航天发动机涡轮叶片失效分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航空发动机涡轮叶片失效分析
涡轮叶片是航空发动机最主要的部件之一,高温1600-1800度长期工作、要承受300米/秒左右的风速、高负荷(根据作用力的大小确定)、结构复杂的典型热端机械构件,它的设计制造性能和可靠性直接关系到整台发动机的性能水平耐久性和寿命。为了提高发动机的推重比,叶片设计时常采用比强度高的新材料;采用先进复杂的冷却结构及工艺;降低工作裕度等措施来实现。因此,研究涡轮叶片失效分析对提高发动机工作安全及正确评估叶片的损伤形式和损伤程度有重要意义。
1.涡轮转子叶片结构特点
现代航空发动机多处采用多级轴流式涡轮。涡轮叶片具有气动力翼型型面,为了使燃气系统排出的燃气流竜在整个叶片长度上做等量得功,并保证燃气流以均匀的轴向速度进入排气系统从叶根到叶尖有一个扭角,叶尖处的扭角比叶根处要大。
涡轮转子叶片在涡轮盘上的固定方法十分重要,现代大多数燃气涡轮发动机转子都采用“枞树形”榫齿。这种榫齿精确加工和设计,以保证所有榫齿都能按比例承受载荷。当涡轮静止时,叶片在榫槽内有一定的切向活动量;而当涡轮转动时,离心力将叶根拉紧在盘上。
涡轮叶片材料是保证涡轮性能和可靠性的基础,涡轮叶片早期是用变形高温合金,采用锻造的方法制造。由于发动机设计与精铸技术的发展,发动机涡轮叶片从变形合金发展为铸造合金从实心发展为空心,从多晶发展为单晶,从而大大提高了叶片的耐热性能。由于镍基单晶超合金具有卓越的高温蠕变性能已成为制造航空发动机热端部件的重要材料。
涡轮叶片的工作条件和受力分析
2.叶片的工作条件
涡轮叶片时直接利用高温高速燃气做功的关键部件,温度高负荷大应力状态复杂工作环境非常恶劣。涡轮叶片在高温燃气的工作条件下,高温氧化和燃气腐蚀则是其主要的表面损伤形式。氧和硫是影响镍基合金高温合金氧化抗力最有害的两种元素。氧化晶界扩散与晶界上的Cr。Al..。和Ti等元素发生化学反应形成氧化物,然后氧化物开裂,使疲劳裂纹萌生与扩展。硫以引起晶界脆化的方式加速疲劳裂纹的萌生与扩展。
涡轮转子叶片在工作中一直处于高温工作状态,因此热疲劳和高温蠕变性能也是涡轮转子叶片的重要失效抗力指标。
涡轮转子叶片主要是共振,在一般情况下很少出现颤振。
3.涡轮转子叶片受力分析
发动机在工作时,作用在涡轮转子叶片上的力主要有以下几种:叶片自身质量产生的离心力;作用在叶片上的弯曲应力;热应力;振动应力。
3.1叶片自身质量产生的离心力
涡轮叶片任一垂直于叶片轴线横截面上的离心拉应力,等于该截面上的离心力沿叶片轴线方向的分量与截面面积之比。常用数值积分法求不同截面上的离心拉伸应力,将叶片分成n段,从叶尖到叶根有0,1,2,……,n,共n+1个截面,该叶片第i个截面面积为Ai则该截面上的离心拉伸应力为
(3-1)
叶片分段愈小,计算结果就越精确。离心拉伸应力在叶尖截面处为零。向叶根方向逐渐增大,根部截面的离心拉伸应力最大。
3.2作用在叶片上的弯曲应力
燃气驱动涡轮转子叶片,有很大的横向其体力作用在叶片上,从而产生弯曲应力,还会引起扭转应力。若转子叶片各截面重心的连线不与z轴重合,则叶片旋转时产生的离心力还将引起离心力弯矩。作用在转子叶片某一截面上的总弯矩应等于作用在该截面上的气体力弯矩和离心力弯矩的代数和
3.3热应力
对于涡轮叶片转子,不仅工作温度高,而且叶型厚度变化大。在燃气的冲击下,会产生很大的热应力。此外。发动机工作状态的变化,使叶片的温度也随之变化,尤其在启动停车时温度变化更为剧烈。在发动机使用过程中,每启动和停车一次,涡轮叶片上就会出现一次交变的热应力。一般可用下列公式进行简单的计算
(3-3)
式中——零件指定部位热应力;
E——材料的弹性模量;
——材料的热膨胀系数;
——受热部件指定部位的温度变化梯度。
热应力对涡轮转子叶片强度的影响是不可忽视的。一方面材料的力学性能随温度升高而降低,另一方面叶片上的某些部位总应力将增大,这就使叶片的安全裕度明显下降。为了提高涡轮叶片的安全裕度应采取措施减小热应力,其中包括:
1。在满足气动性能的前提下,尽量减小叶片的厚度差,特别是排气边缘不可过薄。有时可将叶片设计成空心的,以使壁厚尽可能均匀。
2。采取适当的冷却方法,使叶片的温度下降,温差减小,以降低热应力。
3。选用导热性能好的叶片材料,使叶片上的温度分布尽快趋向均匀,以减少热应力。
3.4振动应力
由于气流的扰动等原因会激起叶片振动,使叶片产生交变的弯曲应力和扭转应力。大量失效分析结果表明,涡轮叶片的断裂失效,大多数是由于在离心应力的基础上叠加了振动应力所致。下一部分将单独讨论。
4.转子叶片的振动类型及其特征
转子叶片在工作状态下要承受大的离心应力载荷,如果再叠加上非正常工作情况下引起的振动交变载荷则极有可能导致叶片早起疲劳断裂失效。大部分转子叶片的疲劳断裂失效均与各种类型的振动有关。
4.1转子叶片的震动分类与基本振型
涡轮叶片在实际工作中出现振动,按振动的表现形式分,主要有强迫振动、颤振、旋转失速和随机振动四种;按照叶片振动里的来源分,有强迫振动和自激振动;按作用在叶片上的应力分有振动弯曲应力和扭转应力。
对于实际叶片振动分析,主要是自振频率、振型、振动应力和激振力的来源四个因素。在一般清快下,频率越高,振幅越小,危险性也就越小,大幅低频振动最为危险。
振型是指叶片以某阶自振频率振动时,叶片各部分的相对振动关系。典型的振型有一弯、二弯、三弯和一扭、二扭等。对于涡轮转子来说,主要是一弯和一扭振型。
4.1.1尾流激振
在发动机环形气流通道中存在障碍物,当叶片转子经过这些障碍物时,叶片所受的气动力将有所改变,会引起激振力。火焰筒出口流场分布是不均匀的,对于涡轮转子会产生类似于均布障碍物的影响也会引起激振力。
4.1.2颤振
颤振属于自激振动,叶片的振型与频率都与尾流激振大致相同,它与强迫振动不同之处在于它不伴有任何带频率的激振力。颤振的频率基本上由叶片本身的几何尺寸和材料性质所决定,因而称为“自激振动”。
颤振有亚音速失速、亚音速非失速、超音速失速、超音速非失速及堵塞颤振等。叶片自激振动时必然要从气流中吸取能量,以补偿震动的阻尼场。发生颤振的必要条件是气流攻角大于临界攻角,叶背气流分离引起升力变化,导致颤振。颤振多发生在压气机转子叶片,而涡轮转子叶片很少见到颤振。颤振的危害性很大,可在极短时间内使叶片发生断裂失效,而且往往使一个扇形面内的多个叶片断裂。
4.1.3随机振动
随机振动在各个频率下都有激振力,这些激振力作用在叶片上,会引起叶片普遍的强迫振动,而在某几个频率下引起共振,这几个频率就是叶片的自振频率。随机振动的激振源是强大的噪声,故又将此引起的叶片疲劳成为噪声疲劳,噪声源是叶片对气流的干扰和气流燃烧。噪声越大,激振力越强,叶片受损可能性越大。
5.叶片的失效模式
分析叶片产生失效的主要原因,归纳起来主要包括:热疲劳在内的低循环疲劳。振动引起的高循环疲劳,高温长时间载荷作用下的蠕变变形和蠕变应力断裂,高温燃气冲刷腐蚀和氧化、以及外物损伤等。转子叶片的失效模式随工作条件的不同而有所不同,主要是外物损伤、变形伸长和断裂三种失效形式。
叶片的外物损伤失效主要表现为凹坑、掉块、表层剥落、弯曲变形、裂纹和折断等。其中凹坑、裂纹等损伤往往会成为腐蚀和疲劳断裂的初因。
转子叶片变形伸长失效的直接后果是叶身与机匣相磨,降低发动机的使用可靠性。其主要原因有:材料选用不当或热处理工艺不当使叶片的屈服强度偏低;叶片工作温度过高,是叶片强度降低;或者发动机超转,造成离心力过高。叶片变形失效在实际使用中出现的概率较低。判断叶片是否发生变形伸长的主要依据是检查机匣有无磨损的痕迹或检查叶片是否由于使用温度过高而发生蠕变。