高二数学平面的基本性质9
高二数学立体几何专题资料:空间点、直线、平面间的位置关系
空间点、直线、平面间的位置关系[基础要点]1、平面:抽象概念,几何里的平面是无限 的4、直线和平面的位置关系: 、 、 。
5、平面与平面的位置关系: 、 、 。
题型一、集合语言的应用例1、下列叙述中,正确的是( )A 、因为,P Q αα∈∈,所以PQ α∈B 、因为,P Q αβ∈∈,所以PQ αβ⋂= C 、因为,,AB C AB D AB α⊂∈∈,所以CD α∈D 、因为,AB AB αβ⊂⊂,所以()A αβ∈⋂且()B αβ∈⋂变式:已知,m n 表示两条直线,,,αβγ表示平面,下列命题正确的是( )①若,m n αγβγ⋂=⋂=,且//m n ,则//αβ②若,m n 相交且都在,αβ外,//,//,//,//m m n n αβαα,则//αβ ③若//,//m m αβ,则//αβ ④若//,//m n αβ,且//m n ,则//αβ A 、1个 B 、2个 C 、3个 D 、4个 题型二、共线问题 例2、如图示,1O 是正方体1111ABCD A BC D -的上底面的中心,G 是对角线1AC 和截面11B D A 的交点,求证:1,,O G A 三点共线1A 1变式:已知三角形ABC 各边所在直线分别交平面α于P 、Q 、R 三点,求证: P 、Q 、R 三点共线题型三、共面问题例3、若三条平行线都与一条直线相交,则这四条直线共面变式:如图示,在正方体1111ABCD A BC D -中,E 为AB 的中点,F 为AA 1的中点,求证:(1)E 、C 、D 1、F 四点共面 (2)CE 、D 1F 、DA 三线共点题型四、异面直线问题例4、如图示,正方体1111ABCD A BC D -中,1111114A B B E D F ==,则1BE 与1DF 所成角的余弦值是( )A 、1517B 、12C 、817D、2变式:如图示,在正三角形ABC 中,D 、E 、F 分别为各边的中点,G 、H 、I 、J 分别为AF 、AD 、BE 、DE 的中点,将三角形ABC 沿DE 、EF 、DF 折成三棱锥后,GH 与IJ 所成角的度数为[自测训练]1、过平行六面体1111ABCD A BC D -任意两条棱的中点作直线,其中与平面11DBB D 平行的直线共有( ) A 、4条 B 、6条 C 、8条 D 、12条2、若空间中有四个点,则“这四个点中有三点在同一条直线上”是“这四个点在同一平面上”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 3、如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( ) A 、12对 B 、24对 C 、36对 D 、48对4、在空间四边形ABCD 的边AB 、BC 、CD 、DA 上分别取点E 、F 、G 、H ,若EF 与HG交1A 1FD1CDB1EA1BC1AFE1F1A I C E F D GBJ H于一点M ,则( ) A 、M 一定在直线AC 上 B 、M 可能在直线AC 上,也有可能在直线BD 上 C 、M 一定在直线BD 上D 、M 既不在直线AC 上,也不在直线BD 上5、正六棱柱111111ABCDEF A BC D E F -的底面边长为1对角线1E D 与1BC 所成的角是( )A 、90B 、60C 、45D 、306、如图示,正三棱锥S-ABC 的侧棱与底面边长都相等,若E 、F 分别为SC 、AB 的中点,则异面直线EF 与SA 所成的角等于( )A 、90B 、60C 、45D 、307、三个平面把空间最多成 部分,最少分成 部分8、空间四点A 、B 、C 、D ,其中任何三点都不在同一直线上,它们一共可以确定 个平面;共点的三条直线可以确定 个平面;空间n 条平行直线最多能确定 个平面。
最新高二数学解析几何知识点
最新高二数学解析几何知识点解析几何是数学中一个重要的分支,它研究的是平面几何和空间几何中的点、线、面等基本图形以及它们之间的关系。
在高二阶段,解析几何的知识点逐渐深入,涵盖了直线方程、平面方程、曲线方程、向量等内容。
以下是最新高二数学解析几何知识点的总结:知识点一:二维几何基本概念1.平面直角坐标系和直线方程2.直线的位置关系:相交、平行、重合3.直线与坐标轴交点的坐标计算4.直线的倾斜角和斜率计算知识点二:线段、三角形和四边形的性质1.线段长度的计算2.三角形的内角和、外角和、中线、垂线等性质3.各种类型的四边形的特点:平行四边形、矩形、菱形、正方形、梯形等知识点三:向量的基本概念和操作1.向量的表示方法2.向量的模、方向角、方向余弦计算3.向量的相等、相反、共线4.向量的加法、减法、数乘5.向量的线性运算知识点四:向量的数量积和向量的坐标运算1.向量的数量积的定义和性质2.向量的数量积的计算3.向量的坐标形式和分解知识点五:空间中点、直线的位置关系1.空间直角坐标系和直线方程2.空间直线的位置关系:相交、平行、重合3.直线与坐标轴交点的坐标计算4.空间点到直线的距离计算知识点六:平面的基本性质和平面方程1.平面的定义和表示方法2.平面的位置关系:相交、平行、重合3.平面的倾斜角和法向量计算4.平面的方程表示方法知识点七:点、线、面的投影1.点在直线上的投影和距离计算2.线在平面上的投影计算3.点在平面上的投影和距离计算4.空间直线在平面上的投影计算知识点八:空间向量和向量的线性运算1.空间向量的表示方法2.空间向量的模、方向角、方向余弦计算3.空间向量的相等、相反、共线4.空间向量的加法、减法、数乘5.空间向量的线性运算知识点九:平面与平面的位置关系和夹角1.平面的位置关系:相交、平行、重合2.平面与平面的夹角计算3.直线与平面的位置关系:相交、平行、重合知识点十:直线与平面的位置关系和夹角1.直线与平面的位置关系:相交、平行、重合2.直线与平面的夹角计算3.两平面夹线的倾斜角计算知识点十一:球面的基本性质和方程1.球面的定义和表示方法2.球面的方程:一般式、标准式、参数式3.点与球面的位置关系4.线与球面的位置关系知识点十二:空间几何与三视投影1.空间几何中的主视图、正视图、侧视图2.线段和多边形的三视投影计算3.空间物体的体积的计算知识点十三:二次曲线的性质和方程1.椭圆、双曲线、抛物线的定义和基本性质2.椭圆、双曲线、抛物线的方程及其图像特点知识点十四:参数方程与极坐标方程1.参数方程的定义和基本性质2.参数方程与直角坐标方程的转换3.极坐标方程的定义和基本性质4.极坐标方程与直角坐标方程的转换知识点十五:坐标系的变换和平移、旋转变换1.平移变换的定义和基本特点2.二维平面的平移变换及其坐标变换3.二维平面的旋转变换及其坐标变换知识点十六:几何模型的应用1.几何模型的建立和空间计算问题的解决2.几何模型与实际问题的应用以上是最新高二数学解析几何知识点的总结,希望对你的学习有所帮助。
高二数学课本知识点总结归纳(8篇)
高二数学课本知识点总结归纳(8篇)高二数学课本知识点总结归纳(8篇)你知道哪些高二数学知识点是真正对我们有帮助的吗在平凡的学习生活中,大家都背过各种知识点吧知识点就是一些常考的内容,或者考试经常出题的地方。
下面是小编给大家整理的高二数学课本知识点总结归纳,仅供参考希望能帮助到大家。
高二数学课本知识点总结归纳篇1高二数学知识点11、导数的定义:在点处的导数记作、2、导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3、常见函数的导数公式:4、导数的四则运算法则:5、导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
高二数学知识点2等差数列:对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。
那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:将以上n—1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n—1个d,如此便得到上述通项公式。
此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。
值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。
等比数列:对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。
陕西职高高二数学
陕西职高高二数学一、学情分析11电子(1),现共50人,均为男生,在去年的一年中的学习表现中,有些同学在课堂上也能积极思考,积极发言,课后也能主动地完成课外的知识积累,有两位同学参加县里数学竞赛都荣获二等奖。
但还有好多的同学学习目标仍不明确,在学校生活就是混日子,上课不认真听课,作业不独立完成,课后再也没时间放在学习上,因此,这一些同学的成绩就可想而知了。
二、教材分析本学期根据教学大纲的编排,主要内容包括第八章直线和圆的方程,第九章立体几何和第十章概率与统计初步。
具体内容:第八章有坐标系中的基本公式,直线的方程,圆的方程,直线与圆的位置关系,本章内容主要就是用代数的知识阐述几何图形的问题。
第九章的内容分空间中平面的基本性质,空间中的平行关系,空间中的垂直和角,多面体和旋转体。
教材首先让学生从直观上认识空间几何体和轨迹,然后给出了平面的三条基本性质,从而把平面上的平行关系推广到空间。
学习立体几何除了培养学生的空间想象能力外,还培养学生逻辑思维能力。
第十章有计数的两个原理,概率初步,统计初步及随机抽样的三种基本方法。
本章教学中要激发并培养学生的学习兴趣地,增强学生的社会实践能力,培养学生解决实际问题的能力。
三、教学目标解析几何:掌握平面直角坐标系内两点之间的距离公式和中点公式;理解直线的方程和圆的方程的含义,方程求两曲线的交点;理解直线的倾斜角和斜率,会根据已知条件,求直线的斜率和倾斜角;掌握直线的点斜式方程和斜截式方程;理解直线在y轴上的截距理解直线与二元一次方程的关系,掌握直线的一般式言行中,了角直线的方向向量和法向量;理解两直线平等行与垂直的条件,会求点到直线的距离;掌握圆的标准方程和一般方程,理解直线与圆的位置关系;能利用直线和圆的'方程解决简单的问题。
立体几何:能够正确地图画出来有关胶带图形的示意图,能够由空间图形的示意图想象出来空间图形可以用斜二两端画法画水平置放的正三角形、正方形、正六边形等平面图形的直观图和正方体、长方体等立体图形的直观图;认知空间点、直线、平面之间的各种边线关系;掌控平面的基本性质,空间直线与直线、直线与平面、平面与平面的平行与横向的性质与认定;认知空间中的角;掌控直观多面体的有关概念、结构特征与性质;掌控直棱柱、正棱锥、圆柱和圆锥的侧面积及表面积计算公式。
高二数学知识点归纳(15篇)
高二数学知识点归纳(15篇)高二数学知识点归纳1、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。
排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。
概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。
选修Ⅱ(24个)概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。
高二数学知识点归纳2一、集合、简易逻辑(14课时,8个)1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。
二、函数(30课时,12个)1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
高二数学平面的基本性质9
[单选,A2型题,A1/A2型题]以下关于关节运动,错误的是()A.关节组成骨相互靠近,角度减小称为"屈"B.关节骨向腹侧面靠近者为"内收"C.骨绕矢状轴做旋转运动,骨的前面向内旋转称为"旋内"D.内收与外展相对E.部分肢体摄影位置需要关节呈一定运动状态 [单选]Afterconductinganabandonmentdrill,theMasterorpersoninchargeofashipshalllog().A.thenamesofcrewmemberswhoparticipatedinthedrillB.thelengthoftimethateachmotorpropelledlifeboatwasoperatedinthedrillC.thelengthoftimethelifeboatwasinthewaterD.thetimeittookt [单选]客户与证券公司进行金融交易,通过银行账户划转款项的,由()向中国反洗钱监测分析中心提交大额交易报告。A、证券公司B、证券公司和银行各自C、证券公司和客户各自D、银行 [单选]以下关于合同分析作用的说法,错误的是()。A.分析合同漏洞,解释争议内容B.分析合同风险,制定风险对策C.分解合同工作并落实合同责任D.进行图纸交底,简化合同管理工作 [单选]治疗热痹首选方是()A.三痹汤B.白虎加桂枝汤C.桂枝汤D.防风汤E.桂枝芍药知母汤 [填空题]分解住院包括()、()。 [单选]焊割场地周围()范围内,各类可燃易炸物品应清理干净。A.3mB.5mC.10mD.15m [单选]朊毒体可以诱发机体产生()A.细胞免疫B.体液免疫C.补体D.细胞凋亡E.体液免疫和细胞免疫 [单选]葡萄胎清宫
高二数学立体几何(1)
平面的基本性质,两直线的位置关系一、选择题(本题每小题5分,共50分)1.若直线上有两个点在平面外,则 ( )A .直线上至少有一个点在平面内B .直线上有无穷多个点在平面内C .直线上所有点都在平面外D .直线上至多有一个点在平面内 2.在空间中,下列命题正确的是 ( ) A .对边相等的四边形一定是平面图形B .四边相等的四边形一定是平面图形C .有一组对边平行且相等的四边形是平面图形D .有一组对角相等的四边形是平面图形 3.在空间四点中,无三点共线是四点共面的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.用一个平面去截正方体,则截面形状不可能是( )A .正三角形B .正方形C .正五边形D .正六边形 5.如图:正四面体S -ABC 中,如果E ,F 分别是SC ,AB 的中点, 那么异面直线EF 与SA 所成的角等于 ( ) A .90° B .45°C .60°D .30°6.一条直线与两条平行线中的一条是异面直线,那么它与另一条直线的位置关系是( )A .相交B .异面C .平行D .相交或异面7.异面直线a 、b 成60°,直线c ⊥a ,则直线b 与c 所成的角的范围为 ( )A .[30°,90°]B .[60°,90°]C .[30°,60°]D .[60°,120°]8.右图是正方体的平面展开图,在这个正方体中,① BM 与ED 平行; ② CN 与BE 是异面直线;③ CN 与BM 成60角; ④ DM 与BN 垂直.以上四个命题中,正确命题的序号是( )A .①②③B .②④C .③④D .②③④9.梯形ABCD 中AB//CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位 置关系只能是 ( ) A .平行 B .平行或异面 C .平行或相交 D .异面或相交 10.在空间四边形ABCD 中,E 、F 分别为AB 、AD 上的点,且AE :EB =AF :FDN D C ME A B F=1 :4,又H 、G 分别为BC 、CD 的中点,则 ( ) A .BD//平面EFGH 且EFGH 是矩形 B .EF//平面BCD 且EFGH 是梯形C .HG//平面ABD 且EFGH 是菱形 D .HE//平面ADC 且EFGH 是平行四边形二.填空题(本题每小题6分,共24分)11.若直线a, b 与直线c 相交成等角,则a, b 的位置关系是 .12.在四面体ABCD 中,若AC 与BD 成60°角,且AC =BD =a ,则连接AB 、BC 、CD 、DA 的中点的四边形面积为 .13.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =3,AA 1=4,则异面直线AB 1与 A 1D 所成的角的余弦值为 .14.把边长为a 的正方形ABCD 沿对角线BD 折起,使A 、C 的距离等于a ,如图所示,则异面直线AC 和BD 的距离为 . 三、解答题(共76分)15.(12分)已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线 .16.(12分)在空间四边形ABCD 中,M 、N 、P 、Q 分别是四边上的点,且满足PDCPQD AQ NB CN MB AM ====k .求证:M 、N 、P 、Q 共面.17.(12分)已知:平面,//,,,a c c A a b b a 且平面βαβα⊂=⋂⊂=⋂求证:b 、c 是异面直线18.(12分)如图,已知空间四边形ABCD 中,AB =CD =3,E 、F 分别是BC 、AD 上的点,并且BE ∶EC =AF ∶FD =1∶2,EF =7,求AB 和CD 所成角的大小.19.(14分)四面体A-BCD 的棱长均为a ,E 、F 分别为楞AD 、BC 的 中点,求异面直线AF 与CE 所成的角的余弦值.20.(14分)在棱长为a的正方体ABCD—A′B′C′D′中,E、F分别是BC、A′D′的中点.(2)求直线A′C与DE所成的角;直线和平面的位置关系一、选择题(本题每小题5分,共50分)1.下列命题:① 一条直线在平面内 的射影是一条直线;② 在平面内射影是直线的图形一 定是直线;③ 在同一平面内的射影长相等,则斜线长相等;④ 两斜线与平面所成的角 相等,则这两斜线互相平行.其中真命题的个数是 ( )A .0个B .1个C .2个D .3个2.下列命题中正确的是 ( )A .若平面M 外的两条直线在平面M 内的射影为一条直线及此直线外的一个点,则这两条直线互为异面直线B .若平面M 外的两条直线在平面M 内的射影为两条平行直线,则这两条直线相交C .若平面M 外的两条直线在平面M 内的射影为两条平行直线,则这两条直线平行D .若平面M 外的两条直线在平面M 内的射影为两条互相垂直的直线,则这两条直线垂直3.相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的 射影所成的角是 ( )A .30°B .45°C .60°D .90°4.已知A 、B 两点在平面α的同侧,AC ⊥α于C ,BD ⊥α于D ,并且AD ∩BC =E ,EF ⊥α于F ,AC =a ,BD=b ,那么EF 的长等于 ( )A .b a ab +B .ab b a +C .b a 2+D .2ba +5.P A 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面P AB 所成角的余弦值是( )A .21B .22C .36 D .33 6.Rt △ABC 中,∠B =90°,∠C =30°,D 是BC 的中点,AC =2,DE ⊥平面ABC ,且DE =1,则点E 到斜边AC 的距离是 ( )A .25 B .211 C .27 D .419 7.如图,PA ⊥矩形ABCD ,下列结论中不正确的是( ) A .PB ⊥BC B .PD ⊥CD C .PD ⊥BD D .PA ⊥BD8.如果α∥β,AB 和AC 是夹在平面α与β之间的 两条线段,AB ⊥AC ,且AB =2,直线AB 与平面α所成的角为30°,那么线段AC 的长的取值范围是( )A. B .[1,)+∞ C. D.)+∞9.若a , b 表示两条直线,α表示平面,下面命题中正确的是 ( ) A .若a ⊥α, a ⊥b ,则b //α B .若a //α, a ⊥b ,则b ⊥αC .若a ⊥α,b ⊂α,则a ⊥bD .若a //α, b //α,则a //b10.如果直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为 21θθ和,则 ( ) A .1sin sin 2212≥+θθ B .1sin sin 2212≤+θθC .1sin sin 2212>+θθD .1sin sin 2212<+θθ二、填空题(本题每小题6分,共24分)11.已知△ABC ,点P 是平面ABC 外一点,点O 是点P 在平面ABC 上的射影,(1)若点P 到△ABC 的三个顶点的距离相等,那么O 点一定是△ABC 的 ;(2)若点P 到△ABC 的三边所在直线的距离相等且O 点在△ABC 内,那么O 点一定是△ABC 的 .12.已知△ABC 中,AB=9,AC=15,∠BAC=120°,△ABC 所在平面外一点P 到此三角形 三个顶点的距离都是14,则点P 到平面ABC 的距离是 13.如图所示,矩形ABEF 与矩形EFDC 相交于EF , 且BE ⊥CE ,AB =CD =4,BE =3,CE =2, ∠EAC =α,∠ACD =β,则cos α∶cos β= .14.AB ∥CD ,它们都在平面α内,且相距28.EF ∥α,且相距15. EF ∥AB ,且相距17.则EF 和CD 间的距离为 . 三、解答题(共76分) 15.(12分)如图,在正方体ABCD —A 1B 1C 1D 1中,求A 1B 和平面A 1B 1CD 所成的角.16.(12分)A 是△BCD 所在平面外的点,∠BAC=∠CAD=∠DAB=60°,AB=3,AC=AD=2. (1)求证:AB ⊥CD ;(2)求AB 与平面BCD 所成角的余弦值.17.(12分)如图,已知矩形ABCD 所在平面外一点P ,P A ⊥平面ABCD ,E 、F 分别是AB 、PC 的中点.(1)求证:EF ∥平面P AD ; (2)求证:EF ⊥CD ;(3)若∠PDA =45︒,求EF 与平面ABCD 所成的角的大小.18.(12分)在ABC ∆中,︒=∠75BAC ,线段VA ⊥平面ABC ,点A 在平面VBC 上的射影为H.求证:H 不可能是VBC ∆的垂心.19.(14分)AB 是⊙O 的直径,C 为圆上一点,AB =2,AC =1, P 为⊙O 所在平面外一点,且PA ⊥⊙O , PB 与平面所成角为45 (1)证明:BC ⊥平面PAC ; (2)求点A 到平面PBC 的距离.20.(14分)如图所示,在斜边为AB的Rt△ABC中,过A作P A⊥平面ABC,AM⊥PB于M,AN⊥PC于N.(2)求证:PB⊥面AMN.(3)若P A=A B=4,设∠BPC=θ,试用tanθ表示△AMN的面积,当tanθ取何值时,△AMN的面积最大?最大面积是多少?平面和平面的位置关系一、选择题:本大题共12个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列命题中正确的是 ( ) A .垂直于同一平面的两平面平行 B .垂直于同一直线的两平面平行 C .与一直线成等角的两平面平行 D .Rt ∠ABC 在平面α的射影仍是一个直角,则∠ABC 所在平面与平面α平行 2.ABCD 是一个四面体,在四个面中最多有几个是直角三角形 ( ) A .1 B .2 C .3 D .4 3.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题: ①若m ⊂α、n ∥β,则m ∥n ; ②若m ∥α、n ∥β,则α∥β; ③若α∩β=n ,m ∥n ,则m ∥α,m ∥β;④若m ⊥α,m ⊥β,则α∥β. 其中真命题的个数是 ( ) A .0 B .1 C .2 D .3 4.已知二面角α-AB -β的平面角为θ,α内一点C 到β的距离为3,到棱AB 的距离为4, 则tan θ等于 ( )A .34B .35CD5.下列命题:① 若直线a //平面α,平面α⊥平面β,则α⊥β; ② 平面α⊥平面β,平 面β⊥平面γ,则α⊥γ;③ 直线a ⊥平面α,平面α⊥平面β,则a //β; ④ 平面α// 平面β,直线a ⊂平面α,则a //β.其中正确命题的个数是 ( ) A .1 B .2 C .3 D .4 6.二面角α-AB -β的平面角为锐角,C 是α内的一点 (它不在棱AB 上),点D 是C 在平面β内的射影,点E 是AB 上满足∠CEB 为锐角的任意一点,那么( ) A .∠CEB>∠DEB B .∠CEB<∠DEB C .∠CEB=∠DEB D .无法确定7.如果直线l 、m 与平面α、β、γ满足:l βγ=⋂,//l α,,m m αγ⊂⊥,那么必有( ) A .,l m αγ⊥⊥ B .,//m αγβ⊥ C .//,m l m β⊥ D .//,αβαβ⊥ 8.已知:矩形ADEF ⊥矩形BCEF ,记∠DBE =α, ∠DCE =β,∠BDC =θ,则 ( ) A .sin α=sin βsin θ B .sin β=sin αcos θ C .cos α=cos βcos θ D .cos β=cos αcos θ9.若有平面α与β,且l P P l ∉α∈β⊥α=βα,,, ,则下列命题中的假命题为 ( )A .过点P 且垂直于α的直线平行于βB .过点P 且垂直于l 的平面垂直于βC .过点P 且垂直于β的直线在α内D .过点P 且垂直于l 的直线在α内10.空间三条射线PA ,PB ,PC 满足∠APC=∠APB=60°,∠BPC=90°,则二面角B-PA-C的度数 ( )A .等于90°B .是小于120°的钝角C .是大于等于120°小于等于135°的钝角D .是大于135°小于等于150°的钝角二、填空题:本大题满分24分,每小题6分,各题只要求直接写出结果. 11.如图所示,E 、F 、G 是正方体ABCD -A 1B 1C 1D 1相应棱的中点,则(1)面EFG 与面ABCD 所成的角为 ;(2)面EFG 与面ADD 1A 1所成的角为 . 12.斜线PA 、PB 于平面α分别成40°和60°,则∠APB 的取值范围为13.在直角△ABC 中,两直角边AC =b ,BC =a ,CD ⊥AB 于D , 把这个Rt △ABC 沿CD 折成直二面角A -CD -B 后, cos ∠ACB = .14.如图,两个矩形ABCD 和ABEF 中,AD =AF =1, DC =EF =,则AB 与CF 所成角θ的大小范 围是 .三、解答题:本大题满分76分. 15.(本小题满分12分).//,,//,,,:αββαb b a a b a 且且是异面直线已知⊂⊂ 求证:βα//.16.(本小题满分12分)正方体ABCD-A ′B ′C ′D ′棱长为1.(1)证明:面A ′BD ∥面B ′CD ′; (2)求点B ′到面A ′BD 的距离.(14分)17.(本小题满分12分)如图,平面α∥平面β,点A 、C ∈α,B 、D ∈β,点E 、F 分别在线段AB 、CD 上,且FDCFEB AE =,求证:EF ∥β.18.(本小题满分12分)如图,四面体ABCD 中,△ABC 与△DBC 都是边长为4的正三角形.(1)求证:BC ⊥AD ;(2)若点D 到平面ABC 的距离不小于3,求二面角A —BC —D 的平面角的取值范围; (3)求四面体ABCD 的体积的最大值.19.(本小题满分14分)在长方体1111D C B A ABCD -中,11==AD AA ,底边AB 上有且 只有一点M 使得平面⊥DM D 1平面MC D 1. (1)求异面直线C C 1与M D 1的距离; (2)求二面角D C D M --1的大小.20.(本小题满分14分)如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点. (1)证明AD ⊥D 1F; (2)求AE 与D 1F 所成的角; (3)证明面AED ⊥面A 1FD 1;(4)111112ED A F V ED A F AA --=的体积,求三棱锥设.空间角和距离一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线m 与平面α间距离为d ,那么到m 与α距离都等于2d 的点的集合是 ( )A .一个平面B .一条直线C .两条直线D .空集2.异面直线a 、b 所成的角为θ,a 、b 与平面α都平行,b ⊥平面β,则直线a 与平面β所成的角 ( ) A .与θ相等 B .与θ互余 C .与θ互补 D .与θ不能相等.3.在正方体ABCD —A 'B 'C 'D '中,BC '与截面BB 'D 'D 所成的角为 ( )A .3π B .4π C .6πD .arctan24.在正方形SG 1G 2G 3中,E ,F 分别是G 1G 2及G 2G 3的中点,D 是EF 的中点,现在沿SE ,SF 及EF 把这个正方形折成一个四面体,使G 1,G 2,G 3三点重合,重合后的点记为G ,那么,在四面体S -EFG 中必有 ( ) A .SG ⊥△EFG 所在平面 B .SD ⊥△EFG 所在平面C .GF ⊥△SEF 所在平面D .GD ⊥△SEF 所在平面5.有一山坡,它的倾斜角为30°,山坡上有一条小路与斜坡底线成45°角,某人沿这条小路向上走了200米,则他升高了 ( ) A .1002米B .502米C .256米D .506米6.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小为 ( )A .arccos 33B .arccos 31 C .2π D .32π7.正四面体A —BCD 中E 、F 分别是棱BC 和AD 之中点,则EF 和AB 所成的角 ( )A .45︒B .60︒C .90︒D .30︒8.把∠A =60°,边长为a 的菱形ABCD 沿对角线BD 折成60°的二面角,则AC 与BD 的距离为 ( )A .43a B .43 a C .23 a D .46a 9.若正三棱锥的侧面均为直角三角形,侧面与底面所成的角为α,则下列各等式中成立的是 ( )A .0<α<6π B .6π<α<4π C .4π<α<3π D .3π<α<2π10.已知A (1,1,1),B (-1,0 ,4),C (2 ,-2,3),则〈AB ,CA 〉的大小为( )A .6πB .65πC .3πD .32π二、填空题(本大题共4小题,每小题6分,共24分)11.从平面α外一点P 引斜线段PA 和PB ,它们与α分别成45︒和30︒角,则∠APB 的最大值是______最小值是_______12.∆ABC 中∠ACB=90︒,PA ⊥平面ABC ,PA=2,AC=2 3 ,则平面PBC 与平面PAC ,平面ABC 所成的二角的大小分别是______、_________. 13.在三棱锥P-ABC中,90=∠ABC ,30=∠BAC ,BC=5,又PA=PB=PC=AC,则点P到平面ABC的距离是 .14.球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为 . 三、解答题(共计76分)15.(本小题满分12分)已知SA ⊥平面ABC ,SA=AB ,AB ⊥BC ,SB=BC ,E 是SC 的中点,DE ⊥SC 交AC 于D .(1) 求证:SC ⊥面BDE ;(2)求二面角E —BD —C 的大小. 16.(本小题满分12分)如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM ⊥交1AA 于点M , 1BB PN ⊥交1CC 于点N .(1) 求证:MN CC ⊥1; (2) 在任意DEF ∆中有余弦定理:DFE EF DF EF DF DE ∠⋅-+=cos 2222.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明. 17.(本小题满分12分)如图,四棱锥S —ABCD 的底面是边长为1的正方形, SD 垂直于底面ABCD ,SB=3. (1)求证BC ⊥SC ;(2)求面ASD 与面BSC 所成二面角的大小;(3)设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小.1AB=a,(如图一)将△ADC 18.(本小题满分12分)在直角梯形ABCD中,∠D=∠BAD=90︒,AD=DC=2沿AC折起,使D到D'.记面AC D'为α,面ABC为β.面BC D'为γ.(1)若二面角α-AC-β为直二面角(如图二),求二面角β-BC-γ的大小;(2)若二面角α-AC-β为60︒(如图三),求三棱锥D'-ABC的体积.19.(本小题满分14分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(1)求证AM//平面BDE;(2)求二面角A-DF-B的大小;(3)试在线段AC上确定一点P,使得PF与BC所成的角是60︒.20.(本题满分14分)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==)20(<<a .(1)求MN 的长;(2)当a 为何值时,MN 的长最小;(3)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小.二 面 角二面角问题因其需要充分运用立体几何第一章的线线、线面、面面关系,具有综合性强,灵活性大的特点,因此,一直成为高考、会考的热点。
平面的基本性质(3).许兴华
兴 T 华
许
N S
E
E
V
课
Firstpage首页 upward return next last 铃
件
证题要点 : (1) 不共线三点 E, D 1 , F 确定一个平面 ,
( 2) 点 G , H 平面 ,
( 3) 点 G , H , B 平面 ABC ,
( 4 )证 GAB BCH,
件
M
兴 T 华
许
N S
E
E
V
课
Firstpage首页 upward return next last 铃
件
•THE END •Goodbye!
南宁三中 许兴华
(文学博客)http : //blog.sin /s teven1970
在 google 搜索里输入:月亮河 A, 出现的第一个“新浪博 客”即是。
兴 T 华
许E 许
N S
E N 兴S T 华
E
E
V 课 V
课
件 Firstpage首页 upward return next last 铃 件
D1
A1 B1
(B)
C1
D1
A1 B1
C1
D
C
A
B D
A
(C )
B
(D)
C
兴 T 华
许
N S
E
E
V
课
Firstpage首页 upward return next last 铃
件
[ 证 ]平面 外的 ABC 确 定一个平面 ABC ,
ABC的三边所在的直线 分别交面于P、Q、R三点,
P、Q、R三点是平面 ABC与平面的公共点 ,
第九章 立体几何9-3空间点、直线、平面之间的位置关系
∴EF≠GH,∴四边形EFGH为梯形. 设EH∩FG=P,则P∈EH,而EH⊂平面 ABD,
∴P∈平面ABD,同理P∈平面BCD, ∵平面ABD∩平面BCD=BD,∴P∈BD. ∴EH、FG、BD三线共点.
如图,在四面体ABCD中作截面PQR,PQ、 CB的延长线交于M,RQ、DB的延长线交于 N,RP、DC的延长线交于K.求证M、N、K 三点共线.
解析:∵PQ∩CB=M,∴M∈PQ,M∈CB,
∵PQ⊂平面PQR,CB⊂平面BCD,
∴M∈平面PQR,M∈平面BCD,
∴M是平面PQR与平面BCD的公共点,同理
由PQ∩DB=N,及RP∩DC=K知,N,K也
是平面PQR与平面BCD的公共点,∵平面
PQR与平面BCD不重合,∴M、N、K在平
面BCD与平面PQR的交线上,即M、N、K
重点难点 重点:①平面的概念与基本性质 ②空间直线、平面之间的各种位置关系 难点:①证明点共线、线共点、点线共面等 ②异面直线的判定
知识归纳 1.平面的基本性质 (1)连接两点的线中,线段最短;过两点有 且只有一条直线. (2)基本性质1:如果一条直线上的两点在一 个平面内,那么这条直线上所有的点都在这 个平面内. 基本性质2:经过不在同一条直线上的三点, 有且只有一个平面,即不共线的三点确定一 个平面. 基本性质3:如果两个不重合的平面有一个 公共点,那么它们有且只有经过这个公共点
∴①真;
过M作ME∥DC,交CC1于E,∵DC∥AB, ∴ME∥AB;过M作MF∥A1D1,交AA1于F, ∵A1D1∥B1C1,∴MF∥B1C1,∴AB与 B1C1都与平面MEF平行,由作法知,这样 的平面MEF有且仅有一个,故选C. 答案:C
直线和平面平行的判定和性质
高 二 数 学(第15周) 主讲教师:徐 瑢主审教师:陈云楼【教学内容】1、直线和平面的位置关系2、直线和平面平行的判定和性质【教学目标】1、领会并叙述直线与平面的三种位置关系.2、学会用“线线平行”得“线面平行”定理的应用.3、学会由“线面平行”得“线线平行”定理的应用.【知识讲解】1、直线与平面的位置关系:直线在平面内——有无数个公共点即 a ⊂α相交——只有一个公共点即a ∩α=A直线不在平面内平行——没有公共点,记为a ‖α2、画图时要注意如下几点:(1)线在面内.直线不要超出表示平面的平行四边形的各条边.(2)线面相交.交点到水平线这一段是不可见的,注意画成虚线或不画.(3)线面平行.直线要与表示平面的平行四边形的一组对边平行.3、直线和平面平行的判定方法:⑴根据定义:证明直线与平面没有公共点。
通常用反证法,先假设直线a 与平面α不平行,则a ⊂α或a ∩α=A ,然后一一否定。
⑵利用判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
即 a ⊄αb ⊂α⇒ a ‖α,可简记为:“线线平行,则线面平行”,“线a ‖b线”指平面α外直线a ,平面α内直线b,“线面”指直线a 与平面α。
利用判定定理时,首先要检查是否符合这三个条件,在证明过程中也因明确写出这三个条件。
判定定理的实质是:在平面内找出一条直线和已知直线平行,就可断定这条已知直线必和这个平面平行.4、直线和平面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
即 a ‖αa ⊂β ⇒a ‖bα∩β=b这个定理可简记为“线面平行,则线线平行”,“线面”是指平面α及平面α外直线a,“线线”指直线a ,平面α和β的交线b 。
性质定理的实质是:如果线面平行,则过已知直线作一平面和已知平面相交,其交线必和已知直线平行.值得注意的是:由线面平行 线线平行,并不意味着平面内的任意一条直线都与已知直线平行.正确的结论是:a ∥α,若b α,则b 与a 的关系是:盐中网校版权所有不得转录异面或平行.即平面a内直线分成两大类,一类是与a平行,有无数条;另一类是与a异面,也D不对,忽略了m在平面α内的情况。
苏教版高中数学教材目录(附教学进度)
苏教版高中数学教材内容平面的基本性质第7 章概率数学 1 (高一下6)空间两条直线的位置关系第1 章集合7.1 随机事件及其概率直线与平面的位置关系(高一上1)7.2 古典概型平面与平面的位置关系1.1 集合的含义及其表示7.3 几何概型1.2 子集、全集、补集第4 章平面解析几何初步7.4 互斥事件及其发生的概率1.3 交集、并集(高二上1)数学 44.1 直线与方程第8 章三角函数第2 章函数概念与基本初等函数(高一上3)直线的斜率(高一上2)8.1 任意角、弧度直线的方程2.1 函数的概念和图象8.2 任意角的三角函数两条直线的平行与垂直函数的概念和图象两条直线的交点8.3 三角函数的图象和性质函数的表示方法平面上两点间的距离函数的简单性质点到直线的距离第9 章平面向量映射的概念4.2 圆与方程(高一上4)2.2 指数函数9.1 向量的概念及表示圆的方程分数指数幂直线与圆的位置关系9.2 向量的线性运算指数函数圆与圆的位置关系9.3 向量的坐标表示2.3 对数函数 4.3 空间直角坐标系9.4 向量的数量积对数空间直角坐标系9.5 向量的应用对数函数空间两点间的距离2.4 幂函数第10 章三角恒等变换2.5 函数与方程数学 3 (高一上5)二次函数与一元二次方程第5 章算法初步10.1 两角和与差的三角函数(高一下4)10.2 二倍角的三角函数用二分法求方程的近似解2.6 函数模型及其应用 5.1 算法的意义10.3 几个三角恒等式5.2 流程图数学2 5.3 基本算法语句数学 5第3 章立体几何初步 5.4 算法案例第11 章解三角形3.1 空间几何体(高一下1)棱柱、棱锥和棱台第6 章统计11.1 正弦定理(高一下5)11.2 余弦定理圆柱、圆锥、圆台和球中心投影和平行投影6.1 抽样方法11.3 正弦定理、余弦定理的应用直观图画法6.2 总体分布的估计空间图形的展开图6.3 总体特征数的估计第12 章数列柱、锥、台、球的体积6.4 线性回归方程(高一下2)3.2 点、线、面之间的位置关系12.1 等差数列112.2 等比数列1.2 独立性检验第1 章导数及其应用12.3 数列的进一步认识1.3 线性回归分析1.1 导数的概念1.4 聚类分析1.2 导数的运算第13 章不等式第2 章推理与证明1.3 导数在研究函数中的应用(高一下3)(高二上5)1.4 导数在实际生活中的应用13.1 不等关系2.1 合情推理与演绎推理1.5 定积分13.2 一元二次不等式2.2 直接证明与间接证明13.3 二元一次不等式组与简单的2.3 公理化思想第2 章推理与证明线性规划问题2.1 合情推理与演绎推理13.4 基本不等式第 3 章数系的扩充与复数的引2.2 直接证明与间接证明入2.3 数学归纳法选修系列 1 (高二上6)2.4 公理化思想1-1 3.1 数系的扩充第1 章常用逻辑用语3.2 复数的四则运算第3 章数系的扩充与复数的引入(高二上2)3.3 复数的几何意义6.1 数系的扩充1.1 命题及其关系3.2 复数的四则运算1.2 简单的逻辑联结词第4 章框图3.3 复数的几何意义1.3 全称量词与存在量词4.1 流程图5.2 结构图2-3第2 章圆锥曲线与方程第1 章计数原理(高二上3)选修系列 2 1.1 两个基本原理2.1 圆锥曲线2-1 1.2 排列2.2 椭圆第1 章常用逻辑用语1.3 组合2.3 双曲线1.1 命题及其关系1.4 计数应用题2.4 抛物线1.2 简单的逻辑连接词1.5 二项式定理2.5 圆锥曲线与方程1.3 全称量词与存在量词第2 章概率第2 章圆锥曲线与方程2.1 随机变量及其概率分布第3 章导数及其应用2.1 圆锥曲线2.2 超几何分布(高二上4)2.2 椭圆2.3 独立性3.1 导数的概念2.3 双曲线2.4 二项分布3.2 导数的运算2.4 抛物线2.5 离散型随机变量的均值与方差3.3 导数在研究函数中的应用2.5 圆锥曲线的统一定义2.6 正态分布3.4 导数在实际生活中的应用2.6 曲线与方程第3 章统计案例第3 章空间向量与立体几何3.1 假设检验1-2 3.1 空间向量及其运算3.2 独立性检验第1 章统计案例3.2 空间向量的应用3.3 线性回归分析1.1 假设检验2-2 4.4 聚类分析。
高二数学讲义平面的基本性质
同步:平面的基本性质(★) 教学目标 1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理。
2.理解空间直线、平面位置关系的定义,并掌握公理体系,掌握平面基本性质,解决两条异面直线所成的角,直线异面、共面等相关问题。
知识梳理10min.(1)四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。
公理2:过不在一条直线上的三点,有且只有一个平面。
三个推论:①经过一条直线和这条直线外的一点有且只有一个平面 ②两条相交直线确定一个平面③两条平行直线确定一个平面它给出了确定一个平面的依据。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。
符号语言:,,P P l P l αβαβ∈∈⇒=∈且。
公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。
符号语言://,////a l b l a b ⇒且。
2.空间中两条直线的位置关系(1)共面直线1.相交直线:有且仅有一个公共点2.平行直线:在同一个平面内,没有公共点(2)异面直线:不同在任何一个平面内,没有公共点3.空间中直线与平面之间的位置关系直线与平面的位置关系有三种: 1.23//l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩直线在平面内:.直线与平面相交:直线在平面外.直线与平面平行:4.空间中平面与平面之间的位置关系平面与平面之间的位置关系有两种: 1.//2.l αβαβ⎧⎨=⎩两个平面平行:两个平面相交: 典例精讲20min.【边讲边练】★★例1、有两条不同的直线m ,n 与两个不同的平面α,β,下列命题正确的是( ).A .m ∥α,n ∥β,且α∥β,则m ∥nB .m ⊥α,n ⊥β,且α⊥β,则m ∥nC .m ∥α,n ⊥β,且α⊥β,则m ∥nD .m ⊥α,n ∥β,且α∥β,则m ⊥n 解析 A 中,除m ∥n 外,还有相交、异面,A 不正确;B 中,只含m ⊥n ,B 不正确;C 中除m ∥n 外,还有相交或异面,C 不正确;故选D.答案 D★★例2. (2010年高考山东卷理科3)在空间,下列命题正确的是(A )平行直线的平行投影重合(B )平行于同一直线的两个平面平行(C )垂直于同一平面的两个平面平行(D )垂直于同一平面的两条直线平行【答案】D【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以很容易得出答案。
2016高二数学全册知识点汇总
2016高二数学全册知识点汇总2016高二数学全册知识点汇总高二是高三的过渡期,高二学习成绩好的话,高三复习的压力就相对小一点。
所以高二数学的学习十分重要。
下面小编为大家提供高二数学知识点总结,供大家参考。
一、集合、简易逻辑(14时,8个)1集合;2子集;3补集;4交集;并集;6逻辑连结词;7四种命题;8充要条二、函数(30时,12个)1映射;2函数;3函数的单调性;4反函数;互为反函数的函数图象间的关系;6指数概念的扩充;7有理指数幂的运算;8指数函数;9对数;10对数的运算性质;11对数函数12函数的应用举例三、数列(12时,个)1数列;2等差数列及其通项公式;3等差数列前n项和公式;4等比数列及其通顶公式;等比数列前n项和公式四、三角函数(46时17个)1角的概念的推广;2弧度制;3任意角的三角函数;4,单位圆中的三角函数线;同角三角函数的基本关系式;6正弦、余弦的诱导公式’7两角和与差的正弦、余弦、正切;8二倍角的正弦、余弦、正切;9正弦函数、余弦函数的图象和性质;10周期函数;11函数的奇偶性;12函数的图象;13正切函数的图象和性质;14已知三角函数值求角;1正弦定理;16余弦定理;17斜三角形解法举例五、平面向量(12时,8个)1向量2向量的加法与减法3实数与向量的积;4平面向量的坐标表示;线段的定比分点;6平面向量的数量积;7平面两点间的距离;8平移六、不等式(22时,个)1不等式;2不等式的基本性质;3不等式的证明;4不等式的解法;含绝对值的不等式七、直线和圆的方程(22时,12个)1直线的倾斜角和斜率;2直线方程的点斜式和两点式;3直线方程的一般式;4两条直线平行与垂直的条;两条直线的交角;6点到直线的距离;7用二元一次不等式表示平面区域;8简单线性规划问题9曲线与方程的概念;10由已知条列出曲线方程;11圆的标准方程和一般方程;12圆的参数方程八、圆锥曲线(18时,7个)1椭圆及其标准方程;2椭圆的简单几何性质;3椭圆的参数方程;4双曲线及其标准方程;双曲线的简单几何性质;6抛物线及其标准方程;7抛物线的简单几何性质九、(B)直线、平面、简单何体(36时,28个)1平面及基本性质;2平面图形直观图的画法;3平面直线;4直线和平面平行的判定与性质;,直线和平面垂直的判与性质;6三垂线定理及其逆定理;7两个平面的位置关系;8空间向量及其加法、减法与数乘;9空间向量的坐标表示;10空间向量的数量积;11直线的方向向量;12异面直线所成的角;13异面直线的公垂线;14异面直线的距离;1直线和平面垂直的性质;16平面的法向量;17点到平面的距离;18直线和平面所成的角;19向量在平面内的射影;20平面与平面平行的性质;21平行平面间的距离;22二面角及其平面角;23两个平面垂直的判定和性质;24多面体;2棱柱;26棱锥;27正多面体;28球十、排列、组合、二项式定理(18时,8个)1分类计数原理与分步计数原理2排列;3排列数公式’4组合;组合数公式;6组合数的两个性质;7二项式定理;8二项展开式的性质十一、概率(12时,个)1随机事的概率;2等可能事的概率;3互斥事有一个发生的概率;4相互独立事同时发生的概率;独立重复试验选修Ⅱ(24个)十二、概率与统计(14时,6个)1离散型随机变量的分布列;2离散型随机变量的期望值和方差;3抽样方法;4总体分布的估计;正态分布;6线性回归十三、极限(12时,6个)1数学归纳法;2数学归纳法应用举例;3数列的极限;4函数的极限;极限的四则运算;6函数的连续性十四、导数(18时,8个)1导数的概念;2导数的几何意义;3几种常见函数的导数;4两个函数的和、差、积、商的导数;复合函数的导数;6基本导数公式;7利用导数研究函数的单调性和极值;8函数的最大值和最小值十五、复数(4时,4个)1复数的概念;2复数的加法和减法;3复数的乘法和除法答案补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查现在的我们学数学比前人幸福啊!!相信对你的学习会有帮助的,祝你成功!答案补充一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
高中高二数学立体几何知识点
高中高二数学立体几何知识点
高中高二数学立体几何知识点
立体几何是三维欧氏空间的几何的传统名称。
小编准
备了高二数学立体几何知识点,希望你喜欢。
立体几何
1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
能够用斜二测法作图。
2.空间两条直线的位置关系:平行、相交、异面的概念;
会求异面直线所成的角和异面直线间的距离;证明两条直线
是异面直线一般用反证法。
3.直线与平面
①位置关系:平行、直线在平面内、直线与平面相交。
②直线与平面平行的判断方法及性质,判定定理是证明平行
问题的依据。
③直线与平面垂直的证明方法有哪些?
④直线与平面所成的角:关键是找它在平面内的射影,范围是
⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形
的度量.如:证明异面直线垂直,确定二面角的平面角,确
定点到直线的垂线.4.平面与平面
(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)。
高二数学两个平面垂直的判定和性质知识精讲 人教版
高二数学两个平面垂直的判定和性质知识精讲人教版【基础知识精讲】1.二面角半平面:一个平面内的一条直线,把这个平面分为两部分,其中的每一部分都叫做半平面.二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱为AB,面为α,β的二面角,记作二面角α—AB—β,如果棱用a表示,则记作二面角α—a—β,有时也可以全用大写拉丁字母表示,例平面PAB与平面QAB形成的二面角记作P—AB—Q.注意:平面几何中可以把角理解为一个旋转量,同样一个二面角也可以看作以一个半平面以其棱为轴旋转而成的.2.二面角的平面角平面与平面的位置关系,总的来说只有相交或平行两种.为了对相交平面的相互位置作进一步的对探讨,有必要研究二面角的大小问题.如图,在二面角α—a—β的棱a上任取一点O,在半平面α和β内,从点O分别作垂直于棱a的射线OA,OB,射线OA和OB组成∠AOB,在棱a上另取一点O′,按同样方法作∠A′O′B′.因为OA和O′A′,OB和O′B′都垂直于棱a,所以∠AOB和∠A′O′B′的两边分别平行且方向相同,因此∠AOB=∠A′O′B′,可见∠AOB的大小与点O在棱上的位置无关.二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.注意:①它是一个“平面角”,因此两边必须在同一平面内.②二面角的平面角的两边都必须与棱垂直.画二面角和它的平面角,最常见的两种形式:(1)直立式(2)平卧式二面角的大小,可以用它的平面角来度量,二面角的平面角是几度,就说这个二面角是几度.特别地:平面角是直角的二面角叫做直二面角. 二面角Q 的X 围是[0,π]3.两个平面垂直的判定(i)定义:两个平面所成二面角为直二面角;如果α与β垂直,记作α⊥β,画两个互相垂直的平面,把直立平面的竖边画成和水平平面的横边垂直,如图:(ii)两个平面垂直的判定定理:如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.AB ⊥β,AB ⊂α⇒α⊥β.建筑工人在砌墙时,常用一端系有铅锤的线来检查所砌的墙面是否和水平面垂直,就是依据这个定理.(iii)垂直于平行平面中的一个平面必垂直于另一个平面. α∥β,r ⊥α⇒r ⊥β说明 平面与平面的垂直问题可以转化为直线与平面的垂直问题,即线面垂直可以导致面面垂直.4.两个平面垂直的性质(i)两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个平面.α⊥β,α∩β=a,b ⊂α,b ⊥a ⇒b ⊥β(ii)过一平面内一点而垂直于另一平面的直线必在这平面内. (iii)相交平面同时垂直于第三个平面,则交线垂直于第三平面. (iv)过不垂直于平面的一直线有且只有一个平面与已知平面垂直. 从两个平面垂直的性质可以看出面面垂直可以得出线面垂直.5.两条异面直线上两点的距离公式设a 、b 是异面直线,AA ′是a 、b 的公垂线,A ′∈b,A ∈b ,AA ′=d.E ∈a,F ∈b ,A E '=m,FA =n.且a 、b 成θ角,则EF =θcos 2222mn n m d ±++.说明 (i)两条异面直线公垂线的存在性.(ii)可证明两条异面直线的距离是异面直线上两点的距离.(iii)可以解决分别在二面角的面内两点的距离问题.【重点难点解析】二面角及其平面角是本节重点概念,应熟练掌握找平面角的各种基本办法,两个平面垂直的判定定理及性质定理,是本节的两个重要定理,应弄清定理内容,灵活使用定理处理综合问题.如何选取恰当位置作出二面角的平面角是本节的难点,应在掌握找平面角的各种方法之后,通过加强练习达到灵活熟练的程度.同时,异面直线上两点间距离的计算也是本节的一个难点.例1 直线a 、b 是异面直线,a ⊥平面α,b ⊥平面β,a ⊥b ,求证:α⊥β.证明 过b 上任意一点作直线a ′,使a ∥a ′.∵a ⊥b,∴a ′⊥b.设相交直线a ′、b 确定一个平面γ,γ∩β=c.∵b ⊥β,c ⊂β,∴b ⊥c.在平面γ内,b ⊥c,b ⊥a ′,∴a ′∥c.∴a ∥a ′∥c.又∵a ⊥α,∴c ⊥α,c ⊂β,∴β⊥α例2 在三棱锥S —ABC 中,∠ASB =∠BSC =60°,∠ASC =90°,且SA =SB =SC ,求证:平面ASC ⊥平面ABC.证明 取AC 的中点O ,连SO 、BO ,由已知,得ΔSAB 、ΔSBC 都是正三角形.∴BC =AB =a,SA =SC =a,又SO ⊥AC ,BO ⊥AC ,∴∠SOB 就是二面角S —AC —B 的平面角.又∵SA =AB =a,SC =BC =a,AC =AC,∴ΔACS ≌ΔACB.∴SO =BO =22a.在ΔSOB 中,∵SB =a,∴∠SOB =90°. 即平面SAC ⊥平面ABC.另证:过S 作SO ⊥平面ABC ,垂足是O.∵SA =SB =SC ,∴S 在平面内的射影是ΔABC 的外心,同前面的证明,可知ΔABC 是直角三角形,∴O 在斜边AC 上.又∵平面SAC 经过SO ,∴平面SAC ⊥平面ABC说明 证明“面面垂直”的常用方法是根据定义证明平面角是90°,或利用判定定理证明一个平面经过另一个平面的垂线.例3 如图,四面体ABCD 的棱BD 长为2,其余各棱的长均是2,求:二面角A —BD—C 、A —BC —D 、B —AC —D 的大小.解 (1)取BD 的中点O ,连AO 、OC. 在ΔABD 中,∵AB =AD =2,BD =2,∴ΔABD 是等腰直角三角形,AO ⊥BD ,同理OC ⊥BD. ∴∠AOC 是二面角A —BD —C 的平面角 又AO =OC =1,AC =2,∴∠AOC =90°.即二面角A —BD —C 为直二面角.(2)∵二面角A —BD —C 是直二面角,AO ⊥BD ,∴AO ⊥平面BCD. ∴ΔABC 在平面BCD 内的射影是ΔBOC. ∵S ΔOCB =21,S ΔABC =23,∴cos θ=33.即二面角A —BC —D 的大小是arccos33. (3)取AC 的中点E ,连BE 、DE. ∵AB =BC ,AD =DC ,∴BD ⊥AC ,DE ⊥AC ,∴∠BED 就是二面角的平面角. 在ΔBDE 中,BE =DE =26,由余弦定理,得cos α=-31 ∴二面角B —AC —D 的大小是π—arccos31. 评析 本例提供了求二面角大小的方法:先作出二面角的平面角,再利用其所在的三角形算出角的三角函数值,或利用面积的射影公式S ′=S ·cos θ求得.例4 如图所示,在三棱锥S —ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直平分SC ,且分别交AC 、SC 于D 、E.又SA =AB ,SB =SC.求以BD 为棱,以BDE 与BDC 为面的二面角的度数.解法一:由于SB =BC ,且E 是SC 中点,因此BE 是等腰三角形SBC 的底边SC 的中线,所以SC ⊥BE.又已知SC ⊥DE ,BE ∩DE =E ,∴SC ⊥平面BDE , ∴SC ⊥BD ,又∵SA ⊥底面ABC ,BD 在底面ABC 上, ∴SA ⊥BD.而SA ∩SC =S , 所以BD ⊥平面SAC.∵DE =平面SAC ∩平面BDE ,DC =平面SAC ∩平面BDC , ∴BD ⊥DE ,BD ⊥DC.∴∠EDC 是所求二面角的平面角. ∵SA ⊥底面ABC , ∴SA ⊥AB ,SA ⊥AC.设SA =a,则AB =a,BC =SB =2a. 又AB ⊥BC ,所以AC =3a.在Rt ΔSAC 中 tg ∠ACS =AC SA =31,所以∠ACS =30°. 又已知DE ⊥SC ,所以∠EDC =60°,即所求的二面角等于60°.解法二:由于SB =BC ,且E 是SC 的中点,因此BE 是等腰ΔSBC 的底边SC 的中线,所以SC ⊥BE.又已知SC ⊥DE ,BE ∩DE =E.∴SC ⊥平面BDE ,SC ⊥BD.由于SA ⊥底面ABC ,且A 是垂足,所以,AC 是SC 在平面ABC 上的射影,由三垂线定理的逆定理得BD ⊥AC ;又E ∈SC ,AC 是SC 在平面内的射影,所以E 在平面ABC 内的射影在AC 上,由于D ∈AC ,所以DE 在平面ABC 内的射影在AC 上,根据三垂线定理得BD ⊥DE.∵DE ⊂平面BDE ,DC ⊂平面BDC. ∴∠EDC 是所求二面角的平面角. 以下解法同解法一.例5 在直三棱柱ABC —A ′B ′C ′中,∠BAC =90°,AB =BB ′=1,直线B ′C 与平面ABC 成30°的角.(如图所示)(1)求点C ′到平面AB ′C 的距离; (2)求二面角B —B ′C —A 的余弦值.解 (1)∵ABC —A ′B ′C ′是直三棱柱,∴A ′C ′∥AC ,AC ⊂平面AB ′C ,∴A ′C ′∥平面AB ′C ,于是C ′到平面AB ′C 的距离等于点A ′到平面AB ′C 的距离,作A ′M ⊥AB ′于M.由AC ⊥平面AB ′A ′A 得平面AB ′C ⊥平面AB ′A ′A ,∴A ′M ⊥平面AB ′C ,A ′M 的长是A ′到平面AB ′C 的距离.∵AB =BB ′=1,∠B ′CB =30°,∴B ′C =2,BC =3,AB ′=2,A ′M =AA AA B A ''⨯''=22. 即C ′到平面AB ′C 的距离为22; (2)作AN ⊥BC 于N ,则AN ⊥平面B ′BCC ′,作NQ ⊥B ′C 于Q ,则CQ ⊥B ′C ,∴∠AQN 是所求二面角的平面角,AN =BCAC AB ⨯=36,AQ =C B B A AC ''⨯=1.∴sin ∠AQN =AQ AN =36,cos ∠AQN =33.说明 利用异面直线上两点间的距离公式,也可以求二面角的大小,如图,AB =BB ′=1,∴AB ′=2,又∠B ′CB =30°,∴BC =3,B ′C =2,AC =2.作AM ⊥B ′C 于M ,BN ⊥B ′C 于N ,则AM =1,BN =23,=23,CM =1,∴MN =21.∵BN ⊥B ′C,AM ⊥B ′C ,∴BN 与AM 所成的角等于二面角B —B ′C —A 的平面角.设为θ.由AB 2=AM 2+BN 2+MN 2-2AM ×BN ×cos θ得cos θ=31=33.例6 如图所示,四棱锥P —ABCD 的底面是边长为a 的菱形,∠A =60°,PC ⊥平面ABCD ,PC =a,E 是PA 的中点.(1)求证平面BDE ⊥平面ABCD. (2)求点E 到平面PBC 的距离.(3)求二面角A —EB —D 的平面角大小.解 (1)设O 是AC ,BD 的交点,连结EO. ∵ABCD 是菱形,∴O 是AC 、BD 的中点,∵E 是PA 的中点,∴EO ∥PC ,又PC ⊥平面ABCD ,∴EO ⊥平面ABCD ,EO ⊂平面BDE ,∴平面BDE ⊥平面ABCD. (2)EO ∥PC ,PC ⊂平面PBC , ∴EO ∥平面PBC ,于是点O 到平面PBC 的距离等于E 到平面PBC 的距离.作OF ⊥BC 于F , ∵EO ∥平面ABCD ,PC ⊂平面PBC ,∴平面PBC ⊥平面ABCD ,于是OF ⊥平面PBC ,OF 的长等于O 到平面PBC 的距离.由条件可知,OB =2a ,OF =2a×23=43a ,则点E 到平面PBC 的距离为43a.(3)过O 作OG ⊥EB 于G ,连接AG∵OE ⊥AC ,BD ⊥AC ∴AC ⊥平面BDE∴AG ⊥EB(三垂线定理)∴∠AGO 是二面角A —EB —D 的平面角 ∵OE =21PC =21a,OB =23a∴EB =a.∴OG =EB OB OE ⋅=43a 又AO =21a.∴tan ∠AGO =OG AO =332∴∠AGO =arctan332. 评析 本题考查了面面垂直判定与性质,以及利用其性质求点到面距离,及二面角的求法,三垂线定理及某逆定理的应用.例7 如图,矩形ABCD 中,AB =2,BC =23,以AC 为轴翻折半平面,使二平面角B —AC —D 为120°,求:(1)翻折后,D 到平面ABC 的距离;(2)BD 和AC 所成的角.分析 研究翻折问题,通常要画出翻折前的平面图形和翻折后的空间图形,对应点的字母要相同.解 分别过B 、D 作AC 的垂线,垂足是E 、F ,过F 作FB ′∥BE ,过B 作BB ′∥AC ,交点B ′,则四边形EFB ′B 是矩形.∵AC ⊥DF ,AC ⊥B ′F ,∴AC ⊥平面B ′FD ,即∠DF ′B 就是二面角B —AC —D 的平面角,亦即∠DFB ′=120°.过D 作DO ⊥′BF ,垂足为O.∵DO ⊂平面DFB ′,AC ⊥平面DFB ′.∴DO ⊥AF ,DO ⊥平面ABC.在Rt ΔADC 中,CD =2,AD =23,∴DF =3,OD =OF ·sin60°=23. (2)在ΔDFB ′中,DB ′=︒⋅'⋅⋅-'+120cos 22F B DF F B DF =3.又由(1)可知,AC ∥BB ′,AC ⊥平面DFB ′.∴BB ′⊥平面DFB ′,∴ΔDBB ′是直角三角形,又BB ′=EF =2.∴tan ∠DBB ′=23. ∵AC ∥BB ′,∴AC 与BD 所成的角就是∠DBB ′,即为arctan23. 说明 处理翻折问题,只要过不在棱上的点作棱的垂直相交的线段,就可以化成基本题型处理,本题也可以这样考虑,即利用异面直线DF 、BE 上两点B 、D 间的距离,先求出BD 2=EF 2+DF 2+BE 2-2DF ·BE ·cos120°=13,从而得出∠DBB ′=arccos132.【难题巧解点拨】例1 已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题: (1)α∥β⇒l ⊥m (2)α⊥β⇒l ∥m (3)l ∥m ⇒α⊥β (4)l ⊥m ⇒α∥β 其中正确的两个命题是( )A.(1)与(2)B.(3)与(4)C.(2)与(4)D.(1)与(3)分析:本题主要考查直线与平面、平面和平面的位置关系,以及空间想象能力和逻辑推理能力.解法一:在l ⊥α,m ⊂β的前提下,当α∥β时,有l ⊥β,从而l ⊥β,从而l ⊥m ,得(1)正确;当α⊥β时,l 垂直于α、β的交线,而m 不一定与该交线垂直,因此,l 与m 不一定平行,故(2)不正确.故应排除A 、C.依题意,有两个命题正确,不可能(3),(4)都正确,否则连同(1)共有3个命题正确.故排除B ,得D.解法二:当断定(1)正确之后,根据4个选择项的安排,可转而检查(3),由l ∥m,l ∥α知m ⊥α,从而由m ⊂α得α⊥β.即(3)正确.故选D.解法三:不从(1)检查起,而从(2)、(3)、(4)中任一命题检查起,如首先检查(4);由l ⊥α,m ⊥β不能否定m 是α、β的交线,因此α∥β不一定成立,故(4)是不正确的,因此可排除B 、C.依据A 和D 的内容可知(1)必定是正确的,否则A 和D 也都排除,以下只要对(2)或(3)检查,只须检查一个便可以做出判断.例2 一X 正方形的纸ABCD ,BD 是对角线,过AB 、CD 的中点E 、F 的线段交BD 于O ,以EF 为棱,将正方形的纸折成直二面角,则∠BOD 等于( )A.120°B.150°C.135°D.90°分析:本题考查线面垂直,面面垂直,余弦定理,以及空间与平面问题的转化能力。
高二数学平面的基本性质1
推论1:经过一条直线和这条直线外一点,有且只有一 个平面。
几何证题步骤:
1、根据题意画出图形,并写出已知、求证;
2、写清证题过程。 已知:点A在直线a外 求证:过点A和直线a的平面有且只有一个。 证明 P
α
a
推论2:经过两条相交直线,有且只有一个平面。
图形语言表示: α 符号书写:
bP
a
若a∩b=P 有且只有一个平面,使 a 且 b
(1)点A在直线L上 A
表示为:
A L
(2)直线L在平面 内
.
(3)直线
L
a 与 b 相交于点A.
A
表示为:L
b
a
表示为: a∩b=A
(4)直线 L 与平面
相交于点A.
L
A
表示为: L∩=A
(5)平面 与平面
相交于直线L
.LFra bibliotek表示为: ∩=L
例题学习: 证明共面问题 例1:如图;直线AB、AC、BC两两相交,交点 分别为A、B、C,判断这三条直线是否共面, 并说明理由。 空间中的点、线若都在同一平面内 则称它们共面;否则称它们不共面。 B
; / 保健食品商城
dvh39eyc
珞。宝音需要这些信息,才能及时决定下一步措施。“少姨娘怎么对笙儿这样好?”宝音叩问。“从前,妾身对表 ,其实并不是很周到, 真真的惭愧得紧。”柳少姨娘回答。“那现在„„”“听说姑娘险些死过去一次?活过来后,连老太太都疼惜姑娘。”柳少姨娘道。“笙 儿侥幸。”宝音回答。柳少姨娘微笑。一笑,鼻尖耸起,眼睛下面打起微微的细纹,像只心里顶顶有数的和善狐狸。宝音呆在老太太身边 的日子,她曾去请安,一眼就看见这女孩子身上发生的变化。她当时没说什么,回到自己屋里,慢慢的等。在这个大宅门里,人和人之间, 总需要结盟,而改换了气性之后的表 ,几乎可说举目无依,一定会自动到她身边来,似风把浮萍吹到石头边。她不急。“我的母亲也曾差 点病死过去一次。”柳少姨娘忽对宝音讲起故事来,“从前她是个很不称职的诸人,忽然醒过来,说有神君放她回来的,从此后她变了, 人人都夸她是个勤快媳妇。”她从没对府里其他 少爷们讲过身世。宝音心头突突的跳:“哦。”“姑娘一定有事瞒得住妾身,但您沉得住 气。”柳少姨娘赞赏道。宝音沉默片刻,忽而笑了:“您看我想做什么事呢?”她是一个鬼,披着人皮,想复仇,但见不得阳光。柳少姨 娘却把话题荡开去:“如今给姑娘请脉的小刘大夫,长得极其俊俏。”对,俊俏得叫丫头们都忍不住咬耳朵使眼色的八卦。但柳少姨娘跟 没出阁的 说这做什么?“小粉蝶或许恋花,但仙鹤志向高远,仰首向蓝天白云,自然意趣不同。”柳少姨娘欠欠身:“姑娘不必对妾身说 任何话,但凡有需要,记得妾身在这儿。”她的需要„„宝音明白了。柳少姨娘猜她志向高远,也许是想进宫。她愿意烧烧宝音这口冷灶。 宝音唇边,笑容潋滟,重新向柳少姨娘行礼,不再继续这个话题,却问:“少姨娘对四姐姐,也是这样么?”第四十五章 毓秀垂钟附眉刀 (2) “„„”宝音不知说什么好。“所以表 千万要当心、保重。”柳少姨娘又道。宝音已经没法说什么了。老太太院里有两个丫头出来, 迎住她们,朗声问她们的安。这时候晓晖初透,东边天际长长一带绚丽朝霞。老太太正堂这儿布置得宜、金碧交辉,好一群人,花团锦簇, 都聚在此处,专等着老太太。老太太还没起床。作女儿、媳妇的时候,她每天鸡才叫,就得起来梳妆,平头整脸正衣裳,去给长辈们请 安——高门大户里的诸人,也不是这么容易做的——等她自己当上了婆婆,就可以稍微懒怠点儿了,再等她上头没什么长辈了,她就明目 张胆的赖起床了。其实到这把岁数,老太太的睡眠已经很短了,前半夜躺下,到后半夜就会醒过来,再要睡也不怎么睡得着。但年青时没 得懒觉享受的日子实在太痛苦了,她宁愿赖在床上磨蹭来磨蹭去,等太阳高
苏教版高中数学必修二高二复习提纲.docx
高中数学学习材料马鸣风萧萧*整理制作高二数学复习提纲——立体几何1.常用定理:①线面平行ααα////aabba⇒⎪⎭⎪⎬⎫⊄⊂;αββα////aa⇒⎭⎬⎫⊂;ααββα//aaa⇒⎪⎭⎪⎬⎫⊄⊥⊥②线线平行:babaa////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα;baba//⇒⎭⎬⎫⊥⊥αα;baba////⇒⎪⎭⎪⎬⎫=⋂=⋂γβγαβα;bccaba//////⇒⎭⎬⎫③面面平行:βαββαα////,//,⇒⎪⎭⎪⎬⎫=⋂⊂⊂baObaba;βαβα//⇒⎭⎬⎫⊥⊥aa;γαβγβα//////⇒⎭⎬⎫④线线垂直:baba⊥⇒⎭⎬⎫⊂⊥αα;所成角900;⑤线面垂直:ααα⊥⇒⎪⎭⎪⎬⎫⊥⊥=⋂⊂⊂lbl alObaba,,;βαβαβα⊥⇒⎪⎭⎪⎬⎫⊥⊂=⋂⊥alaal,;βαβα⊥⇒⎭⎬⎫⊥aa//;αα⊥⇒⎭⎬⎫⊥baba//⑥面面垂直:二面角900;βααβ⊥⇒⎭⎬⎫⊥⊂aa;βααβ⊥⇒⎭⎬⎫⊥aa//2.平面的基本性质公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3 经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1 经过一条直线和这条直线外一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.3.空间线面的位置关系共面平行—没有公共点(1)直线与直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面直线不在平面内平行—没有公共点(直线在平面外) 相交—有且只有一公共点(3)平面与平面相交—有一条公共直线(无数个公共点)平行—没有公共点4. 求空间角①异面直线所成角θ的求法:(1)范围:(0,]2π;(2)求法:平移以及补形法、向量法。
如(1)正四棱锥P-ABCD的所有棱长相等E是PC的中点,那么异面直线BE与PA所成的角的余弦值等于____ ;(2)在正方体AC1中,M是侧棱DD1的中点,O是底面ABCD的中心,P是棱A1B1上的一点,则OP与AM所成的角的大小为____②直线和平面所成的角:(1)范围[0,90];(2)斜线与平面中所有直线所成角中最小的角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假如公司要实现实际增长率高于可持续增长率,则可以采取的手段有。A.增发新股B.提高销售净利率C.提高资产负债率D.提高资产周转率 下列关于无排卵性功血的叙述,错误的是。A.多见于青春期及绝经过渡期B.基础体温单相型C.周期短,规律,经量多少不定D.药物治疗是功血的一线治疗E.月经前刮宫,内膜为增生期 [多选,案例分析题]男性患者,60岁,有高血压痛史10年,平时血压160/90mmHg,不规律应用降压药物,因情绪激动,突然出现呼吸困难而入院。查体:血压210/110mmHg,脉率120次/分,双肺散在哮鸣音及大量水泡音,心率140次/分,节律不整,肝脾未及。心电图P波消失,代之f波,室率1 汽轮机发电机组各转子中心连成的连续曲线与水平切线点的位置,应符合制造厂要求。如果偏差较大,则说明各转子的位置发生了较大变化A.正确B.错误 关于流行性感冒的预防,以下不正确的是A.劳逸结合B.饮食合理C.预防性服药D.空气流通E.生活规律 综合理财规划建议书的撰写要求极强的专业能力,需要作者具备财务、金融、税务等多方面的专业知识,因此必须由经国家认证的职业理财规划师来进行操作。下列哪一项没有体现其专业性。A.参与人员的专业要求B.分析方法的专业要求C.建议书行文语言的专业要求D.规划的专业要求 下列哪些行为不是犯罪:A.甲酒后驾车将人撞死B.乙驾车时,刹车突然失灵,致行人被撞死C.丙趁黑夜盗得他人50元钱D.丁狩猎时,误击了突然从树丛中跑出的一个人 语音震颤减弱见于A.肺气肿B.肺炎实变期C.空洞型肺结核D.肺脓肿E.肺梗死 关于系统性红斑狼疮治疗的说法错误的是疮患者需要激素加免疫抑制剂治疗C.治疗中需要定期复查,以监测病情及药物不良反应D.中药制剂雷公藤对肝功能和血象没有影响E.静脉注射大剂量免疫球蛋白对严重血小板减少有效 瞳孔阻滞现象最严重的是()A.慢性闭角型青光眼虹膜膨隆型B.慢性闭角型青光眼虹膜高褶型C.急性闭角型青光眼D.原发性开角型青光眼E.恶性青光眼 常用在容量较大的负载上作为短路保护的是。ABCD 下列疾病中,属于强制管理的传染病是A.细菌性痢疾B.霍乱C.流行性脑脊髓膜炎D.麻疹E.流行性乙型脑炎 左心功能不全的临床表现主要是由于。A.心室重构所致B.左心室扩大所致C.体循环静脉压增高所致D.肺动脉高压所致E.肺淤血、肺水肿所致 金属材料在结晶过程中发生共晶转变就是指。 形成铸件表面粘砂的原因是A.熔铸温度过低B.熔铸时间过长C.包埋材料的耐火度高D.铸件间间隔距离过近E.包埋材料的化学纯度高 阅读以下关于电子政务系统安全体系结构的叙述,回答问题1至问题3。博学公司通过投标,承担了某省级城市的电子政务系统,由于经费、政务应用成熟度、使用人员观念等多方面的原因,该系统计划采用分阶段实施的策略来建设,最先建设急需和重要的部分。在安全建设方面,先投入一部分资 治疗幼年特发性关节炎全身型时不常选用的药物是A.泼尼松B.阿司匹林C.甲氨蝶呤D.吲哚美辛E.布洛芬 从房地产开发企业的角度看,房地产开发过程中投入的资源,下列选项中不包括()。A、土地B、资本C、环境D、劳动力 电力监督检查人员进行监督检查时,应当。 巴塞尔新资本协议的一项创新是:引入了关于的资本要求的规定。A.信用风险B.市场风险C.操作风险D.声誉风险 高度正球面镜片可使物像放大A.5%~20%B.10%~25%C.10%~20%D.20%~35%E.25%~40% 权力性影响力包括A.对下属的影响具有强迫性,不可抗拒性B.比较稳定C.下属信服D.影响力持久E.对下属的态度和行为的影响起主导作用 仓库应设避雷设备。A、危险品B、任何C、贵重物品D、劳保 在使用辅助检查时,哪一项是不适宜的A.严格地掌握适应证B.应该广泛地依赖辅助检查C.有利于提高医生认识疾病的能力D.应从患者的利益出发决定做什么项目E.结合临床应用辅助检查手段 什么是医德医风? 《灵枢·本神》认为"任物"之脏是A.心B.肺C.脾D.肝E.肾 29岁,男,因发热、头痛、全身酸痛、软弱无力6天入院。当天起出现心慌、气促,体温39.6℃。体检:面色苍白,腓肠肌压痛,心率130次/分,呼吸36次/分。肺部散在湿性啰音。血象:血白细胞计数9.2×109/L,中性粒细胞0.76,淋巴细胞0.24。X线摄片示:两肺纹理增多,有散在性点状阴 下列光伏系统器件中,能实现DC-AC(直流-交流)转换的器件是。A.太阳电池B.蓄电池C.逆变器D.控制器 宜放在药斗架较下层的药组是A.黄芪、当归、甘草B.月季花、玫瑰花、地骨皮C.龙骨、石膏与石决明D.焦麦芽、焦山楂、焦神曲E.陈皮、枳实、枳壳 向0.10mol•L-1HCl溶液中通H2S气体至饱和(0.10mol•L-3),溶液中S2-浓度为(H2S:=9.110-8,=1.110-12)()。A.['['1.010-18mol•L-1B.1.10-12mol•L-1C.1.010-19mol•L-1D.9.510-5mol•L-1 设空间直线的对称式方程为,则该直线必。A.过原点且垂直于x轴B.过原点且垂直于y轴C.过原点且垂直于z轴D.过原点且平行于x轴 类白血病反应的特点是A.外周血白细胞>50×109/LB.外周血出现幼稚细胞,NAP活性增高C.骨髓中幼稚粒细胞增高D.脾显著肿大E.Ph’染色体阳性 对于探讨性、争议性的问题最适合选择的教学方法为A.讲授法B.讨论法C.谈话法D.实验法E.角色扮演法 枳实导滞丸的组成药物中不含。A.大黄;泽泻B.枳实;黄芩C.神曲;茯苓D.黄连;白术E.木香;半夏 6~12个月小儿每日需睡眠时间为A.15~20小时B.15~16小时C.12~14小时D.11~12小时E.9~10小时