一次函数与几何图形综合题,精选十道,道道经典。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题训练:一次函数与几何图形综合
1、直线y=-2x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB
(1) 求AC 的解析式;
(2) 在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并
证明你的结论。
(3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的值不
变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。
2.(本题满分12分)如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。
(1)当OA=OB 时,试确定直线L 的解析式;
x
y
o B
A C
P
Q
x
y
o B
A C
P
Q
M
第2题图①
(2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。
(3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。
3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+,
(1)求直线2l 的解析式;(3分)
第2题图②
第2题图③ C
B A
l 2
l 1
x
y
(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作
作CF ⊥3l 于F 分别,请画出图形并求证:BE +
CF =
(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。(6分)
4.如图,在平面直角坐标系中,A(a,0),B(0,b),且a、
b满足.
(1)求直线AB的解析式;
(2)若点M为直线y=mx上一点,且△ABM是以AB为底的等腰直角三角形,求m值;
(3)过A点的直线交y轴于负半轴于P,N点的横坐标为-1,过N点的直线
交AP于点M,试证明的值为定值.
5.如图,直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x 轴负半轴于C,且OB:OC=3:1。
(1)求直线BC的解析式:
(2)直线EF:y=kx-k(k≠0)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由?
(3)如图,P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发现变化?若不变,请求出它的坐标;如果变化,请说明理由。
6.如图l,y=-x+6与坐标轴交于A、B两点,点C在x轴负半轴上,S△OBC=S△AOB.
(1)求直线BC的解析式;
(2)直线EF:y=kx-k交AB于E点,与x轴交于D点,交BC的延长线于点F,且S△BED=S
k的值;
△FBD,求
(3)如图2,M(2,4),点P为x轴上一动点,AH⊥PM,垂足为H点.取HG=HA,连CG,当P点运动时,∠CGM大小是否变化,并给予证明.
7.在平面直角坐标系中,一次函数y=ax+b的图像过点B(-1,),与x轴交于点A (4,0),与y轴交于点C,与直线y=kx交于点P,且PO=PA
(1)求a+b的值;
(2)求k的值;
(3)D为PC上一点,DF⊥x轴于点F,交OP于点E,若DE=2EF,求D点坐标.
8.如图,在平面直角坐标系中,直线y =2x +2交y ,轴交于点A ,交x 轴于点B ,将A 绕B 点逆时针旋转90°到点C .
(1)求直线AC 的解析式;
(2)若CD 两点关于直线AB 对称,求D 点坐标;
(3)若AC 交x 轴于M 点P (,m )为BC 上一点,在线段
BM 上是否存在点N ,使PN 平分△BCM 的面积?若存在,求N 点坐标;若不存在,说明理由.
9、如图,直线AB 交x 轴正半轴于点A (a ,0),交y 轴正半轴于点
B (0, b ),且a 、b 满足4 a + |4-b |=0
(1)求A 、B 两点的坐标;
(2)D 为OA 的中点,连接BD ,过点O 作OE ⊥BD 于F ,交AB 于E ,求证∠BDO =∠EDA ;
(3)如图,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt △PBM ,其中PB =PM ,直线
MA 交y 轴于点Q ,当点P 在x 轴上运动时,线段OQ 的长是否发生变化?若不变,
求其值;若变化,求线段OQ 的取值范围.
A B
O D E
F
y x
A
B
O M
P
Q
x
y