特点? 定义 多项式中,所含字母相同,并且相同字母的指 数也相同的项,叫做同类项.
定义:多项式中,所含字母相同,并且相同字母的指数也
相同的项,叫做同类项. 所有常数项也看做同类项. 辨一辨: 下列各组中的两项是不是同类项?为什么?
(1)2a与2ab;
特征: (1)两个相同:字母相同,相同字母指数相同. (2)两个无关:系数无关,字母顺序无关.
2、合并同类项的法则 系数 系数相加 同类项的________,作为结果的_____,字母和字 不变 母的指数____.
步骤:一找,二移,三合并.
另外,在求代数式的值时,如果代数式能化简,则 要先化简,再求值.
课后作业
一、知识技能: 1、2 二、选做题:
1、已知:
2 3m1 3 1 5 2 n1 x y 与- x y 是同类项,求5m 6n的值。 3 4

2.2.1 合并同类项(公开课)--

2.2.1 合并同类项(公开课)--
(3) 2 x 2 3xy
y 2 xy 2 x 5xy 2 y 1.
2 2
22 其中 x , y 1. 7 2 2 ((1))解::原式2 (() x4y a 3 2 52xy 2 x 15 3)解 : 原式 ( 27 3 2) x 2 ( ))b 1y 2 解 原式 5 ) ( ( 2 3 6)
(2) a
3
解:(1) 3x 2 x 5 3x 2 x 5 1、如果两个同类项的系统互为 2 2 3x 2 x 2 x 3x 5 5 相反数,那么合并同类项后, 结果是 0 (3x 2 x) b( 2 x 22b 3x 0 (5 5) .比如 5a 2 5a 2 ) . 2 解:(2) (3 3 a 2 (ab2 3) x 22b (5ab5) b3 a 2) x b 2 a
y 2 a y b 1 2 1 2 2x 4x 5 22 当x 2时, 2时, 当a , y1b 1时, , x 7 原式(1) 2 1 0 (2) 5 5 (21) 14 4 2( 2 原式 原式 2 2 ) 1
3x 4 =4x2 (4)、9a 2 b 9ba2 0

例3、合并下列多项式中的同类项。 方法是:(1)系数:各项系 1 2 2 2 (1) 2a b 3a b a b 数相加作为新的系数。(2)字 3 2 2 2 2 2 3 a b ab a b ab b (2) a 母以及字母的指数不变。 2 2 2 2 (3) 6a 5b 2ab 5b 6a 1 2 1 2 解:(1)原式= ( 2 3 ) a b a b 2 2 找出 3 2 2 2 2 3 (2) a a b ab a b ab b 3 2 2 2 2 3 a (a b a b) (ab ab ) b 结合

沪科版七年级数学上册优秀教学案例:2.2.1合并同类项

沪科版七年级数学上册优秀教学案例:2.2.1合并同类项
(二)讲授新知
1.同类项的概念:介绍同类项的定义,解释同类项的判断方法,让学生理解同类项的基本概念。
2.合并同类项的法则:讲解合并同类项的运算规则,引导学生掌握合并同类项的方法。
3.合并同类项的应用:通过具体的例子,展示合并同类项在实际问题中的应用,让学生学会运用合并同类项解决实际问题。
(三)学生小组讨论
2.鼓励学生进行自我反思,总结自己在学习合并同类项过程中的收获和不足,明确今后的学习目标。
3.教师对学生的作业情况进行评价,关注学生的知识掌握程度、学习方法及团队合作等方面,为学生提供有针对性的指导和建议。
五、案例亮点
1.生活情境的导入:通过购物场景的例子,让学生在真实的情境中感受合并同类项的应用,提高学生的学习兴趣和积极性。这种生活化的教学方式,使学生能够更好地理解和记忆合并同类项的知识。
2.问题导向的教学策略:设计具有启发性的问题,引导学生主动思考,激发学生的求知欲。同时,通过创设问题情境,让学生在解决问题的过程中,自然地引入合并同类项的知识,提高学生的动手能力和解决问题的能力。
3.小组合作的学习方式:将学生分成若干小组,让他们在小组内进行讨论,共同解决问题,培养学生的合作精神和团队意识。这种小组合作的学习方式,使学生在交流和合作中,更深入地理解和掌握合并同类项的知识。
(四)总结归纳
1.让学生总结同类项的概念、合并同类项的法则及应用,加深他们对合并同类项知识的理解。
2.教师对学生的讨论情况进行点评,归纳总结合并同类项的关键点,为学生提供清晰的思路。
3.通过举例子的方式,让学生明白合并同类项在实际问题中的重要性,提高他们的学习兴趣。
(五)作业小结
1.布置具有层次性的作业,让学生巩固所学知识,如设计一些简单的合并同类项题目,让学生独立完成。

2.2.1 合并同类项(5)

2.2.1  合并同类项(5)
(来自《点拨》)
知1-练
1 下列各题中的两项是不是同类项?
(1) 3a2b与3ab2 ; (3) 4abc与4ac ;
(2) xy与-xy;
(4) -3与1 .
3
(来自教材)
2 若单项式2x2ya+b与- 1 xay3是同类项,则a、b的值
3
分别是( )
A. a=2,b=1
B. a=-2,b=1
C. a=2,b=-1 D. a=-2,b=-1
3 若单项式3x3y4n与单项式6x3ym的和是9x3y4n,则m与n
的关系是( )
A. m=n
B. m=4n
C. m=3n
D.不能确定
(来自《典中点》)
1.
同类项
所含字母相同,
相同字母的指数也分别相同.
2.(1)合并同类项的依据是乘法分配律.
(2)合并同类项的方法是“一相加”“两不变”:
“一相加”即系数相加,相加时要带上符号,“两不变”
(1) 5x2+6x2 = 11x4. (
)
(2) 5x+2x =7x2. (
)
(3) 5x2-3x2 = 2. (
)
(4) 16xy -16yx = 0. (
)
(来自教材)
知2-练
2 (中考·镇江)计算-3(x-2y)+4(x-2y)的结 果是( ) A. x-2y B. x+2y C.-x-2y D.-x+2y
3
3
a = - 1 ,b= 2,c = -3.
6
解: 3a+abc- 1 c2-3a+ 1 c2
3
3
=
3a-3a
+abc+

1 3
c
2+

2.2.1整式的加减-合并同类项

2.2.1整式的加减-合并同类项

把多项式中的同类项合并成一项 ,叫做合并同类项
合并同类项
38.5 a + 34.2a + 27.3a = (38.5+34.2+27.3) a =100a
式的运算
数的运算
想一想
上面等式变形是逆用了哪个运 算定律?
合作学习: 1、合并同类项
(1) 7x + 3x = 10x 2 2 -8ab2 (3) 5ab - 13ab =
我们常常把 具有相同特 征的事物归 为一类.
解决两个问题: 1、什么是同类项; 2、怎样合并同类项。
探究一:什么是同类项
找一找
问题:以下几组单项式有什 相同点 么
相同字母的指数相同 指数都是2 指数都是1
(1)2x 和 -3 x (2)5st 和 7ts 2 2 (3)3x y 和 5x y (4)2 ab2c 和 -ab2c
化简的,要先化简,再 代入求值。
要记了!!
化简求值 2 2 2 2 3x y 4 xy 3 5x y 2 y x 5
其中x 1, y 2.

解:3x² y-4xy² -3+5x² y+2xy² +5 =(3x² y+5x² y)+(-4xy² +2xy² )+(-3+5) =8x² y-2xy² +2 当x=-1,y=-2时, 原式=8x² y-2xy² +2 =8×(-1)² ×(-2)-2×(-1)×(-2)² +2 =-16-(-8)+2 =-6
2 合并同类项
一变两不变
3 合并同类项步骤 一找二移三合并
4 求代数式的值 能化简的,要先化简,再求值。

人教版七年级上册2.2.1合并同类项PPT课件

人教版七年级上册2.2.1合并同类项PPT课件
7
8
a
a
7a
+ 8a = (7+8) a =15a
通过观察你发现7a和8a在合并时实 际是什么在合并?什么没有改变?
把多项式中的同类项合并成一 项,叫做合并同类项
合并同类项的法则:
相加 , 字母和字母 把同类项的系数_____ 指数不变 的___________.
简记为:(一加,两不变)
合并同类项与单位量的加减法类似 如: 6克 + 7克 = 13克 3 a 2b + 5 a 2b =8 a2b
1、找出同类项
用不同的线划出各组同类项,注意每一项的符号。
2、同类项结合
用括号将同类项结合,括号间用加号连接。
3、合并同类项。
简记为:一找,二搬,三合。
做一做
课堂练习: (1)6x-10x2 +12x2-5x+1
(2)x 2y-3xy2+2yx2-y 2x
我的知识我应用
1 2 1 2 例4. (1)求多项式 3a abc c 3a c 3 3 1 其中,a , b 2, c 3 6
复习
系数:单项式中的数字因数。 单项式 次数:所有字母的指数的和。 整 式
(其中不含字母的项叫做常数项) 多项式 次数:多项式中次数最高的项的次数。
项:式中的每个单项式叫多项式的项。
教学目标
1.知识与技能 (1)理解同类项的概念,在具体情境中, 认识同类项. (2)理解合并同类项的概念,掌握合并同 类项的法则. 2.过程与方法 通过小组讨论 合作学习等方式,经历概 念的形成过程,培养学生亲自探索知识和合作 交流的能力. 3.情感 态度与价值观 初步体会数学与人类生活的密切联系.
的值.

合并同类项,公开课教案

合并同类项,公开课教案

合并同类项,公开课教案篇一:合并同类项优质课比赛教案2.2 整式的加减(第一课时)教案教学目标:知识技能:理解同类项的概念,掌握合并同类项的法则,并会准确合并同类项。

数学思考:经历类比数的运算研究式的运算的过程,理解“数学通性”,体验类比的数学思想和由特殊到一般的数学思想。

问题解决:通过不断的问题探究,学会与他人合作,初步形成反思的意识。

情感目标:渗透爱国主义教育,发展数学知识来源于生活,又服务于生活的辩证观点,体验数学的简洁美。

教学重点:同类项的概念,合并同类项的法则。

教学难点:准确合并同类项。

教学过程:一、创设情境,设疑导入青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t小时,则这段铁路的全长是多少?(单位:千米)100t+252t类比数的运算,我们应如何化简100t+252t呢?二、合作交流,探究新知 1、复习:乘法分配律(用字母并表示)(a+b)c=ac+bc 2、探究1 算一算 (1)运用有理数的运算律计算:100×2+252×2= ____________________100×(-2)+252×(-2)=_______________ (2)根据1中的方法完成下面的运算,并说明道理100t+252t=_____________________ 3、探究2 填空:(1)100t-252t=(100-252)t=(-152)t=-152t (2)3x2+2x2=(3+2)x2=(5)x2=5x2(3)3ab2-4ab2=(3-4)ab2=(-1)ab2=-ab2上述运算中:项数发生了什么变化?左边的两项有什么共同点?同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

着重强调同类项的特征:(1)所含字母相同;(2)相同字母的指数也相同;特别:(3)几个常数项也是同类项。

《整式的加减:合并同类项》七年级初一上册PPT课件(第2.2.1课时)

《整式的加减:合并同类项》七年级初一上册PPT课件(第2.2.1课时)
3.爸爸、妈妈带着小玲和同学去逛公园,买门票一共需要多少钱?
[教材P13 练习三 第5题]
成人:每张5元
儿童:每张2.5元
5×2+2.5×3=17.5(元)
答:一共需要17.5元。
三、巩固练习,技能提升
4. [教材P14 练习三 第6题]
每瓶1.3元,一共要花多少钱?
1.3×24×5 =156(元)
籽0.25kg。这些向日葵产的葵花籽可以榨油多少千克?
800×0.25×0.18=36(kg)
答:这些向日葵产的葵花籽可以榨油36千克。
人教版小学数学五年级上册
第一单元 小数乘法
感 谢 你 的 聆 听
M E N T A L
H E A L T H
C O U N S E L I N G
讲解人:XXX 时间:20XX.6.1
(2)4abc与2ab ×
(3)-5pq与3qp
5abc

(4) -3x2y与5xy2×
4x2y
课堂测试
2.下列各组中的两个单项式是同类项的是(
A.3x与x2
C. abc与-abc
C)
B.3m2n与3mn2
D.2与x
±4
3. 已知x|m|y5与-ynx4是同类项,则m=______,
n=____.
(3)4×48+6×48
=(4+6)×48
=10×48
=480
(2)25×32
=25×4×8
=100×8
=800
(4)102×56
=(100+2)×56
=100×56+2×56
=5712
二、探究新知,加强应用
观察下面两组算式,应该按照怎样的运算顺序计算?

2.2.1合并同类项 课件 2023—-2024学年人教版数学七年级上册

2.2.1合并同类项  课件 2023—-2024学年人教版数学七年级上册
方法:(1)系数:系数相加; (2)字母:字母和字母的指数不变.
学以致用 任务三 利用合并同类项的法则进行化简、求值
例2:(1)求多项式
2x2
5x x2
4x 3x2
2
的值,其中
x
1. 2
解: 2x2 5x x2 4x 3x2 2
(2x2 x2 3x2 ) (5x 4x) 2
(2 1 3)x2 (5 4)x 2
(×2)2m2n与2mn2 (×4)2a与2ab (6√) 2.5与42
注意:几个常数项也是同类项
学以致用
2. 找出下列单项式中的同类项
(1) 5x3 y2 (4)3 x3 y2
4
(7)2ab2 (9) 1
7
(2) p3q2r (3)125
(5)11rq2 p(3 6) 1 a2b 2
(8) 0.25 y2 x3
-120(t-0.5)=-120t +60 ④
思考:比较③④两式,你发现了去括号时符号变化的什么规律?
学习探究
去括号法则: 1. 如果括号外的因数是正数,去括号后原括号内各项的符号
与原来的符号相同; 2. 如果括号外的因数是负数,去括号后原括号内各项的符号
与原来的符号相反.
120(t-0.5)= 120t -60 ③ -120(t-0.5)=-120t +60 ④
5
(2) - 3x2y + 2x2y+3xy2 - 2xy2
(3) 4a2+3b2 +2ab-4a2-4b2
➢【展学】(4分钟)
解:(1)原式 =(1-1 )xy2 = 4 xy2 (2)原式=(-35+2)x2y5+(3-2)xy2 = - x2y+xy2 (3)原式=(4-4)a2 +(3-4)b2 +2ab = -b2 +2ab
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:
(1)合并的前提是有同类项. (2)合并指的是系数相加,”相加”指的是代数和. (3)合并同类项的根据是加法交换律、结合
律以及乘法分配律。
合并同类项法则:把同类项的系数相加,所得的结果作 为系数,字母和字母的指数保持不变.
例2、下列各题合并同类项的结果对 不对?若不对,请改正。
(1)、2x2 3x2 5x4 =5x2 ☺
项(》3) 后(你3)2会 3怎(么3)做1这道题 (3? 有2 几1)x种2 方(4 法1? 3)x 1
3 9 12 2 9 3 9 9 1 2x2 1
27 12 18 3 9 9 1 当 x 3 时,
17
原式 2 (3)2 1 17.
你求通多过项求值式发的现值了,什常么常?怎先样合更并简同捷的求值呢? 类项,再求值,这样比较方便。
(3)两个同类项的系数互为相反数时,合
并同类项,结果为零。
例4、求多项式3x2 4x 2x2 x x2 3x 1
的值,其中 x 3.
解:当 x 3 时
解:3x2 4x 2x2 x x2 3x 1
原分式在析学:3习(本了3题)2§实43际.2(.上3《) 是代2 求数(代3式)2数的式值 3的》x2值和 2。本x2请节x别《2 急合4x于并 x解同 3题类x ,1
思 考 复习提问: 1、什么叫做同类项?
答:所含字母相同,并且相 同字母的指数也分别相等的 项叫做同类项 .
注意:①两个相同:字母相 同;相同字母的指数相等. ②两个无关:与系数无关; 与字母顺序无关.③所有 的常数项都是同类项.
思 考复习提问:
2、判断下列说法是否正确。
(1)、3x与3mx 是同类项。 ☺ (2)、2ab与 5ab是同类项。✓ ☺ (3)、3x2 y与 1 yx2是同类项。✓ ☺
2、如果软抄本的单价为每本 x 元,水笔
的单价为每支 y元,则这次活动他们支出
的总金额是多少元?
15x 20 y 6x 5y (21x 25y)
把多项式中的同类项合并成一项,叫做合并同类项。
例1、找出多项式3x2 y 4xy2 3 5x2 y 2xy2 5 中的同类项,并合并同类项。
(3 5)x2 y (4 2)xy2 (3 5)
8x2 y 2xy2 2.
问合法作题并为则同4系::把根类数同据项,上字类的面母法项合则和的并吗字系同?母数类的相项指加的数,例所保子得,持你的不能结变归果纳.
合并同类项法则: 把同类项的系数相加,所得的结果作 为系数,字母和字母的指数保持不变.
(4)、5ab2与 32ab2c是同类项。 ☺
(5)、23 与32是同类项。✓ ☺
思 考复习提问:
3、填空。
(1)、如果 3xk y与 x2 y 是同类项,那么k 2 。
(2)、如果 2axb3与 3a4by 是同类项,那
么x 4 ,y 3 。
(3)、如果3ax1b2与 7a3b2y 是同类项,那
例1、找出多项式3x2 y 4xy2 3 5x2 y 2xy2 5 中的同类项,并合并同类项。
问题2:在一个多项式中,不在一起的同类项能
否将同类项结合在一起?为什么?用 志不 把同 同的 类标 项
问答题:3可:试以化,理简由多是项运式用3x加2 y法 4交xy换2 律3 与5x标2结y出合来2x!律y2 5
么x 2 , y 1 。
(4)、如果3x2 y3k与4x2 y6 是同类项 k 2 。
为了搞好班会活动,班长和生活委员
去购买一些水笔和软抄本作为奖品,他们 首先购买了15本软抄本和20支水笔,经过 预算,发现这么多奖品不够用,然后他们 又去购买了62本1本软软抄抄本和5支水笔。问: 1、他们两本次,共25买支水了笔多少本软抄本和多少 支水笔?
例1、找出多项式3x2 y 4xy2 3 5x2 y 2xy2 5 中的同类项,并合并同类项。
解:3x2 y 4xy2 3 5x2 y 2xy2 5
3x2 y 5x2 y 4xy2 2xy2 3 5
(3x2 y 5x2 y) (4xy2 2xy2) (3 5)
(3) 6a2 5b2 2ab 5b2 6a2
解:(1)原式= (2 3 1 )a2b 1 a2b
2
2 找出
(2) a3 a2b ab2 a2b ab2 b3
a3 (a2b a2b) (ab2 ab2) b3 结合
a3 (11)a2b (11)ab2 b3 思考 a:3合 b并3 同类项的步骤是怎样?合并
将解同:3类x2 y项 4结xy合2 在3 一5x起2 y,原2x多y2项 5式不变加.法交统换一律成
3x2 y 5
(3x2 y 5x2
x2
y)
y
4xy
(4xy2
2
2xy2
2xy2) (
35
加法的 形式
3 5乘) 法分配律
(3 5)x2 y (4 2)xy2 (3 5)
8x2 y 2xy2 2. 合并
问题1:同类项有哪些?同类项怎么合并?
①-3+5=____2____; ② 3x2y+5x2y=(__3+_5_)__x2_y___=__8_x2_y__
其理由是_乘__法__分_配__律____; ③ -4xy2 +2xy2=_(_-_4_+_2)__x_y_2 ___=_-_2_xy_2___
其理由是__乘__法_分__配__律___.
(3) 6a2 5b2 2ab 5b2 6a2
该项没有 同类项怎 么办?
解:原式= 6a2 6a2 5b2 5b2 2ab
(6a2 6a2) (5b2 5b2) 2ab
2ab
照抄 下来
注意:
(1)用画线的方法标出各多项式中的同类项,以减少运算的错误。
(2)移项时要带着原来的符号一起移动。
(2)、3x 2y 5xy
3x与2y不是同类 项,不能合并。

(3)、7x2 3x2 4 =4x2 ☺
(4)、9a2b 9ba2 0 ✓ ☺
例((213))、a2合3a方数母2并ba法相以下2b是加及3列a:作字a2多bb(为母2项1新的12a式)a2的指b中2系b系数的数a数不b同:2。变类(各b。3项2项)。系字
相关文档
最新文档