三极管的基本放大电路分析(ppt) (ppt)
合集下载
电工电子三极管放大电路 (共87张PPT)
任务二 学习放大电路的主要性能指标 睡昆杭霈簧渡烀蛟谊延隙黄槲镁缴扶笏劈瞒瓴皙厩绛弋昆獍榕尾美荠捂袜潴汗挡宪板括舐涤
• 差模输入信号uid——大小相等而极性相反的两个输入信号。
(a)扩音机的功能框图 这种失真是因为三极管进入饱和引起的
任务三 学习放大电路的图解分析法 ②共射极放大电路的倒相作用——ib、ic与ui 相位相同;
图6-3 简化的单管放大电路
(a)信号直接输入输出
(b)变压器耦合信号输入输出
图6-4 信号输入输出的其他形式
2 放大电路中电压和电流符号的规定
• 表6-1 放大电路中电压和电流的符号
名称
直流值
交流分量
瞬时值
有效值
总电压或 电流
瞬时值
基极电流
IB
ib
集电极电流 发射极电流
IC IE
ic ie
集-射极电压
• 1.三极管微变等效电路 • 2.放大电路的微变等效电路
1.三极管微变等效电路
• (1)输入端等效
• 如果输入信号很小,可认为三极管在静态工 作点附近的工作段是线性的
• uCE为常数的条件下,当晶体管在静态工 作点上叠加一个交流信号时,有输入 电压的微小变化量ΔuBE以及相应的基极电
流变化量ΔiB。
• 设输入信号ui=ωt V,则晶体三极管发射
结上的总电压
• uBE=UBEQ+ui=(+ωt)在之间变化。 • 由于晶体三极管工作在输入特性曲线
的线性区,随着uBE的变化,工作点沿 着Q→Q1→Q→Q2→Q往复变化,故iB随 ui按正弦规律变化,变化范围为20~60μA
之间,
• 即ib=20sinωt μA
大电路输出端看进去的等效内阻称为输出电阻ro。
• 差模输入信号uid——大小相等而极性相反的两个输入信号。
(a)扩音机的功能框图 这种失真是因为三极管进入饱和引起的
任务三 学习放大电路的图解分析法 ②共射极放大电路的倒相作用——ib、ic与ui 相位相同;
图6-3 简化的单管放大电路
(a)信号直接输入输出
(b)变压器耦合信号输入输出
图6-4 信号输入输出的其他形式
2 放大电路中电压和电流符号的规定
• 表6-1 放大电路中电压和电流的符号
名称
直流值
交流分量
瞬时值
有效值
总电压或 电流
瞬时值
基极电流
IB
ib
集电极电流 发射极电流
IC IE
ic ie
集-射极电压
• 1.三极管微变等效电路 • 2.放大电路的微变等效电路
1.三极管微变等效电路
• (1)输入端等效
• 如果输入信号很小,可认为三极管在静态工 作点附近的工作段是线性的
• uCE为常数的条件下,当晶体管在静态工 作点上叠加一个交流信号时,有输入 电压的微小变化量ΔuBE以及相应的基极电
流变化量ΔiB。
• 设输入信号ui=ωt V,则晶体三极管发射
结上的总电压
• uBE=UBEQ+ui=(+ωt)在之间变化。 • 由于晶体三极管工作在输入特性曲线
的线性区,随着uBE的变化,工作点沿 着Q→Q1→Q→Q2→Q往复变化,故iB随 ui按正弦规律变化,变化范围为20~60μA
之间,
• 即ib=20sinωt μA
大电路输出端看进去的等效内阻称为输出电阻ro。
(中职)2-2 三极管基本放大电路 ppt课件
1.放大电路中各元件的作用
(1) V :三极管,起电流放大作用,是放大电路的核心器件。
(2)V CC :直流电源,有两个作用。一是为三极管的发射结提供正偏电压和为集电
结提供反偏电压,保证三极管工作于放大区;二是给放大电路提供能源。
(3) R b :基极偏置电阻,使发射结获得正偏置电压,向三极管的基极提供合适的
2.放大电路中电压、电流符号的规定
在放大电路中,既有输入信号源 v i 产生的交流量,又有直流电源 V CC 产生的直流量。
因此,为了避免电路分析时出现符号上的混淆,特作如下规定:
(1)大写物理量符号加大写下标,表示直流信号。如 I B 表示基极直流电流。
(2)小写物理量符号加小写下标,表示交流信号。如 i b 表示基极交流电流。
【教学难点】
1.基本共射极放大电路放大信号的工作原理。 2.三种放大电路的电路结构及(中性职能)2比-2较三。极管基本放大电路 ppt
课件
2.2.1 基本共射放大电路 2.2.2 小信号放大器的主要性能指标 ﹡ 2.2.3 三种基本放大电路的性能比较
(中职)2-2 三极管基本放大电路 ppt 课件
(3)小写物理量符号加大写下标,表示交流和直流叠加信号。如 iB IB ib 表示
基极电流的总和。
(4)大写物理量符号加小写下标,表示交流信号的有效值。如 I b 表示基极交流电
流的有效值。
(中职)2-2 三极管基本放大电路 ppt 课件
3.放大电路的工作原理
放大电路在未加输入信号时( vi 0 )的工作状态称为静态。此时,三极管
各电极上只有直流电压和直流电流,称其为三极管的静态工作点,用下标Q表示,
如 V BEQ 、I BQ 、V CEQ 、 I CQ 。
三极管放大电路的三种基本组态ppt.(ppt)
Rb
+VCC
C1
+
VT C2
Rs +
ui
us -
-
+
Re
RL uo
-
+ Rs
+ ui us
-
b ib
ic c
rbe
βib
Rb
e
+
Re
RL uo
-
上页 下页 首页
+ Rs
+ ui us
-
b ib
ic c
rbe
βib
Rb
e
Re
RL
ii
b ib
eie
R s +
+ ui
+ uo
u s-
-
-
rbe
βib
ic c
b ib
e - ie
+ Rs us+ ui
rbe Rb
iC βib
+
RL Re
uo
--
-
c
Ri = Rb //[ rbe + (1 + β) Re´] = 118kΩ
Ro =
rbe 1
+Rs´ +β
//
Re
= 0.26kΩ = 260Ω
Aus =
Ri Rs + Ri
Au =
118 10+ 118
×
0.993
io +
uo Re -
b ib
e - ie
+
rbe
+
Rs us+ ui Rb
iC βib
三极管基本放大电路ppt课件
(a)原理电路
(b)实物图
精品课件
发射极单管放大电路各组成元件的作用
精品课件
电路中各电流、电压的符号规定
电路中既包含输入信号所产生的交流量,又包含直流电源所产生 的直流量。为了区分不同分量,通常做了以下规定
精品课件
放大电路原理图的画法
1.直流通路和交流通路 【直流通路】指静态时放大电路直流电流通过的路径。 画直流通路原则 :将电容视为开路。
确定出静态工作点Q。
以单管共射放大电路为例,其直流通路如右下图所示。设电路参数VCC、 Rb、RC和三极管放大倍数β已知,忽略三极管的UBEQ(硅管UBEQ≈0.7V,锗 管UBEQ≈0.3V),可以推导得:
IBQVCC UBEQ VCC
Rb
Rb
ICQ=βIBQ
UCEQ = VCC-ICQ RC
由上述公式求得的IB、 IC和UCE值即是静态工作点Q。
Ro=Ron
精品课件
多级放大电路的耦合方式
多级放大电路中每个单管放大电路称为“级”,级与级之间的连接 方式叫耦合。下表为三种常用耦合方式的比较。
精品课件
本章小结
1.三极管由两个PN结构成,按结构分为NPN和PNP两类。三极管的集电极 电流受基极电流的控制,所以三极管是一种电流控制器件。在满足发 射结正偏、集电结反偏的条件下,具有电流放大的作用。三极管的输 出特性曲线可分成截止区、饱和区、放大区。
所以,分压式偏置放大电路具有自动调整功能,当ICQ要增加时,电路 不让其增加;当ICQ要减小时,电路不让其减小;从而迫使ICQ稳定。所以 该电路具有稳定静态工作点的作用。B>>UBEQ
精品课件
C C V Q Q C E I I T V ec RR QEB Q B U I 2 1 b b R R Q B U 21 II
三极管ppt课件完整版
常见故障现象及诊断方法
诊断方法
测量三极管的耐压值是否降低,观察电路是否有过载现象,若确认 损坏则更换三极管。
故障现象3
三极管漏电流过大。
诊断方法
测量三极管的漏电流是否超过规定值,若过大则检查电路是否存在漏 电现象,并更换三极管。
常见故障现象及诊断方法
故障现象4
三极管热稳定性差。
诊断方法
检查三极管的散热条件是否良好,测量其热稳定性参数是否在规定范围内,若异常则改善散热条件或 更换适合的三极管型号。
组成
输入回路、输出回路、耦合电容、直流电源。
工作原理
共基放大电路的特点是输入回路与输出回路共用一个电极,即基极。输入信号加在三极管的发射极和基极之间, 输出信号从集电极取出。由于共基放大电路的输入阻抗低,输出阻抗高,因此具有电压放大倍数大、频带宽等优 点。
共集放大电路组成及工作原理
组成
输入回路、输出回路、耦合电容、直流电源 。
真加剧。而截止频率则限制了三极管能够放大的信号频率范围。
03
三极管基本放大电路分析
共射放大电路组成及工作原理
组成
输入回路、输出回路、耦合电容、直流电源。
工作原理
利用三极管的电流放大作用,将输入信号放大并输出。输入信号加在三极管的基 极和发射极之间,输出信号从集电极取出,经过耦合电容与负载相连。
共基放大电路组成及工作原理
偏置电路类型及其作用
固定偏置电路
01
提供稳定的基极电流,使三极管工作在放大区。
分压式偏置电路
02
通过电阻分压为基极提供合适的偏置电压,使三极管具有稳定
的静态工作点。
集电极-基极偏置电路
03
利用集电极电阻的压降为基极提供偏置电压,适用于某些特殊
三极管ppt课件
生变化。
晶体管截止频率影响
晶体管的截止频率限制了其放大高频信号 的能力,当输入信号频率接近或超过截止 频率时,晶体管放大倍数急剧下降。
负载效应影响
在高频段,负载效应对信号产生较大的影 响,使得输出信号的幅度和相位发生变化 。
05
三极管功率放大电路设计 与应用
功率放大电路类型及特点
甲类功率放大电路
采用单电源供电,输出端通过大容量电容与负载耦合,具 有电路简单、成本低等优点,但电源功率利用率较低且存 在较大的非线性失真。
集成功率放大器简介与应用
集成功率放大器概述
将功率放大电路与必要的辅助电路集成在同一芯片上,具 有体积小、重量轻、可靠性高等优点。
集成功率放大器的应用
广泛应用于音响设备、电视机、计算机等电子设备中,用 于驱动扬声器、耳机等负载,提供足够的输出功率和良好 的音质效果。
工作点设置在截止区,主要用于高频功率放大,效率很高但非线性失 真严重。
OCL和OTL功率放大电路设计实例
要点一
OCL(Output Capacitor Less )功…
采用双电源供电,输出端与负载直接耦合,具有低失真、 高效率等优点,但需要较大的电源功率和输出电容。
要点二
OTL(Output Transformer Less…
02
三极管基本放大电路
共射放大电路组成及原理
组成
输入回路、输出回路、耦合电容、直 流电源
特点
电压放大倍数大,输出电阻较大,输 入电阻适中
原理
利用三极管的电流放大作用,将输入 信号放大并
共基放大电路组成及原理
01
02
03
组成
输入回路、输出回路、耦 合电容、直流电源
晶体管截止频率影响
晶体管的截止频率限制了其放大高频信号 的能力,当输入信号频率接近或超过截止 频率时,晶体管放大倍数急剧下降。
负载效应影响
在高频段,负载效应对信号产生较大的影 响,使得输出信号的幅度和相位发生变化 。
05
三极管功率放大电路设计 与应用
功率放大电路类型及特点
甲类功率放大电路
采用单电源供电,输出端通过大容量电容与负载耦合,具 有电路简单、成本低等优点,但电源功率利用率较低且存 在较大的非线性失真。
集成功率放大器简介与应用
集成功率放大器概述
将功率放大电路与必要的辅助电路集成在同一芯片上,具 有体积小、重量轻、可靠性高等优点。
集成功率放大器的应用
广泛应用于音响设备、电视机、计算机等电子设备中,用 于驱动扬声器、耳机等负载,提供足够的输出功率和良好 的音质效果。
工作点设置在截止区,主要用于高频功率放大,效率很高但非线性失 真严重。
OCL和OTL功率放大电路设计实例
要点一
OCL(Output Capacitor Less )功…
采用双电源供电,输出端与负载直接耦合,具有低失真、 高效率等优点,但需要较大的电源功率和输出电容。
要点二
OTL(Output Transformer Less…
02
三极管基本放大电路
共射放大电路组成及原理
组成
输入回路、输出回路、耦合电容、直 流电源
特点
电压放大倍数大,输出电阻较大,输 入电阻适中
原理
利用三极管的电流放大作用,将输入 信号放大并
共基放大电路组成及原理
01
02
03
组成
输入回路、输出回路、耦 合电容、直流电源
三极管及放大电路—差分放大电路(电子技术课件)
共模信号:
ui1 = ui2 大小相同,极性相同 差模输入信号: uid = ui1 – ui2= 2ui1 共模输入信号: uic = ui1 = ui2
Rc1uo
T1
RL
+ VCC Rc2 T2
ui1 uid
ui2
Re – VEE
2.差模输入
(1)双端输出时差模交流通路
T1
ui1 uid
ui2
(dB)
20 lg
Aud Auc
在理想情况下,KCMR=∞,集成电路 一般为 120 ~ 140 dB。
3.共模抑制比 (3)单端输出时共模电压放大倍数和共模抑制比
Rc1
Rc2
T1 RL uoc
T2
uic
2Re
2Re
单端输出共模交流通路
Auc1
uoc uic
R'L 2(1 )Re
R'L 2 Re
RL uo
差模输入电阻: Rid = 2rbe 差模输出电阻: Ro = 2Rc 与单管共射放大电路类似。
2.差模输入 (4)单端输出时差模电压放大倍数
Aud1
uo uid
uo1 2ui1
1 2
Aud1
Rc
2rbe
带负载RL时:Aud1
R'L
2rbe
RL Rc // RL
T1
ui1 uid
ui1 uid
ui2
Re – VEE
当 ui1 =ui2 = 0 时: VEE = UBEQ + IERe IE = (VEE – UBE) / REE IC1 = IC2 (VEE – UBE) / 2Re UC1 = UC2 = VCC – IC1Rc uo = UC1 – UC2 = 0
ui1 = ui2 大小相同,极性相同 差模输入信号: uid = ui1 – ui2= 2ui1 共模输入信号: uic = ui1 = ui2
Rc1uo
T1
RL
+ VCC Rc2 T2
ui1 uid
ui2
Re – VEE
2.差模输入
(1)双端输出时差模交流通路
T1
ui1 uid
ui2
(dB)
20 lg
Aud Auc
在理想情况下,KCMR=∞,集成电路 一般为 120 ~ 140 dB。
3.共模抑制比 (3)单端输出时共模电压放大倍数和共模抑制比
Rc1
Rc2
T1 RL uoc
T2
uic
2Re
2Re
单端输出共模交流通路
Auc1
uoc uic
R'L 2(1 )Re
R'L 2 Re
RL uo
差模输入电阻: Rid = 2rbe 差模输出电阻: Ro = 2Rc 与单管共射放大电路类似。
2.差模输入 (4)单端输出时差模电压放大倍数
Aud1
uo uid
uo1 2ui1
1 2
Aud1
Rc
2rbe
带负载RL时:Aud1
R'L
2rbe
RL Rc // RL
T1
ui1 uid
ui1 uid
ui2
Re – VEE
当 ui1 =ui2 = 0 时: VEE = UBEQ + IERe IE = (VEE – UBE) / REE IC1 = IC2 (VEE – UBE) / 2Re UC1 = UC2 = VCC – IC1Rc uo = UC1 – UC2 = 0
三极管放大电路-PPT..
多级放 大器常 用的耦 合方式
1.阻容耦合
阻容耦合就是利用电容作为耦合和隔直流元件。
阻容耦合方式
• 阻容耦合的
• 优点是:
• 前后级直流通路彼此隔开,每一级的静态工作点 都相互独立。便于分析、设计和应用。
• 缺点是:
• 信号在通过耦合电容加到下一级时会大幅度衰减 。在集成电路里制造大电容很困难,所以阻容耦 合只适用于分立元件电路。
2.3.2 用微变等效电路法分析放大电路
• 1画出放大电路的交流通路
用微变等 效电路法 分析放大 电路的步
骤
• 2用相应的等效电路代替三极管
• 3计算性能指标
小知识 输入电阻是从输入端看放 大电路的等效电阻,输出电阻是 从输出端看放大电路的等效电阻 。因此,输入电阻要包括RB ,而 输出电路就不能把负载电阻算进 去。
本章导读
第2章 基本放大电路
本章重点学习基本放大电路的工作原理和 放大电路的基本分析方法。同时介绍放大电路的 性能指标,并介绍多级放大电路及应用。
本章以共射极的基本放大电路为基础,分析 放大电路的原理和实质,讲述了电压偏置电路的 意义。通过图解法和微变等效电路两种方法,讨 论如何设置工作点,计算输入电阻、输出电阻和 电压放大倍数,了解多级放大电路的级间耦合方 式及场效应管放大电路。
2.3 微变等效电路
• 2.3.1 放大电路的微变等效电路 • 1.晶体管的微变等效电路 • 放大电路的微变等效电路,其核心是晶体管的
微变等效电路。
晶体管的微变等效电路
• 2.共射极放大电路的微变等效电路
• 小知识
• 交流通路上电压、电流都是交变量,既可 用交流量表示,也可以用相量表示,上图 箭标表示它们的参考方向。
三极管放大电路介绍ppt课件
1. BJT的高频小信号模型
rbe
(1
β
)
VT I EQ
rbb rbe rbe
混合型高频小信号模型
gm
Ib
Vb'e
I EQ VT
1
单级共射极放大电路的频率响应高频响应
2
单级共射极放大电路的频率响应高频响应
3
2. 低频响应
①低频等效电路
4
2. 低频响应
①低频等效电路
Rb=(Rb1 || Rb2)远大于Ri
2、扩散的方法,参杂浓
度高
26
5.1.1 N沟道增强型MOSFET
1. 结构(N沟道)
剖面图 漏极d: Drain 栅极g: Gate 源极s: source
符号
27
5.1.1 N沟道增强型MOSFET
2. 工作原理 (1)栅源电压vGS对沟道的控制作用
VT 称为开启电压
28
RE’=15//ri2=2.12 kΩ
Ri=750//(rbe1+(1+50)* RE’ ) =98 kΩ
RR0=i=4.?3//{(rbe3+220//6.2)/51}=145Ω
放大电 路的增 益??
21
放大电路的频率响应
一、选择正确答案填入空内。 1、对于单管共射放大电路,当f = fL时,Uo 与 Ui 是C 。
增强型
N沟道 P沟道
耗尽型
N沟道 P沟道
N沟道 (耗尽型)
P沟道
耗尽型:场效应管没有加偏置电压时,就有导电沟道存在 增强型:场效应管没有加偏置电压时,没有导电沟道
25
5.1.1 N沟道增强型MOSFET
1. 结构(N沟道) 通常 W > L
rbe
(1
β
)
VT I EQ
rbb rbe rbe
混合型高频小信号模型
gm
Ib
Vb'e
I EQ VT
1
单级共射极放大电路的频率响应高频响应
2
单级共射极放大电路的频率响应高频响应
3
2. 低频响应
①低频等效电路
4
2. 低频响应
①低频等效电路
Rb=(Rb1 || Rb2)远大于Ri
2、扩散的方法,参杂浓
度高
26
5.1.1 N沟道增强型MOSFET
1. 结构(N沟道)
剖面图 漏极d: Drain 栅极g: Gate 源极s: source
符号
27
5.1.1 N沟道增强型MOSFET
2. 工作原理 (1)栅源电压vGS对沟道的控制作用
VT 称为开启电压
28
RE’=15//ri2=2.12 kΩ
Ri=750//(rbe1+(1+50)* RE’ ) =98 kΩ
RR0=i=4.?3//{(rbe3+220//6.2)/51}=145Ω
放大电 路的增 益??
21
放大电路的频率响应
一、选择正确答案填入空内。 1、对于单管共射放大电路,当f = fL时,Uo 与 Ui 是C 。
增强型
N沟道 P沟道
耗尽型
N沟道 P沟道
N沟道 (耗尽型)
P沟道
耗尽型:场效应管没有加偏置电压时,就有导电沟道存在 增强型:场效应管没有加偏置电压时,没有导电沟道
25
5.1.1 N沟道增强型MOSFET
1. 结构(N沟道) 通常 W > L
三极管及放大电路—放大电路的微变等效电路分析法(电子技术课件)
二、放大电路动态指标的估算
1.性能指标估算
共射放大电路微变等效电路
(1)电压放大倍数的估算
•
•
AU
UO
.•
Ui
•
•
Ui Ib rbe
•
•
Uo Ib R'(L R'L RC // RL )
•
•
故共射放大电路的电压放大倍数为:
•
AU
UO
.•
Ui
I b R'L
•
Ibr be
R'L
rbe
•
•
如果不考虑 U i 和 U o各自的相位关系,则上式也可以写成:
AU
UO
.
Ui
I b R'L
Ibr be
R'L
rbe
式中“-”表示输入信号与输出信号相位相反。
空载时电压倍数:
Au
RC rbe
Au Au 说明:放大电路带上负载后放大倍数将降低。
(2)输入电阻ri
(3)输出电阻ro
ro Rc
2.输入电阻ri
放大电路的输入端可以用一个等效交流电阻ri来表示,它定义为:
ri
ui ii
+
rs
us -
+ ii
ui -
放大电路
ro
ri
+
uo′ -
+ io
RL
uo
-
ri
ro
放大器接到信号源上以后,就相当于信号源的负载电阻,ri 越大表示放
大器从信号源索取的电流越小,信号利用率越高。
3.输出电阻ro
一是放大倍尽可能大; 二是输出信号尽可能不失真。 主要技术指标有:放大倍数、输入电阻、输出电阻。
三极管的基本放大电路分析()
U CC , 在纵轴上得N点(0, RC )
连接M N 即直流负载线
(2) 求静态工作点
直流负载线与iB=IB对应的那条输出特性曲线的交 点Q, 即为静态工作点, 如图7.3(b)所示
(a)
(b)
图7.3 静态工作点的图解
[例7.1] 试用估算法和图解法求图7.4 (a) 所示放 大电路的静态工作点, 已知该电路中的三极管β=37.5, 直流通路如图7.4(b)所示, 输出特性曲线如图7. 4 (c) 所 示。
IE
300 (1 37.5) 26mV 1.5mA
= 967Ω
Au
RL/ rbe
37.5 (4 // 4) 0.967
78
Ri = RB // rbe=300 // 0.967≈0.964kΩ
Ro=RC=4kΩ
20 断开RL后
A u
RC rbe
37.5 4 0.967
156
② 发射极电阻RE:引入直流负反馈稳定静态工 作点。一般阻值为几千欧。
③ 发射极旁路电容CE:对交流而言,CE短接 RE ,确保放大电路动态性能不受影响。一般CE 也选择 电解电容,容量为几十微法。
(2) 稳定工作点原理 ① 利用RB1和RB2的分压作用固定基极UB。 ② 利用发射极电阻RE产生反映Ic变化的UE,再 引回到输入回路去控制UBE,实现IC基本不变。
Ro/
U I
RC
图 7. 18 不接CE时求输出电阻的等效电路
将有关数据分别代入上式得 A/u = - 0.36 R /i =103.25 kΩ R /o =3 kΩ
1.射极偏置电路
(a)电路图
(b)微变等效电路
图 7.15 射极偏置电路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Uo Ro= Io
图 7. 13 放大电路的输入电阻和输出电阻
由图7.12可知 Uo Ro= = RC Io 工程中,可用实验的方法求取输出电阻。在放大 电路输入端加一正弦电压信号,测出负载开路时的输 出电压U/o;然后再测出接入负载RL时的输出电压Uo, 则有
U o/ Uo RL Ro RL
截止。 (2) RB 减小时,IB 增大,Q点抬高,三极管趋向 于饱和。此时三极管均会失去放大作用。
7.1.3 动态分析
1. 图解法
(1) 负载开路时输入和输出电压、电流波形的分
析 根据ui波形,在输入特性曲线上求iB和uBE的波形 根据iB波形,在输出特性曲线和直流负载线上求 iC、 uRC和uCE的变化 ,如图7.5所示。
图7.5(a)
(2) 带负载时输入和输出电压、电流波形分析 作交流负载线: 10 先作出直流负载线MN,确定Q点。 20 在uCE坐标轴上,以UCE为起点向正方向取一段IC R/L 的电压值,得到C点。
30 过CQ作直线CD,即为交流负载线,如图7. 5所
示。 (3) 放大电路的非线性失真
截止失真:
图 7.17 不接CE 时的电路
由图7. 17(b)可得:
Ui I b rbe I e RE I b rbe (1 ) I b RE U o I o ( RC // RL ) I C RL I b RL
故:
A/
u
Uo I b RL RL = U i I b rbe (1 ) I b RE rbe (1 ) RE
三极管进人截止区而引起的失真 。通
过减小基极偏置电阻RB的阻值来消除。
图7.5(b)
饱和失真: 三极管进入饱和区而引起的失真。通过增 大基极偏置电阻RB的阻值来 消除。
失真波形如图7.6所示。
图 7. 6 截止失真
饱和失真: 三极管进入饱和区而引起的失真。通 过增大基极偏置电阻RB的阻值来 消除。 失真波形如图7.7所示。
T↑→ Ic ↑→IE ↑→UE↑ →UBE ↓→IB↓→IC↓
(3) 静态分析 该电路的静态工作点一般用估算法来确定,具体 步骤如下:
RB 2 ① 由:UB UCC,求UB。 RB1 RB 2
② ③ 由:IE U B ,求IC、IE 。
RE
由IC=βIB,求IB。
④
由UCE = UCC - ICRC - IERE ≈ UCC - IC(RC+RE)
U CC U BE IB RB
IB U CC RB
(7. 1a)
(7.1b)
(7. 2) (7.3)
IC≈βIB UCE = UCC - IC RC
2. 图解法 (1) 作直流负载线 由 uCE = UCC - iC RC 令iC=0时,uCE= UCC,在横轴上得M点(UCC ,0)
(4) uCE中的交流分量uce经过C2畅通地传送给负载
RL,成为输出交流电压uo,,实现了电压放大作用。
7.1.2 静态分析
静态分析就是要找出一个合适的静态工作点,通常 由放大电路的直流通路来确定。如图7.2所示。
图7.2 共发射极放大电路的直流通路和静态工作点
静态分析通常有两种方法 1. 估算法
M点(12,0); N点(0,3)
MN与iB=IB=40μA的那条输出特性曲线相交点,即 是 静 态 工 作 点 Q 。 从 曲 线 上 可 查 出 : IB=40μA , IC=1.5mA,UCE=6V。与估算法所得结果一致。 3.电路参数对静态工作点的影响
(1) RB 增大时,IB减小,Q点降低,三极管趋向于
求UCE 。
(4) 动态分析 该电路动态性能指标一般用微变等效电路来确定, 具体步骤为: ① 画出微变等效电路,如图7.15(c); ② 求电压放大倍数 、输入电阻Ri 、输出电阻Ro 。 比较图7.15(c)和图7.12(c)可知:射极偏置放大电路 的动态性能与共发射极基本放大电路的动态性能一样。
U CC U CC 令uCE=0时, ,在纵轴上得N点(0, ) RC RC
连接M N 即直流负载线
(2) 求静态工作点 直流负载线与iB=IB对应的那条输出特性曲线的交 点Q,即为静态工作点,如图7.3(b)所示
(a) (b) 图7.3 静态工作点的图解
[例7.1] 试用估算法和图解法求图7.4 (a) 所示放大 电路的静态工作点,已知该电路中的三极管β=37.5,直 流通路如图7.4(b)所示,输出特性曲线如图7. 4 (c) 所示。
图7.14
[例7. 3]的图
解:10 由[例7. 1]可知 IE≈1.5mA 故
26m V 26m V rbe 300 (1 ) 300 (1 37.5) IE 1.5m A
= 967Ω
/ RL 37.5 (4 // 4) Au 78 rbe 0.967
(b)微变等效电路
图 7.15 射极偏置电路
(1) 各元件作用 ① 基极偏置电阻RB1、RB2:RB1、RB2为三极管提 供一个大小合适的基极直流电流IB ,调节RP的阻值, 可控制IB的大小。R的作用是防止RP阻值调到零时,烧 坏三极管。一般RB1 的阻值为几十千欧至几百千欧; RB2的阻值为几十千欧。 ② 发射极电阻RE:引入直流负反馈稳定静态工作 点。一般阻值为几千欧。
本章将依据上述原则,介绍几种常用的基本放大 电路的组成,讨论它们的工作原理、性能指标和基本 分析方法。掌握这些基本放大电路,是学习和应用复 杂电子电路的基础。 7.1共发射极放大电路
7.1.1电路组成及各元作用 1. 电路的组成
图7.1 共发射极基本放大电路
2. 各元件作用 (1) 三极管V:实现电流放大。
③ 发射极旁路电容CE:对交流而言,CE短接RE ,
确保放大电路动态性能不受影响。一般CE 也选择电解 电容,容量为几十微法。
(2) 稳定工作点原理 ① 利用RB1和RB2的分压作用固定基极UB。 ② 利用发射极电阻RE产生反映Ic变化的UE,再引 回到输入回路去控制UBE,实现IC U
CC
I C ( RC RE ) 12-1.4(3+2)=5V
20 求Au、Ri、Ro
26(m V ) rbe =300+(1+β) =300+(1+50) I E (m A) 3 1 / =R ∥R = 0.75 kΩ R L C L 3 1
26 =1.25 kΩ 1 .4
图 7.16 [例7. 4]的电路
解:10 求静工作点 UB
RB 2 6.2 U CC 12 =3.5V RB1 RB 2 15 6.2
U B U BE 3.5 0.7 1.4mA IC I E RE 2
IB
IC
1.4 0.028mA=28μA 50
图 7. 7 饱和失真
为了减小和避免非线性失真,必须合理地选择静 态工作点Q的位置,并适当限制输入信号ui 的幅度。一
般情况下,Q点应大致选在交流负载线的中点,当输入
信号ui 的幅度较小时,为了减小管子的功耗,Q点可适 当选低些。若出现了截止失真,通常采用提高静态工 作点的办法来消除,即通过减小基极偏置电阻RB的阻 值来实现;若出现了饱和失真,则反向操作,即增大
(2) 集电极直流电源UCC :确保
三极管工作在放大状态。 (3) 集电极负载电阻RC :将三极管集电极电流的变 化转变为电压变化,以实现电压放大。 (4) 基极偏置电阻RB :为放大电路提供静态工作点。 (5) 耦合电容C1和C2 :隔直流通交流。
3.工作原理 (1) ui直接加在三极管V的基极和发射极之间,引起 基极电流iB作相应的变化 。 (2) 通过V的电流放大作用, V的集电极电流iC也将变化 。 (3) iC的变化引起V的集电 极和发射极之间的电压uCE变化。
图7. 4 [例7. 1]的图
解: 10 用估算法求静态工作点 由式(7. 1)~(7. 3)得 IB≈0.04mA=40µ A IC≈βIB=37.5×0.04mA=1.5mA UCE=UCC - ICRC=12-1.5×4=6V 20 用图解法求静态工作点 由 uCE = UCC - iCRC = 12 - 4iC 得
Ri = RB // rbe=300 // 0.967≈0.964kΩ Ro=RC=4kΩ
20 断开RL后
RC 37.5 4 156 Au rbe 0.967
Ri = RB // rbe = 300 // 0.967≈0.964kΩ
Ro= RC = 4kΩ
7.1.4 稳定工作点的电路
图 7.15(c) 射极偏置电路的微变等效电路
[例7.4] 试求:
在图7.16所示的电路中,三极管的β=50,
10 静态工作点。
20 电压放大倍数、输入电阻、输出电阻。 30 不接CE 时的电压放大倍数、输入电阻、输出电 阻。 40 若换用β=100的三极管,重新计算静态工作点和 电压放大倍数。
第7章 基本放大电路
放大电路的功能是利用三极管的电流控制作用, 或场效应管电压控制作用,把微弱的电信号(简称信 号,指变化的电压、电流、功率)不失真地放大到所 需的数值,实现将直流电源的能量部分地转化为按输 入信号规律变化且有较大能量的输出信号。放大电路 的实质,是一种用较小的能量去控制较大能量转换的 能量转换装置。 放大电路组成的原则是必须有直流电源,而且电 源的设置应保证三极管或场效应管工作在线性放大状 态;元件的安排要保证信号的传输,即保证信号能够 从放大电路的输入端输入,经过放大电路放大后从输 出端输出;元件参数的选择要保证信号能不失真地放 大,并满足放大电路的性能指标要求。
故:
RL 0.75 Au= = -50× = -30 1.25 rbe