中考数学第21讲 矩形、菱形、正方形(含答案)

合集下载

2015年中考数学复习专题复习第二十一讲矩形 菱形 正方形(含参考答案)

2015年中考数学复习专题复习第二十一讲矩形 菱形 正方形(含参考答案)

第二十一讲矩形菱形正方形【基础知识回顾】一、矩形:1、定义:有一个角是角的平行四边形叫做矩形2、矩形的性质:⑴矩形的四个角都⑵矩形的对角线3、矩形的判定:⑴用定义判定⑵有三个角是直角的是矩形⑶对角线相等的是矩形【名师提醒:1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条2、矩形被它的对角线分成四个全等的三角形和两对全等的三角形3、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题】二、菱形:1、定义:有一组邻边的平行四边形叫做菱形2、菱形的性质:⑴菱形的四条边都⑵菱形的对角线且每条对角线3、菱形的判定:⑴用定义判定⑵对角线互相垂直的是菱形⑶四条边都相等的是菱形【名师提醒:1、菱形既是对称图形,也是对称图形,它有条对称轴,分别是2、菱形被对角线分成四个全等的三角形和两对全等的三角形3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决的题目】三、正方形:1、定义:有一组邻边相等的是正方形,或有一个角是直角的是正方形2、性质:⑴正方形四个角都都是角,⑵正方形四边条都⑶正方形两对角线、且每条对角线平分一组内角3、判定:⑴先证是矩形,再证⑵先证是菱形,再证【名师提醒:1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特殊四边形的所有性质。

这四者之间的关系可表示为:2、正方形也既是对称图形,又是对称图形,有条对称轴3、几种特殊四边形的性质和判定都是从、、三个方面来看的,要注意它们的区别和联系】【重点考点例析】考点一:与矩形有关的折叠问题例1 (2014•黔南州)如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE一定等于30°思路分析:根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.考点二:和菱形有关的对角线、周长、面积的计算问题例2 (2014•宜宾)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是________cm.思路分析:根据菱形的对角线互相垂直且平分各角,可设较小角为x,因为邻角之和为180°,∴x+2x=180°,所以x=60°,画出其图形,根据三角函数,可以得到其中较长的对角线的长.考点三:和正方形有关的证明题例3 (2014•菏泽)已知:如图,正方形ABCD,BM、DN分别平分正方形的两个外角,且满足∠MAN=45°,连结MN.(1)若正方形的边长为a,求BM•DN的值.(2)若以BM,DN,MN为三边围成三角形,试猜想三角形的形状,并证明你的结论.思路分析:(1)根据角平分线的定义求出∠CBM=∠CDN=45°,再求出∠ABM=∠ADN=135°,然后根据正方形的每一个角都是90°求出∠BAM+∠NAD=45°,三角形的一个外角等于与它不相邻的两个内角的和∠BAM+∠AMB=45°,从而得到∠NAD=∠AMB,再求出△ABM和△NDA相似,利用相似三角形对应边成比例列式求解即可;(2)过点A作AF⊥AN并截取AF=AN,连接BF、FM,根据同角的余角相等求出∠1=∠3,然后利用“边角边”证明△ABF和△ADN全等,根据全等三角形对应边相等可得BF=DN,∠FBA=∠NDA=135°,再求出∠FAM=∠MAN=45°,然后利用“边角边”证明△AFM和△ANM全等,根据全等三角形对应边相等可得FM=NM,再求出△FBM是直角三角形,然后利用勾股定理判断即可.考点四:四边形综合性题目【迁移拓展】由条件AD•CE=DE•BC联想到三角形相似,从而得到∠A=∠ABC,进而补全等腰三角形,△DEM与△CEN的周长之和就可转化为AB+BH,而BH是△ADB的边AD 上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解决问题.【聚焦山东中考】CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A.22 B.18 C.14 D.113.(2014•枣庄)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=23BE,则长AD与宽AB的比值是______ .4.(2014•日照)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC 边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.5.(2014•潍坊)如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin ∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.【备考真题过关】一、选择题1.(2014•郴州)下列性质中,平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等2.(2014•珠海)边长为3cm的菱形的周长是()4.(2014•齐齐哈尔)如图,四边形ABCD是矩形,AB=6cm,BC=8cm,把矩形沿直线BD折叠,点C落在点E处,BE与AD相交于点F,连接AE,下列结论:①△FBD是等腰三角形;②四边形ABDE是等腰梯形;③图中共有6对全等三角形;④四边形BCDF的周长为532cm;⑤AE的长为145cm.其中结论正确的个数为()A.2个B.3个C.4个D.5个5.(2014•天水)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和BC′F的周长之和为()A.3 B.4 C.6 D.86.(2014•上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍7.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°8.(2014•宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…An 分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n-1 C.n114⎛⎫⎪⎝⎭-D.1n49.(2014•本溪)如图,边长为2的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=kx(x>0)的图象上,已知点B的坐标是(65,115),则k的值为()A.4 B.6 C.8 D .1010.(2014•烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN 与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°11.(2014•攀枝花)如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO∥12BG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.其中正确的结论有()A.1个B.2个C.3个D.4个12.(2014•牡丹江)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题13.(2014•桂林)如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是________.14.(2014•郴州)如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD 沿CE折叠后,点B落在AD边的F点上,则DF的长为________.15.(2014•宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB= ________cm.16.(2014•巴中)菱形的两条对角线长分别是方程2x-14x+48=0的两实根,则菱形的面积为________.17.(2014•齐齐哈尔)已知正方形ABCD的边长为2cm,以CD为边作等边三角形CDE,cm则△ABE的面积为_____218.(2014•十堰)如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是_______ (只填写序号).三、解答题第二十一讲矩形菱形正方形答案【重点考点例析】考点一:与矩形有关的折叠问题例1 解:∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A、B选项正确;在△AEB 和△CED 中,BAE DCE AEB CED AB CD ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AEB ≌△CED (AAS ), ∴BE=DE ,故C 正确; ∵得不出∠ABE=∠EBD ,∴∠ABE 不一定等于30°,故D 错误. 故选:D .考点二:和菱形有关的对角线、周长、面积的计算问题 例2 解:解:∵菱形的周长为20cm ∴菱形的边长为5cm ∵两邻角之比为1:2 ∴较小角为60° 画出图形如下所示: ∴∠ABO=30°,AB=5cm ,∵最长边为BD ,BO=AB •cos ∠ABO=5∴BD=2BO=考点三:和正方形有关的证明题∴BM •DN=AB •AD=2a ;(2)以BM ,DN ,MN 为三边围成的三角形为直角三角形.证明如下:如图,过点A 作AF ⊥AN 并截取AF=AN ,连接BF 、FM ,∵∠1+∠BAN=90°,∠3+∠BAN=90°,∴∠1=∠3,在△ABF 和△ADN 中,AB AD 13AF AN ⎧⎪∠∠⎨⎪⎩===,∴△ABF ≌△ADN (SAS ),∴BF=DN ,∠FBA=∠NDA=135°,∵∠FAN=90°,∠MAN=45°,∴∠1+∠2=∠FAM=∠MAN=45°,在△AFM 和△ANM 中,AF AN FAM MANAM AM ⎧⎪∠∠⎨⎪⎩===,∴△AFM ≌△ANM (SAS ),∴FM=NM ,∴∠FBP=180°-∠FBA=180°-135°=45°,∴∠FBP+∠FBM=45°+45°=90°,∴△FBM 是直角三角形,∵FB=DN ,FM=MN ,∴以BM,DN,MN为三边围成的三角形为直角三角形.∴CF=PD-PE.【聚焦山东中考】1.C.2.A.34.(1)证明:过点F 作FG ⊥BC 于点G .∵∠AEF=∠B=∠90°,∴∠1=∠2.在△ABE 和△EGF 中,12B FGE 90AE EF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ABE ≌△EGF (AAS ).∴AB=EG ,BE=FG .又∵AB=BC ,∴BE=CG ,∴FG=CG ,∴∠FCG=∠45°,即CF 平分∠DCG ,∴CF 是正方形ABCD 外角的平分线.(2)∵AB=3,∠BAE=30°,∠tan30°=BE AB,在Rt △CFG 中,cos45°=C G CF , ∴5.(1)证明:如图1,∵E ,F 分别是正方形ABCD 边BC ,CD 的中点, ∴CF=BE ,在Rt △ABE 和Rt △BCF 中,AB BC ABE BCF BE CF ⎧⎪∠∠⎨⎪⎩===∴Rt △ABE ≌Rt △BCF (SAS ),∠BAE=∠CBF ,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE ⊥BF .(2)解:如图2,根据题意得,FP=FC ,∠PFB=∠BFC ,∠FPB=90° ∵CD ∥AB ,∴∠CFB=∠ABF ,∴∠ABF=∠PFB ,∴QF=QB ,令PF=k (k >0),则PB=2k在Rt △BPQ 中,设QB=x ,∴222x x k 4k =-+(), ∴x=5k 2,∴sin ∠BQP= B P 2k 45k QP 52==, (3)解:∵正方形ABCD 的面积为4,∴边长为2,∵∠BAE=∠EAM ,AE ⊥BF ,∴AN=AB=2,∵∠AHM=90°,∴GN ∥HM , ∴2AGN AHM S AN ()S AM =,∴2AGN S 1=, ∴AGN 4S 5=, ∴AHM AGN GHMN 41S S S 155=-=-=四边形, ∴四边形GHMN 的面积是1 5.【备考真题过关】一、选择题1.A.2.C.3.D4.C.5.C.6.B.7.C.8.B.9.C.10.C. 11.C. 12.C. 二、填空题。

2011年中考数学试题精选汇编《矩形、菱形、正方形》

2011年中考数学试题精选汇编《矩形、菱形、正方形》

2011年中考数学试题精选汇编《矩形、菱形、正方形》一、选择题1. (2011浙江省舟山,10,3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 2. (2011山东德州8,3分)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n (B )4n (C )12n + (D )22n +【答案】C3. (2011山东泰安,17 ,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为A.17B.17C.18D.19图1图2 图3……(第10题) FA B C D H E① ②③ ④ ⑤4. (2011山东泰安,19 ,3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE 折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为A.23B. 332C. 3D.6【答案】A5. (2011浙江杭州,10,3)在矩形ABCD中,有一个菱形B F D E(点E,F分别在线段AB,CD上),记它们的面积分别为ABCD BFDES S和.现给出下列命题:()①若ABCDBFDESStan EDF∠=.②若2,DE BD EF=∙则2DF AD=.则:A.①是真命题,②是真命题 B.①是真命题,②是假命题C.①是假命题,②是真命题 D,①是假命题,②是假命题【答案】A6. (2011浙江衢州,1,3分)衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡AF AG、分别架在墙体的点B、点C处,且AB AC=,侧面四边形BDEC为矩形,若测得100FAG∠=︒,则FBD∠=( )A. 35°B. 40°C. 55°D. 70°【答案】C7. (2011浙江温州,6,4分)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( )A.2条B.4条C.5条D.6条8. 2011四川重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C9. (2011浙江省嘉兴,10,4分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 10.(2011台湾台北,29)如图(十二),长方形ABCD 中,E 为BC 中点,作AEC 的角平分线交AD 于F 点。

2020年中考数学考点总动员第20讲 矩形、菱形和正方形(含答案解析)

2020年中考数学考点总动员第20讲 矩形、菱形和正方形(含答案解析)

第20讲矩形、菱形和正方形1.矩形、菱形、正方形的性质2.矩形、菱形、正方形的判定矩形:①有一个角是直角的平行四边形;②对角线相等的平行四边形;③有三个角是直角四边形;菱形:①有一组邻边_相等_的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等的四边形;正方形:①一组邻边相等的矩形;②有一个角是直角的菱形;③对角线互相垂直且相等的平行四边形。

3.平行四边形、矩形、菱形、正方形之间的关系考点1:矩形性质与判定【例题1】(2019湖北咸宁市)((7分)在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).【分析】(1)首先证明四边形DEFC是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断.(2)连接EC,DF交于点O,作射线BO即可.【解答】(1)证明:∵D,E,F分别是AC,AB,BC的中点,∴DE∥FC,EF∥CD,∴四边形DEFC是平行四边形,∵∠DCF=90°,∴四边形DEFC是矩形.(2)连接EC,DF交于点O,作射线BO,射线BO即为所求.归纳:与矩形有关的计算:(1)若题目中涉及矩形的折叠,要注意折叠前后对应线段相等、对应角相等,即被折叠的角折叠之后在任何位置依旧是直角;(2)因为矩形四个角都是直角,则想到将所求或涉及的线段放在直角三角形中,常用到勾股定理,特殊角三角函数的计算;(3)常结合矩形对角线相等且互相平分的性质,故可根据矩形对角线的关系应用全等三角形的判定和性质或等腰三角形的性质进行求解. 考点2:菱形的性质与判定【例题2】在菱形ABCD 中,对角线AC 与BD 相交于点O.(1)如图1,若点E ,F 分别为边AB ,AD 的中点,连接EF ,OE ,OF ,求证:四边形AEOF 是菱形;图1 图2(2)如图2,若E ,F 分别在射线DB 和射线BD 上,且BE =DF. ①求证:四边形AECF 是菱形;②若∠AEC =60°,AE =6,AB =BE ,求AB 的长.【点拨】(1)利用直角三角形斜边上中线等于斜边的一半,结合四条边相等的四边形是菱形证明;(2)对于①可利用对角线互相垂直且平分的四边形是菱形进行证明,对于②可利用菱形的性质,转化到Rt △ABO 中进行求解. 【解答】解:(1)证明:∵点E ,F 分别为AB ,AD 的中点, ∴AE =12AB ,AF =12AD.又∵四边形ABCD 是菱形,∴AB =AD ,AC ⊥BD. ∵E ,F 是AB ,AD 的中点,∴AE =AF =OF =OE. ∴四边形AEOF 是菱形.(2)①证明:∵四边形ABCD 是菱形,∴OD =OB ,OA =OC ,BD ⊥AC. ∵BE =DF ,∴OB +BE =OD +DF ,即OE =OF. ∴四边形AECF 是菱形.②∵四边形AECF 是菱形,∴AE =CE ,AO ⊥EF ,∠AEO =∠CEO. ∵∠AEC =60°,∴∠AEO =30°. ∵AE =6,∴AO =3.∵AB =BE ,∴∠BAE =∠AEB =30°.∴∠ABO =∠AEB +∠BAE =60°. ∴在Rt △AOB 中,AB =AO sin ∠ABO =3sin60°=2 3.归纳:1.菱形判定的一般思路:首先判定四边形是平行四边形,然后根据平行四边形的邻边相等判定是菱形,这是判定菱形的最基本思路,同时也可以考虑其他判定方法,例如若能判定平行四边形对角线垂直即可判定为菱形等; 2.应用菱形性质计算的一般思路:菱形四边相等;菱形对角线相互垂直:常借助勾股定理和锐角三角函数来求线段的长,有一个角为60°的菱形,60°所对的对角线将菱形分成两个全等的等边三角形.也可以根据菱形既是轴对称图形,又是中心对称图形,结合它的对称性得出的一些结论. 考点3: 正方形的性质与判定【例题3】(2018·遵义)如图,正方形ABCD 的对角线相交于点O ,点E ,F 分别在AB ,BC 上(AE <BE),且∠EOF =90°,OE ,DA 的延长线交于点M ,OF ,AB 的延长线交于点N ,连接MN. (1)求证:OM =ON ;(2)若正方形ABCD 的边长为4,E 为OM 的中点,求MN 的长.【解析】:(1)证明:∵四边形ABCD 是正方形, ∴OA =OB ,∠DAO =∠OBA =45°. ∴∠OAM =∠OBN =135°. ∵∠EOF =∠AOB =90°, ∴∠AOM =∠BON. ∴△OAM ≌△OBN(ASA). ∴OM =ON.(2)过点O 作OH ⊥AD 于点H. ∵正方形ABCD 的边长为4, ∴OH =HA =2. ∵E 为OM 的中点, ∴A 为HM 的中点. ∴HM =4.∴OM=22+42=2 5.∴MN=2OM=210.归纳: 1.证明一个四边形是正方形的方法是先证明它是矩形,再证明它是菱形;或先证明它是菱形,再证明它是矩形,其证明过程往往需要借助全等三角形.2.在正方形中求解策略是:利用正方形四个角都是直角或对角线互相垂直且平分相等,通过勾股定理求解.注:正方形可以看作两个全等的等腰直角三角形以斜边为重合边拼接在一起.一、选择题:1. (2019•南京•2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【答案】B【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.2. (2019•浙江绍兴•4分)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变【答案】D【解答】解:∵正方形ABCD和矩形ECFG中,∠DCB=∠FCE=90°,∠F=∠B=90°,∴∠DCF=∠ECB,∴△BCE∽△FCD,∴,∴CF•CE=CB•CD,∴矩形ECFG与正方形ABCD的面积相等.故选:D.3. (2018·新疆生产建设兵团·5分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【答案】D【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.4. (2018广西贵港)如图,在菱形ABCD中,,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B. C.2 D.4.5【答案】C【解答】解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P 、M 即为使PE+PM 取得最小值, 其PE+PM=PE′+PM=E′M, ∵四边形ABCD 是菱形, ∴点E′在CD 上,∵AC=6 ,BD=6,∴AB=3,由S 菱形ABCD =12AC•BD=AB•E′M 得12××6=3 •E′M,解得:E′M=2,即PE+PM 的最小值是2 ,故选:C .5. (2018广西南宁)如图,矩形纸片ABCD ,AB=4,BC=3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP=OF ,则cos∠ADF 的值为( )A .1113 B .1315 C .1517D .1719【答案】C【解答】根据折叠,可知:△DCP≌△DEP, ∴DC=DE=4,CP=EP .在△OEF 和△OBP 中,,∴△OEF≌△OBP(AAS ), ∴OE=OB,EF=BP .设EF=x ,则BP=x ,DF=DE ﹣EF=4﹣x ,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC ﹣BP=3﹣x ,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=35,∴DF=4﹣x=175,∴cos∠ADF=ADDF=1517.故选:C.二、填空题:6. 已知正方形ABCD边长为2,E是BC边上一点,将此正方形的一只角DCE沿直线DE折叠,使C点恰好落在对角线BD上,则BE的长等于.【答案】4﹣2.【解答】解:∵四边形ABCD是正方形,∴CD=2,BD=2,∠EBD=45°,∵将此正方形的一只角DCE沿直线DE折叠,使C点恰好落在对角线BD上,∴DC′=DC=2,∠DC′E=∠C=90°,∴BC′=2﹣2,∠BC′E=90°,∴BE=BC′=4﹣2,故答案为:4﹣2.7. (2019•四川省凉山州•5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为 4 .【答案】4【解答】解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.8. (2018广西贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.【答案】70°.【解答】解:∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.9. (2019•湖北省咸宁市•3分)如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是②③(把正确结论的序号都填上).【答案】②③【解答】解:如图1,∵PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CP=CP,若CQ=CD,则Rt△CMQ≌△CMD,∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2,设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8﹣x)2,解得x=3,∴CN=8﹣3=5,AC=,∴,∴,∴MN=2QN=2.故③正确;当MN过点D时,如图3,此时,CN最短,四边形CMPN的面积最小,则S最小为S=,当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为S=,∴4≤S≤5,故④错误.故答案为:②③.三、解答题:10. (2019•浙江宁波•10分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【分析】(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG=∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE是平行四边形,得到AB=EG,于是得到结论.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E 为AD 中点, ∴AE=ED , ∵BG=DE , ∴AE=BG ,AE∥BG,∴四边形ABGE 是平行四边形, ∴AB=EG , ∵EG=FH =2, ∴AB=2,∴菱形ABCD 的周长=8.11. 如图,O 是矩形ABCD 的对角线的交点,E ,F ,G ,H 分别是OA ,OB ,OC ,OD 上的点. (1)若AE =BF =CG =DH.求证:四边形EFGH 是矩形;(2)若E ,F ,G ,H 分别是OA ,OB ,OC ,OD 的中点,且DG ⊥AC ,OF =2,求矩形ABCD 的面积.【点拨】(1)在矩形ABCD 对角线上有条件,同时还在四边形EFGH 对角线上有条件,所以可通过对角线判定矩形;(2)求矩形ABCD 的面积可转化成求AC 与DG 的积或转化成AD 与CD 的积. 【解答】解:(1)证明:∵四边形ABCD 是矩形, ∴OA =OB =OC =OD.∵AE =BF =CG =DH ,∴OE =OF =OG =OH. ∴四边形EFGH 是矩形.(2)∵四边形ABCD 是矩形,∴OA =OB =OC =OD.∵OE =12OA ,OF =12OB ,OG =12OC ,OH =12OD ,∴OE =OF =OG =OH.∴四边形EFGH 是矩形.∵DG ⊥AC ,OG =2,∴OD =4.∴DG =2 3.又∵AC =4OF =8,∴S △ADC =12AC ·DG =8 3.∴S 矩形ABCD =2S △ADC =16 3.12. (2019•山东省滨州市 •13分)如图,矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG ∥CD 交BE 于点G ,连接CG . (1)求证:四边形CEFG 是菱形;(2)若AB =6,AD =10,求四边形CEFG 的面积.【分析】(1)根据题意和翻着的性质,可以得到△BCE ≌△BFE ,再根据全等三角形的性质和菱形的判定方法即可证明结论成立;(2)根据题意和勾股定理,可以求得AF 的长,进而求得EF 和DF 的值,从而可以得到四边形CEFG 的面积. 【解答】(1)证明:由题意可得, △BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE , ∵FG ∥CE , ∴∠FGE =∠CEB , ∴∠FGE =∠FEG , ∴FG =FE , ∴FG =EC ,∴四边形CEFG 是平行四边形, 又∵CE =FE ,∴四边形CEFG 是菱形;(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF , ∴∠BAF =90°,AD =BC =BF =10, ∴AF =8, ∴DF =2,设EF =x ,则CE =x ,DE =6﹣x , ∵FDE =90°, ∴22+(6﹣x )2=x 2,解得,x =,∴CE =,∴四边形CEFG 的面积是:CE •DF =×2=.13. 已知:在边长为8的正方形ABCD 的各边上截取AE =BF =CG =DH.(1)如图1,连接AF ,BG ,CH ,DE ,依次相交于点N ,P ,Q ,M ,求证:四边形MNPQ 是正方形; (2)如图2,若连接EF ,FG ,GH ,HE. ①求证:四边形EFGH 是正方形;②当四边形EFGH 的面积为50 cm 2时,求tan ∠FEB 的值.图1 图2【点拨】(1)先证明四边形MNPQ 是矩形,再证明一组邻边相等;(2)①先证明四边形EFGH 是菱形,再证明它是矩形;②利用勾股定理,求BE ,BF ,再利用正切三角函数定义求值. 【解答】解:(1)证明:∵四边形ABCD 是正方形, ∴AB =BC =CD =DA ,∠BAD =∠ABC =∠BCD =∠CDA =90°. 在△ABF 和△BCG 中,⎩⎪⎨⎪⎧AB =BC ,∠ABC =∠BCD ,BF =CG ,∴△ABF ≌△BCG(SAS). ∴∠BAF =∠GBC.∵∠BAF +∠AFB =90°,∴∠GBC +∠AFB =90°. ∴∠BNF =90°.∴∠MNP =∠BNF =90°.∴同理可得∠NPQ =∠PQM =90°.∴四边形MNPQ 是矩形. 在△ABN 和△BCP 中,⎩⎪⎨⎪⎧∠BAF =∠CBG ,∠ANB =∠BPC ,AB =BC ,∴△ABN ≌△BCP(AAS). ∴AN =BP.在△AME 和△BNF 中,⎩⎪⎨⎪⎧∠BAF =∠GBC ,∠AME =∠BNF ,AE =BF ,∴△AME ≌△BNF(AAS).∴AM =BN.∴MN =NP.∴四边形MNPQ 是正方形. (2)①证明:∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB =BC =CD =DA. 又∵AE =BF =CG =DH ,∴AH =BE =CF =DG. ∴△AEH ≌△BFE ≌△CGF ≌△DHG(SAS). ∴EH =FE =GF =GH ,∠AEH =∠BFE. ∴四边形EFGH 是菱形.∵∠BEF +∠BFE =90°,∴∠BEF +∠AEH =90°.∴∠HEF =90°. ∴四边形EFGH 是正方形.②∵四边形EFGH 的面积为50 cm 2,∴EF 2=50 cm 2. 设BE =CF =x cm ,则BF =(8-x)cm.在Rt △BEF 中,由勾股定理,得BE 2+BF 2=EF 2,即x 2+(8-x)2=50. 解得x 1=1,x 2=7.当BE =1 cm 时,BF =7 cm ,tan ∠FEB =BFBE =7;当BE =7 cm 时,BF =1 cm ,tan ∠FEB =BF BE =17.∴tan ∠FEB 的值为17或7.14. (2019•湖南株洲•8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC.BD 的交点,连接CE.DG . (1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM =,求正方形OEFG 的边长.【分析】(1)由正方形ABCD与正方形OEFG,对角线AC.BD,可得∠DOA=∠DOC=90°,∠GOE=90°,即可证得∠GOD=∠COE,因DO=OC,GO=EO,则可利用“边角边”即可证两三角形全等(2)过点M作MH⊥DO交DO于点H,由于∠MDB=45°,由可得DH,MH 长,从而求得HO,即可求得MO,再通过MH ∥DG,易证得△OHM∽△ODG,则有=,求得GO即为正方形OEFG的边长.【解答】解:(1)∵正方形ABCD与正方形OEFG,对角线AC.BD∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为2。

21、正方形与特殊四边形的综合PPT课件

21、正方形与特殊四边形的综合PPT课件

中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
18Biblioteka 202X权威 ·预 测1. 如图所示,矩形 ABCD 的面积为 10 cm2,它的两条对角线交于点 O1,以 AB、
AO1 为邻边作平行四边形 ABC1O1,平行四边形 ABC1O1 的对角线交于点 O2,同样以
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
10
(2)若经过三次操作可得到四边形EFGH. ① 请 判 断 四 边 形 EFGH 的 形 状 为 __正__方__形____ , 此 时 AE 与 BF 的 数 量 关 系 是 __A_E_=__B__F__; ②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函 数关系式及面积y的取值范围.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
20
2. 在 Rt△AEB 中 , ∠AEB = 90° , 以 斜 边 AB 为 边 向 Rt△AEB 外 作 正 方 形 ABCD,若正方形ABCD的对角线交于点O(如图1).
(1)求证:EO平分∠AEB; (2)试猜想线段OE与EB,EA之间的数量关系,请写出结论并证明.
A.四边形ABCD由矩形变为平行四边形 B.BD的长度增大 C.四边形ABCD的面积不变 D.四边形ABCD的周长不变
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测

中考数学专题训练:矩形、菱形、正方形(附参考答案)

中考数学专题训练:矩形、菱形、正方形(附参考答案)

中考数学专题训练:矩形、菱形、正方形(附参考答案)1.下列命题正确的是( )A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形2.如图,D ,E ,F 分别是△ABC 各边的中点,则以下说法错误的是( )A .△BDE 和△DCF 的面积相等B .四边形AEDF 是平行四边形C .若AB =BC ,则四边形AEDF 是菱形D .若∠A =90°,则四边形AEDF 是矩形3.如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,CE ,DF 交于点G ,连接AG .下列结论:①CE =DF ;②CE ⊥DF ;③∠AGE =∠CDF .其中正确的结论是( )A .①②B .①③C .②③D .①②③4.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 为BC 的中点,连接EO 并延长交AD 于点F ,∠ABC =60°,BC =2AB .下列结论:①AB ⊥AC ;②AD =4OE ;③四边形AECF 是菱形;④S △BOE =14S △ABC .其中正确结论的个数是( )A .4B .3C .2D .15.如图,在矩形ABCD中,AB=6 cm,BC=9 cm,点E,F分别在边AB,BC上,AE=2 cm,BD,EF交于点G.若G是EF的中点,则BG的长为______cm.6.如图,在菱形ABCD中,AC,BD为菱形的对角线,∠DBC=60°,BD=10,点F为BC的中点,则EF的长为_____.7.已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点G,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.(1)如图1,求证:CE=BH;(2)如图2,若AE=AB,连接CF,在不添加任何辅助线情况下,请直接写出图2中的四个三角形(△AEG除外),使写出的每个三角形都与△AEG全等.8.如图,在菱形ABCD中,E,F,G,H分别是AB,BC,CD,AD上的点,且BE =BF=CG=AH.若菱形的面积等于24,BD=8,则EF+GH=_____.9.如图,在矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.10.(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC 到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.参考答案1.A 2.C 3.A 4.D5.√13 6.5 7.(1)证明略 (2)略8.6解析:如图,连接AC ,交BD 于点O ,∵四边形ABCD 是菱形,BD =8,∴AB =BC =AD =CD ,AC ⊥BD ,AO =OC =12AC ,BO =OD =12BD =4. ∵S 菱形ABCD =12AC ·BD =24,∴AC =6,∴AO =3,∴AB =√AO 2+BO 2=5=AD .∵BE =BF =CG =AH ,∴AE =CF =DH =DG ,∴BE AE =BF CF ,∴EF ∥AC .同理可得GH ∥AC ,设BE =BF =CG =AH =a ,则有DH =5-a ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴BE AB =EF AC ,即a 5=EF 6,∴EF =65a ,同理可得DH DA =GH CA ,即5−a 5=GH 6,∴GH =6-65a ,∴EF +GH =6.9.(1)证明略(2)与△OBF相似的三角形有△ECF,△BAF,理由略(3)DE=3+√1910.(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°.∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF.(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°.∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF.∵CH=DE,∴CF=CH.∵点H在BC的延长线上,∴∠DCH=∠DCF=90°.又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H.∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H.(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG. ∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11.∵CF+CG=FG,∴CF=FG-CG=11-8=3,即CF的长为3.。

2019届中考数学复习《矩形、菱形、正方形》专项训练题含答案

2019届中考数学复习《矩形、菱形、正方形》专项训练题含答案

2019届初三数学中考复习矩形、菱形、正方形专项复习练习1.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A.∠BAC=∠DCA B.∠BAC=∠DACC.∠BAC=∠ABD D.∠BAC=∠ADB2. 如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=( )A.5 B.4 C.3.5 D.33. 如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为( )A.2 B.3 C. 3 D.2 34. 如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC5. 下列说法:①四边相等的四边形一定是菱形;②顺次连接矩形各边中点形成的四边形一定是正方形;③对角线相等的四边形一定是矩形;④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有( )A.4个 B.3个 C.2个 D.1个6. 如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=2,BD=2,则菱形ABCD的面积为( )A.2 2 B. 2 C.6 2 D.8 27. 如图,矩形ABCD的对角线AC与BD相交于点O,C E∥BD,DE∥AC,AD=23,DE=2,则四边形OCED 的面积( )A.2 3 B.4 C.4 3 D.88. 如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC =23,∠AEO=120°,则FC的长度为( )A.1 B.2 C. 2 D. 39. 如图,矩形纸片ABCD中,AD=4 cm,把纸片沿直线AC折叠,点B落在点E处,AE交DC于点O,若AO=5 cm,则AB的长为( )A.6 cm B.7 cm C.8 cm D.9 cm10. 如图,在△ABC中,点D是边BC上的点,(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形11. 如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折至△AFE,延长EF 交边BC于G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC =3.6.其中正确结论的个数是( )A.2个B.3个C.4个D.5个12. 在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为_______________________.13. 在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是___________.14. 如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为_______.15. 如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是____.16. 如图,在△ABC中,∠ACB=90°,点D,E分别是BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE,AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.参考答案:1---11 CBDCC AAACD D12. 45°或105°13. ①③④14. 3015.2 216. 解:(1)在△ABC中,点D,E分别是边BC,AB上的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=12 AC,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE(2)当∠B=30°时,四边形ACEF为菱形.理由:在△ABC中,∠B=30°,∠ACB=90°,∴∠BAC=60°,AC=12AB=AE,∴△AEC为等边三角形,∴AC=CE,又∵四边形ACEF为平行四边形.∴四边形ACEF为菱形2019-2020学年数学中考模拟试卷一、选择题1.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=2.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B. C. D.3.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①③④B.②④C.①②③D.①②③④4.下列所述图形中,是中心对称图形,但不是轴对称图形的是A.正三角形B.平行四边形C.正五边形D.圆5.在的环湖越野赛中,甲乙两选手的行程(单位:)随时间(单位:)变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是:( )A.出发后1小时,两人行程均为;B.出发后1.5小时,甲的行程比乙多;C.两人相遇前,甲的速度小于乙的速度;D.甲比乙先到达终点.6.下列运算正确的是()A. B. C. D.7.在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( )A.75 B.90 C.105 D.1208.估计的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间9.下列形状的地砖中,不能把地面作既无缝隙又不重叠覆盖的地砖是()A.正三角形B.正方形C.正五边形D.长方形10.下列说法正确的个数是()①一组数据的众数只有一个②样本的方差越小,波动性越小,说明样本稳定性越好③一组数据的中位数一定是这组数据中的某一数据④数据:1,1,3,1,1,2的众数为4 ⑤一组数据的方差一定是正数.A.0个B.1个C.2个D.4个11.八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD中,点E、F分别在边BC、AD上,____,求证:四边形AECF是平行四边形. 你能在横线上填上最少且简捷的条件使结论成立吗?条件分别是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四边形ABCD是平行四边形.其中A、B、C、D四位同学所填条件符合题目要求的是()A.①②③④B.①②③C.①④D.④12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A .43π-B .83π-C .83π-D .843π- 二、填空题13.在实数范围内分解因式:24x -=______________________.14.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.15.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是__________.16.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____. 17.如图,已知第一象限内的点A 在反比例函数上,第二象限的点B 在反比例函数上,且OA ⊥OB ,,则k 的值为________________ .18.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是________ 三、解答题19.某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y (立方米)与x (时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x之间的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.20.某小区应政府号召,开展节约用水活动,效果显著.为了了解该小区节水情况,随机对小区的100户居民节水情况进行抽样调查,其中3月份较2月份的节水情况如图所示.(1)补全统计图;(2)计算这100户居民3月份较2月份的平均节水量;(3)已知该小区共有5000户居民,根据上面的计算结果,估计该小区居民3月份较2月份共节水多少吨?21.如图,在Rt△ABC中,∠C=90°,D是AC边上一点,tan∠DBC=43,且BC=6,AD=4.求cosA的值.22.已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.23.定义:若一个三角形一条边上的高长为这条边长的一半,则称该三角形为这条边上的“半高”三角形,这条高称为这条边上的“半高”,如图,△ABC是BC边上的“半高”三角形.点P在边AB上,PQ∥BC交AC于点Q,PM⊥BC于点M,QN⊥BC于点N,连接MQ.(1)请证明△APQ为PQ边上的“半高”三角形.(2)请探究BM,PM,CN之间的等量关系,并说明理由;(3)若△ABC的面积等于16,求MQ的最小值24.“全民阅读”活动,是中央宣传部、中央文明办和新闻出版总署贯彻落实关于建设学习型社会要求的一项重要举措.读书必须要讲究方法,只有按照一定的方法去阅读,才能取得事半功倍的效果.常用的阅读方法有:A.圈点批注法;B.摘记法;C.反思法:D.撰写读后感法;E.其他方法.某县某中学张老师为了解本校学生使用不同阅读方法读书的情况,随机抽取部分本校中学生进行了调查,通过数据的收集、整理绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:中学生阅读方法情况统计表(1)请你补全图表中的a,b,c数据:a=,b=,c=;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有人;(3)小明从以上抽样调查所得结果估计全县6000名中学生中有1200人采用“撰写读后感法”读书,你同意小明的观点吗?请说明你的理由.(4)该校决定从本次抽取的“其他方法”4名学生(记为甲,乙,丙,丁)中,随机选择2名成为学校阅读宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.25.(某中学九年级学生共600人,其中男生320人,女生280人.该校对九年级所有学生进行了一次体育模拟测试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成如下的统计表:(1)a=; b=;(2)若将该表绘制成扇形统计图,那么Ⅲ类所对应的圆心角是°;(3)若随机抽取的学生中有64名男生和56名女生,请解释“随机抽取64名男生和56名女生”的合理性;(4)估计该校九年级学生体育测试成绩是40分的人数.【参考答案】*** 一、选择题二、填空题 13.()()22x x +- 14.85° 15.47° 16.3517. 18.14三、解答题19.(1)每小时的进水量为5立方米;(2)当8≤x≤12时,y =3x+1;(3)3792x 剟. 【解析】 【分析】(1)由4点到8点只进水时,水量从5立方米上升到25立方米即能求每小时进水量;(2)由图象可得,8≤x≤12时,对应的函数图象是线段,两端点坐标为(8,25)和(12,37),用待定系数法即可求函数关系式;(3)由(2)的函数关系式即能求在8到12点时,哪个时间开始贮水量不小于28立方米,且能求出每小时的出水量;14点后贮水量为37立方米开始每小时减2立方米,即能求等于28立方米的时刻 【详解】解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米 ∴(25﹣5)÷(8﹣4)=5(立方米/时) ∴每小时的进水量为5立方米.(2)设函数y =kx+b 经过点(8,25),(12,37)8251237k b k b +=⎧⎨+=⎩解得:31k b =⎧⎨=⎩∴当8≤x≤12时,y =3x+1 (3)∵8点到12点既进水又出水时,每小时水量上升3立方米 ∴每小时出水量为:5﹣3=2(立方米) 当8≤x≤12时,3x+1≥28,解得:x≥9 当x >14时,37﹣2(x ﹣14)≥28,解得:x≤372∴当水塔中的贮水量不小于28立方米时,x 的取值范围是9≤x≤372【点睛】本题考查了一次函数的应用,解题关键是理解图象中横纵坐标代表的意义并结合题意分析图象的每个分段函数.20.(1)见解析;(2)这100户居民3月份较2月份的平均节水量为1.48 t ;(3)估计该小区5000户居民3月份较2月份共节水7400 t.【解析】【分析】(1)从图中可获得节水量在0.4-0.8t 的有5户,0.8-1.2t 的有20户,1.6-2.0t 的有30户,2.0-2.4t 的有10户,样本共100户,可求得节水1.2-1.6t 的有35户,补全图形即可;(2)运用加权平均数公式把组中值当作每组数据,户数看成权,可求得平均节水量;(3)利用样本估计总体可得结果.【详解】解:(1)100-5-20-30-10=35(户).∴节水1.2~1.6吨的有35户.补全统计图如下.(2)由统计图得每小组中的组中值分别为0.40.82+=0.6,0.8 1.22+=1.0,1.2 1.62+=1.4,1.6 2.02+=1.8,2.0 2.42+=2.2, 所以这100户居民3月份较2月份的平均节水量 =0.65 1.020 1.435 1.830 2.210100⨯+⨯+⨯+⨯+⨯=1.48(t). 答:这100户居民3月份较2月份的平均节水量为1.48 t;(3)由题意可得1.48×5000=7400(t).答:估计该小区5000户居民3月份较2月份共节水7400 t.【点睛】本题考查从统计图表中获取信息的能力,加权平均数的应用和统计中用样本估计总体的思想.21 【解析】【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值.【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8,∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =5. 【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.22.(1)见解析;(2【解析】【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【详解】(1)∵△=[﹣(m+2)]2﹣4×2m=(m ﹣2)2≥0,∴不论m 为何值,该方程总有两个实数根;(2)∵AB 、AC 的长是该方程的两个实数根,∴AB+AC =m+2,AB•AC=2m ,∵△ABC 是直角三角形,∴AB 2+AC 2=BC 2,∴(AB+AC )2﹣2AB•AC=BC 2,即(m+2)2﹣2×2m=32,解得:m ,∴m又∵AB•AC=2m ,m 为正数,∴m【点睛】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.23.(1)见解析;(2)2PM =BM+CN ,理由见解析;(3)5. 【解析】【分析】(1)根据平行相似,证明△APQ ∽△ABC ,利用相似三角形对应边的比等于对应高的比:PQ AK BC AR =,由“半高”三角形的定义可结论;(2)证明四边形PMNQ 是矩形,得PQ =MN ,PM =KR ,代入AR =12BC ,可得结论;(3)先根据△ABC 的面积等于16,计算BC 和AR 的长,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),根据勾股定理表示MQ ,配方可得最小值.【详解】(1)证明:如图,过A 作AR ⊥BC 于R ,交PQ 于K ,∵△ABC 是BC 边上的“半高”三角形,∴AR =12BC , ∵PQ ∥BC ,∴△APQ ∽△ABC , ∴PQ AK BC AR=, ∴AK AR 1PQ BC 2==, ∴AK =12PQ , ∴△APQ 为PQ 边上的“半高”三角形.(2)解:2PM =BM+CN ,理由是:∵PM ⊥BC ,QN ⊥BC ,∴∠PMN =∠MNQ =∠MPQ =90°,∴四边形PMNQ 是矩形,∴PQ =MN ,PM =KR ,∵AK =12PQ ,AR =12BC , ∴AK+RK =12(BM+MN+CN ), 12PQ+PM =12BM+12MN+12CN , ∴2PM =BM+CN ;(3)解:∵△ABC 的面积等于16, ∴12BC AR ⋅=16, ∵AR =12BC , 1122BC BC ⋅⋅=16, BC =8,AR =4,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),∵MQ ==∴当x =85时,MQ 有最小值是5.【点睛】本题是三角形的综合题,考查的是新定义:“半高”三角形,涉及到相似三角形的性质和判定、三角形面积、勾股定理及新定义的理解和运用等知识,解决问题的关键是作辅助线解决问题.24.(1)32,8,10%;(2)96;(3)1200人;(4)16. 【解析】【分析】(1)先根据“摘记法”的频数及其频率求得总人数,再根据频数、频率与总数间的关系可得a 、b 、c 的值;(2)总人数乘以样本中“反思法”学生所占比例可得;(3)利用总人数乘以撰写读后感法的百分比即可解答(4)用树状图表示出四人中随机抽取两人有12种可能,即可解答【详解】解:(1)本次调查的学生有:20÷25%=80,a =80×40%=32,b =80×(100﹣40﹣25﹣20﹣5)%=80×10%=8,c =(100﹣40﹣25﹣20﹣5)%=10%,故答案为:32,8,10%;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有:960×10%=96人,故答案为:96;(3)同意小明的观点;理由如下:全县6000名中学生中采用“撰写读后感法”读书的有:6000×20%=1200人;(4)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能, ∴抽取两人恰好是甲和乙的概率是21=126.【点睛】此题考查树状图法,扇形统计图,解题关键在于看懂图中数据25.(1)a =54;b =0.45; (2)72°;(3)“随机抽取64名男生和56名女生”比较合理;(4)该校九年级学生体育测试成绩是40分的人数约为180人.【解析】【分析】(1)先利用一类的频数除以频率计算出总频数c,再用总频数减去其余三类,即可得到a,再用a的频数除以总频数即可得到b(2)圆周角为360°,第三类占总数的0.2,所以第三类的圆心角=360°×0.2(3)根据九年级学生共600人,其中男生320人,女生280人进行反推即可解答(4)利用总人数乘频率即可解答【详解】(1)总频数=36÷0.3=120,a的频数=总频数-36-24-6=54,b频率=54÷120=0.45,a=54;b=0.45;(2)0.2×360°=72°;(3)∵6432056280== 120600120600,,∴“随机抽取64名男生和56名女生”比较合理;(4)0.3×600=180(人)答:该校九年级学生体育测试成绩是40分的人数约为180人.【点睛】此题考查了频数分布表,圆周角,用样本估计总体,熟练掌握运算法则是解题关键2019-2020学年数学中考模拟试卷一、选择题1.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m2.下列等式一定成立的是()A.2a﹣a=1 B.a2•a3=a5C.(2ab2)3=2a3b6D.x2﹣2x+4=(x﹣2)23.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为()A.20元B.42元C.44元D.46元4.二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.0<t<5 B.﹣4≤t<5 C.﹣4≤t<0 D.t≥﹣45.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为()A.8B.9.5C.10D.11.56.关于的一元二次方程有两个相等的实数根,那么的值是()A. B. C. D.7.如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=( )A.20°B.25°C.35°D.40°8.如图1,等边△ABD与等边△CBD的边长均为2,将△ABD沿AC方向向右平移k个单位到△A′B′D′的位置,得到图2,则下列说法:①阴影部分的周长为4;②当k=当k;正确的是( )A.①B.①②C.①③D.①②③9.若x是不等于1的实数,我们把11x-称为x的差倒数,如2的差倒数是11x-=﹣1,﹣1的差倒数为11(1) --=12,现已知x1=13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2019的值为()A.﹣13B.﹣2 C.3 D.410.如图,已知直线y=34x﹣6与x轴、y轴分别交于B、C两点,A是以D(0,2)为圆心,2为半径的圆上一动点,连结AC、AB,则△ABC面积的最小值是()A.26 B.24 C.22 D.2011.华为手机Mate X在5G网络下能达的理论下载速度为603 000 000B/s,3秒钟内就能下载好1GB的电影,将603 000 000用科学计数法表示为()A.603×610B.6.03×810C.60.3×710D.0.603×91012.如图,在△ABC中,AC=BC,∠C=90°,折叠△ABC使得点C落在AB边上的E处,连接DE、CE,下列结论:①△DEB是等腰直角三角形;②AB=AC+CD;③BE BDAC AB;④S△CDE=S△BDE.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题13.定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线被称为:“直角抛物线”.如图,直线l:y=15x+b经过点M(0,14),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n) (n为正整数),依次是直线l上的点,第一个抛物线与x轴正半轴的交点A1(x1,0)和A2(x2,0),第二个抛物线与x轴交点A2(x2,0)和A3(x3,0),以此类推,若x1=d(0<d<1),当d为_____时,这组抛物线中存在直角抛物线.14.如图,点为等边内一点,若,,,则的度数是__________.15.如图,正三角形ABC的边长为2,点A,B的圆上,点C在圆内,将正三角形ABC绕点A 逆时针旋转,当边AC第一次与圆相切时,旋转角为_____.16.抛物线 221y x =-的顶点坐标是________.17.命题“若a =b ,则a 3=b 3.”是真命题.它的逆命题“若a 3=b 3,则a =b”是_____(填真或假)命题.18.如图,直线y 1=mx 经过P(2,1)和Q(-4,-2)两点,且与直线y 2=kx +b 交于点P ,则不等式kx +b >mx >-2的解集为_________________.三、解答题19.关于x 的一次函数y =ax+b 与反比例函数y =k x(x >0)的图象交于点A (m ,4)和点B (4,1). (1)求m 的值和反比例函数的解析式;(2)求一次函数的解析式.20.如图1,在平面直角坐标系xOy 中,A (0,4),B (8,0),C (8,4).(1)试说明四边形AOBC 是矩形.(2)在x 轴上取一点D ,将△DCB 绕点C 顺时针旋转90°得到△D'CB'(点D'与点D 对应).①若OD =3,求点D'的坐标.②连接AD'、OD',则AD'+OD'是否存在最小值,若存在,请直接写出最小值及此时点D'的坐标;若不存在,请说明理由.21.抛物线L :y =a (x ﹣x 1)(x ﹣x 2)(常数a≠0)与x 轴交于点A (x 1,0),B (x 2,0),与y 轴交于点C ,且x 1•x 2<0,AB =4,当直线l :y =﹣3x+t+2(常数t >0)同时经过点A ,C 时,t =1.(1)点C 的坐标是 ;(2)求点A ,B 的坐标及L 的顶点坐标;(3)在如图2 所示的平面直角坐标系中,画出L 的大致图象;(4)将L 向右平移t 个单位长度,平移后y 随x 的增大而增大部分的图象记为G ,若直线l 与G 有公共点,直接写出t 的取值范围.22.从沈阳到大连的火车原来的平均速度是180千米/时,经过两次提速后平均速度为217.8干米/时,这两次提速的百分率相同.(1)求该火车每次提速的百分率;(2)填空:若沈阳到大连的铁路长396千米,则第一次提速后从甲地到乙地所用的时间比提速前少用了小时.23.立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.(1)当10≤x<60时,求y关于x的函数表达式;(2)九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?24.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规作∠ABC的平分线,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在(1)作出的图形中,若∠A=30°,BC,则点D到AB的距离等于.25.设a ,b 是任意两个不等实数,我们规定满足不等式a≤x≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b].对于一个函数,如果它的自变量x 与函数值y 满足:当m≤x≤n 时,有m≤y≤n,我们就称此函数闭区间[m ,n]上的“闭函数”.如函数y =﹣x+4.当x =1时,y =3;当x =3时,y =1,即当1≤x≤3时,有1≤y≤3,所以说函数y =﹣x+4是闭区间[1,3]上的“闭函数”(1)反比例函数2019y x是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由. (2)若二次函数y =x 2﹣2x ﹣k 是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx+b (k≠0)是闭区间[m ,n]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示).【参考答案】***一、选择题二、填空题13.1120、1320、32014.150°15.75°16.(0,-1)17.真18.-4<x <2三、解答题19.(1)m =1,y =4x ;(2)y =﹣x+5; 【解析】【分析】(1)把B 点坐标代入反比例函数解析式,即可求出m 的值,从而求出反比例函数的解析式和m 的值;(2)求得A 点坐标,进而把A 、B 点的坐标代入一次函数y =kx+b 的解析式,就可求出a 、b 的值,从而求得一次函数的解析式.【详解】(1)∵点B (4,1)在反比例函数y =k x (x >0)的图象上, ∴1=4k , ∴k =4. ∴反比例函数的解析式为y =4x∵点A(m,4)在反比例函数y=4x的图象上,∴4=4m,∴m=1.(2)点A(1,4)和点B(4,1)在一次函数y=ax+b的图象上,∴4 41 a ba b+=⎧⎨+=⎩解得15 ab=-⎧⎨=⎩∴一次函数的解析式为y=﹣x+5.【点睛】本题考查了反比例函数和一次函数的交点问题,能够熟练运用待定系数法求得函数的解析式是解题的关键.20.(1)见解析;(2)①D'的坐标为(4,9),②AD'+OD',点D'的坐标是(4,2).【解析】【分析】(1)根据矩形的判定证明即可;(2)①当点D在原点右侧时,根据旋转的性质和矩形的性质解答即可;②当点D在原点左侧时,根据旋转的性质和矩形的性质解答即可.【详解】(1)∵A(0,4),B(8,0),C(8,4).∴OA=4,BC=4,OB=8,AC=8,∴OA=BC,AC=OB,∴四边形AOBC是平行四边形,∵∠AOB=90°,∴▱AOBC是矩形;(2)∵▱AOBC是矩形,∴∠ACB=90°,∠OBC=90°,∵△D'CB'将△DCB绕点C顺时针旋转90°得到(点D'与点D对应),∴∠D'B'C=∠DBC=90°,B'C=BC=4,D'B'=DB,∠BCB'=90°,即点B'在AC边上,∴D'B'⊥AC,①如图1,当点D在原点右侧时:D'B'=DB=8﹣3=5,∴点D'的坐标为(4,9);②如图2,当点D在原点左侧时:D'B'=DB=8+3=11,∴点D'的坐标为(4,15),综上所述:点D'的坐标为(4,9)或(4,15).AD'+OD',点D'的坐标是(4,2).【点睛】此题考查四边形的综合题,关键是根据旋转的性质和矩形的性质解答.21.(1) 点C的坐标是(0,3); (2)A(1,0),B(﹣3,0),L的顶点坐标为(﹣1,4);(3)见解析;(4)t≥1 2【解析】【分析】(1)把t=1代入y=﹣3x+t+2,令x=0,求得相应的y值,即可得到点C的坐标;(2)根据待定系数法,可得函数解析式;(3)根据描点法,可得函数图象;(3)根据平移规律,可得G的解析式,根据函数与不等式的关系,可得答案.【详解】(1)直线的解析式为y=﹣3x+3,当x=0时,y=3,即C点坐标为(0,3),故答案为:(0,3);(2)当y=0时,﹣3x+3=0,解得x1=1,即A(1,0),由点A(x1,0),B(x2,0),且x1•x2<0,AB=4,得1﹣x2=4,解得x2=﹣3,即B(﹣3,0);L:y=a(x﹣1)(x+3),将C(0,3)坐标代入L,得a=﹣1,∴L的解析式为y=﹣(x﹣1)(x+3),即y=﹣(x+1)2+4,∴L的顶点坐标为(﹣1,4);(3)函数图象如图所示:;(4)L向右平移t个单位的解析式为y=﹣(x+1﹣t)2+4,a=﹣1<0,当x≤t﹣1时,y随x的增大而增大.若直线l与G有公共点时,则有当x=﹣1+t时,G在直线l的上方,即﹣(t﹣1+1﹣t)2+4≥﹣3(t﹣1)+t+2,解得t≥12.【点睛】本题考查了二次函数综合题,解(1)的关键是利用自变量与函数值的对应关系;解(2)的关键是待定系数法;解(3)的关键是描点法,解(4)的关键是利用函数值的大小得出不等式,还利用了函数图象平移的规律.22.(1)该火车每次提速的百分率为10%.(2)0.2.【解析】【分析】(1)设该火车每次提速的百分率为x,根据提速前的速度及经两次提速后的速度,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用第一次提速后的速度=提速前的速度×(1+提速的百分率)可求出第一次提速后的速度,再利用少用的时间=两地间铁路长÷提速前的速度﹣两地间铁路长÷第一次提速后的速度,即可求出结论.【详解】(1)设该火车每次提速的百分率为x,依题意,得:180(1+x)2=217.8,解得:x1=0.1=10%,x2=﹣2.1(舍去),答:该火车每次提速的百分率为10%;(2)第一次提速后的速度为180×(1+10%)=198(千米/时),第一次提速后从甲地到乙地所用的时间比提速前少用的时间为396396180198-=0.2(小时),故答案为:0.2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x双(10<x<60),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则60≤100﹣x<75;当40<x<60时,则40<100﹣x<60.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<60)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则60≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<60时,则40<100﹣x<60,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<60,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<60时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.(1)作图见解析;(2)1.【解析】【分析】(1)根据角平分线的尺规作图可得;(2)作DE⊥AB于E,设DE=DC=x,由∠A=30°,BC AD=2DE=2x,AB=2BC=由BC2+AC2=AB2得到关于x的方程,解之可得.【详解】(1)如图所示,BD即为所求;。

2019备战中考数学基础必练(华师大版)-第19章-矩形、菱形与正方形(含解析)

2019备战中考数学基础必练(华师大版)-第19章-矩形、菱形与正方形(含解析)

2019备战中考数学基础必练(华师大版)-第十九章-矩形、菱形与正方形(含解析)一、单选题1.在平面直角坐标系中,已知点A(0,2),B(﹣2 ,0),C(0,﹣2),D(2 ,0),则以这四个点为顶点的四边形ABCD是()A. 矩形B. 菱形C. 正方形D. 梯形2.如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于()A. B. C. D. 83.如图,在平行四边形ABCD中,对角线AC和BD相交于点O ,则下面条件能判定平行四边形ABCD是矩形的是().A. AC=BDB. AC⊥BDC. AC=BD且AC⊥BDD. AB=AD4.矩形、菱形、正方形都一定具有的性质是()A. 邻边相等B. 四个角都是直角C. 对角线相等D. 对角线互相平分5.如图,两条宽度都为3cm的纸条,交叉重叠放在一起,它们的交角α为60°,则它们重叠部分(阴影部分)的面积为()A. cm2B. cm2C. cm2D. cm26.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A. 若AD⊥BC,则四边形AEDF是矩形B. 若AD垂直平分BC,则四边形AEDF是矩形C. 若BD=CD,则四边形AEDF是菱形D. 若AD平分∠BAC,则四边形AEDF是菱形7.正方形面积为36,则对角线的长为()A. 6B. 6C. 9D. 98.如图,已知在正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,给出下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF.其中结论正确的共有()A. 1个B. 2个C. 3个D. 4个9.如图,在平行四边形ABCD中,EF AD,HN AB,则图中的平行四边形的个数共有( )A. 12个B. 9个C. 7个D. 5个二、填空题10.已知菱形的两条对角线长为8cm和6cm,这个菱形的面积是________ cm2.11.如图所示,已知平行四边形ABCD ,下列条件:①AC=BD ,②AB=AD ,③∠1=∠2,④AB⊥BC中,能说明平行四边形ABCD是矩形的有(填写序号)________ .12.菱形的两条对角线分别为3cm和4cm,则菱形的面积为________cm.13.如图,在平行四边形AECF中,对角线AC、EF相交于点O,还需要添加一个条件:________,使得四边形ABCD是平行四边形(填一个即可).14.在直角△ABC中,AD是斜边BC上的高,BD=4,CD=9,则AD=________15.如图,矩形ABCD的面积为6,它的两条对角线交于点,以AB、A为两邻边作平行四边形AB,平行四边形AB的对角线交于点,同样以AB、A为两邻边作平行四边形AB,……,依次类推,则平行四边形AB的面积为________.16.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为________.17.如图所示,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC 的长是________18.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为________ .(用含n的代数式表示,n为正整数)三、解答题19.如图,▱ABCD中,P是AC,BD交于点O,P是▱ABCD外一点,且∠APC=∠BPD=90°,求证:▱ABCD是矩形.20.如图,E、F是四边形ABCD的对角线AC上两点,AE=CF,DF∥BE,DF=BE.(1)求证:四边形ABCD是平行四边形;(2)若AC平分∠BAD,求证:▱ABCD为菱形.21.如图,将平行四边形ABCD沿过点A的直线l折叠,使点D落到AB边上的点F处,折痕交CD边于点E.求证:四边形ADEF是菱形.四、综合题22.如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2 ,AC=2,求四边形AODE的周长.23.四边形ABCD是正方形,对角线AC,BD相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)答案解析部分一、单选题1.【答案】B【考点】菱形的判定【解析】【解答】画出草图,求得各边的长,再根据特殊四边形的判定方法判断.在平面直角坐标系中画出图后,可发现这个四边形的对角线互相平分,先判断为平行四边形,对角线还垂直,那么这样的平行四边形应是菱形.【分析】,根据题意画出草图,求出各边的长,由菱形的判定定理可得结论。

2021年中考数学一轮复习课件-第二十讲 矩形 菱形 正方形(29PPT)

2021年中考数学一轮复习课件-第二十讲 矩形 菱形 正方形(29PPT)

【自我诊断】
1.正方形是轴对称图形,它的对称轴共有 ( D )
A.1条
B.2条
C.3条
D.4条
2.若菱形的两条对角线分别为2和3,则此菱形的面积是___3___.
3.如图,四边形ABCD为正方形,△ADE为等边三角形.AC为正方形ABCD的对角线,
则∠EAC=___1_0_5___度.
高频考点·疑难突破 考点一 矩形的性质与判定 【示范题1】(2020·安徽中考)如图1,已知四边形ABCD是矩形,点E在BA的延长 线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB. (1)求证:BD⊥EC; (2)若AB=1,求AE的长; (3)如图2,连接AG,求证:EG-DG= 2 AG.
【答题关键指导】矩形的判定方法 (1)若四边形(或可证)为平行四边形,则再证一个角为直角或对角线相等. (2)若直角较多,可证三个角为直角.
【跟踪训练】
1.(2019·桂林中考)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶
点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上, 则 AD 的值为 ( B )
考点三正方形的性质与判定 【示范题3】(2019·北部湾中考)如图,在正方形ABCD中,点E是AB边上的一个动 点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F. (1)求证:△ABF≌△BCE. (2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG. (3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求 MN
AE AF,
∴△ABE≌△ADF(SAS).
(2)连接BD,如图: ∵四边形ABCD是菱形, ∴AB=AD,∠A=∠C=60°, ∴△ABD是等边三角形, ∵点E是边AD的中点, ∴BE⊥AD,∴∠ABE=30°, ∴AE= 3BE=1,AB=2AE=2,∴AD=AB=2,

2021年中考数学 一轮专题突破:矩形、菱形(含答案)

2021年中考数学 一轮专题突破:矩形、菱形(含答案)

2021中考数学一轮专题突破:矩形、菱形一、选择题1. (2020·荆门)如图,菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为( )A.20 B.30 C.40 D.502. 如图,菱形ABCD 的周长为8 cm,高AE长为cm,则对角线AC和BD长之比为()A.1∶2B.1∶3C.1∶D.1∶3. (2020·遵义)如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E,则线段DE的长为()A.125B.185C.4 D.2454. 如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处.若∠2=40°,则图中∠1的度数为()A. 115°B. 120°C. 130°D. 140°5. (2020·黑龙江龙东)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()DACBFEA .72B .24C .48D .966. (2020·泰安)如图,矩形ABCD 中,AC ,BD 相交于点O ,过点B 作BF ⊥AC 交CD 于点F ,交AC 于点M ,过点D 作DE ∥BF 交AB 于点E ,交AC 于点N ,连接FN ,EM .则下列结论:① DN ﹦BM ;②EM ∥FN ;③AE ﹦FC ;④当AO ﹦AD 时,四边形DEBF 是菱形.其中,正确结论的个数是( )A .1个B .2个C . 3个D .4个7. (2020·滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ;把纸片展平后再次折叠,使点A 落在EF 上的点A ’处,得到折痕BM ,BM 与FF 相交于点N .若直线BA ’交直线CD 于点O ,BC =5,EN =1,则OD 的长为( )A. B. CD8. 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE =BF ,将∠AEH ,∠CFG 分别沿边EH ,FG 折叠,当重叠部分为菱形且面积是菱形ABCD面积的116时,则AE EB 为( )A. 53B. 2C. 52D. 4二、填空题9. 如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,OA=OC ,OB=OD,添A B C D E FO MN加一个条件使四边形ABCD是菱形,那么所添加的条件可以是.(写出一个即可)10. 已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD=________.11. 把图①中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图②,图③所示的正方形,则图①中菱形的面积为.图K24-812. 如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是________.13. (2020·菏泽)如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为_______.ABC D QP14. 如图,菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则菱形的边长为________cm.三、解答题15. 如图,菱形ABCD的对角线AC,BD相交于点O,且DE∠AC,AE∥BD.求证:四边形AODE是矩形.16. 已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连结AE,AF.求证:AE=AF.17. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.18. 如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线AF 交CE 的延长线于F ,且AF =BD ,连接BF.(1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.2021中考数学 一轮专题突破:矩形、菱形-答案一、选择题1. 【答案】C【解析】∵E ,F 分别是AD ,BD 的中点,∴EF 是△DAB 的中位线.∴AB =2EF =10.∵菱形的四边相等,∴菱形ABCD 的周长=4AB =40.故选C .2. 【答案】D [解析]由菱形ABCD 的周长为8 cm 得边长AB=2 cm .又高AE 长为 cm ,所以∠ABC=60°,所以∠ABC ,∠ACD 均为正三角形,AC=2 cm ,BD=2AE=2 cm .故对角线AC 和BD 长之比为1∶,应选D .3. 【答案】D【解析】本题考查菱形的性质,菱形的面积,勾股定理的应用.在菱形ABCD中,AB =5,AO =12AC =3,AC ⊥BD ,∴BO4,BD =8.∴5DE =12AC·BD =24,解得DE =245.故选D.4. 【答案】A 【解析】由折叠的性质知∠EA ′B ′=∠A =90°,∵∠2=40°,∴∠B ′A ′C =50°,∴∠EA ′D =40°,∠DEA ′=50°,∴∠AEA ′=130°,∴∠AEF =∠FEA ′=12∠AEA ′=65°,∵AD ∥BC ,∴∠1=180°-65°=115°.5. 【答案】 CD【解析】本题考查了菱形的性质,对角线互相垂直平分以及直角三角形的斜边上中线的性质,解:∵四边形ABCD 是菱形,∴OA =OC ,OB =OD ,AC ⊥BD , ∵DH ⊥AB ,∴∠BHD =90°,∴BD =2OH ,∵OH =4,∴BD =8,∵OA =6,∴AC =12,∴菱形ABCD 的面积.故选:C .6. 【答案】 D【解析】本题考查了矩形的性质、三角形全等的条件与性质、等边三角形的条件与性质、平行四边形的条件与性质以及菱形的判定方法,因为四边形ABCD 是矩形,所以AB=CD ,AD=BC ,AD ∥BC ,所以∠DAN=∠BCM.因为BF ⊥AC ,DE ∥BF ,所以DE ⊥AC ,即∠AND=∠CMB=90°,所以△ADN ≌△CBM ,所以DN=BM ,∠AND=∠CBM ,则△ADE ≌△CBF ,所以AE=CF 、DE=BF ,所以NE=MF ,即①②③都是正确的,由AE=CF 、AB=CD ,所以BE=DF ,所以四边形AEBF 是平行四边形. 因为四边形ABCD 是矩形,所以AO=DO ,因为当AO ﹦AD 时,AO=DO=AO ,所以△ADO 是等边三角形,所以∠AND=∠BDE=30°,所以∠BDE=∠ABD=30°,所以DE=BE ,所以四边形DEBF 是菱形,则④也是正确的,因此本题选D .7. 【答案】B【解析】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD ∥EF ,∴∠AMB=∠A′NM ,∵∠AMB=∠A′MB ,∴∠A′NM=∠A′MB ,∴A′N=2,∴A′E=3,A′F=2,过M 点作MG ⊥EF 于G ,∴NG=EN=1,∴A′G=1,由勾股定理得=BE=OF=MG=∴OF :BE=2:3,解得,∴,因此本题选B .8. 【答案】A 【解析】如解图,由折叠的对称性可知,∠A =∠J ,∠C =∠M ,四边形MNJK 和四边形BENF 都是菱形,则BE =NE ,AE =JE ,∠菱形MNJK 与菱形ABCD 相似,且菱形MNJK 的面积是菱形ABCD 面积的116,∠⎝ ⎛⎭⎪⎫JN AB 2=116,∠JN AB =14,设JN =a ,EN =b ,则AB =4a ,∠AB =AE +EB =EJ +EN =JN +EN +EN=JN +2EN =a +2b ,∠a +2b =4a ,∠a =23b ,AE BE =a +b b =53.二、填空题9. 【答案】AB=AD 或AB=BC 或AC ⊥BD 等10. 【答案】2 【解析】根据“矩形的对角线相等且互相平分”进行解题便可.∵四边形ABCD 是矩形,∴BD =AC =2OA ,∵OA =1,∴BD =2.11. 【答案】12 [解析]设图①中小直角三角形的两直角边长分别为a ,b (b>a ),则由图②,图③可列方程组解得所以菱形的面积S=×4×6=12.故答案为12.12. 【答案】(3+2,1) 【解析】如解图,过点D 作DG∠BC 于G ,DF ⊥x 轴于F ,∵在菱形BDCE 中,BD =CD ,∠BDC =60°,∴△BCD 是等边三角形,∴DF =CG =12BC =1,CF =DG =3,∴OF =3+2,∴D(3+2,1).解图13. 【答案】317【解析】由于已知BC 的长,故可设想在R t △BCQ 中利用勾股定理求解,则需求CQ 的长,这可通过求DQ 的长得到,结合已知条件BP =BA =5,易知DQ =DP ,显然DP 可求,思路沟通.在矩形ABCD 中,∠BAD =90º,AB =5,AD =12,∴BD =22AD AB +=13,又∵BP =BA =5,∴DP =13-5=8,∠BAP =∠BP A .∵AB ∥DQ ,∴∠BAP =∠PQD ,∴∠PQD =∠BP A =∠DPQ ,∴DQ =DP =8,∴CQ =8-5=3.在R t △BCQ 中,BC =12,CQ =3,∴BQ =22312+=317.14. 【答案】13 【解析】如解图,连接AC 、BD 交于O ,则有12AC·BD =120,∴AC ·BD =240,又∵菱形对角线互相垂直平分,∴2OA ·2OB =240,∴ OA ·OB =60,∵AE 2=50, OA 2+OE 2= AE 2,OA =OE ,∴OA =5,∴OB =12,∴AB =OA 2+OB 2=122+52=13.解图三、解答题15. 【答案】证明:∠DE∠AC,AE∥BD,∴四边形AODE是平行四边形,(2分)∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,(4分)∵四边形AODE是平行四边形,∠AOD=90°,∴四边形AODE是矩形.(5分)16. 【答案】∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF,∴AE=CF.17. 【答案】(1)【思路分析】要证∠CEB=∠CBE,结合CE∠DB,可得到∠CEB=∠DBE,从而只需证明∠CBE=∠DBE,结合∠ABC∠∠ABD即可得证.证明:∠∠ABC∠∠ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,(2分)∴∠CEB=∠CBE.(3分)(2)证明:∠∠ABC∠∠ABD,∴BC=BD,由(1)得∠CEB=∠CBE,∴CE=CB,∴CE=BD,(5分)∵CE∥BD,∴四边形BCED是平行四边形,(6分)∵BC=BD,∴四边形BCED是菱形.(8分)18. 【答案】(1)证明:∠点E是AD的中点,∴AE=DE.∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE,∴△EAF≌△EDC(AAS),(3分)∴AF=DC.∵AF=BD,∴BD=DC,即D是BC的中点.(5分)(2)解:四边形AFBD是矩形.证明如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.(7分)∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,∴四边形AFBD是矩形.(9分)。

中考一轮复习--第21讲 矩形、菱形、正方形

中考一轮复习--第21讲 矩形、菱形、正方形

考法1
考法2
考法3
对应练1(课本习题改编)下列命题,其中是真命题的为( D )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线相等的四边形是矩形
D.一组邻边相等的矩形是正方形
考法1
考法2
考法3
对应练2(2019·内蒙古通辽)如图,在矩形ABCD中,AD=8,对角线
∵AD2+AB2=BD2,∴64+AB2=4AB2,
8 3
.
3
∴AB=
考法1
考法2
考法3
对应练3
(2018·甘肃白银)已知矩形ABCD中,E是AD边上一个动点,点
F,G,H分别是BC,BE,CE的中点.
(1)求证:△BGF≌△FHC;
(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.
∴OD= 2,
∴直线 l∥AC 并且到 D 的距离为 3,同理,在点 D 的另一侧还有一条
直线满足条件,
故共有 2 条符合题意的直线 l.故选 B.
考法1
考法2
考法3
矩形的性质和判定
例1(2018·合肥行知学校模拟)如图,已知▱ABCD,延长AB到E使
BE=AB,连接BD,ED,EC,若ED=AD.
AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的
8 3
长为 3
.
解析:∵四边形ABCD是矩形,
∴AO=CO=BO=DO,∵AE平分∠BAO,
∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,
∴△ABE≌△AOE(ASA),
∴AO=AB,且AO=OB,

【2022】苏教版中考数学精编专题《平行四边形、矩形、正方形、菱形》(含答案解析)

【2022】苏教版中考数学精编专题《平行四边形、矩形、正方形、菱形》(含答案解析)

【苏教版】中考数学精编专题汇编专题1平行四边形、矩形、菱形、正方形学校:___________姓名:___________班级:___________1.【江苏省南京市中考二模】下列命题中假命题是( ) A 、两组对边分别相等的四边形是平行四边形 B 、两组对角分别相等的四边形是平行四边形C 、一组对边平行一组对角相等的四边形是平行四边形D 、一组对边平行一组对边相等的四边形是平行四边形D 、例如等腰梯形,满足一组对边平行一组对边相等,但它不是平行四边形,所以是个假命题.正确. 故选D .【考点定位】命题与定理.2.【江苏省江阴市中考】如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于( )A.2B.3C.4D.5 【答案】C.B【解析】已知菱形ABCD ,根据菱形的性质可得AB=BC=8,OB=OD ,又因E 是CD 的中点,所以OE 为△DBC 的中位线,根据三角形的中位线定理可得OE=BC=4.故选C. 【考点定位】菱形的性质;三角形的中位线定理.3. 【江苏省常州市中考】如图,▱ABCD 的对角线AC 、BD 相交于点O ,则下列说法一定正确的是( )A .AO =ODB .AO ⊥ODC .AO =OCD .AO ⊥AB 【答案】C .【考点定位】平行四边形的性质.4.【江苏省徐州市中考】如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )【考点定位】菱形的性质.215. 【江苏省徐州市中考模拟】15.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件 .【答案】AC=BD .【考点定位】1.菱形的性质;2.三角形中位线定理.6.【江苏省徐州市中考模拟】将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD 沿射线BD 方向平移,在平移的过程中,当点B的移动距离为时,四边ABC 1D 1为矩形;当点B 的移动距离为 时,四边形ABC1D 1为菱形.【解析】当点B 的移动距离为时,∠C 1BB 1=60°,则∠ABC 1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC 1D 1为矩形;当点B 的移动距离为时,D 、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC 1D 1为菱形.333如图:【考点定位】1.菱形的判定;2.矩形的判定;3.平移的性质.7. 【江苏省淮安市中考】如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是米.【答案】720.【考点定位】1.三角形中位线定理;2.应用题.8.【江苏省无锡市中考】如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于 cm.【答案】16.【解析】根据三角形的中位线定理和矩形对角线相等的性质可证得四边形EFGH是菱形,且故答案为:16.【考点定位】三角形的中位线定理;矩形的性质;菱形的判定及性质.9.【江苏省中考模拟】已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【答案】证明见解析.【解析】试题分析:根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形是平行四边形,可得证明结论.试题解析:证明:如图,连接 BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【考点定位】平行四边形的判定与性质.10.【江苏省常州市中考】如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF 都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【答案】(1)证明见试题解析;(2)60°.【考点定位】1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的性质.专题2 圆的有关计算及圆的综合学校:___________姓名:___________班级:___________1.【江苏省南通市九年级上学期期末】如图,⊙O 中,OA ⊥BC ,∠A OB=52°,则∠ADC 的度数为( )A .36°B .26°C . 38°D .46°【答案】D . 【解析】故选D.【考点定位】1.圆周角定理;2.垂径定理.2.【江苏省江阴市九年级下学期期中】一个圆锥底面直径为2,母线为4,则它的侧面积为( ) A . B.C .D .【答案】C.【解析】根据圆锥的侧面积公式S=πrl 可得这个圆锥的侧面积为π×1×4=4π.故选C. 【考点定位】圆锥的侧面积公式.3.【江苏省苏州市区中考】如图,⊙O 上A 、B 、C 三点,若∠B=50,∠A=20°,则∠AOB 等于( ) A 、30° B 、50° C 、70° D 、60°【答案】D .2π12π4π8π【解析】先根据圆周角定理得出∠ACB=∠AOB ,再由三角形内角和定理即可得出结论.∵∠AOB 与∠ACB是同弧所对的圆心角与圆周角,∠B=50,∠A=20°,∴∠ACB=∠AOB .∴180°-∠AOB-∠A=180°-∠ACB-∠B ,即180°-∠AOB-20°=180°-∠AOB-50°,解得∠AOB=60°.故选D .【考点定位】圆周角定理.4.【江苏省南通市九年级上学期期末】某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为120°的扇形,则这个圆锥的底面半径为( )cm . A 、2B 、3C 、4D 、5【答案】A .故选A.【考点定位】弧长的计算.5.【江苏省苏州市中考一模】如图,AB 是⊙O 的切线,切点为B ,AO 交⊙O 于点C ,且AC=OC ,若⊙O 的半径为5,则图中阴影部分的面积是 .. 【解析】直接利用切线的性质结合勾股定理得出AB 的长,再利用锐角三角函数关系得出∠BOC 的度数,结合阴影部分的面积为:S △OBA -S 扇形BOC 求出即可.连接OB ,∵AB 是⊙O 的切线,切点为B ,∴∠OBBA=90°,∵AC=OC ,⊙O 的半径为5,∴AC=5,AB=5,∴∠A=30°,则∠BOC=60°,∴图中阴影部分的面积为:S △OBA -S 扇形BOC =×BO ×AB-.故答案为:121212625π312605360π⨯536225π. 【考点定位】1.扇形面积的计算;2.切线的性质.6.【江苏省徐州中考】13.圆锥底面圆的半径为3m ,其侧面展开图是半圆,则圆锥母线长为 m. 【答案】6.【考点定位】圆锥的计算.7.【江苏省中考】已知扇形的圆心角为120°,弧长为6π,则扇形的面积是 . 【答案】27π.【考点定位】扇形面积的计算.8.【江苏省南京市中考二模】已知等腰△ABC 中,AB=AC=13cm ,BC=10cm ,则△ABC 的内切圆半径为 cm . 【答案】. 【解析】如图,设△ABC 的内切圆半径为r ,由勾股定理得AD=12,再由切线长定理得AE=8,根据勾股定理求得r 即可.如图,∵AB=AC=13cm ,BC=10cm ,∴BD=5cm ,∴AD=12cm ,根据切线长定理,AE=AB-BE=AB-BD=13-5=8,设△ABC 的内切圆半径为r ,∴AO=12-r ,∴(12-r )2-r 2=64,解得r=.故答案为:. 【考点定位】1.三角形的内切圆与内心;2.等腰三角形的性质.9.【江苏省苏州中考一模】如图所示,D 是以AB 为直径的半圆O 上的一点,C 是弧AD 的中点,点M 在AB 上,AD 与CM 交于点N ,CN=AN .625π103103103(1)求证:CM⊥AB;(2)若BD=2,求半圆的直径.【答案】(1)证明见解析;(2)6.【解析】试题解析:(1)证明:如图1,连接BC,则∠ACB=90°,∵CN=AN,∴∠NCA=∠NAC,∴∠MCA=∠DAC,∵C是弧AD的中点,∴∠ABC=∠DAC,∴∠MCA=∠ABC,∵∠CAB=∠BAC,∴△ABC∽△ACM,∴∠AMC=90°,∴CM⊥AB;(2)解:如图2,连接CD,作CE⊥BD,交BD的延长线于E,在△CMB与△BCE中,,【考点定位】1.相似三角形的判定与性质;2,全等三角形的判定与性质;2.圆周角定理.10.【江苏省无锡市中考】已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =6cm ,AC =8cm ,∠ABD =45º.(1)求BD 的长;(2)求图中阴影部分的面积.【答案】(1)BD =52cm;(2)S 阴影=25π-504cm 2. 【解析】MBC CBE CMB CEB BC BC ∠=∠∠=∠=⎧⎪⎨⎪⎩【考点定位】圆周角定理的推论;勾股定理;扇形的面积公式.专题3 图形的变换、视图与投影学校:___________姓名:___________班级:___________1. 【江苏省苏州市中考一模】下列腾讯QQ表情中,不是轴对称图形的是()【答案】C.【解析】根据轴对称图形的概念求解.A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.【考点定位】轴对称图形.2.【江苏省徐州市中考模拟】下列图形中,既是中心对称图形又是轴对称图形的是()【答案】D.【考点定位】1.中心对称图形;2.轴对称图形.3. 【江苏省淮安市中考】如图所示物体的主视图是()A. B. C. D.【答案】C.【考点定位】简单组合体的三视图.4.【江苏省常州市中考】下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.【答案】B.故选B.【考点定位】轴对称图形.5.【江苏省常州市中考】将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是【答案】8cm2 .故答案为:8cm 2.【考点定位】1.翻折变换(折叠问题);2.最值问题.6.【江苏省江阴市中考】如图,Rt ΔABC 中,AB=9,BC=6,∠B=900,将ΔABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN的长为【答案】 4. 【解析】 故答案为:4.【考点定位】翻折变换;勾股定理. 7.【江苏省苏州市区中考】在R t △ABC 中,斜边AB=4,∠B=60°,将△ABC 绕点B 旋转60°,顶点C 运动的路线长是 (结果保留π).【答案】.【解析】将△ABC 绕点B 旋转60°,顶点C 运动的路线长是就是以点B 为圆心,B C 为半径所旋转的弧,根据弧长公式即可求得.∵AB=4,∴BC=2,所以弧长=.故答案为:. 【考点定位】1.弧长的计算;2.旋转的性质.8.【江苏省扬州市2015年中考数学试题】如图,已知Rt △ABC 中,∠ABC =90°,AC =6,BC =4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF = 23π602180π⨯=23π23π【答案】5【考点定位】旋转的性质9.【江苏省徐州市中考】如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.(1)画出△AOB关于x轴对称的△A1OB1.(2)画出将△AOB绕点O顺时针旋转90°的△A2OB2,并判断△A1OB1和△A2OB2在位置上有何关系?若成中心对称,请直接写出对称中心坐标;如成轴对称,请直接写出对称轴的函数关系式.(3)若将△AOB绕点O旋转360°,试求出线段AB扫过的面积.【答案】(1)画图见解析;(2)画图见解析;△A1OB1和△A2OB2是轴对称关系,对称轴为:y=﹣x.(3)2.5π.【解析】试题解析:(1)如图所示:.(2)如图所示:△A1OB1和△A2OB2是轴对称关系,对称轴为:y=﹣x.(3)过点O作OE⊥AB,线段AB2﹣π()2=5π﹣2.5π=2.5π. 【考点定位】1.作图-旋转变换;2.扇形面积的计算;3.作图-轴对称变换.10.【江苏省南京市中考二模试题】△ABC 中,AB=AC=10,BC=12,矩形DEFG 中,EF=4,FG >12.(1)如图①,点A 是FG 的中点,FG ∥BC ,将矩形DEFG 向下平移,直到DE 与BC 重合为止.要研究矩形DEFG 与△ABC 重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).(2)如图②,点B 与F 重合,E 、B 、C 在同一直线上,将矩形DEFG 向右平移,直到点E 与C 重合为止.设矩形DEFG 与△ABC 重叠部分的面积为y ,平移的距离为x .①求y 与x 的函数关系式,并写出自变量的取值范围;②在给定的平面直角坐标系中画出y 与x 的大致图象,并在图象上标注出关键点坐标.2【考点定位】几何变换综合题.。

中考总复习数学(人教版 全国通用)基础讲练 第19讲 矩形、菱形和正方形(含答案点拨)

中考总复习数学(人教版 全国通用)基础讲练 第19讲 矩形、菱形和正方形(含答案点拨)

第19讲矩形、菱形和正方形考纲要求命题趋势1.掌握平行四边形与矩形、菱形、正方形之间的关系.2.掌握矩形、菱形、正方形的概念、判定和性质.3.灵活运用特殊平行四边形的判定与性质进行有关的计算和证明.特殊的平行四边形是中考的重点内容之一,常以选择题、填空题、计算题、证明题的形式出现,也常与折叠、平移和旋转问题相结合,出现在探索性、开放性的题目中.知识梳理一、矩形的性质与判定1.定义有一个角是直角的____________是矩形.2.性质(1)矩形的四个角都是________.(2)矩形的对角线________.(3)矩形既是轴对称图形,又是中心对称图形,它有两条对称轴;它的对称中心是__________.3.判定(1)有三个角是________的四边形是矩形.(2)对角线________的平行四边形是矩形.二、菱形的性质与判定1.定义一组邻边相等的__________叫做菱形.2.性质(1)菱形的四条边都________.(2)菱形的对角线__________,并且每一条对角线平分一组对角.3.判定(1)对角线互相垂直的________是菱形.(2)四条边都相等的________是菱形.三、正方形的性质与判定1.定义一组邻边相等的________叫做正方形.2.性质(1)正方形的四条边都________,四个角都是______.(2)正方形的对角线______,且互相________;每条对角线平分一组对角.(3)正方形是轴对称图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴;正方形是中心对称图形,对角线的交点是它的对称中心.3.判定(1)一组邻边相等并且有一个角是直角的__________是正方形.(2)一组邻边相等的________是正方形.(3)对角线互相垂直的________是正方形.(4)有一个角是直角的________是正方形.(5)对角线相等的________是正方形.自主测试1.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=5,则AD 的长是( )A .52B .5 3C .5D .102.在菱形ABCD 中,AB =5 cm ,则此菱形的周长为( ) A .5 cm B .15 cm C .20 cm D .25 cm3.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( )A .1B .C .32D .24.下列命题中是真命题的是( )A .对角线互相垂直且相等的四边形是正方形B .有两边和一角对应相等的两个三角形全等C .两条对角线相等的平行四边形是矩形D .两边相等的平行四边形是菱形5.如图,在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,AE ,BF 交于点O ,∠AOF =90°.求证:BE =CF .考点一、矩形的性质与判定【例1】如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN ∥BC .设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE ,AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.分析:判定一个四边形是矩形,可以先判定四边形是平行四边形,再找一个内角是直角或说明对角线相等.解:当点O 运动到AC 的中点(或OA =OC )时, 四边形AECF 是矩形.证明:∵CE平分∠BCA,∴∠1=∠2.又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO.同理,FO=CO,∴EO=FO.又OA=OC,∴四边形AECF是平行四边形.又∵∠1=∠2,∠4=∠5,∴∠1+∠5=∠2+∠4.又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,即∠ECF=90°.∴四边形AECF是矩形.方法总结矩形的定义既可以作为性质,也可以作为判定.矩形的性质是求证线段或角相等时常用的知识点.证明一个四边形是矩形的方法:(1)先证明它是平行四边形,再证明它有一个角是直角;(2)先证明它是平行四边形,再证明它的对角线相等;(3)证明有三个内角为90°.触类旁通1 如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD 于点F,连接AE.求证:(1)BF=DF;(2)AE∥BD.考点二、菱形的性质与判定【例2】如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的面积为83,求AC的长.分析:(1)先证明四边形OCED是平行四边形,然后证明它的一组邻边相等;(2)因为△DOC是等边三角形,根据菱形的面积计算公式可以求菱形的边长,从而求出AC的长.解:(1)证明:∵DE∥OC,CE∥OD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴四边形OCED是菱形.(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°.又∵OD=OC,∴△OCD是等边三角形.过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.,在Rt△DFC中,tan 60°=DFFC∴DF=FC·tan 60°=3x.由已知菱形OCED的面积为83得OC·DF=83,即2x·3x=8 3.解得x=2.∴AC=4×2=8.方法总结菱形的定义既可作为性质,也可作为判定.证明一个四边形是菱形的一般方法:(1)四边相等;(2)首先证明是平行四边形,然后证明有一组邻边相等;(3)对角线互相垂直平分;(4)对角线垂直的平行四边形.触类旁通2 如图,在ABCD中,对角线AC,BD相交于点O,过点O作直线EF⊥BD,分别交AD,BC于点E和点F,求证:四边形BEDF是菱形.考点三、正方形的性质与判定【例3】如图①,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图②,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图③的方式拼接成一个四边形.若正方形ABCD的边长为3 cm,HA=EB=FC=GD=1 cm,则图③中阴影部分的面积为__________cm2.分析:根据题目的条件可先证△AEH,△BFE,△CGF,△DHG四个三角形全等,证得四边形EFGH的四边相等,然后由全等再证一个角是直角.解:(1)四边形EFGH是正方形.证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA.∵HA=EB=FC=GD,∴AE=BF=CG=DH.∴△AEH≌△BFE≌△CGF≌△DHG.∴EF=FG=GH=HE.∴四边形EFGH是菱形.由△DHG≌△AEH,知∠DHG=∠AEH.∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°.∴∠GHE=90°.∴菱形EFGH是正方形.(2)1方法总结证明一个四边形是正方形可从以下几个方面考虑:(1)“平行四边形”+“一组邻边相等”+“一个角为直角”(定义法);(2)“矩形”+“一组邻边相等”;(3)“矩形”+“对角线互相垂直”;(4)“菱形”+“一个角为直角”;(5)“菱形”+“对角线-相等”.1.(四川成都)如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC2.(山东滨州)若菱形的周长为8 cm,高为1 cm,则菱形两邻角的度数比为()A.3:1 B.4:1 C.5:1 D.6:13.(江苏泰州)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有() A.1个 B.2个 C.3个 D.4个4.(江苏苏州)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是()A.4B.6C.8D.105.(贵州铜仁)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A,B两点,则线段AB的最小值是__________.6.(山东临沂)如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形?1.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直 B.对角线相等C.对角线互相平分 D.对角互补2.如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD 为菱形的是()A.BA=BCB.AC,BD互相平分C.AC=BDD.AB∥CD3.已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A.∠D=90° B.AB=CD C.AD=BC D.BC=CD4.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于()A.4 3 B.3 3C.4 2 D.85.如图,两条笔直的公路l1,l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A,B,D,已知AB=BC=CD=DA=5千米,村庄C到公路l1的距离为4千米,则村庄C到公路l2的距离是()(第5题图)A.3千米 B.4千米 C.5千米 D.6千米6.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是__________.(第6题图)7.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于E,F,那么阴影部分的面积是矩形ABCD面积的__________.(第7题图)8.如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别是AB,BC边上的中点,MP+NP的最小值是__________.(第8题图)9.如图(1)所示,在正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中“M是AB的中点”改为“M是AB上任意一点”,其余条件不变,如图(2)所示,则结论“MD=MN”还成立吗?若成立,给出证明;若不成立,请说明理由.参考答案导学必备知识自主测试1.B2.C3.C∵设AG=A′G=x,∴x2+22=(4-x)2,解得x=32,故选C.4.C5.证明:如题图,∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°.∴∠EAB+∠AEB=90°.∵∠EOB=∠AOF=90°,∴∠FBC+∠AEB=90°.∴∠EAB=∠FBC.∴△ABE≌△BCF.∴BE=CF.探究考点方法触类旁通1.证明:(1)在矩形ABCD中,AD∥BC,AD=BC,∴∠1=∠2.∵∠2=∠3,∴∠1=∠3,∴BF=DF.(2)∵AD=BC=BE,BF=DF,∴AF=EF,∴∠AEB=∠EAF.∵∠AFE=∠BFD,∠1=∠3,∴∠AEB=∠3,∴AE∥BD.触类旁通2.证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∵EF⊥BD,∴四边形BEDF是菱形.品鉴经典考题1.B因为菱形的对边平行且相等,所以A正确;对角线互相平分且垂直,但不一定相等,所以C,D正确,B错误.2.C根据已知可得到菱形的边长为2 cm,从而可得到高所对的角为30°,相邻的角为150°,则该菱形两邻角度数比为5:1.故选C.3.B①一组对边平行且一组对角相等的四边形是平行四边形是真命题;②对角线互相垂直且相等的四边形是正方形是假命题;③顺次连接矩形四边中点得到的四边形是菱形是真命题;④正五边形既是轴对称图形又是中心对称图形是假命题.故选B.4.C∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形.∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=12AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为4OC=4×2=8.故选C. 5.2 如图:∵四边形CDEF 是正方形,∴∠OCD =∠ODB =45°,∠COD =90°,OC =OD .∵AO ⊥OB ,∴∠AOB =90°,∴∠COA +∠AOD =90°,∠AOD +∠DOB =90°,∴∠COA =∠DOB .∵在△COA 和△DOB 中,有⎩⎪⎨⎪⎧∠OCA =∠ODB ,OC =OD ,∠AOC =∠DOB ,∴△COA ≌△DOB ,∴OA =OB .∵∠AOB =90°,∴△AOB 是等腰直角三角形, 由勾股定理得:AB =OA 2+OB 2=2OA ,要使AB 最小,只需OA 取最小值即可.根据垂线段最短,OA ⊥CD 时,O A 最小.此时OA =12CF =1,即AB = 2.6.解:(1)证明:∵AF =DC ,∴AF +FC =DC +FC ,即AC =DF . 又∵∠A =∠D ,AB =DE ,∴△ABC ≌△DEF . ∴BC =EF ,∠ACB =∠DFE .∴BC ∥EF .∴四边形BCEF 是平行四边形.(2)若四边形BCEF 是菱形,连接BE ,交CF 于点G ,∴BE ⊥CF ,FG =CG .∵∠ABC =90°,AB =4,BC =3, ∴AC =AB 2+BC 2 =42+32=5.∵∠BGC =∠ABC =90°,∠ACB =∠BCG , ∴△ABC ∽△BGC .∴BC AC =CG BC ,即35=CG 3.∴CG =95.∴FC =2CG =185. ∴AF =AC -FC =5-185=75.因此,当AF =75时,四边形BCEF 是菱形.研习预测试题1.A 2.B 3.D4.A ∵点E 是CD 的中点,∴DE =CE =12CD =3.∵四边形ABCD 是矩形,∴AB =CD =6. 由折叠性质可知,AE =AB =6,BF =EF , 在Rt △ADE 中,AD =AE 2-DE 2=33,∴BC =3 3.设CF =x ,BF =EF =33-x , 在Rt △CEF 中,(33-x )2=x 2+32, ∴x = 3.∴BF =2 3.在Rt △ABF 中,AF =4 3.5.B 6.22.5° 7.148.1 在DC 上找N 点关于AC 的对称点N ′,连接MN ′,则MN ′的长即为MP +NP 的最小值,此时MN ′=AD =1.9.分析:(1)证MD =MN ,可证它们所在的三角形全等,易知MN 在钝角△MBN 中,而MD 在直角△AMD 中,显然需添加辅助线构造全等三角形,由△MBN 的特征想到可在AD 上取AD 的中点F ,构造△MDF ≌△NMB ;(2)可参照第(1)题的方法.(1)证明:取AD 的中点F ,连接MF . ∵M 是AB 的中点,F 是AD 的中点,∴MB =AM =12AB ,DF =AF =12AD .∵AB =AD ,∴AF =AM =DF =MB ,∴∠1=45°, ∴∠DFM =135°.∵BN 平分∠CBE ,∴∠CBN =45°. ∴∠MBN =135°.∴∠MBN =∠DFM . ∵∠DMN =90°,∴∠NMB +∠DMA =90°. ∵∠A =90°,∴∠ADM +∠DMA =90°. ∴∠NMB =∠ADM .∴△DFM ≌△MBN .∴MD =MN . (2)解:结论MD =MN 仍成立.证明:在AD 上取点F ,使AF =AM ,连接MF .由(1)中证法可得:DF =BM ,∠DFM =∠MBN ,∠FDM =∠BMN ,∴△DFM≌△MBN,∴MD=MN.11 / 11。

2020年中考数学二轮专题——矩形、菱形、正方形(含详细解答)

2020年中考数学二轮专题——矩形、菱形、正方形(含详细解答)

2020年中考数学二轮专题——矩形、菱形、正方形基础过关1. (2019无锡)下列结论中,矩形具有而菱形不一定具有的性质是()A. 内角和为360°B. 对角线相互平分C. 对角线相等D. 对角线互相垂直2. (2019娄底)顺次连接菱形四边中点得到的四边形是()A. 平行四边形B. 菱形C. 矩形D. 正方形3. (2019重庆A卷)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形4. (2019青羊区二诊)在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是()A.AB∥DC B.OC=OBC.AC⊥BD D.OA=OC5. (2019毕节)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A. 3B. 3C. 5D. 5第5题图6. (2019天津)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()A. 5B. 4 3C. 4 5D. 20第6题图7. (2019呼和浩特)已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为()A. 2 2B. 2 5C. 4 2D. 2108. (2019临沂)如图,在▱ABCD中,M,N是BD上的两点,BM=DN,连接AM,MC,CN,N A.添加一个条件,使四边形AMCN 是矩形,这个条件是( )A. OM =12ACB. MB =MOC. BD ⊥ACD. ∠AMB =∠CND第8题图9. 如图,在正方形ABCD 外侧,作等边△ADE ,AC ,BE 相交于点F ,则∠BFC 为( ) A. 75°B. 60°C. 55°D. 45°第9题图10. 如图,在矩形ABCD 中,点E 在BC 上,AE =AD ,DF ⊥AE ,垂足为F ,若∠FDC =30°,且AB =3,则AD 的长为( )A .3B .4C .5D .6第10题图11. (2019贵阳)如图,菱形ABCD 的周长是4 cm ,∠ABC =60°,那么这个菱形的对角线AC 的长是( ) A. 1 cmB. 2 cmC. 3 cmD. 4 cm第11题图12. (2019德阳)已知▱ABCD 的对角线AC 、BD 相交于点O ,△AOD 是等边三角形,且AD =4,则AB 等于( )A. 2B. 4C. 2 3D. 4 313. (2019河池)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE =CF ,则图中与∠AEB 相等的角的个数是( )A. 1B. 2C. 3D. 4第13题图14. 如图,在矩形ABCD 中,AB =12,BC =16,点E 是BC 的中点,点F 是边CD 上的任意一点,则AF +EF 的最小值为( )A .12B .14C .12 5D .14 5第14题图15. (2019兰州)如图,边长为2的正方形ABCD 的对角线AC 与BD 交于点O ,将正方形ABCD 沿直线DF 折叠,点C 落在对角线BD 上的点E 处,折痕DF 交AC 于点M ,则OM =( )A.12B.22C.3-1D.2-1第15题图16. (2019金华)如图,矩形ABCD 的对角线交于点O ,已知AB =m ,∠BAC =∠α,则下列结论错误..的是( )A. ∠BDC =∠αB. BC =m ·tan αC. AO =m 2sin αD. BD =m cos α第16题图17. (2019台州)如图,有两张矩形纸片ABCD 和EFGH ,AB =EF =2 cm ,BC =FG =8 cm.把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且点D 与点G 重合,当两张纸片交叉所成的角α最小时,tan α等于( )A. 14B. 12C. 817D. 815第17题图18.(2019绍兴)正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D,在点E从点A移动到点B的过程中,矩形ECFG的面积()A. 先变大后变小B. 先变小后变大C. 一直变大D. 保持不变第18题图19. (2019双流区一诊)一个菱形的周长为20 cm,一条对角线长为6 cm,则这个菱形的面积是______cm2.20. (2019扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=________.第20题图21.(2019徐州)如图,矩形ABCD中,AC、BD交于点O、M、N分别为BC、OC的中点.若MN=4,则AC的长为________.第21题图22. (2019菏泽)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是________.第22题图23.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE 的长是________.第23题图24. (2019北京)如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE =DF ,连接EF . (1)求证:AC ⊥EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O .若BD =4,tan G =12,求AO 的长.第24题图25. (2019云南)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =OC ,BO =OD ,且∠AOB =2∠OA D.(1)求证:四边形ABCD 是矩形;(2)若∠AOB ∶∠ODC =4∶3,求∠ADO 的度数.第25题图能力提升1. (2019烟台)如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()A. 2425 B.45 C.34 D.1225第1题图2. (2019安徽)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12.点P在正方形的边上,则满足PE+PF=9的点P的个数是()A. 0B. 4C. 6D. 8第2题图3. (2019黄石)如图,矩形ABCD中,AC与BD相交于点E,AD∶AB=3∶1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时BHCF=()A.32 B.233 C.62 D.32第3题图4.(2019遵义)如图,平行四边形纸片ABCD的边AB,BC的长分别是10 cm和7.5 cm,将其四个角向内对折后,点B与点C重合于点C′,点A与点D重合于点A′.四条折痕围成一个“信封四边形”EHFG,其顶点分别在平行四边形ABCD的四条边上,则EF=________cm.第4题图5. (2019海南)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连接AF,当PB=PQ时.①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.第5题图6. (2019双流区一诊)如图①,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.(1)求证:△ADP≌△ECP;(2)若BP=n·PK,试求出n的值;(3)作BM⊥AE于点M,作KN⊥AE于点N,连接MO、NO,如图②,请证明△MON是等腰三角形,并求出∠MON的度数.第6题图满分冲关1. (2019新都区一诊)如图,直线l 经过正方形ABCD 的顶点A ,先分别过此正方形的顶点B 、D 作BE ⊥l 于点E 、DF ⊥l 于点F ,然后再以正方形的对角线的交点O 为端点,引两条相互垂直的射线分别与AD 、CD 交于点G 、H 两点.若EF =25,S △ABE =2,则线段GH 长度的最小值是______.第1题图2. (2018本溪)在菱形ABCD 中,∠BAD =120°,点O 为射线CA 上的动点,作射线OM 与直线BC 相交于点E ,将射线OM 绕点O 逆时针旋转60°,得到射线ON ,射线ON 与直线CD 相交于点F .(1)如图①,点O 与点A 重合时,点E ,F 分别在线段BC ,CD 上,请直接写出CE ,CF ,CA 三条线段之间的数量关系;(2)如图②,点O 在CA 的延长线上,且OA =13AC ,E ,F 分别在线段BC 的延长线和线段CD 的延长线上,请写出CE ,CF ,CA 三条线段之间的数量关系,并说明理由;(3)点O 在线段AC 上,若AB =6,BO =27,当CF =1时,请直接写出BE 的长.参考答案基础过关1. C2. C 【解析】顺次连接任意四边形的四边中点,得到四边形一定是平行四边形,如果原四边形的对角线相等,则可得中点四边形的邻边相等,即是菱形;如果原四边形的对角线互相垂直,则可得中点四边形的邻边垂直,即是矩形.因为菱形的对角线互相垂直,所以它的中点四边形是矩形.3.A 【解析】根据矩形的判定定理可知,有一个角是直角的平行四边形是矩形,故A 正确;四条边相等的四边形是菱形,不是矩形,故B 错误;有一组邻边相等的平行四边形是菱形,不是矩形,故C 错误;对角线相等的平行四边形是矩形,故D 错误.4. B 【解析】∵四边形ABCD 是菱形,∴AB ∥CD ,AC ⊥BD ,OA =OC ,故A ,C ,D 正确.5. B 【解析】在Rt △BCE 中,BC =22-12=3,∴正方形ABCD 的面积为(3)2=3.6. C 【解析】∵A (2,0),B (0,1),∴OA =2,OB =1,在Rt △AOB 中,由勾股定理得AB =22+12=5,∵四边形ABCD 为菱形,∴菱形ABCD 的周长为4AB =4 5.7. C 【解析】菱形对角线相互垂直且平分,因此另一条对角线长为2×32-1=4 2.8. A 【解析】∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC .∵BM =DN ,∴OM =ON ,∴四边形AMCN 是平行四边形.当OM =12AC 时,MN =AC ,∴四边形AMCN 是矩形.9. B 【解析】∵四边形ABCD 是正方形,∴∠BAD =90°,AB =AD ,∠BAF =45°,∵△ADE 是等边三角形,∴∠DAE =60°,AD =AE ,∴∠BAE =90°+60°=150°,AB =AE ,∴∠ABE =∠AEB =12(180°-150°)=15°,∴∠BFC =∠BAF +∠ABE =45°+15°=60°,故选B .10. D 【解析】∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AEB =∠DAF ,又∵DF ⊥AE ,∴∠DF A =∠B ,又∵AE =AD ,∴△ADF ≌△EAB ,∴DF =AB .∵∠ADF +∠FDC =90°,∠DAF +∠ADF =90°,∴∠FDC =∠DAF =30°,∴AD =2DF =2AB =6.11. A 【解析】∵菱形ABCD 的周长是4 cm ,∴AB =BC =CD =DA =1 cm ,又∵∠ABC =60°,∴△ABC 是等边三角形,∴AC =AB =BC =1 cm .12.D 【解析】在平行四边形ABCD 中,∵△AOD 为等边三角形,即OA =OD =AD =4,∴AC =BD =8,∴平行四边形ABCD 是矩形,∴由勾股定理得AB =4 3.13. C 【解析】四边形ABCD 是正方形,∴AD ∥BC ,∴∠DAE =∠AEB .∵BE =CF ,∠ABE =∠BCF ,AB =BC ∴△ABE ≌△BCF (SAS),∴∠BFC =∠AEB .∵AB ∥CD ,∴∠ABF =∠BFC =∠AEB .∴与∠AEB 相等的角有3个.14.C 【解析】如解图,作点E 关于直线CD 的对称点E ′,连接AE ′交CD 于点F ,此时AF +EF 的最小值为AE ′的长.∵在矩形ABCD 中,AB =12,BC =16,E 是BC 的中点,∴BE =CE =CE ′=8,∴BE ′=24,∴AE ′=AB 2+BE ′2=122+242=12 5.第14题解图15. D 【解析】∵四边形ABCD 是正方形,∴∠CBE =∠DCM =45°,BC =CD = 2.∴AC =BD =2.∴OC =1.由折叠的性质知,DE =CD =2,CF =EF ,∴BE =2-2,∠DFC =90°.∴∠CDM +∠DCE =90°.又∠BCE +∠DCE =90°,∴∠BCE =∠CDM . ∴△BCE ≌△CDM .∴CM =BE =2- 2.∴OM =OC -CM =1-(2-2)=2-1.16. C 【解析】∵四边形ABCD 是矩形,∴AC =BD ,且OD =OC ,∠ABC =90°,∴∠BDC =∠OCD =∠BAO =∠α,tan α=BC AB =BC m ,sin α=BC AC =BC 2AO ,cos α=AB AC =m AC ,∴BC =m ·tan α,AO =BC 2sin α,AC =m cos α,而BD =AC ,BC ≠m ,∴BD =m cos α,AO ≠m2sin α∴A 、B 、D 正确,C 错误.17.D 【解析】如解图,当B 、E 重合时, α最小,∵在△BMF 和△DMC 中,⎩⎪⎨⎪⎧∠BMF =∠DMC ∠F =∠C BF =DC ,∴△BMF ≌△DMC (AAS),∴BM =DM ,设FM =x ,则DM =BM =8-x ,在Rt △BFM 中,由勾股定理得22+x 2=(8-x )2,解得x =154,∴tan α=BF FM =2154=815.第17题解图18. D 【解析】如解图,连接DE ,∵在正方形ABCD 中,S △DEC =12AD ·CD =12S 正方形ABCD ,在长方形ECFG 中,S △DEC =12×EC ·GE =12S 矩形ECFG ,而点E 从点A 移动到点B 的过程中,三角形DEC 的面积保持不变,∴矩形ECFG 的面积保持不变.第18题解图19. 24 【解析】如解图,在菱形ABCD 中,BD =6.∵菱形的周长为20,BD =6,∴AB =5,BO =3,∴AO =52-32=4,AC =8.∴S 菱形ABCD =12×6×8=24.第19题解图20.132 【解析】 如解图,连接FC ,则MN =12CF ,在Rt △CFG 中,FG =5,CG =5+7=12,∴FC =52+122=13,∴MN =132.第20题解图21. 16 【解析】在△OBC 中,根据三角形中位线等于它所对的第三边的一半,得到OB =2MN =8,又根据矩形的性质:对角线相等且互相平分,得到AC =BD =2OB =16.22. 85 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是正方形,AC 是对角线,∴CD =AD ,∠DAE =∠DCF =45°,BD ⊥AC . ∵AE =CF , ∴△DAE ≌△DCF (SAS), ∴DE =DF ,同理可证:DE =BE ,BE =BF ,∴四边形BEDF 是菱形,∵AC =8,AO =OD ,AE =2,∴OE =2,OD =4,∴DE =OD 2+OE 2=42+22=2 5.∴四边形BEDF 的周长为4DE =8 5.第22题解图23. 74 【解析】如解图,连接EC ,∵OA =OC ,EF ⊥AC ,∴EC =AE ,设DE =x ,则EC =AE =8-x ,根据勾股定理可得(8-x )2=x 2+62,解得x =74.∴DE 的长为74.第23题解图24. (1)证明:∵四边形ABCD 是菱形, ∴AB =AD ,∴∠BAC =∠DAC . ∵AB =AD ,BE =DF ,∴AB -BE =AD -DF ,即AE =AF . ∴△AEF 是等腰三角形. 又∵∠BAC =∠DAC , ∴AC ⊥EF ;(2)解:由题意作解图如下, ∵四边形ABCD 是菱形,∴AC ⊥BD ,AB ∥CD ,OB =12BD =12×4=2.∴∠G =∠AEG .由(1)知EF ⊥AC .又∵BD ⊥AC . ∴EF ∥BD .∴∠AEG =∠ABO . ∴∠G =∠ABO .∵tan G =12,∴tan ∠ABO =AO OB =12.∴AO =OB ·tan ∠ABO =2×12=1.第24题解图25. (1)证明:∵AO =OC ,BO =OD , ∴四边形ABCD 是平行四边形.又∵∠AOB =2∠OAD ,∠AOB 是△AOD 的外角, ∴∠AOB =∠OAD +∠ADO . ∴∠OAD =∠ADO . ∴AO =OD .又∵AC =AO +OC =2AO ,BD =BO +OD =2OD , ∴AC =BD .∴四边形ABCD 是矩形;(2)解:设∠AOB =∠DOC =4x ,∠ODC =3x ,则∠ODC =∠OCD =3x . 在△ODC 中,∠DOC +∠OCD +∠CDO =180°, ∴4x +3x +3x =180°, 解得x =18°.∴∠ODC =3×18°=54°.∴∠ADO =90°-∠ODC =90°-54°=36°.能力提升1. A 【解析】如解图,连接AC 交BD 于点O ,过点D 作DF ⊥BE 于点F .∵BD 平分∠ABC ,∴∠ABD =∠CBD .∵四边形ABCD 是平行四边形,∴BC ∥AD . ∴∠ADB =∠CBD .∴∠ABD =∠ADB .∴AB =AD . ∴▱ABCD 是菱形. ∴AO 垂直平分BD . ∵DE ⊥BD ,∴OC ∥DE .∴OC =12DE =12×6=3.∵菱形ABCD 的面积为24,∴BD =8. ∴BO =4. ∴BC =DC =5.∵DF ·BC =24,∴DF =245. ∴sin ∠DCE =DF DC =2425.第1题解图2. D 【解析】如解图,∵点E ,F 将对角线AC 三等分,且AC =12,∴AE =EF =FC =4,当P 点在AD 上时,作E 点关于AD 的对称点E ′,连接E ′F ,则AE ′=AE =4,当P 点运动至E ′F 和AD 交点时,PE +PF 具有最小值,由对称性可知∠E ′AF =90°,此时E ′F =(AE ′)2+AF 2=42+82=45<9,当P 点和A 点重合时,过点E 作EG ⊥AD ,垂足为G ,PE +PF =AE +AF =12,当P 点和D 点重合时,连接DF ,∵AD =CD ,∠DAE =∠DCF ,AE =CF ,∴△AED ≌△CFD (SAS),∴DE =DF ,∴PE +PF =2DE =2EG 2+DG 2=2×(22)2+(42)2=410.∵45<9<12,45<9<410,∴在AD 上有两个位置存在PE +PF =9,同理在其余三边上各有两种情况,故正方形四条边上共存在8个位置使得PE +PF =9,∴满足条件的P 点有8个.第2题解图3. B 【解析】∵矩形ABCD 中,AD ∶AB =3∶1,∴∠ADB =30°,又△ABD 沿BD 折叠,点A 的对应点为F ,∴∠ADB =∠BDF =30°,∠ABD =∠DBF =60°,AD =FD ,AB =BF ,∴∠CDF =30°,△ADF 为等边三角形,DF =AF ,∴∠BAF =12(180°-∠ABD -∠DBF )=30°=∠CDF ,又DC =AB ,∴△ABF ≌△DCF ,∴CF =BF ,在Rt △ABG 中,ABG =90°,∠BAG =30°,BG =2,∴AB =23,∴CF =23,如解图,延长BA 到B ′使AB ′=AB ,连接EB ′交AD 于H ,根据对称性可知此时点H 即为满足BH +EH 的值最小的H 点.∵∠ADB =30°,∴AB =BE =ED ,又∵AB ′=AB =BE =AE ,∴△BB ′E 为直角三角形,在Rt △BEH 和Rt △BAH 中,BH =BH ,BE =BA ,∴Rt △BEH ≌Rt △BAH ,∴∠ABH =30°,∴BH =AB cos ∠ABH=4,∴BH CF =423=233.第3题解图4. 10 【解析】根据折叠的性质可得△CFH ≌△C ′FH ,△DFG ≌△A ′FG ,△AEG ≌△A ′EG ,△HBE ≌△HC ′E ,∵四边形HFGE 是矩形,∴HF =EG ,FG =HE ,∴△CFH ≌△C ′FH ≌△AEG ≌△A ′EG ,△DFG ≌△A ′FG ≌△HBE ≌△HC ′E ,∴EF =A ′F + A ′E =FD +AE = FD +CF =CD =AB =10 cm .5. (1)证明:∵四边形ABCD 是正方形, ∴∠D =∠BCD =90°. ∴∠ECQ =90°=∠D . ∵E 是CD 的中点, ∴DE =CE .又∵∠DEP =∠CEQ , ∴△PDE ≌△QCE (ASA);(2)①证明:如解图,由(1)可知△PDE ≌△QCE , ∴PE =QE =12PQ .又∵EF ∥BC , ∴PF =FB =12PB .∵PB =PQ , ∴PF =PE . ∴∠1=∠2.∵四边形ABCD 是正方形, ∴∠BAD =90°.在Rt △ABP 中,∵F 是PB 的中点, ∴AF =12BP =FP .∴∠3=∠4.又∵AD ∥BC ,EF ∥BC , ∴AD ∥EF . ∴∠1=∠4.∴∠2=∠3. 又∵PF =FP ,∴△APF ≌△EFP (AAS). ∴AP =EF . 又∵AP ∥EF ,∴四边形AFEP 是平行四边形;第5题解图②解:四边形AFEP 不是菱形,理由如下: 设PD =x ,则AP =1-x . 由(1)可知△PDE ≌△QCE . ∴CQ =PD =x . ∴BQ =BC +CQ =1+x .∵点E ,F 分别是PQ ,PB 的中点, ∵EF 是△PBQ 的中位线. ∴EF =12BQ =1+x 2.由①可知AP =EF . 即1-x =1+x 2,解得x =13.∴PD =13,AP =23.在Rt △PDE 中,∵DE =12,∴PE =PD 2+DE 2=136. ∵AP ≠PE .∴四边形AFEP 不是菱形.6. (1)证明:∵四边形ABCD 为菱形, ∴AD ∥BC ,∴∠DAP =∠CEP ,∠ADP =∠ECP , 在△ADP 和△ECP 中,⎩⎪⎨⎪⎧∠DAP =∠CEP ∠ADP =∠ECP DP =CP, ∴△ADP ≌△ECP (AAS);(2)解:如解图①,过点P 作PI ∥CE 交DE 于点I , 则PI CE =DPDC ,又点P 是CD 的中点, ∴PI CE =12, ∵△ADP ≌△ECP , ∴AD =CE , ∴KP KB =PI BE =14, ∴BP =3PK , ∴n =3;第6题解图①(3)解:如解图②,过点O 作OG ⊥AE 于点G , ∵BM ⊥AE 于点M ,KN ⊥AE 于点N , ∴BM ∥OG ∥KN , ∵点O 是线段BK 的中点, ∴MG =NG ,又∵OG ⊥MN , ∴OM =ON ,即△MON 是等腰三角形,由题意得,△BPC ,△AMB ,△ABP 为直角三角形, 设BC =2,则CP =1,由勾股定理得,BP =3, 则AP =7,根据三角形面积公式,BM =2217, ∴MP =377.易得PB =3PO ,∴OG =13BM =22121,MG =23MP =277,tan ∠MOG =MGOG =3,∴∠MOG =60°,∴∠MON 的度数为120°.第6题解图②满分冲关1. 6 【解析】由题易证△ABE ≌△DAF .∵GO ⊥HO ,易得△AGO ≌△DHO ,∴GO =HO .∴△GHO 为等腰直角三角形.∴当GO 最小时,GH 取得最小值.令AF =a ,AE =b ,则BE =a ,DF =b ,∴a +b =25,12a ·b =2,∴AB 2=a 2+b 2=12.∴AB =23.∴当GO ⊥AD 时,GO 有最小值,此时OG ∥AB ,∵O 为BD 中点,∴OG 为△ABD 的中位线,∴GO =12AB =3,∴GO 的最小值为3,∴GH 最小值为 6.2. 解:(1)CA =CE +CF ;【解法提示】∵在菱形ABCD 中,∠BAD =120°, ∴∠DAC =∠ACB =∠D =60°. 又∵∠EAF =60°, ∴∠DAF =∠CAE . ∵AD =CD 且∠D =60°,∴△ACD 是等边三角形,AD =AC , ∴△ADF ≌△ACE , ∴DF =CE .又∵CA =CD =DF +CF , ∴CA =CE +CF . (2)CF -CE =43CA ,理由:如解图①,过点O 作OG ∥AD ,交CF 于点G , ∵四边形ABCD 是菱形, ∴AB =BC =CD =DA . ∵∠BAD =120°, ∴∠B =∠ADC =60°,∴△ABC 和△ADC 都为等边三角形. ∵OG ∥AD ,∴∠OGC =∠ADC =∠ACD =60°, ∴△OGC 为等边三角形,∴OC =OG ,∠OCE =∠OGF =180°-60°=120°. ∵∠COE =∠GOF =60°-∠EOG ,∴△OCE ≌△OFG , ∴FG =CE . ∵CF =GF +CG , ∴CF -CE =CO . ∵AO =13CA ,∴OC =43CA ,∴CF -CE =43CA ;第2题解图①(3)BE 的长为1或3或5.【解法提示】连接BD 交AC 于点I ,①如解图②,当点O 在AI 上时,过点O 作OP ⊥BC 于点P ,作OQ ⊥CD 于点Q , 又∵菱形ABCD 中,AC 平分∠BCD , ∴OP =OQ .∵∠POQ =360°-120°-90°×2=60°, ∴∠EOF =∠POQ , ∴∠EOP =∠FOQ . 又∵∠OPE =OQF =90°, ∴△EOP ≌△FOQ , ∴EP =FQ .在Rt △AIB 中,AB =6,∠BAI =60°, ∴BI =AB ·sin60°=3 3. 在Rt △BIO 中, BO =27,BI =33, ∴OI =OB 2-BI 2=1. 又∵CI =12AC =3,∴OC =3+1=4, ∴CP =CQ =12OC =2.又∵CF =1,∴EP =FQ =1,∴BE =BC -CP -EP =6-2-1=3;第2题解图②②如解图③,当点O 在AI 上,点F 在线段DC 的延长线上时,过点O 作OP ⊥BC 于点P ,过点O 作OQ ⊥CD 于点Q ,同理可得EP =QF ,OC =4,CQ =CP =2, ∵CF =1,∴QF =CQ +CF =3,∴BE =CB -CP -PE =6-2-3=1;第2题解图③③如解图④,当点O 在IC 上时,由①知OC =3-1=2, 又∵CF =1,∠ACD =60°, ∴OF ⊥CD ,∴∠OEC =360°-60°-120°-90°=90°, ∴EC =12OC =1,∴BE =6-1=5;第2题解图④④如解图⑤,当点O 在IC 上,点F 在线段DC 的延长线上时,过点O 作OP ⊥BC 于点P ,过点O 作OQ ⊥CD 于点Q ,同理可得QF =PE ,OC =2,CP =CQ =1,QF =CQ +CF =2,∴BE =BC -EP -CP =6-2-1=3; 综上所述,BE 的长为1或3或5.第2题解图⑤。

(完整)年中考数学专题复习第二十一讲矩形-菱形-正方形(含详细参考答案)

(完整)年中考数学专题复习第二十一讲矩形-菱形-正方形(含详细参考答案)

B.2 7
C. 5
D.10
3. (2018?大连) 如图,菱形 ABCD 中,对角线 AC ,BD 相交于点 O,若 AB=5,
AC=6 ,则 BD 的长是( )
A.8
B.7
C. 4
D.3
4. (2018?贵阳) 如图,在菱形 ABCD 中, E 是 AC 的中点, EF∥ CB,交 AB 于 点 F,如果 EF=3,那么菱形 ABCD 的周长为( )
21.(2018?盐城) 在正方形 ABCD 中,对角线 BD 所在的直线上有两点 E、F 满足 BE=DF,连接 AE、 AF、 CE、 CF,如图所示. ( 1)求证: △ABE ≌△ ADF; ( 2)试判断四边形 AECF 的形状,并说明理由.
或 600 时,利用等边三角形或直角三角形的相关知识解决的题目】
三、正方形:
1、定义:有一组邻边相等的
是正方形,或有一个角是直角的

正方形
2、性质:⑴正方形四个角都
都是
角,
⑵正方形四边条都
⑶正方形两对角线


每条对角线平分一
组内角
3、判定:⑴先证是矩形,再证
⑵先证是菱形,再证
【名师提醒: 1、菱形、正方形具有平行四边形的所有性质,正方形具有以上特
使平行
18. ( 2018?株洲) 如图,矩形 ABCD 的对角线 AC 与 BD 相交点 O,AC=10,P、
Q 分别为 AO 、AD 的中点,则 PQ 的长度为

19.(2018?武汉)以正方形 ABCD 的边 AD 作等边 △ADE ,则∠ BEC 的度数是 .
三、解答题 20. (2018?柳州) 如图,四边形 ABCD 是菱形,对角线 AC, BD 相交于点 O, 且 AB=2 . ( 1)求菱形 ABCD 的周长; ( 2)若 AC=2,求 BD 的长.

中考数学一轮复习 特殊的平行四边形——矩形、菱形、正方形 专题培优、能力提升复习讲义(含答案)

中考数学一轮复习 特殊的平行四边形——矩形、菱形、正方形 专题培优、能力提升复习讲义(含答案)

特殊的平行四边形——矩形、菱形、正方形专题培优、能力提升复习讲义中考考点梳理一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形。

2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。

先证它是菱形,再证有一个角是直角。

(2)判定一个四边形为正方形的一般顺序如下:第一步:先证明它是平行四边形;第二步:再证明它是菱形(或矩形);第三步:最后证明它是矩形(或菱形)4、正方形的面积: 设正方形边长为a ,对角线长为b ,S 正方形=222b a 中考典例精选考点典例一、矩形的性质与判定【例1】如图,矩形ABCD 的对角线AC 、BD 相交于点O ,若AB =AO , 求∠ABD 的度数.图6A B 【答案】∠ABD =60°.【解析】考点:矩形的性质;等边三角形的判定及性质.【点睛】此题考查了等边三角形的判定与性质,矩形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.【举一反三】1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【答案】详见解析.【解析】试题分析:由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到△BEF≌△CFD,利用全等三角形对应边相等即可得证.考点:矩形的性质;全等三角形的判定与性质.2. 如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于F .若AD=8cm ,AB=6cm ,AE=4cm .则△EBF 的周长是 cm .【答案】8.【解析】试题分析:BE=AB-AE=2.设AH=x ,则DH=AD ﹣AH=8﹣x ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=x ,EH=DH=8﹣x ,∴EH 2=AE 2+AH 2,即(8﹣x )2=42+x 2,解得:x=3.∴AH=3,EH=5.∴C △AEH =12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH .又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE ,∴32==∆∆AH BE C C HAE EFB . ∴C △EBF =23=C △HAE =8.考点:1折叠问题;2勾股定理;3相似三角形.考点典例二、菱形的性质与判定【例2】如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.【解析】(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE ∥AF ,∴四边形ABEF 是平行四边形,∵AF=AB ,∴四边形ABEF 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.【点睛】本题考查了平行四边形的性质,菱形的判定,熟记各性质与平行四边形和菱形的判定方法是解题的关键.在利用菱形计算或证明时,应充分利用菱形的性质,如“菱形的四条边都相等”“菱形的对角线互相垂直且平分,并且每一组对角线平分一组对角”等.对于菱形的判定,若可证出四边形为平行四边形,则可证一组邻边相等或对角线互相垂直;若相等的边较多,则可证四条边都相等.【举一反三】1. 如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于A .524 B .512 C .5 D .4【答案】A.【解析】 考点:菱形的性质.2. 如图,菱形ABCD 的边AB=8,∠B=60°,P 是AB 上一点,BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为( )A. 5B. 7C. 8D. 213 CD H【答案】B.【解析】考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.考点典例三、正方形的性质与判定【例3】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】证明见解析.【解析】考点:正方形的判定;全等三角形的判定与性质.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.正方形是特殊的矩形又是特殊的菱形,具有矩形和菱形的所有性质.证明一个四边形是正方形,可以先判定为矩形,再证邻边相等或对角线互相垂直;或先判定为菱形,再证有一个角是直角或对角线相等.【举一反三】1.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【答案】B.【解析】考点:正方形的性质;全等三角形的判定及性质;勾股定理.考点典例四、特殊平行四边形综合题【例4】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE ⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【答案】(1)证明见解析;(2)四边形BECD是菱形,(3)当∠A=45°时,四边形BECD是正方形.理由见解析.【解析】(3)当∠A=45°时,四边形BECD是正方形,理由是:考点:正方形的判定;平行四边形的判定与性质;菱形的判定.【点睛】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力. 【举一反三】如图,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转450得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED③∠DFG =112.5︒ ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5F EH G BA【答案】①②③. 【解析】试题分析:由旋转的性质可得HD=BD=2 ∴HA=12-考点:旋转的性质;全等三角形的判定及性质;菱形的判定.课后巩固、提高自测小练习一、选择题1.关于ABCD的叙述,正确的是()A.若AB⊥BC ABCD是菱形B.若AC⊥BD ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD ABCD是正方形【答案】C.【解析】试题分析:根据矩形的判定可得A、C项应是矩形;根据菱形的判定可得B、D项应是菱形,故答案选C.考点:矩形、菱形的判定.2. 下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【答案】D.【解析】考点:1菱形的判定;2矩形的性质;3平行四边形的判定.3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.此时,EP+FP的值最小,值为EF′.∵四边形ABCD为菱形,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.考点:1轴对称;2菱形.4.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A .AB =AD B .AC ⊥BD C .AC =BD D .∠BAC =∠DAC 【答案】C . 【解析】考点:菱形的判定;平行四边形的性质.5. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:∵正方形ABCD 的边长为6,CE =2DE ,∴DE =2,EC =4,∵把△ADE 沿AE 折叠使△ADE 落在△AFE 的位置,∴AF =AD =6,EF =ED =2,∠AFE =∠D =90°,∠FAE =∠DAE ,在Rt △ABG 和Rt △AFG 中,∵AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ),∴GB =GF ,∠BAG =∠FAG ,∴∠GAE =∠FAE +∠FAG =12∠BAD =45°,所以①正确; 设BG =x ,则GF =x ,C =BC ﹣BG =6﹣x ,在Rt △CGE 中,GE =x +2,EC =4,CG =6﹣x ,∵222CG CE GE +=,∴222(6)4(2)x x-+=+,解得x=3,∴BG=3,CG=6﹣3=3,∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC.∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EH EFGC EG=,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:EH EFGC EG==25,∴S△FGC=S△GCE﹣S△FEC=12×3×4﹣12×4×(25×3)=3.6,所以⑤正确.故正确的有①②③④⑤,故选D.考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.6.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次【答案】B.【解析】考点:翻折变换(折叠问题).7.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【答案】D.【解析】考点:菱形的性质;平行四边形的性质.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB//CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.二、填空题1.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)【答案】①②③④.【解析】考点:1菱形的性质和判定;2轴对称;3平行线的性质.2. 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.【答案】22.5°.【解析】试题分析:已知四边形ABCD是矩形,由矩形的性质可得AC=BD,OA=OC,OB=OD,即可得OA=OB═OC,由等腰三角形的性质可得∠OAC=∠ODA,∠OAB=∠OBA,即可得∠AOE=∠OAC+∠OCA=2∠OAC,再由∠EAC=2∠CAD,可得∠EAO=∠AOE,因AE⊥BD,可得∠AEO=90°,所以∠AOE=45°,所以∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.3. 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG•BD=AE2+CF2.【答案】(1),(2),(3),(5).【解析】1(2)∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,4∴S四边形OEBF:S正方形ABCD=1:4;故正确;(3)∴BE+BF=BF+CF=BC=2OA;故正确;(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=12BD,OE=22EF,∴OG•BD=EF2,∵在△BEF中,EF2=BE2+BF2,∴EF2=AE2+CF2,∴OG•BD=AE2+CF2.故正确.考点:四边形综合题.4.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.【答案】24. 【解析】试题分析:根据菱形面积等于两条对角线的长度的乘积的一半即可得,菱形的面积=21×6×8=24. 考点:菱形的性质.5.将矩形ABCD 纸片按如图所示的方式折叠,EF ,EG 为折痕,试问∠AEF +∠BEG = .【答案】90°. 【解析】考点:翻折变换(折叠问题).6. 如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(4,3),∠CAO 的平分线与y 轴相交于点D ,则点D 的坐标为 .【答案】(0,43).【解析】考点:矩形的性质;坐标与图形性质.三、解答题1.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=22,∠AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.【解析】考点:矩形的性质;全等三角形的判定与性质.2.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.【解析】试题分析:(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.考点:矩形的判定与性质;全等三角形的判定与性质.3.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:A E=EF.【答案】证明见解析.【解析】试题分析:先取AB的中点H,连接EH,根据∠AE F=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC 的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.试题解析:取AB的中点H,连接EH.∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,∵∠1=∠2,AH=EC,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.考点:正方形的性质;全等三角形的判定与性质.4. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【答案】详见解析.【解析】∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.考点:全等三角形的性质;菱形的判定.。

2021年九年级中考数学复习 几何专题:矩形、菱形(含答案)

2021年九年级中考数学复习  几何专题:矩形、菱形(含答案)

2021中考数学几何专题:矩形、菱形一、选择题(本大题共10道小题)1. 如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象的大致形状是()2. 关于▱ABCD的叙述,正确的是()A. 若AB⊥BC,则▱ABCD是菱形B. 若AC⊥BD,则▱ABCD是正方形C. 若AC=BD,则▱ABCD是矩形D. 若AB=AD,则▱ABCD是正方形3. (2020·武威)如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB的度数是()A.90°B.100°C.120°D.150°4. (2020·牡丹江)如图,在菱形OABC中,点B在x轴上,点A的坐标为(2,23),将菱形绕点O旋转,当点A落在x轴上时,点C的对应点的坐标为()A.(2,-B.--或2)C.(-D.(2,--或5. (2020·黄冈)若菱形的周长为16,高为2,则菱形两邻角的度数之比为()A.4∶1B.5∶1C.6∶1D.7∶16. (2020·乐山)如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于E,连接OA,则四边形AOED的周长为()A.9+23B.9+3C.7+23D.87. 如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F.在下列结论中,不一定正确的是()A. △AFD≌△DCEB. AF=12ADC. AB=AFD. BE=AD-DF8. (2020·黔东南州)若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16B.24C.16或24D.489. (2020·邵阳)将一张矩形纸片ABCD按如图所示操作:(1)将DA沿DP向内折叠,使点A落在点A1处,(2)将DP沿DA1向内继续折叠,使点P落在点P1处,折痕与边AB交于占M.若P1M⊥AB,则∠DP1M的大小是()BOCAyA.135°B. 120°C. 112.5°D.115°10. (2020·绥化)如图,在R t△ABC中,CD为斜边AB的中线,过点D作DE⊥AC 于点E,延长DE至点F,使EF=DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:①DE=12BC;②四边形DBCF是平行四边形;③EF=EG;④BC=25.其中正确结论的个数是( )A.1个B.2个C.3个D.4个二、填空题(本大题共6道小题)11. 如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是________.12. 如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE.如果⊥ADB =30°,则⊥E=________度.13. 在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则⊥EBC的度数为________.14. (2020·四川甘孜州)如图,有一张长方形纸片ABCD,AB=8cm,BC=10cm,点E为CD上一点,将纸片沿AE折叠,BC的对应边B'C'恰好经过点D,则线段DE的长为__________cm.15. 如图,在⊥ABC中,AC=BC=2,AB=1,将它沿AB翻折得到⊥ABD,则四边形ADBC的形状是形,点P,E,F分别为线段AB,AD,DB上的任意一点,则PE+PF的最小值是.GFDCB16. 如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将⊥BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将⊥ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论:①∠EBG =45°;⊥⊥DEF⊥⊥ABG ;⊥S △ABG =32S △FGH ;⊥AG +DF =FG.其中正确的是______________.(把所有正确结论的序号都选上)三、解答题(本大题共5道小题)17. 如图,对折矩形纸片ABCD ,使AB 与DC 重合,得到折痕MN ,将纸片展平;再一次折叠,使点D 落到MN 上的点F 处,折痕AP 交MN 于E ;延长PF 交AB 于G.求证: (1)⊥AFG ≌△AFP ; (2)⊥APG 为等边三角形.18. 如图,将▱ABCD的边AB 延长至点E ,使BE=AB ,连接BD ,DE ,EC ,DE交BC 于点O. (1)求证:⊥ABD ⊥⊥BEC ;(2)若⊥BOD=2⊥A ,求证:四边形BECD 是矩形.19. 已知:如图,在菱形ABCD 中,点E ,F 分别在边BC ,CD 上,且BE=DF ,连结AE ,AF.求证:AE=AF.20. 如图,已知⊥ABC 中,AB =AC ,把⊥ABC 绕A 点沿顺时针方向旋转得到⊥ADE ,连接BD 、CE 交于点F. (1)求证:⊥AEC⊥⊥ADB ;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.21. 如图,⊥O 的直径AB =4,C 为⊥O 上一点,AC =2.过点C 作⊥O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求⊥APC 与⊥ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊥O 的直径时,求证:⊥APC 与⊥ABC 全等.2021中考数学 几何专题:矩形、菱形-答案一、选择题(本大题共10道小题)1. 【答案】C 【解析】本题考查菱形的性质、相似三角形的性质、函数的图象和二次函数的图象和性质. 解题思路:设AC 、BD 交于点O ,由于点P 是菱形ABCD的对角线AC 上一动点,所以0<x <2.当0<x <1时,△AMN ∽△ABD ⇒APAO =MN BD ⇒x 1=MN 1⇒MN =x ⇒y =12x 2.此二次函数的图象开口向上,对称轴是x =0,此时y 随x 的增大而增大. 所以B 和D 均不符合条件.当1<x <2时,△CMN∽△CBD ⇒CP CO =MN BD ⇒2-x 1=MN 1⇒MN =2-x ⇒y =12x(2-x)=-12x 2+x.此二次函数的图象开口向下,对称轴是x =1,此时y 随x 的增大而减小. 所以A 不符合条件.综上所述,只有C 是符合条件的.2. 【答案】C 【解析】逐项分析如下表:3. 【答案】连结AE ,∵AE 间的距离调节到60cm ,木制活动衣帽架是由三个全等的菱形构成, ∴AC =20cm ,∵菱形的边长AB =20cm , ∴AB =BC =20cm , ∴AC =AB =BC , ∴△ACB 是等边三角形, ∴∠B =60°, ∴∠DAB =120°.故选:C.4. 【答案】D【解析】菱形OABC 中,点A的坐标为(2,23),所以OA=4,∠A=∠C=60°,分类讨论,①若顺时针旋转,旋转后的图形如图1所示,则OC=OA=4,∠C=60°,可求出点C对应点的坐标为(-2,-23);②若逆时针旋转,旋转后的图形如图2所示,则OC=OA=4,∠C=60°,可求出点C对应点的坐标为(2,23).5. 【答案】B【解析】本题考查了菱形的性质及锐角三角函数等知识.由菱形的周长为16可得其边长为4,而高为2,即转化为已知某一直角三角形的斜边为4,一直角边为2,求该直角三角形的锐角.由sinα=2142,可得锐角α=30°,所以该菱形的两邻角为150°和30°,两邻角之比5∶1,因此本题选B.6. 【答案】B【解析】由已知及菱形的性质求得∠ABD=∠CDB=30º,AO⊥BD,利用含30º的直角三角形边的关系分别求得AO、DO、OE、DE,进而求得四边形AOED的周长.∵四边形ABCD是菱形,O是对角线AC的中点,∴AO⊥BD,AD=AB =4,AB∥DC;∵∠BAD=120º,∴∠ABD=∠ADB=∠CDB=30º;∵OE⊥DC,∴在R t△AOD中,AD=4,AO=12AD=2,DO=AD2-AO2=23;在R t△DEO中,OE=12OD=3,DE=AD2-AO2=3,∴四边形AOED的周长为AO +OE+DE+AD=2+3+3+4=9+3.7. 【答案】B【解析】逐项分析如下表:选项逐项分析正误A∵四边形ABCD是矩形,AF⊥DE,∴∠C=90°=⊥AFD,AD∥BC,∴∠ADF=∠CED,∵AD=DE,∴△AFD≌△√yxABCOyxAB CO图1图28. 【答案】B【解析】解方程x 2﹣10x +24=0得(x ﹣4)(x ﹣6)=0,∴x =4,或x =6,分两种情况:①当AB =AD =4时,4+4=8,不能构成三角形;②当AB =AD =6时,6+6>8,即可得出菱形ABCD 的周长为4AB =24.9. 【答案】C【解析】本题考查了折叠问题、三角形内角和定理、矩形的性质,由折叠前后对应角相等且190∠=PMA 可先求出145∠=∠=DMP DMA ,进一步求出45ADM ∠=,再由折叠可求出122.5∠=∠=∠=MDP ADP PDM ,最后在1∆DPM 中由三角形内角和定理即可求解.解:由折叠知,190∠=PMA , ∴145∠=∠=DMP DMA ,即45ADM ∠=, 由折叠可得,∴1122.52∠=∠=∠=∠=MDP ADP PDM ADM , ∴在1∆DPM 中,1=1804522.5112.5∠--=DPM ,因此本题选C . 10. 【答案】D【解析】(1)∵DF ⊥AC ,BC ⊥AC ,∴DE ∥BC .∵点D 是AB 的中点,∴点E是AC 的中点.∴DE =12BC .可见结论①正确.(2)∵AC 与DF 互相垂直平分,∴四边形ADCF 是菱形.∴FC AD .∴FC DB .∴四边形DBCF 是平行四边形.可见结论②正确.(3)∵∠CDE +∠EGC =180°,∠EGF +∠EGC =180°,∴∠CDE =∠EGC .由菱形的性质得∠CDE =∠EFG ,∴∠EGF =∠EFG .∴EF =EG .可见结论③正确.(4)易知△FEG ∽△FCD ,∴FE FC=FGFD ,即FE·FD =FC·FG .∴2DE2=2×5,DEBC =2DE =4个,故选D .二、填空题(本大题共6道小题)11. 【答案】24 【解析】如解图,连接BD 交AC 于点O ,∵四边形ABCD 是菱形,AB =5,AC =8,且菱形的对角线互相垂直平分,∴OA =4,在Rt △AOB中,由勾股定理得OB =3,∴BD =6,∴S 菱形ABCD =12AC ·BD =12×8×6=24.解图12. 【答案】15【解析】如解图,连接AC.⊥四边形ABCD 是矩形,∴AD =BC ,AC =BD ,又⊥AB =BA ,∴△DAB ≌△CBA(SSS ),∴∠ACB =⊥ADB =30°,∵CE =BD ,∴AC =CE ,∴∠E =⊥CAE =12⊥ACB =15°.解图13. 【答案】105°或45° 【解析】如解图,∵四边形ABCD 是菱形,∠A =30°,∴∠ABC =150°,∠ABD =⊥DBC =75°,且顶角为120°的等腰三角形的底角是30°.分为以下两种情况:(1)当点E 在⊥ABD 内时,∠E 1BC =⊥E 1BD +⊥DBC =30°+75°=105°;(2)当点E 在⊥DBC 内时,∠E 2BC =⊥DBC -∠E 2BD =75°-30°=45°.综上所述,∠EBC 的度数为105°或45°.解图14. 【答案】5【解析】本题考查了矩形的性质,轴对称的性质,勾股定理.∵长方形纸片ABCD ,AB =8,BC =10,∴AB '=8,AD =10,B 'C '=10.在R t △ADB '中,由勾股定理,得DB '=6.∴DC '=4. 设DE =x ,则CE =C 'E =8-x .在R t △C 'DE 中,由勾股定理,得DE 2=EC '2+DC '2即x 2=(8-x )2+42.∴x =5.即线段DE 的长为5cm .10815. 【答案】菱[解析]∵AC=BC ,∴⊥ABC 是等腰三角形.将⊥ABC 沿AB 翻折得到⊥ABD ,∴AC=BC=AD=BD ,∴四边形ADBC 是菱形. ∵⊥ABC 沿AB 翻折得到⊥ABD ,∴⊥ABC 与⊥ABD 关于AB 成轴对称.如图所示,作点E 关于AB 的对称点E',连接PE',根据轴对称的性质知AB 垂直平分EE',∴PE=PE', ∴PE +PF=PE'+PF ,当E',P ,F 三点共线,且E'F ⊥AC 时,PE +PF 有最小值,该最小值即为平行线AC 与BD 间的距离.作CM ⊥AB 于M ,BG ⊥AD 于G ,由题知AC=BC=2,AB=1,∠CAB=∠BAD , ∴cos ∠CAB=cos ∠BAD ,即=,∴AG=, 在Rt⊥ABG 中,BG===,由对称性可知BG 长即为平行线AC ,BD 间的距离, ∴PE +PF 的最小值=.16. 【答案】①①①【解析】由折叠的性质得,∠CBE =⊥FBE ,∠ABG =⊥FBG ,∴∠EBG =⊥FBE +⊥FBG =12×90°=45°,故⊥正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2=102-62=8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2,得ED =83,EF =103,∴EDFD =43≠AB AG =2,∴△DEF 与⊥ABG 不相似,故⊥不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,∴S △ABG S △FGH =96=32,故⊥正确;⊥AG =3,DF =AD -AF =2,∴FG =5,∴AG +DF =FG =5,故⊥正确.综上,答案是⊥⊥⊥.三、解答题(本大题共5道小题)17. 【答案】证明:(1)∵对折矩形纸片ABCD,使AB与CD重合,得到折痕MN,∴MN∥AB,M,N分别为AD,BC中点,由平行线的性质可知PF=GF.由折叠的性质得∠PF A=∠GF A=90°,∴⊥AFG≌△AFP(SAS).(2)∵⊥AFG≌△AFP,∴AP=AG,∠2=∠3.又∵∠2=∠1,∴∠1=∠2=∠3.又∵∠1+∠2+∠3=90°,∴3∠2=90°,∴∠2=30°,∠P AG=2∠2=60°,∴⊥APG 为等边三角形.18. 【答案】[解析](1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;(2)欲证明四边形BECD是矩形,只需推出BC=ED 即可.证明:(1)在▱ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.又∵BE=AB,∴BE=DC,∴四边形BECD是平行四边形,∴BD=EC.在⊥ABD与⊥BEC中,∴⊥ABD≌△BEC(SSS).(2)由(1)知四边形BECD是平行四边形,则OD=OE,OC=OB.∵四边形ABCD是平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A ,∠BOD=∠OCD +∠ODC ,∴∠OCD=∠ODC ,∴OC=OD ,∴BC=ED ,∴平行四边形BECD 是矩形.19. 【答案】∵四边形ABCD 是菱形,∴AB=AD ,∠B=∠D ,∵BE=DF ,∴△ABE ≌△ADF ,∴AE=CF .20. 【答案】(1)证明:⊥⊥ADE 是由⊥ABC 绕点A 沿顺时针方向旋转而得, ∴AD =AB ,AE =AC ,∠BAC =⊥DAE ,(1分)∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =⊥DAB ,在⊥AEC 和⊥ADB 中∵⎩⎨⎧AD = AE ⊥EAC =⊥DAB AB =AC,∴△AEC ≌△ADB(SAS ).(3分)(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF , ∴∠BAC =⊥ABD ,又⊥⊥BAC =45°,∴∠ABD =45°,(5分)又⊥⊥ADE 是由⊥ABC 绕点A 沿顺时针方向旋转而得, ∴AD =AB ,∴∠DAB =90°,(6分)又⊥AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2,∴BF =BD -DF =22-2.(8分)21. 【答案】(1)解:⊥AC =2,OA =OB =OC =12AB =2,⊥AC =OA =OC ,⊥⊥ACO 为等边三角形,⊥⊥AOC =⊥ACO =⊥OAC =60°,⊥⊥APC =12⊥AOC =30°,又⊥DC 与⊥O 相切于点C ,⊥OC ⊥DC ,⊥⊥DCO =90°,⊥⊥ACD =⊥DCO -⊥ACO =90°-60°=30°;解图(2)证明:如解图,连接PB ,OP ,⊥AB 为直径,⊥AOC =60°,⊥⊥COB =120°,当点P 移动到CB ︵的中点时,⊥COP =⊥POB =60°, ⊥⊥COP 和⊥BOP 都为等边三角形,⊥OC =CP =OB =PB ,⊥四边形OBPC 为菱形;(3)证明:⊥CP 与AB 都为⊥O 的直径,⊥⊥CAP =⊥ACB =90°,在Rt⊥ABC 与Rt⊥CP A 中,⎩⎨⎧AB =CPAC =AC ,⊥Rt⊥ABC ⊥Rt⊥CP A (HL).。

2021中考数学真题分类专题19 矩形菱形正方形(共42题含解析)

2021中考数学真题分类专题19 矩形菱形正方形(共42题含解析)

专题18矩形菱形正方形(共42题)一、单选题1.(2021·四川成都市·中考真题)如图,四边形ABCD是菱形,点E,F分别在,BC DC边上,添加以下条件不能判定ABE ADF≌的是()A.BE DF=B.BAE DAF∠=∠C.AE AD=D.AEB AFD∠=∠2.(2021·四川遂宁市·中考真题)如图,在矩形ABCD中,AB=5,AD=3,点E为BC上一点,把△CDE 沿DE翻折,点C恰好落在AB边上的F处,则CE的长是()A.1B.43C.32D.533.(2021·重庆中考真题)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O做ON△OM,交CD于点N.若四边形MOND的面积是1,则AB的长为()A.1B2C.2D.24.(2021·四川凉山彝族自治州·中考真题)下列命题中,假命题是( )A .直角三角形斜边上的中线等于斜边的一半B .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C .若AB BC =,则点B 是线段AC 的中点D .三角形三条边的垂直平分线的交点叫做这个三角形的外心5.(2021·四川泸州市·中考真题)下列命题是真命题的是( )A .对角线相等的四边形是平行四边形B .对角线互相平分且相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形6.(2021·浙江温州市·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.过点D 作DF 的垂线交小正方形对角线EF 的延长线于点G ,连结CG ,延长BE 交CG 于点H .若2AE BE =,则CG BH 的值为( )A .32B .2C .3107D .3557.(2021·安徽中考真题)如图,在菱形ABCD 中,2AB =,120A ∠=︒,过菱形ABCD 的对称中心O 分别作边AB ,BC 的垂线,交各边于点E ,F ,G ,H ,则四边形EFGH 的周长为( )A .33+B .223+C .23+D .123+ 8.(2021·重庆中考真题)如图,把含30°的直角三角板PMN 放置在正方形ABCD 中,30PMN ∠=︒,直角顶点P 在正方形ABCD 的对角线BD 上,点M ,N 分别在AB 和CD 边上,MN 与BD 交于点O ,且点O 为MN 的中点,则AMP ∠的度数为( )A .60°B .65°C .75°D .80°9.(2021·四川乐山市·中考真题)如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若120ABC ∠=︒,2AB =,则PE PF -的值为( )A .32B .3C .2D .5210.(2021·四川自贡市·中考真题)如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN △,连接DN ,则DN 的长是( )A .52B 95C .3D 6511.(2021·浙江绍兴市·中考真题)如图,菱形ABCD 中,60B ∠=︒,点P 从点B 出发,沿折线BC CD -方向移动,移动到点D 停止.在ABP △形状的变化过程中,依次出现的特殊三角形是( )A .直角三角形→等边三角形→等腰三角形→直角三角形B .直角三角形→等腰三角形→直角三角形→等边三角形C .直角三角形→等边三角形→直角三角形→等腰三角形D .等腰三角形→等边三角形→直角三角形→等腰三角形12.(2021·陕西中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,连接AC 、BD ,则AC BD的值为( )A .12B .22C .32D .33二、填空题13.(2021·山东临沂市·中考真题)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是___(只填写序号).△射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;△车轮做成圆形,应用了“圆是中心对称图形”;△学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;△地板砖可以做成矩形,应用了“矩形对边相等”.14.(2021·四川泸州市·中考真题)如图,在边长为4的正方形ABCD 中,点E 是BC 的中点,点F 在CD 上,且CF =3BF ,AE ,BF 相交于点G ,则AGF 的面积是________.15.(2021·四川成都市·中考真题)如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为'B ,则线段BF 的长为_______;第二步,分别在,'EF A B 上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.16.(2021·江苏扬州市·中考真题)如图,在ABC 中,AC BC =,矩形DEFG 的顶点D 、E 在AB 上,点F 、G 分别在BC 、AC 上,若4CF =,3BF =,且2DE EF =,则EF 的长为________.17.(2021·云南中考真题)已知ABC 的三个顶点都是同一个正方形的顶点,ABC ∠的平分线与线段AC 交于点D .若ABC 的一条边长为6,则点D 到直线AB 的距离为__________.18.(2021·山东泰安市·中考真题)如图,将矩形纸片ABCD 折叠(AD AB >),使AB 落在AD 上,AE 为折痕,然后将矩形纸片展开铺在一个平面上,E 点不动,将BE 边折起,使点B 落在AE 上的点G 处,连接DE ,若DE EF =,2CE =,则AD 的长为________.19.(2021·江苏连云港市·中考真题)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,OE AD ⊥,垂足为E ,8AC =,6BD =,则OE 的长为______.20.(2021·四川南充市·中考真题)如图,点E 是矩形ABCD 边AD 上一点,点F ,G ,H 分别是BE ,BC ,CE 的中点,3AF =,则GH 的长为________.21.(2021·四川凉山彝族自治州·中考真题)菱形ABCD 中,对角线10, 24AC BD ==,则菱形的高等于___________.22.(2021·重庆中考真题)如图,在菱形ABCD 中,对角线12AC =,16BD =,分别以点A ,B ,C ,D 为圆心,12AB 的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)23.(2021·四川遂宁市·中考真题)如图,正方形ABCD 中,点E 是CD 边上一点,连结BE ,以BE 为对角线作正方形BGEF ,边EF 与正方形ABCD 的对角线BD 相交于点H ,连结AF ,有以下五个结论:△ABF DBE ∠=∠;△ABF DBE ∽;△AF BD ⊥;△22BG BH BD =;△若:1:3CE DE =,则:17:16BH DH =,你认为其中正确是_____(填写序号)24.(2021·湖北十堰市·中考真题)如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为_______.25.(2021·浙江绍兴市·中考真题)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O 上.若30cm AB =,则BC 长为_______cm (结果保留根号).26.(2021·湖北黄冈市·中考真题)如图,正方形ABCD 中,1AB =,连接AC ,ACD ∠的平分线交AD 于点E ,在AB 上截取AF DE =,连接DF ,分别交CE ,AC 于点G ,H ,点P 是线段GC 上的动点,PQ AC ⊥于点Q ,连接PH .下列结论:△CE DF ⊥;△DE DC AC +=;△3EA AH =;△PH PQ +的最小值是22.其中所有正确结论的序号是_____.27.(2021·湖南衡阳市·中考真题)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q两点同时从---,点Q的运O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为O A D O ---.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如动路线为O C B O-段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为__________图2所示,当点P在A D厘米.28.(2021·湖南株洲市·中考真题)《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,△和CBD为“大三斜”组共十三只(图△中的“様”和“隻”为“样”和“只”).图△为某蝶几设计图,其中ABD件(“一様二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线∠=︒,则DCPADQDQ对称,连接CP、DP.若24∠=___________度.29.(2021·江苏苏州市·中考真题)如图,四边形ABCD 为菱形,70ABC ∠=︒,延长BC 到E ,在DCE ∠内作射线CM ,使得15ECM ∠=︒,过点D 作DF CM ⊥,垂足为F ,若5DF =,则对角线BD 的长为______.(结果保留根号)30.(2021·浙江金华市·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形△的边BC 及四边形△的边CD 都在x 轴上,“猫”耳尖E 在y 轴上.若“猫”尾巴尖A 的横坐标是1,则“猫”爪尖F 的坐标是___________.三、解答题31.(2021·四川广安市·中考真题)如图,四边形ABCD 是菱形,点E 、F 分别在边AB 、AD 的延长线上,且BE DF =.连接CE 、CF .求证:CE CF =.32.(2021·江苏扬州市·中考真题)如图,在ABC 中,BAC ∠的角平分线交BC 于点D ,//,//DE AB DF AC .(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且22AD =,求四边形AFDE 的面积.33.(2021·浙江金华市·中考真题)已知:如图,矩形ABCD 的对角线,AC BD 相交于点O ,120,2BOC AB ∠=︒=.(1)求矩形对角线的长.(2)过O 作OE AD ⊥于点E ,连结BE .记ABE α∠=,求tan α的值.34.(2021·江苏连云港市·中考真题)如图,点C 是BE 的中点,四边形ABCD 是平行四边形. (1)求证:四边形ACED 是平行四边形;(2)如果AB AE =,求证:四边形ACED 是矩形.35.(2021·四川凉山彝族自治州·中考真题)如图,在四边形ABCD 中,90ADC B ∠=∠=︒,过点D 作DE AB ⊥于E ,若DE BE =.(1)求证:DA DC =;(2)连接AC 交DE 于点F ,若30,6ADE AD ∠=︒=,求DF 的长.36.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.37.(2021·四川自贡市·中考真题)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.⨯的正方形网格中,网格线的交点称为格点,B在格点上,38.(2021·浙江嘉兴市·中考真题)如图,在77每一个小正方形的边长为1.(1)以AB为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.∠是锐角,E是BC边上的动点,将射线39.(2021·浙江丽水市·中考真题)如图,在菱形ABCD中,ABCAE 绕点A 按逆时针方向旋转,交直线CD 于点F .(1)当AE BC EAF ABC ,时,△求证:AE AF =;△连结BD EF ,,若25EF BD =,求ABCD AEF菱形SS的值; (2)当12EAF BAD ∠=∠时,延长BC 交射线AF 于点M ,延长DC 交射线AE 于点N ,连结AC MN ,,若42AB AC ==,,则当CE 为何值时,AMN 是等腰三角形.40.(2021·安徽中考真题)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD 为矩形,点B 、C 分别在EF 、DF 上,90ABC ∠=︒,53BAD ∠=︒,10AB cm =,6BC cm =.求零件的截面面积.参考数据:sin530.80︒≈,cos530.60︒≈.41.(2021·四川眉山市·中考真题)如图,在等腰直角三角形ABC 中,90ACB ∠=︒,25AC BC ==边长为2的正方形DEFG 的对角线交点与点C 重合,连接AD ,BE .(1)求证:≌ACD BCE ;(2)当点D 在ABC 内部,且90ADC ∠=︒时,设AC 与DG 相交于点M ,求AM 的长; (3)将正方形DEFG 绕点C 旋转一周,当点A 、D 、E 三点在同一直线上时,请直接写出AD 的长.42.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转()090αα︒<≤︒,得到矩形'''AB C D[探究1]如图1,当90α=︒时,点'C 恰好在DB 延长线上.若1AB =,求BC 的长.[探究2]如图2,连结'AC ,过点'D 作'//'D M AC 交BD 于点M .线段'D M 与DM 相等吗?请说明理由.AC于点P,N(如图3),MN,PN存在一定的数[探究3]在探究2的条件下,射线DB分别交'AD,'量关系,并加以证明.2021年中考数学真题分项汇编【全国通用】专题18矩形菱形正方形(共42题)一、单选题1.(2021·四川成都市·中考真题)如图,四边形ABCD 是菱形,点E ,F 分别在,BC DC 边上,添加以下条件不能判定ABE ADF ≌的是( )A .BE DF =B .BAE DAF ∠=∠C .AE AD = D .AEB AFD ∠=∠【答案】C【分析】 根据三角形全等判定定理SAS 可判定A ,三角形全等判定定理AAS 可判定B ,三角形全等判定定理可判定C ,三角形全等判定定理AAS 可判定D 即可.【详解】解: △四边形ABCD 是菱形,△AB =AD ,△B =△D ,A . 添加BE DF =可以,在△ABE 和△ADF 中,AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,△ABE ADF ≌(SAS ),故选项A 可以;B .添加 BAE DAF ∠=∠可以,在△ABE 和△ADF 中BAE DAF B DAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, △ABE ADF ≌(AAS );故选项B 可以;C . 添加AE AD =不可以,条件是边边角故不能判定;故选项C 不可以;D . 添加AEB AFD ∠=∠可以,在△ABE 和△ADF 中BEA DFA B DAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, △ABE ADF ≌(SAS ).故选项D 可以;故选择C .【点睛】本题考查添加条件判定三角形全等,菱形性质,掌握三角形全等判定定理,菱形性质是解题关键. 2.(2021·四川遂宁市·中考真题)如图,在矩形ABCD 中,AB =5,AD =3,点E 为BC 上一点,把△CDE 沿DE 翻折,点C 恰好落在AB 边上的F 处,则CE 的长是( )A .1B .43C .32D .53【答案】D【分析】 设CE =x ,则BE =3-x 由折叠性质可知,EF =CE =x ,DF =CD =AB =5,所以AF =4,BF =AB -AF =5-4=1,在Rt △BEF中,由勾股定理得(3-x )2+12=x 2,解得x 的值即可.【详解】解:设CE =x ,则BE =3-x ,由折叠性质可知,EF =CE =x ,DF =CD =AB =5在Rt △DAF 中,AD =3,DF =5,△AF =22534-=,△BF =AB -AF =5-4=1,在Rt △BEF 中,BE 2+BF 2=EF 2,即(3-x )2+12=x 2,解得x =53, 故选:D .【点睛】本题考查了与矩形有关的折叠问题,熟练掌握矩形的性质以及勾股定理是解题的关键.3.(2021·重庆中考真题)如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 做ON △OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为( )A .1B 2C .2D .2【答案】C【分析】 先证明()MAO NDO ASA ≅,再证明四边形MOND 的面积等于,DAO 的面积,继而解得正方形的面积,据此解题.【详解】解:在正方形ABCD 中,对角线BD △AC ,90AOD ∴∠=︒ON OM ⊥90MON ∴∠=︒AOM DON ∴∠=∠又45,MAO NDO AO DO ∠=∠=︒=()MAO NDO ASA ∴≅MAO NDO S S ∴=四边形MOND 的面积是1,1DAO S ∴=∴正方形ABCD 的面积是4,24AB ∴=2AB ∴=故选:C .【点睛】本题考查正方形的性质、全等三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.4.(2021·四川凉山彝族自治州·中考真题)下列命题中,假命题是( )A .直角三角形斜边上的中线等于斜边的一半B .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C .若AB BC =,则点B 是线段AC 的中点D .三角形三条边的垂直平分线的交点叫做这个三角形的外心【答案】C【分析】根据中点的定义,直角三角形的性质,三线合一以及外心的定义分别判断即可.【详解】解:A 、直角三角形斜边上的中线等于斜边的一半,故为真命题;B 、等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合,故为真命题;C 、若在同一条直线上AB =BC ,则点B 是线段AC 的中点,故为假命题;D 、三角形三条边的垂直平分线的交点叫做这个三角形的外心,故为真命题;故选C.【点睛】本题考查了中点的定义,直角三角形的性质,三线合一以及外心的性质,属于基础知识,要熟练掌握.5.(2021·四川泸州市·中考真题)下列命题是真命题的是()A.对角线相等的四边形是平行四边形B.对角线互相平分且相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形【答案】B【分析】A、根据平行四边形的判定定理作出判断;B、根据矩形的判定定理作出判断;C、根据菱形的判定定理作出判断;D、根据正方形的判定定理作出判断.【详解】解:A、对角线互相平分的四边形是平行四边形;故本选项错误,不符合题意;B、对角线互相平分且相等的四边形是矩形;故本选项正确,符合题意;C、对角线互相垂直的平行四边形是菱形;故本选项错误,不符合题意;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误,不符合题意;故选:B.【点睛】本题综合考查了正方形、矩形、菱形及平行四边形的判定.解答此题时,必须理清矩形、正方形、菱形与平行四边形间的关系.6.(2021·浙江温州市·中考真题)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G,连结CG,延长BE交CG于点H.若2AE BE,则CGBH的值为()A .32B 2C .3107D .355【答案】C【分析】如图,设BH 交CF 于P ,CG 交DF 于Q ,根据题意可知BE =PC =DF ,AE =BP =CF ,根据2AE BE =可得BE =PE =PC =PF =DF ,根据正方形的性质可证明△FDG 是等腰直角三角形,可得DG =FD ,根据三角形中位线的性质可得PH =12FQ ,CH =QH =CQ ,利用ASA 可证明△CPH △△GDQ ,可得PH =QD ,即可得出PH =13BE ,可得BH =73BE ,利用勾股定理可用BE 表示长CH 的长,即可表示出CG 的长,进而可得答案. 【详解】如图,设BH 交CF 于P ,CG 交DF 于Q ,△由四个全等的直角三角形和一个小正方形组成的大正方形ABCD ,△BE =PC =DF ,AE =BP =CF ,△2AE BE =,△BE =PE =PC =PF =DF ,△△CFD =△BPC ,△DF //EH ,△PH 为△CFQ 的中位线,△PH =12QF ,CH =HQ , △四边形EPFN 是正方形,△△EFN =45°,△GD △DF ,△△FDG 是等腰直角三角形,△DG =FD=PC ,△△GDQ =△CPH =90°,△DG //CF ,△△DGQ =△PCH ,在△DGQ 和△PCH 中,GDQ CPH DG PC DGQ PCH ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△DGQ △△PCH ,△PH =DQ ,CH =GQ ,△PH =13DF =13BE ,CG =3CH , △BH =BE +PE +PH =73BE , 在Rt △PCH 中,CH =22221()3PC PH BE BE +=+=103BE , △CG =10BE ,△10310773CG BE BH BE ==.故选:C .【点睛】本题考查正方形的性质、全等三角形的判定与性质、三角形中位线的性质及勾股定理,熟练掌握相关性质及判定定理是解题关键.7.(2021·安徽中考真题)如图,在菱形ABCD 中,2AB =,120A ∠=︒,过菱形ABCD 的对称中心O 分别作边AB ,BC 的垂线,交各边于点E ,F ,G ,H ,则四边形EFGH 的周长为( )A .33+B .223+C .23+D .123+【答案】A【分析】 依次求出OE =OF =OG =OH ,利用勾股定理得出EF 和OE 的长,即可求出该四边形的周长.【详解】△HF △BC ,EG △AB ,△△BEO =△BFO =90°,△△A =120°,△△B =60°,△△EOF =120°,△EOH =60°,由菱形的对边平行,得HF △AD ,EG △CD ,因为O 点是菱形ABCD 的对称中心,△O 点到各边的距离相等,即OE =OF =OG =OH ,△△OEF =△OFE =30°,△OEH =△OHE =60°,△△HEF =△EFG =△FGH =△EHG =90°,所以四边形EFGH 是矩形;设OE =OF =OG =OH =x ,△EG =HF =2x ,()2223EF HG x x x ==-=,如图,连接AC ,则AC 经过点O ,可得三角形ABC 是等边三角形,△△BAC =60°,AC =AB =2,△OA =1,△AOE =30°,△AE =12, △x =OE =2213122⎛⎫-= ⎪⎝⎭△四边形EFGH 的周长为EF +FG +GH +HE =332322323322x x +=⨯+⨯=+, 故选A .【点睛】本题考查了菱形的性质、矩形的判定与性质、等边三角形的判定与性质、勾股定理、直角三角形的性质等内容,要求学生在理解相关概念的基础上学会应用,能分析并综合运用相关条件完成线段关系的转换,考查了学生的综合分析与应用的能力.8.(2021·重庆中考真题)如图,把含30°的直角三角板PMN 放置在正方形ABCD 中,30PMN ∠=︒,直角顶点P 在正方形ABCD 的对角线BD 上,点M ,N 分别在AB 和CD 边上,MN 与BD 交于点O ,且点O 为MN 的中点,则AMP ∠的度数为( )A .60°B .65°C .75°D .80°【答案】C【分析】 根据斜边中线等于斜边一半,求出△MPO =30°,再求出△MOB 和△OMB 的度数,即可求出AMP ∠的度数.【详解】解:△四边形ABCD 是正方形中,△△MBO =△NDO =45°,△点O 为MN 的中点△OM =ON ,△△MPN =90°,△OM =OP ,△△PMN =△MPO =30°,△△MOB =△MPO+△PMN =60°,△△BMO =180°-60°-45°=75°,180753075AMP ∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了正方形的性质和直角三角形的性质、等腰三角形的性质,解题关键是熟练运用相关性质,根据角的关系进行计算.9.(2021·四川乐山市·中考真题)如图,已知点P 是菱形ABCD 的对角线AC 延长线上一点,过点P 分别作AD 、DC 延长线的垂线,垂足分别为点E 、F .若120ABC ∠=︒,2AB =,则PE PF -的值为( )A .32B 3C .2D .52【答案】B【分析】根据菱形的基性质,得到△P AE =30°,,利用勾股理求出AC =23则AP =23+PC ,PE =12AP 312PC ,由△PCF =△DCA =30°,得到PF =12PC ,最后算出结果. 【详解】解:△四边形ABCD 是菱形且△ABC =120°,AB =2,△AB=BC =CD =DA =2,△BAD =60°,AC △BD ,△△CAE =30△,△AC △BD ,△CAE =30°,AD =2,△AC =2222-1=23, △AP =23+PC ,在直角△AEP 中,△△P AE =30°,AP =23+PC ,△PE =12AP =3+12PC , 在直角△PFC 中,△△PCF =30°,△PF =12PC , △PE PF -=3+12PC -12PC =3, 故选:B .【点睛】本题主要考查了菱形的基本性质、勾股定理的应用以及在直角三角形中,30°角所对的直角边等于斜边的一半,关键会在直角三角形中应用30°.10.(2021·四川自贡市·中考真题)如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN △,连接DN ,则DN 的长是( )A .52B 95C .3D 65 【答案】D【分析】延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,根据折叠的正方形的性质得到NE CE =,在Rt MDE 中应用勾股定理求出DE 的长度,通过证明MDE NFE ∽,利用相似三角形的性质求出NF 和DF 的长度,利用勾股定理即可求解.【详解】解:如图,延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,△6AB =,M 是AD 边上的一点,:1:2AM MD =,△2AM =,4DM =,△将BMA △沿BM 对折至BMN △,四边形ABCD 是正方形,△90BNE C ∠=∠=︒,AB AN BC ==,△Rt BNE Rt BCE ≌(HL),△NE CE =,△2EM MN NE NE =+=+,在Rt MDE 中,设DE x =,则628ME x x =-+=-,根据勾股定理可得()22248x x +=-,解得3x =,△3NE DE ==,5ME =,△NF CD ⊥,90MDE ∠=︒,△MDE NFE ∽, △25EF NF NE DE MD ME ===, △125NF =,95EF =, △65DF =,△22655DN DF NF =+=, 故选:D .【点睛】 本题考查折叠的性质、相似三角形的判定与性质、勾股定理的应用等内容,做出合适的辅助线是解题的关键.11.(2021·浙江绍兴市·中考真题)如图,菱形ABCD 中,60B ∠=︒,点P 从点B 出发,沿折线BC CD -方向移动,移动到点D 停止.在ABP △形状的变化过程中,依次出现的特殊三角形是( )A .直角三角形→等边三角形→等腰三角形→直角三角形B .直角三角形→等腰三角形→直角三角形→等边三角形C .直角三角形→等边三角形→直角三角形→等腰三角形D .等腰三角形→等边三角形→直角三角形→等腰三角形【答案】C【分析】ABP 是特殊三角形,取决于点P 的某些特殊位置,按其移动方向,逐一判断即可.【详解】解:连接AC ,BD ,如图所示.△四边形ABCD 是菱形,△AB =BC =CD =DA ,△D =△B .△△B =60°,△△D =△B =60°.△ABC 和ADC 都是等边三角形.点P 在移动过程中,依次共有四个特殊位置:(1)当点P 移动到BC 边的中点时,记作1P . △ABC 是等边三角形,1P 是 BC 的中点, △1AP BC ⊥.△190APB ∠=︒. △1ABP 是直角三角形.(2)当点P 与点C 重合时,记作2P . 此时,2ABP 是等边三角形;(3)当点P 移动到CD 边的中点时,记为3P . △ABC 和ADC 都是等边三角形, △3306090P AB ∠=︒+︒=︒.△3ABP 是直角三角形.(4)当点P 与点D 重合时,记作4P . △4AB AP =,△4ABP 是等腰三角形.综上,ABP 形状的变化过程中,依次出现的特殊三角形是:直角三角形→等边三角形→直角三角形→等腰三角形.故选:C【点睛】本题考查了菱形的性质、直角三角形的判定、等腰三角形的判定、等边三角形的性质与判定等知识点,熟知特殊三角形的判定方法是解题的关键.12.(2021·陕西中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,连接AC 、BD ,则AC BD的值为( )A .12B .22C 3D 3【答案】D【分析】设AC 与BD 的交点为O ,由题意易得1,2ABD CBD ABC AB BC ∠=∠=∠=,,,AC BD BO DO AO CO ⊥==,进而可得△ABC 是等边三角形,3BO AO =,然后问题可求解.【详解】解:设AC 与BD 的交点为O ,如图所示:△四边形ABCD 是菱形, △1,2ABD CBD ABC AB BC ∠=∠=∠=,,,AC BD BO DO AO CO ⊥==, △60ABC ∠=︒,△△ABC 是等边三角形,△30,ABO AB AC ∠=︒=, △12AO AB =, △223OB AB AO OA =-=, △23,2BD OA AC AO ==, △323AC BD OA== 故选D .【点睛】本题主要考查菱形的性质、含30°角的直角三角形的性质及勾股定理,熟练掌握菱形的性质、含30°角的直角三角形的性质及勾股定理是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·山东临沂市·中考真题)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是___(只填写序号).△射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;△车轮做成圆形,应用了“圆是中心对称图形”;△学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;△地板砖可以做成矩形,应用了“矩形对边相等”.【答案】△【分析】根据直线的性质,圆的性质,特殊四边形的性质分别判断即可.【详解】解:△射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”,故正确;△车轮做成圆形,应用了“同圆的半径相等”,故错误;△学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的四边相等”,故错误;△地板砖可以做成矩形,应用了“矩形的四个角是直角,可以密铺”,故错误;故答案为:△.【点睛】本题考查了直线的性质,圆的性质,特殊四边形的性质,都属于基本知识,解题的关键是联系实际,掌握相应性质定理.14.(2021·四川泸州市·中考真题)如图,在边长为4的正方形ABCD中,点E是BC的中点,点F在CD 上,且CF=3BF,AE,BF相交于点G,则AGF的面积是________.【答案】5611. 【分析】延长AG 交DC 延长线于M ,过G 作GH △CD ,交AB 于N ,先证明△ABE △△MCE ,由CF =3DF ,可求DF =1,CF =3,再证△ABG △△MFG ,则利用相似比可计算出GN ,再利用两三角形面积差计算S △DEG 即可.【详解】解:延长AG 交DC 延长线于M ,过G 作GH △CD ,交AB 于N ,如图,△点E 为BC 中点,△BE =CE ,在△ABE 和△MCE 中,ABE MCE BE CEAEB MEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABE △△MCE (ASA ),△AB =MC =4,△CF =3DF ,CF +DF =4,△DF =1,CF =3,FM =FC +CM =3+4=7,△AB∥MF ,△△ABG =△MFG ,△AGB =△MGF ,△△ABG △△MFG , △47AB GN MF GH ==, △4GN GH +=, △1628,1111GN GH ==, S △AFG =S △AFB -S △AGB =1111165644422221111AB HN AB GN ⋅-⋅=⨯⨯-⨯⨯=,故答案为5611.【点睛】本题考查了正方形的性质,三角形全等判定与性质,三角形相似判定与性质,割补法求三角形面积,掌握正方形的性质,三角形全等判定与性质,三角形相似判定与性质,割补法求三角形面积,熟练运用相似比计算线段的长是解题关键.15.(2021·四川成都市·中考真题)如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为'B ,则线段BF 的长为_______;第二步,分别在,'EF A B 上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.【答案】15【分析】连接AF ,NE ,NF ,证明出△AOE △ADC ,利用对应边成比例求出OE =355,再根据勾股定理求出BF 的长,利用勾股定理求出EF 25=,再根据折叠的性质,得到NF =NE ,最后得出结果.【详解】解:如图所示,连接AF ,NE ,NF ,△点F 与点E 重合,△MN △EF ,设EF 与AA’交于点O ,由折叠的性质得到OA =OA’=3,令BF =x ,则FC =8-x ,由勾股定理的:22222OF AF OA FC CO =-=- , △△AOE =△ADC ,△OAE =△DAC△△AOE△ADC , △OE AF DC AC = , 由勾股定理得到:224845+= ,△445OE , △OE 35,△OA ,△OC = △22222OF AF OA FC CO =-=-,△222224(8)x x +-=-- , 解得:1x =,△BF 的长为1.设B’N =m ,B’F =1,则22222213(4)NF m NE m =+==+- ,解得:m =1,则FN ,△EF =△MF故答案为:1【点睛】本题主要考查了折叠的性质和勾股定理的应用,关键在于画出图形,利用三角形相似和勾股定理求出各边的长度,特别注意点F 与点E 重合用到垂直平分线的性质.16.(2021·江苏扬州市·中考真题)如图,在ABC 中,AC BC =,矩形DEFG 的顶点D 、E 在AB 上,点F 、G 分别在BC 、AC 上,若4CF =,3BF =,且2DE EF =,则EF 的长为________.【答案】125【分析】根据矩形的性质得到GF△AB,证明△CGF△△CAB,可得72xAB=,证明△ADG△△BEF,得到AD=BE=34x,在△BEF中,利用勾股定理求出x值即可.【详解】解:△DE=2EF,设EF=x,则DE=2x,△四边形DEFG是矩形,△GF△AB,△△CGF△△CAB,△44437GF CFAB CB===+,即247xAB=,△72x AB=,△AD+BE=AB-DE=722xx-=32x,△AC=BC,△△A=△B,又DG=EF,△ADG=△BEF=90°,△△ADG△△BEF(AAS),△AD=BE=1322x⨯=34x,在△BEF中,222BE EF BF+=,即222334x x⎛⎫+=⎪⎝⎭,解得:x=125或125-(舍),△EF=125,故答案为:125.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,全等三角形的判定和性质,等边对等角,解题的关键是根据相似三角形的性质得到AB的长.17.(2021·云南中考真题)已知ABC的三个顶点都是同一个正方形的顶点,ABC∠的平分线与线段AC 交于点D.若ABC的一条边长为6,则点D到直线AB的距离为__________.【答案】332或626或632-【分析】将△ABC放入正方形中,分△ABC=90°,△BAC=90°,再分别分AB=BC=6,AC=6,进行解答.【详解】解:△△ABC三个顶点都是同一个正方形的顶点,如图,若△ABC=90°,则△ABC的平分线为正方形ABCD的对角线,D为对角线交点,过点D作DF△AB,垂足为F,当AB=BC=6,则DF=12BC=3;当AC=6,则AB=BC232△DF=12BC=322;如图,若△BAC=90°,过点D作DF△BC于F,△BD平分△ABC,△△ABD=△CBD,AD=DF,。

人教版九年级数学中考矩形、菱形、正方形专项练习及参考答案

人教版九年级数学中考矩形、菱形、正方形专项练习及参考答案

人教版九年级数学中考矩形、菱形、正方形专项练习基础达标一、选择题1.(2018江苏淮安)如图,菱形ABCD 的对角线AC ,BD 的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.48,AO=12AC=3,BO=12BD=4,且AO ⊥BO ,则AB=√AA 2+AA 2=5, 故这个菱形的周长L=4AB=20. 故选A.2.(2017四川广安)下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A.4 B.3C.2D.13.(2017四川眉山)如图,EF 过▱ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若▱ABCD 的周长为18,OE=1.5,则四边形EFCD 的周长为( ) A.14 B.13C.12D.104.(2018贵州遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB,PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18PM⊥AD于点M,交BC于点N.则四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,×2×8=8,∴S△DFP=S△PBE=12∴S阴影=8+8=16,故选C.5.(2017山东枣庄)如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=A(x<0)的图象经过顶点B,则k的值为()AA.-12B.-27C.-32D.-366.(2018江苏无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G,H都在边AD上,若AB=3,BC=4,则tan ∠AFE的值()A.等于37B.等于√33C.等于34D.随点E位置的变化而变化EF∥AD,∴∠AFE=∠FAG,△AEH∽△ACD,∴AAAA =AAAA=34.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG=AA AA =3A3A+4A=37.故选A.二、填空题7.(2018湖南株洲)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P,Q分别为AO,AD的中点,则PQ的长度为..5四边形ABCD是矩形,∴AC=BD=10,BO=DO=12BD,∴OD=12BD=5,∵点P,Q分别是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=2.5.8.(2018广东广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是.-5,4)菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD=√AA2-AA2=√52-32=4,∴点C的坐标是(-5,4).9.(2018湖北武汉)以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.150°1,图1∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED-∠AEB-∠CED=30°.如图2,图2∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC-∠ADE=90°-60°=30°,∴∠CED=∠ECD=1(180°-30°)=75°,同理∠BEA=∠ABE=75°,2∴∠BEC=360°-75°×2-60°=150°.三、解答题10.如图,在菱形ABCD 中,对角线AC 与BD 交于点O.过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,则ABCD 的面积是多少?四边形ABCD 是菱形,∴AC ⊥BD , ∴∠COD=90°. ∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,又∠COD=90°,∴平行四边形OCED 是矩形.(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD 是菱形, ∴AC=2OC=4,BD=2OD=2, ∴菱形ABCD 的面积为12AC ·BD=12×4×2=4. 能力提升一、选择题1.下列说法中,正确的个数为( )①对顶角相等;②两直线平行,同旁内角相等; ③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1B.2C.3D.4对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误; ④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选B .2.(2018山东枣庄)如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A.√24B.14C.13D.√23四边形ABCD 是矩形,∴AD=BC ,AD ∥BC , ∵点E 是边BC 的中点, ∴BE=12BC=12AD , ∴△BEF ∽△DAF , ∴AA AA =AA AA =12, ∴EF=12AF , ∴EF=13AE ,∵点E 是边BC 的中点, ∴由矩形的对称性得:AE=DE , ∴EF=13DE ,设EF=x ,则DE=3x , ∴DF=√AA 2-AA 2=2√2x , ∴tan ∠BDE=AAAA =2√2A =√24.故选A.3.如图,在Rt △ABC 中,∠C=90°,AC=BC=6cm,点P 从点A 出发,沿AB 方向以每秒√2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P'.设Q 点运动的时间为t s,若四边形QPCP'为菱形,则t 的值为( )A.√2B.2C.2√2D.3PP',交BC于N点,过P作PM⊥AC,垂足为M.若运动t s时四边形QPCP'为菱形,则PQ=PC,PN⊥BC,四边形PMCN为矩形,BQ=t,AP=√2t,PM=NC=t,∴QC=2t,∴BC=BQ+QC=t+2t=3t=6cm,∴t=2,故选B.4.(2018河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1 cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()图1图2A.√5B.2D.2√5C.52D作DE⊥BC于点E由题图2可知,点F由点A到点D用时为a s,△FBC的面积为a cm2.∴AD=a.DE·AD=a.∴12∴DE=2.当点F从D到B时,用√5s,∴BD=√5.Rt△DBE中,BE=√AA2-AA2=√(√5)2-22=1,∵ABCD是菱形,∴EC=a-1,DC=a.Rt△DEC中,a2=22+(a-1)2,.解得a=52故选C.5.(2017广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题6.(2018山东潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x 轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C'D'的位置,B'C'与CD相交于点M,则点M的坐标为.)-1,√33,连接AM ,∵将边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB'C'D', ∴AD=AB'=1,∠BAB'=30°, ∴∠B'AD=60°,在Rt △ADM 和Rt △AB'M 中,∵{AA =AA ',AA =AA ,∴Rt △ADM ≌Rt △AB'M (HL), ∴∠DAM=∠B'AM=12∠B'AD=30°, ∴DM=AD tan ∠DAM=1×√33=√33, ∴点M 的坐标为(-1,√33).三、解答题 7.如图所示,在△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∥BC ,设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE=OF ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.MN ∥BC ,∴∠OEC=∠BCE.又∠OCE=∠BCE ,∴∠OEC=∠OCE ,∴OE=OC.同理可证OF=OC ,∴OE=OF.O 运动到AC 中点时,四边形AECF 是矩形.证明:∵CE ,CF 分别是∠ACB 的内,外角平分线.∴∠OCE+∠OCF=12(∠ACB+∠ACD )=12×180°=90°,即∠ECF=90°,又∵OE=OF ,∴当O 点运动到AC 中点时,OA=OC ,四边形AECF 是矩形.8.(2018贵州遵义)如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON.,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM=√22+42=2√5,由(1)知OM=ON,∴MN=√2OM=2√10.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第21讲矩形、菱形、正方形【回顾与思考】
【例题经典】
一.会用“阶梯型”思路判定特殊平行四边形
(2005年黄冈市)如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,例1.
DE•垂直平分BC,垂足为D,交AB于点E,又点F在DE的延长线上,且AF=CE.求证:四边形ACEF为菱形.
【分析】欲证四边形ACEF为菱形,可先证四边形ACEF为平行四边形,然后再证 ACEF为菱形,当然,也可证四条边相等,直接证四边形为菱形.
二.矩形、菱形的综合应用 例2.(2006年青岛市)如图,在
ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ;
(2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 【解析】(1)∵四边形ABCD 是平行四边形 ∴∠1=∠C ,AD=CB ,AB=CD .
∵点E 、F 分别是AB 、CD 的中点,
∴AE=
12AB ,CF=12
CD . ∴AE=CF .
∴△ADE ≌△CBF .
(2)当四边形BEDF 是菱形时,四边形AGBD 是矩形. ∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∵AG ∥BD ,
∴四边形AGBD 是平行四边形. ∵四边形BEDF 是菱形, ∴DE=BE . ∵AE=BE , ∴AE=BE=DE .
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°, ∴2∠2+2∠3=180°. ∴∠2+∠3=90°. 即∠ADB=90°,
∴四边形AGBD 是矩形.
三.会解决与特殊平行四边形有关的动手操作问题
例3.(2005年吉林省)如图,在矩形纸片ABCD 中,BC=6,沿EF 折叠后,点C 落在AB 边上的点P 处,点D 落在点Q 处,AD 与PQ 相交于点H ,∠BPE=30°. (1)求BE 、QF 的长.(2)求四边形PEFH 的面积.
【分析】折叠型试题是近年中考试题的热点,要想解好此类题,考生必须有想像力,抓住折叠的角与边不发生变化,必要时需要考生剪一个四边形实际折叠一下帮助理解.
基础训练
1.如图1,在菱形ABCD 中,已知AB=10,AC=16,那么菱形ABCD 的面积为________. 2.(2006年黄冈市)如图2,将边长为8cm 的正方形ABCD 的四边沿直线L 向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A 所经过的路线的长是________cm .
(1) (2) (3)
3.用两个全等的直角三角形拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形;一定可以拼成的是________(只填序号).
4.如图3,点E 、F 是菱形ABCD 的边BC 、CD 上的点,请你添加一个条件(•不得另外添加辅助线和字母),使AE=AF
,你添加的条件是________
. 5.(2006年烟台市)如图4,先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB 、AD 分别落在x 轴、y 轴上(如图①所示),•再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图②所示),若AB=4,BC=3,则图①和图②中,点B 的坐标为_________,点C 的坐标为________.
(4)
6.(2006年广安市)正方形具有而菱形不一定具有的性质是( ) A .对角线相等 B .对角线互相垂直平分 C .对角线平分一组对角 D .四条边相等
7.如图5,在菱形ABCD 中,E 、F 分别是AB ,AC 的中点,如果EF=2,那么菱形ABCD•的周长是( )
A .4
B .8
C .12
D .16 8.(2006年江阴市)已知如图6,则不含阴影部分的矩形的个数是( ) A .15 B .24 C .25 D .16 9.(2006年潍坊市)如图7,边长为1的正方形ABCD 绕点A 逆时针旋转30•°到正方形AB ′C ′D ′,图中阴影部分的面积为( )
A .
12 B 3.3 D .3 ① ②
(7) (8)
10.(2006年淄博市)将一矩形纸片按如图8方式折叠,BC、BD为折痕,折叠后A•′B与E′B在同一条直线上,则∠CBD的度数()
A.大于90° B.等于90° C.小于90° D.不能确定
能力提升
11.如图,矩形ABCD中,M是AD的中点.
(1)求证:△ABM≌△DCM;
(2)请你探索,当矩形ABCD的一组邻边满足何种数量关系时,有BM⊥CM成立,说明你的理由.
12.(2006年泉州市)如图,在矩形ABCD中,E、F分别是BC、AD上的点,且BE=DF.求证:△ABE≌△CDF.
13.(2006年沪州市)如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.线段DF与图中哪一条线段相等?先将你的猜想出的结论填写在下面的横线上,然后再加以证明.
即DF=________.(写出一线段即可)
14.已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC•分别相交于E、F,求证:四边形AFCE是菱形.
应用与探究
15.(2006年河南省)如图,在△ABC中,∠ACB=90°,AC=2,BC=3.D是BC边上一点,•直线DE⊥BC于D,交AB于E,CF∥AB交直线DF于F.设CD=x.
(1)当x取何值时,四边形EACF是菱形?请说明理由;
(2)当x取何值时,四边形EACD的面积等于2?
答案与参考
例题经典
例3.(1)BE=2,QF=1 (2)考点精练
1.96 2.16ππ 3.①②⑤ 4.∠BAE=∠DAF (答案不唯一)
5.B (4,0),(2),C (4,3), 6.A 7.D 8.C 9.C 10.B 11.(1)略 (2)AB=
1
2
AD 时,•BM ⊥CM 12.根据SAS 证△ABE ≌△CDF 13.DF=DC .证略
14.证△AOE ≌△COF .•即得AE //FC .四边形AFCE 是平行四边形. 又AC ⊥EF ,∴四边形AFCE 是菱形 15.解:•(•1)•∵∠ACB=90°,
∴AC ⊥BC .又∵DE ⊥BC ,∴EF ∥AC .
又∵AE ∥CF ,∴四边形EACF•是平行四边形. 当CF=AC 时,四边形ACFE 是菱形.
此时,CF=AC=2,BD=3-x ,tan ∠B=23,ED=BD ²tan ∠B=2
3
(3-x ), ∴DF=EF-ED=2-
23(3-x )=2
3
x . 在Rt △CDF 中,CD 2+DF 2=CF 2,
∴x 2+(
23x )2=22,∴x=±613•负值不合题意,舍去),
即当x=6
13
ACFE 是菱形
(2)由已知得,四边形EACD 是直角梯形,S 梯形EACD =
12³(4-23x )²x=-13
x 2+2x .
依题意,得-
13
x 2
+2x=2,整理得,x 2-6x+6=0.解之,得x 1x 2=3
∵,
∴EACD 的面积等于2.。

相关文档
最新文档