随机信号分析基础第四章习题
随机信号分析课后习题答案
1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
随机信号与分析课后答案 王琳DOC
第一章 随机过程基础本章要点概率论、随机变量、极限定理等等是随机信号分析与处理应用的理论基础。
本章主要内容:概率,随机变量及其概率分布,随机变量函数的分布,随机变量的数字特征,特征函数等概念。
基本内容一、概率论 1、古典概型用A 表示所观察的随机现象(事件),在A 中含有的样本点(基本事件)数为A n ,则定义事件A 出现的概率()P A 为 ()An P A n=(1-1)2、几何概型用A 表示所观察的随机现象(事件),它的度量大小为()L A ,则规定事件A 出现的概率()P A 为 ()()()E L A P A L S =(1-2)3、统计概率对n 次重复随机试验C E ,事件A 在这n 次试验中出现的次数()n f A 称为频数。
用事件A 发生的频数()n f A 与试验次数n 的比值()n F A 称为频率()()()n n f A P A F A n≈=(1-3)4、概率空间对随机试验E ,试验的各种可能结果(称基本事件、样本点)构成样本空间E S (也称基本事件空间),在样本空间中的一个样本点或若干个样本点之适当集合称为事件域A (A 中的每一个集合称为事件)。
若事件A ∈A ,则()P A 就是事件A 的概率。
并称{},,E S P A 为一个概率空间,而样本空间E S ,事件域A,概率P 是构成概率空间的三个要素。
二、随机变量1、随机变量的概念 设已知一个概率空间(),,E S P A ,对E s S ∈,()X s 是一个取实数值的单值函数,则对任意实数1x ,()1X s x ≤是一个随机事件,且(){}1:s X s x ≤∈A,则称()X s 为随机变量。
显然,随机变量()X s 总是联系着一个概率空间,这将使对随机事件的研究转化为对随机变量的研究。
为了方便,此后若无特别需要将随机变量()X s 简记为X 。
2、随机变量的概率密度函数定义随机变量X 的累积概率分布函数为()()F x P X x =≤而把它的导数定义为随机变量X 的概率密度函数。
随机信号分析第四章习题讲解
4-4设有限时间积分器的单位冲激响应h(t)=U(t)-U(t -0.5) 它的输入是功率谱密度为 210V Hz 的白噪声,试求系统输出的总平均功率、交流平均功率和输入输出互相关函数()()()()()22221:()2[()][()]0Y Y Y Y XY X P E Y t G d D Y t E Y t m E Y R R R h ωωπτττ∞-∞⎡⎤==⎣⎦⎡⎤=-==⎣⎦=*⎰思路()()()10()()10()10[()(0.5)]()()10[()(0.5)]XY X YX XY R R h h h U U R R U U τττδτττττττττ=*=*==--=-=----解:输入输出互相关函数()Y R τ00020.025()0()10()10()0()()()()10(()00[()(0.)()10()()()10()()10101100.55[()5)]](0)X X X Y X Y X Y Y X t m G R m m h d R U R h h h h h h d R h h d d d E Y t R U ωτττττττττλτλδτλλλλλλλμ∞∞∞∞==⇔====**-=*-=+=+=-=-=⋅=⨯==⎰⎰⎰⎰⎰时域法平均功是白噪声,,,率面积法:225[()][()]5Y Y D Y t E Y t m ==-=P 交流:平均功率()()()2141224222Y2(P1313711()2415()()()102424115112522242j j j Y X Y U t U t Sa e H e Sa G G H e Sa Sa G d Sa S d a d ωτωωωτττωωωωωωωωωωωππωωπ---∞∞∞-∞∞--∞⎛⎫--⎡⎤ ⎪⎣⎦⎝⎭-⎛⎫⇒= ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭⎛⎫===⎛⎫= ⎪ ⎭⎪⎭⎝⎝⎰⎰⎰P 矩形脉冲A 的频谱等于A 信号与线性系统书式域法)频()()2220000[()][()][()]5Y X Y Y m m H H D Y t E Y t m E Y t =⋅=⋅⇒=-===P 交直流分量为平均功率:流4-5 已知系统的单位冲激响应()(1)[()(1)]h t t U t U t =---,其输入平稳信号的自相关函数为()2()9X R τδτ=+,求系统输出的直流功率和输出信号的自相关函数?分析:直流功率=直流分量的平方解: 输入平稳输出的直流分量 输出的直流功率()2300X X m R σ==±==()()()10332Y X m m h t h t ττ=*=*=⎰=31-d ()()()()()()()()()()()()()()()2'''222'[()(1()(1)(1)F )]12122222j j j j Y h t t t d F j d d F j jd H A A U t U t A Sa ej A Sa e Sa e Sa eG U t U t t j ωωωωωωωωωωωωωωωωωω----⋅↔⇒⋅↔-⇒=-⎛⎫--⇒=⎡⎤ ⎪⎣⎦⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⇒==+⋅-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝=-=-⎭⎣-=-⎦变换 频域的微分特性 -jt f t t f t =A t A t 矩形脉冲A 谱t 的频()()()()()()()()()()()2''21920222410001lim 022239024X X Y Y X G H G H H Sa Sa R j H A A j Sa m m H j ωωωωωωωωπδτω*→=⋅⋅⎡⎤⎛⎫⎛⎫=-+⇒ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫---== ⎪ ⎪⎝⎭⎝⎭=⋅=⇒==直流功率294Y m =()Y X m m h t =*4-7 已知如图4.21 所示的线性系统,系统输入信号是物理谱密度为0N 的白噪声,求:①系统的传递函数()H ω?②输出()Z t 的均方值?其中2222[sin()][()]2ax dx a ax dx axSa π∞∞==⎰⎰()()()()()()()112122121212()()()()()()()()()()()F ()(1)()()11()()()()()()()(()j T Y t X t X t T h t t t T t h t d U t Y X H Y H X H H H H H H e H j H h H t h t H ωωωωωωωωωωωωωωωπδωωωωδδωλδλω-∞-∆∆=--=--⇒=⋅==⇒⇒=-=+=⋅=⋅⋅=⎡⎤⎣⎦⎰Z Z 可以分别求冲激响应,输入为冲激函数:输入为冲激函数、,冲激响应=1(1)()1)[()](1)()j Tj T j T e e e j j ωωωπδωπδωωω----=-+=-+()2222222220022022102(2)(1)(1)2()(1cos )2sin sin 2sin ((0)()()()21sin 21sin (0)2)()()()[()]j T j T Z X j Z Z Z Z Z Z e e H T j j T TN T G G H H N T N e d T R G R R F G R N ωωωτωωωωωωωωωωωωωωωωωπωωπωωττω+∞-∞----=⋅=-⋅=⇒⋅=⋅⋅=⋅-⋅⇒⋅==⋅⎰===求输出Z t 的均方值即,所以有2200000sin 2222j e d N TN N T d T τωωπωπωπ∞-∞∞=⋅⋅=⋅⋅=⎰⎰4-11 已知系统的输入为单位谱密度的白噪声,输出的功率谱密度为2424()109Y G ωωωω+=++求此稳定系统的单位冲激响应()h t ?解:()()()()()()()()()()()()()()()()()()()()()()242223211242()41092243311()()12231311112()0231921Y t Y X X t G s s s s s s G H G H s H s H s s j H s H s s j j h t F H F e e U t j j s s j s H G s ωωωωωωωωωωωωωωωωω----⋅==⇒=-=++=⇒=++++⎛⎫ ⎪+=++-+-+====+ ⎪++ ⎪⎝⎭-+-+-+==系统稳定,则零头、极点都+在左半平面带入4-12 已知系统输入信号的功率谱密度为223()8X G ωωω+=+ 设计一稳定的线性系统()H ω,使得系统的输出为单位谱密度的白噪声?解:()()()()()221()11()Y X X G G H s s H s G s H s H ωωωω=⇒⋅=⇒==⇒==即4-14 功率谱密度为02N 的白噪声作用于(0)2H =的低通网络上,等效噪声带宽为XH MHz 。
《随机信号分析》复习课(第一章-第四章)
F (x, y) P{X x,Y y}
y
(x, y)
x
0
1.4 多维随机变量及分布
f (x, y) 2F (x, y) xy
f (x, y) 0
xy
F(x, y)
f (x, y)dxdy
f (x, y)dxdy 1
f X (x)
f (x, y)dy
fY ( y)
f (x, y)dx
J
dx dy
对于任意单调函数 g(x) :fY ( y) f X (x) J xg1( y)
如果 g(x) 不是单调函数:
fY ( y) f X (x1) J1 f X (xn ) J n
其中 x1 h1 ( y) … xn hn ( y) , Jk dxk / dy
1.6 随机变量的函数
《随机信号分析》复习课(第一章-第四章)
重点内容
绪论 随机变量基础 重点:随机变量的函数
第二章 随机过程的基本概念 重点: 平稳随机过程的概念,随机过程的功率谱密度 ,高斯过程
第三章 随机过程的线性变换 重点:随机过程线性变换的冲激响应法和频谱法, 白噪声通过线性系统,随机过程线性变换后的概率 分布
x2 f (x)dx
x1
1.3 随机变量的分布函数与概率密度
f (x)
1
2
exp
(x )2 2 2
X ~ N(, 2)
x
FX (x)
1 2
exp
(
x ) 22
2
dx
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-4 -3 -2 -1
随机信号习题及答案
3.
⎧0 ⎪ 已知随机变量 X 的分布函数为: FX ( x) = ⎨kx 2 ⎪1 ⎩
x<0 0 ≤ x < 1 ,求:①系数 k;②X 落在区间 x >1
0 < x < +∞,0 < y < +∞ 其它
(0.3,0.7)内的概率;③随机变量 X 的概率密度函数。
4.
⎧e − ( x + y ) 设二维随机变量(X,Y)的概率密度为: f ( x, y ) = ⎨ ⎩0
求:①
分布函数 FXY ( x, y ) ;②(X,Y)落在如图所示的三角形区域内的概率。
y x+y=1
0
x
5. (续上题)求③边缘分布函数 FX ( x) 和 FY ( y ) ;④求边缘概率 f X ( x) 和 fY ( y ) 。 6. ( 续 上 题 ) ⑤ 求 条 件 分 布 函 数 FX ( x y ) 和 FY ( y x) ; ⑥ 求 条 件 概 率 密 度 f X ( x
103
9 若两个随机过程 X (t ) = A(t )cos t 和 Y (t ) = B(t )sin t 都是非平稳过程,其中 A(t ) 和 B (t ) 为相互独立,且 各自平稳的随机过程,它们的均值为 0 ,自相关函数 R A (τ ) = RB (τ ) = R (τ ) 。试证这两个过程之和
和 Y 的相关性及独立性。
11. 已知随机变量 X 的均值 m X = 3 ,方差 σ 2 X = 2 ,且另一随机变量 Y = −6 X + 22 。讨论 X 和 Y 的相关性和正交性。 12. 设随机变量 Y 和 X 之间为线性关系 Y = aX + b ,a、b 为常数,且 a ≠ 0 。已知随机变量 X 为正态分布,即:
(完整word版)随机信号分析习题.(DOC)
随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数.并求下列概率:)1(<ξP ,)21(≤≤ξP 。
2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。
3. 设二维随机变量),(Y X 的联合密度函数为⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。
(1)求Y 的可能取值 (2)确定Y 的分布. (3)求][Y E 。
5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。
(2)X 与Y 统计独立时所有A 值。
6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。
7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f .8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度?9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。
随机信号分析习题课
4、均值为m X ,相关函数为RX ( ) e 的平稳随机信号输 入微分电路,该电路的输出信号为 Y (t ) X '(t ) 。求:t)功率谱密度函数; X(t)和Y(t)的互相关函数 RXY ( ); X(t)和Y(t)的功率谱密度函数S XY ( ) ;
判断X(t)与Y(t)是否联合平稳? 若X(t)与Y(t)联合平稳,求互功率谱密度函数 S XY ( ) 。
7、 随机过程 X (t ) X 0t Y0 cos(0t ) ,其中0 为常数,X0 和Y0是均值为0、方差为1的高斯随机变量, 是在 [0, 2 ] 内 均匀分布的随机变量,且X0、Y0和 彼此之间相互独立。判 断X(t)是否各态历经?为什么?
5、设随机变量X的均值为3,方差为2,现定义新的随机变量 Y=aX+b,试问a、b满足什么条件时随机变量X与Y正交? 6、已知随机过程 X (t ) cos(0t ) , Y (t ) V (t )cos(0t ) , 是与V(t)无关的随机变量,在 [0, 2 ] 内均匀分布,0 为 常数,V(t)是均值为 mV 、自相关函数为 RV ( ) 的平稳随机过 程。
4均值为相关函数为的平稳随机信号输入微分电路该电路的输出信号为是与vt无关的随机变量在内均匀分布常数vt是均值为自相关函数为的平稳随机过5设随机变量x的均值为3方差为2现定义新的随机变量yaxb试问ab满足什么条件时随机变量x与y正交
随机信号分析习题
1、若为随机变量X的概率密度函数 f X ( x) Ae3 x (x 0) ,
A=? 求X的特征函数。
2、若随机过程X(t)的功率谱密度为 S X ()
X(t)的自相关函数 ; X(t)的均值; X(t)的均方值; X(t)的方差; X(t)的相关系数。
随机信号分析(常建平 李海林版)课后习题答案
由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。
给大家造成的不便,敬请谅解随机信号分析 第三章习题答案、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。
求(1)证明X(t)是平稳过程。
(2)X(t)是各态历经过程吗?给出理由。
(3)画出该随机过程的一个样本函数。
(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率?②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。
证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω ③求()X t 和()Y t 的互谱密度()XY G ω ④求()X t 和()Z t 的互相关函数()XZ R τ ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。
随机信号分析(第3版)第四章习题及答案
4-1习 题4.1 随机信号()1Y t 与()2Y t 的实测样本函数如下题图4.1(a)与(b)所示,试说明它们是否均值各态历经。
(a ) (b )题图4.1解:由均值各态历经信号的物理意义:只要观测的时间足够长,每个样本函数都将经历信号的各个状态,结合题图可见:(a )不可能是均值各态历经信号;(b )很可能是均值各态历经信号4.2 随机二元传输信号如例3.16所述,试分析它的均值各态历经性。
解:由例3.16,随机二元传输信号的协方差函数为, 41(),0Y pq T C T Tττττ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭>⎪⎩又根据充分条件为:()lim 0C ττ→∞=,且 ()04C pq =<∞,因此,它是均值各态历经信号。
4.34.4 随机信号()X t 与()Y t 是联合广义各态历经的,试分析信号()()()Z t aX t bY t =+的各态历经性,其中a 与b 是常数。
解:由题意,均方意义下有,[()][()][()]()()()A Z t aA X t bA Y t aEX t bEY t EZ t =+=+=2222[()()][()()][()()][()()][()()][()()][()()][()()][()()]()Z A Z t Z t a A X t X t b A Y t Y t abA X t Y t abA Y t X t a E X t X t b E Y t Y t abE X t Y t abE Y t X t R ττττττττττ+=+++++++=+++++++=因此,()Z t 是均值各态历经信号4.54.6 随机过程()sin cos X t A t B t =+,式中,A 和B 为零均值随机变量。
求证()X t 是均值各态历经的,而均方值无各态历经性。
4-2 解:由题意,首先,()sin cos 0[()][sin ][cos ]0EX t EA t EB t A X t A A t B A t =+==⨯+⨯= 而222222222()sin cos 2sin cos sin cos sin 2X t A t B t AB t t A t B t AB t =++=++ 222222222[()]sin cos sin 2sin cos E X t EA t EB t EA EB t EA t EB t =++⨯⨯=+2222222[()][sin ][cos ][sin 2]2A B A X t A A t B A t AB A t +=⨯+⨯+⨯= 显然,()[()]EX t A X t =,但22()[()]EX t A X t ≠。
随机信号分析基础作业题
随机信号分析基础作业题第⼀章1、有朋⾃远⽅来,她乘⽕车、轮船、汽车或飞机的概率分别是0.3,0.2,0.1和0.4。
如果她乘⽕车、轮船或者汽车来,迟到的概率分别是0.25,0.4和0.1,但她乘飞机来则不会迟到。
如果她迟到了,问她最可能搭乘的是哪种交通⼯具?解:()0.3P A =()0.2P B =()0.1P C =()0.4P D =E -迟到,由已知可得(|)0.25(|)0.4(|)0.1(|)0P E A P E B P E C P E D ====全概率公式: ()()()()(P E P E AP E B P E C P E D=+++ 贝叶斯公式:()(|)()0.075(|)0.455()()0.165(|)()0.08(|)0.485()0.165(|)()0.01(|)0.06()0.165(|)()(|)0()P EA P E A P A P A E P E P E P E B P B P B E P E P E C P C P C E P E P E D P D P D E P E ?====?===?===?==综上:坐轮船3、设随机变量X 服从瑞利分布,其概率密度函数为2222,0()0,0X x x X x e x f x x σσ-??>=??式中,常数0X σ>,求期望()E X 和⽅差()D X 。
考察:已知()x f x ,如何求()E X 和()D X ?222222()()()[()]()()()()()()()x x E X x f x dxD XE X m X m f x dxD XE X E X E X x f x dx∞-∞∞-∞∞-∞=?=-=-=-?=6、已知随机变量X 与Y ,有1,3,()4,()16,0XYEX EY D X D Y ρ=====,令3,2,U X Y V X Y =+=-试求EU 、EV 、()D U 、()D V 和(,)Cov U V 。
第四章习题答案
5 / 6 1 / 6 解 : 传递矩阵为 PY | X = , 输入信源符号的概率 3 / 4 1 / 4 分布可以写成行向量形 式, 即PX = [0.6 0.4] 由信道传递矩阵和输入 信源符号概率向量 , 求得输出符号 5 / 6 1 / 6 概率分布为 PY = PX PY | X = [0.6 0.4] = [0.8 0.2] 3 / 4 1 / 4 输入符号和输出符号的 联合概率分布为 PXY 0.6 0 5 / 6 1 / 6 0.5 0.1 = 3 / 4 1 / 4 = 0.3 0.1 0 0.4
(1) I ( x 1 ) = − log p( x1 ) = − log 2 0.6 = 0.737(bit ) I ( x 2 ) = − log p( x 2 ) = − log 2 0.4 = 1.322(bit ) p( y1 | x1 ) 5/6 ( 2) I ( x1 ; y1 ) = log = log 2 = 0.059(bit ) p( y1 ) 0.8 p( y 2 | x1 ) 1/ 6 I ( x 1 ; y 2 ) = log = log 2 = 0.269(bit ) p( y 2 ) 0.2 p( y1 | x 2 ) 3/4 I ( x 2 ; y1 ) = log = log 2 = 0.09(bit ) p( y1 ) 0.8 p( y 2 | x 2 ) 1/ 4 I ( x 2 ; y 2 ) = log = log 2 = 0.322(bit ) p( y 2 ) 0.2
解:每个字母占用2× 5ms=10ms ,每秒内发出 1000/10=100个字母的代码组(单位:字母/s)。 (1) 各个字母以等概率出现时,每个字母的代码组 含 2bit信息量,传输的平均信息速率R为: R=2×100=200(bit/s) (2) 各字母的出现概率不相等,
《随机信号基础》练习题
《随机信号分析》练习题一、 概念题1.叙述随机试验的三个条件。
2.写出事件A 的概率P(A)所满足的三个条件。
3.何谓古典概型?其概率是如何计算的? 4.两个事件独立的充要条件。
5.两个随机变量独立的充要条件。
6.两个随机过程的独立是如何定义的?7.随机变量X 服从正态分布,写出其概率密度函数表达式,并说明其中各个参数的意义。
8.简述一维随机变量分布函数F (x )的性质。
9.已知连续型随机变量X 的分布特性,分别用分布函数)(x F X 和概率密度函数)(x f X 表示概率}{21x X x P ≤<。
10. 随机变量X 的特征函数)(μX C 是如何定义的?写出由)(μX C 计算k阶矩)(k X E 的公式。
11.设X 1,X 2,…,Xn 为相互独立的随机变量,其特征函数分别为C 1(μ),C 2(μ),…,Cn(μ),设∑==n i i X Y 1,则C Y (μ)=?12. 对于一般的复随机变量,其数学期望、方差、协方差各是实数还是复数?13. 写出随机过程X(t)的n 维分布函数定义式。
14. 简述随机过程宽平稳性与严平稳性的区别。
15. 平稳过程与各态历经过程有何关系?16. 设平稳随机过程X(t)的自相关函数为R X (τ),X(t)依均方意义连续的条件是?17. 已知平稳随机过程X(t)、Y(t)的相关时间分别为X τ和Y τ,若X τ>Y τ,说明X(t) 与Y(t)的起伏程度那个较大?18. 两个随机过程广义联合平稳的条件是什么?19. 平稳随机过程)(t X 的功率谱密度)(ωX G 的物理意义是什么?)(ωX G 与物理谱密度有何关系?20. 白噪声的功率谱密度和自相关函数有何特点? 21. 简述维纳-辛钦定理并写出其表达式。
22. 何为线性系统?23. 写出希尔伯特变换器的频率响应、幅频响应和相频响应表达式。
24. 写出窄带过程的准正弦表达式和莱斯表达式。
随机信号分析基础课后练习题含答案
随机信号分析基础课后练习题含答案第一部分随机变量和概率分布练习题1设离散随机变量X的概率分布函数为:X0 1 2 3 4P X0.05 0.15 0.35 0.30 0.15求E(X)和D(X)。
答案1根据概率分布函数的公式有:$$E(X)=\\sum_{i=1}^n x_i P_X(x_i) = 0 \\times 0.05 + 1\\times 0.15 + 2 \\times 0.35 + 3 \\times 0.30 + 4 \\times 0.15 = 2.25$$$$D(X)=\\sum_{i=1}^n (x_i-E(X))^2P_X(x_i) = 0.710625$$ 练习题2已知随机变量X的概率密度函数为:$$f_X(x) = \\begin{cases} \\frac{1}{3}e^{-\\frac{x}{3}} & x \\geq 0 \\\\ 0 & x < 0 \\end{cases}$$求E(X)和D(X)。
答案2根据概率分布函数的公式有:$$E(X)=\\int_{-\\infty}^{+\\infty}xf_X(x)dx =\\int_{0}^{+\\infty}x\\frac{1}{3}e^{-\\frac{x}{3}}dx=3$$ $$D(X)=E(X^2)-(E(X))^2=\\int_{-\\infty}^{+\\infty}x^2f_X(x)dx-(E(X))^2=\\int_{0}^{+\\infty}x^2\\frac{1}{3}e^{-\\frac{x}{3}}dx-9=\\frac{27}{4}$$第二部分随机过程练习题3设二阶矩有限的离散时间随机过程X n的均值序列为m n,自相关函数为R n(i,j)=E(X i−m i)(X j−m j),其中 $0 \\leq i,j \\leq N$。
若m n=n2,R n(i,j)=ij(i+j),求 $E(\\sum_{n=0}^N X_n)$。
随机信号分析第四章习题讲解
4-4设有限时间积分器的单位冲激响应h(t)=U(t)-U(t -0.5) 它的输入是功率谱密度为 210V Hz 的白噪声,试求系统输出的总平均功率、交流平均功率和输入输出互相关函数()()()()()22221:()2[()][()]0Y Y Y Y XY X P E Y t G d D Y t E Y t m E Y R R R h ωωπτττ∞-∞⎡⎤==⎣⎦⎡⎤=-==⎣⎦=*⎰思路()()()10()()10()10[()(0.5)]()()10[()(0.5)]XY X YX XY R R h h h U U R R U U τττδτττττττττ=*=*==--=-=----解:输入输出互相关函数()Y R τ00020.025()0()10()10()0()()()()10(()00[()(0.)()10()()()10()()10101100.55[()5)]](0)X X X Y X Y X Y Y X t m G R m m h d R U R h h h h h h d R h h d d d E Y t R U ωτττττττττλτλδτλλλλλλλμ∞∞∞∞==⇔====**-=*-=+=+=-=-=⋅=⨯==⎰⎰⎰⎰⎰时域法平均功是白噪声,,,率面积法:225[()][()]5Y Y D Y t E Y t m ==-=P 交流:平均功率()()()2141224222Y2(P1313711()2415()()()102424115112522242j j j Y X Y U t U t Sa e H e Sa G G H e Sa Sa G d Sa S d a d ωτωωωτττωωωωωωωωωωωππωωπ---∞∞∞-∞∞--∞⎛⎫--⎡⎤ ⎪⎣⎦⎝⎭-⎛⎫⇒= ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭⎛⎫===⎛⎫= ⎪ ⎭⎪⎭⎝⎝⎰⎰⎰P 矩形脉冲A 的频谱等于A 信号与线性系统书式域法)频()()2220000[()][()][()]5Y X Y Y m m H H D Y t E Y t m E Y t =⋅=⋅⇒=-===P 交直流分量为平均功率:流4-5 已知系统的单位冲激响应()(1)[()(1)]h t t U t U t =---,其输入平稳信号的自相关函数为()2()9X R τδτ=+,求系统输出的直流功率和输出信号的自相关函数?分析:直流功率=直流分量的平方解: 输入平稳输出的直流分量 输出的直流功率()2300X X m R σ==±==()()()10332Y X m m h t h t ττ=*=*=⎰=31-d ()()()()()()()()()()()()()()()2'''222'[()(1()(1)(1)F )]12122222j j j j Y h t t t d F j d d F j jd H A A U t U t A Sa ej A Sa e Sa e Sa eG U t U t t j ωωωωωωωωωωωωωωωωωω----⋅↔⇒⋅↔-⇒=-⎛⎫--⇒=⎡⎤ ⎪⎣⎦⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⇒==+⋅-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝=-=-⎭⎣-=-⎦变换 频域的微分特性 -jt f t t f t =A t A t 矩形脉冲A 谱t 的频()()()()()()()()()()()2''21920222410001lim 022239024X X Y Y X G H G H H Sa Sa R j H A A j Sa m m H j ωωωωωωωωπδτω*→=⋅⋅⎡⎤⎛⎫⎛⎫=-+⇒ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫---== ⎪ ⎪⎝⎭⎝⎭=⋅=⇒==直流功率294Y m =()Y X m m h t =*4-7 已知如图4.21 所示的线性系统,系统输入信号是物理谱密度为0N 的白噪声,求:①系统的传递函数()H ω?②输出()Z t 的均方值?其中2222[sin()][()]2ax dx a ax dx axSa π∞∞==⎰⎰()()()()()()()112122121212()()()()()()()()()()()F ()(1)()()11()()()()()()()(()j T Y t X t X t T h t t t T t h t d U t Y X H Y H X H H H H H H e H j H h H t h t H ωωωωωωωωωωωωωωωπδωωωωδδωλδλω-∞-∆∆=--=--⇒=⋅==⇒⇒=-=+=⋅=⋅⋅=⎡⎤⎣⎦⎰Z Z 可以分别求冲激响应,输入为冲激函数:输入为冲激函数、,冲激响应=1(1)()1)[()](1)()j Tj T j T e e e j j ωωωπδωπδωωω----=-+=-+()2222222220022022102(2)(1)(1)2()(1cos )2sin sin 2sin ((0)()()()21sin 21sin (0)2)()()()[()]j T j T Z X j Z Z Z Z Z Z e e H T j j T TN T G G H H N T N e d T R G R R F G R N ωωωτωωωωωωωωωωωωωωωωωπωωπωωττω+∞-∞----=⋅=-⋅=⇒⋅=⋅⋅=⋅-⋅⇒⋅==⋅⎰===求输出Z t 的均方值即,所以有2200000sin 2222j e d N TN N T d T τωωπωπωπ∞-∞∞=⋅⋅=⋅⋅=⎰⎰4-11 已知系统的输入为单位谱密度的白噪声,输出的功率谱密度为2424()109Y G ωωωω+=++求此稳定系统的单位冲激响应()h t ?解:()()()()()()()()()()()()()()()()()()()()()()242223211242()41092243311()()12231311112()0231921Y t Y X X t G s s s s s s G H G H s H s H s s j H s H s s j j h t F H F e e U t j j s s j s H G s ωωωωωωωωωωωωωωωωω----⋅==⇒=-=++=⇒=++++⎛⎫ ⎪+=++-+-+====+ ⎪++ ⎪⎝⎭-+-+-+==系统稳定,则零头、极点都+在左半平面带入4-12 已知系统输入信号的功率谱密度为223()8X G ωωω+=+ 设计一稳定的线性系统()H ω,使得系统的输出为单位谱密度的白噪声?解:()()()()()221()11()Y X X G G H s s H s G s H s H ωωωω=⇒⋅=⇒==⇒==即4-14 功率谱密度为02N 的白噪声作用于(0)2H =的低通网络上,等效噪声带宽为XH MHz 。
随机信号分析基础第四章习题
A2RX ( ) B2RY ( ) ABRXY ( ) ABRYX ( )
由维纳辛钦定理可得: GW () A2GX () B2GY () ABGXY () ABGYX ()
4.5 功率谱估值的经典方法 1. 平滑法
将全部数据用来计算出—个周期图,然后在频域将其平滑
G (i )
1 2L 1
iL
Gˆ N
j i L
(
j)
窗口根据实际情况选择
4.5 功率谱估值的经典方法
谱估值的一些实际问题
1.数据采样率 2.每段数据的长度L 3.数据总长度 4.数据预处理 a.把无用的直流分量和周期分量(比如市电干扰)去掉 b.处理前还应去掉信号中的“趋势项”,比如电生理记录
rect( )
2a
a2 2
a
a
a2 ( 0 )2 a2 ( 0 )2
sin2 ( )
2
( )2
2
4.3 功率谱密度的性质
性质1: 非负性, Gx(ω)≥0 性质2: GX(ω)是实函数
性质3: Gx(ω)是偶函数,即 GX () GX ()
性质4: GX ' ( ) 2GX ( )
(2)当平稳过程含有对应于离散频率的周期分量时,该成 分就在频域的相应频率上产生δ-函数。
4.2 功率谱密度与自相关函数之间的关系 典型的傅氏变换
(t)
1
c os0t
sin(t / 2)
2 t / 2
ea
ea cos0
1 , 1
随机信号分析与处理习题解答_罗鹏飞
P{X = m} = Cnm p m (1 − p)n−m , m = 0,1, 2,....n
n
∑ 所以 X = Xi 服从参数为 n,p 的二项分布。 i =1
且有 E( Xi ) = 1⋅ P{Xi = 1}+ 0 ⋅ P{Xi = 0} = p ,
E
(
X
2 i
)
= 12
⋅
P{ X i
= 1}+
函数 g(x) 的图像如下
解法一:根据概率分布函数的定义计算。
当 y ≤ 0 时, FY ( y) = P{Y ≤ y} = P{X < x0} + P{X > x1} = P{X < x0}+1− P{X < x1} = F (x0 ) +1− F (x1)
当 y ≤ A 时, FY ( y) = P{Y ≤ y} = P{x0 < X < x1} = FX (x1) − FX (x0 )
所以 Y 的概率分布函数为
FY ( y) = [1− FX (x1) + FX (x0 )]U ( y) + [FX (x1) − FX (x0 )]U ( y − A)
解法二:从概率密度 fY ( y) 入手求概率分布函数 FY ( y) 。 由图可知 g(x) 的取值只可能为 0 或 A,求Y 的概率分布函数,也就是对 g(x) 取 0 或 A
<
X
≤
x2 )
=
P{Y ≤ y, x1 < X ≤ x2} P{x1 < X ≤ x2}
=
y x2 f (x, y)dxdy
−∞ x1
FX (x2 ) − FX (x1 )
随机信号分析基础第四章习题
E s2 (t)dt 1
2
S() d
2
时域内信号的能量等于频域内信号的能量
S() 2
4.1 功率谱密度 随机过程
随机信号的能量一般是无限的,但是其平均功率是有限的。 因此可推广频谱分析法,引入功率谱的概念。
GX () E[GX (, )]
E
Tlim
1 2T
X
T
(,
)
2
1
lim T 2T
2
N0 (0)
2
1 ( 0) 0 ( 0)
上式表明;白噪声在任何两个相邻时刻(不管这两个时刻多 么邻近)的状态都是不相关的,即白噪声随时间的起伏变化 极快,而过程的功率谱极宽。
与连续的白噪声过程相对应的随机序列则是白序列。
4.5 功率谱估值的经典方法
1. 周期图法
Gˆ X ()
1 N
E
XT (, ) 2
Gx(ω)被称为随机过程X(t)的功率谱密度函数,功率谱密 度是从频率角度描述随机过程X(t)的统计特性的最主要的 数字特征。
4.1 功率谱密度 随机过程
随机过程X(t)的平均功率为:
W E[W ]
lim 1
T
2
E[ X (t) ]dt
T 2T T
1
2
GX ( )d
(t)
1
c os0t
sin(t / 2)
2 t / 2
ea
ea cos0
1 , 1
0,
其他
1
2 ()
( 0 ) ( 0 )
rect( )
2a
a2 2
a
a
a2 ( 0 )2 a2 ( 0 )2
sin2 ( )
随机信号分析基础习题王永德答案专题培训课件
a
mY (t)
5.11 要求的是输出的自相关函数
系统所示的传函为:
h(t)(t)R 1 CeR tC,H ()1 j j R R C C
为求得输出的自相关函数,分别从时域和频 域可得两种方法。
RY()RX()h()*h() GY()H()2GX()
G W ( )kk 1 1R W (k)ejk2 3(1cos )
(2)解:
Z nX n2X n 1X n 2
这是一个二阶MA过程
21,q2,b1,b2,b1
X3
0
1
2
2, k 0
RZ (k )
4 3
1 3
,k ,k
R Y ( ) R X ( )* h ( )* h ( )
利用傅立叶变换,可得输出的功率谱密度
G Y () H () H () G X () H ()2 G X ()
式中H(ω )是系统的传输函数,其模(绝对值)的平 方∣H(ω )∣2称之为系统的功率传输函数。
得到:
H()21.6411.6cos
H(Z)
2
1
1.640.8Z
0.8Z1
1 1 (0.8Z 1) (0.8Z1 1)
从稳定性和系统特性考虑选取:
1 H(Z)10.8Z1
数字滤波器的概念
滤波器是对输入信号的波形或频谱进行某种 变换,以得到一定的输出信号。实现滤波的系统 是离散的称为数字滤波。
1 )k 2
4 9
R(k)R(k)
Y
Y
RY(k)
(1)k 2
4 9
功率谱密度为:
《随机信号分析基础》课件第4章
T X t, e jtdt
T
相应的平均功率为
(4-48)
P 1 2π
1
lim
T 2T
XT , 2 d
(4-49)
根据功率守恒定理, 平均功率也为
P lim 1 T 2T
XT
t, 2
dt
lim 1 T X t, 2 dt T 2T T
(4-50)
对式(4-49)两边取数学期望, 则可得到随机信号的平均 功率
sT
t
s t
0
T t T 其它
(4-29)
图4-1 截短信号示意图
显然, 截短信号sT(t)是时间持续有限长的能量信号, 我们利用傅里叶变换可以求出其能量谱密度|ST(ω)|2或者 |ST(f)|2, 并由帕斯瓦尔能量守恒定理有
E
T T
sT2
t
dt
1 2π
ST
2
d
2
ST f df
第四章 随机信号的频域分析
4.1 确知信号分析 4.2 随机信号的功率谱密度 4.3 互功率谱密度 4.4 随机信号的带宽 4.5 高斯白噪声与带限白噪声
4.1 确知信号分析
4.1.1
对于确知信号, 根据能量是否有限, 可将其分为能量 信号和功率信号两类。 在通信理论中, 通常把信号功率定 义为电流或电压信号在单位电阻(1 Ω)上消耗的功率, 即归 一化功率P。 因此, 功率就等于电流或电压的平方:
P s2 t lim 1 T s2 t dt W T 2T T
(4-4)
上面的分析表明,
(1) 能量信号: 其能量等于一个有限正值, 但平均
功率为零, 即
0<E<∞, 且 P→0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2
功率谱密度与自相关函数之间的关系
维纳-辛钦定理
我们借助于δ-函数,将维纳-辛钦公式推广应用到含有直流 或周期性成分的平稳过程中来。
(1)如果所遇的问题中,平稳过程有非零均值,这时正常 意义下的付氏变换不存在,但非零均值可用频域原点处的 δ-函数表示。该δ-函数的权重即为直流分量的功率。 (2)当平稳过程含有对应于离散频率的周期分量时,该成 分就在频域的相应频率上产生δ-函数。
1 E s (t )dt 2
2
S ( ) d
2
时域内信号的能量等于频域内信号的能量 能谱密度
S ( )
2
4.1 功率谱密度 随机过程
随机信号的能量一般是无限的,但是其平均功率是有限的。 因此可推广频谱分析法,引入功率谱的概念。
G X ( ) E[G X ( , )] 1 2 E lim X T ( , ) T 2T 1 2 lim E X T ( , ) T 2T
1 RX ( ) E[cos 0 cos(2 0t 0 2 )] 2 1 RX ( ) cos 0 2
可判断出Y(t)是平稳过程,由维纳辛钦定理可得 功率谱密度
1 GY ( ) F [ RX ( ) cos 0 ] 2 1 1 GX ( ) [ ( 0 ) ( 0 )] 2 2 1 [GX ( 0 ) GX ( 0 )] 4
Gx(ω)被称为随机过程X(t)的功率谱密度函数,功率谱密 度是从频率角度描述随机过程X(t)的统计特性的最主要的 数字特征。
4.1 功率谱密度 随机过程
随机过程X(t)的平均功率为:
W E[W ]
2 1 T lim T E[ X (t ) ]dt T 2T 1 GX ( )d 2
随机信号分析基础 第四章习题讲解
4.1 解:首先了解一下功率谱密度的性质
(1) 非负性, GX () 0
(2) GX ()是实、偶函数
(3) 微分性质 : G () GX ()
' X 2
(4) 有理谱密度应具有如下形式:
2 n a2 n2 2 n 2 a0 GX ( ) G0 2 m b2 m2 2 m2 b0
2
×
×
仔细观察会发现, 该表达式在区间[0,1) 不满足非负性, 另外, 该表达式的分母有实数根, 所以它不是正确 的功率谱密度的表达式.
(4) 1 2 j 6
4
该表达式含有虚部,不是实函数,所以不 是正确的功率谱密度表达式
4.4
解:先求出自相关函数
RY ( ) E[Y (t )Y (t )] E{X (t )cos(0t ) X (t )cos[0 (t ) ]}
2. Blackman-Tukey(BT法)
ˆ G X ( )
k N
R X (k )e jkTS ˆ
N
直接采用上面两个公式的估值方法最大的问题是这个估计量不是 一致估计量,即当N很大时,方差也不减小。
4.5 功率谱估值的经典方法
1. 平均法
将样本分成小段,计算周期图
1 G100, ( ) x k e jk , m 1,2,...10 ,m 100 k 100 ( m1)
第四章 随机信号的功率谱密度
4.1 4.2 4.3 4.4 4.5 4.6
功率谱密度 功率谱密度与自相关函数之间的关系 功率谱密度的性质 互谱密度及其性质 白噪声与白序列 功率谱估值的经典方法
4.1 功率谱密度
确定时间函数
频谱 能量
S ( ) s(t )e jt dt
G XY ( ) R X ( ) RYX ( )e
j
d
d
1 R XY ( ) 2 1 RYX ( ) 2
G XY ( )e
j
GYX ( )e j d
4.4 互谱密度及其性质
利用傅立叶反变换可求得白噪声的自相关函数为:
N0 RN ( ) ( ) 2
4.5 白噪声
白噪声特性
N0 ( ) 2 C N ( ) RN ( ) mN N ( ) 2 2 R N ( 0) m N N 0 ( 0) N2 2 1 ( 0) 0 ( 0)
Im[GXY ( )] Im[GXY ( )] Im[GYX ( )] Im[GYX ( )]
3.若平稳过程X(t)和Y(t)相互正交,则有
G XY ( ) 0
GYX ( ) 0
4.4 互谱密度及其性质
4. 若随机过程X(t)和Y(t)联合平稳,RXY(τ)绝对可积, 则互谱密度和互相关函数构成傅里叶变换对,即:
RX ( ) d S X ( ) d
即随机过程平均功率有限,应不能含有直流成分或周期性成 分
4.2
功率谱密度与自相关函数之间的关系
维纳-辛钦定理
当τ=0时
1 RX (0) E[ X (t )] 2
2
S X ( )d
可知
RX (0) E[ X 2 (t )]
sin(t / 2) 2 t / 2 e e
a
cos0
a
1 , 1 0, 其他
4.3 功率谱密度的性质
性质1: 非负性, Gx(ω)≥0 性质2: GX(ω)是实函数 性质3: Gx(ω)是偶函数,即 性质4:
GX ( ) GX ( )
功率谱密度仅表示X(t)的平均功率在频域上的分布,不包 含任何相位信息。
4.2
功率谱密度与自相关函数之间的关系
维纳-辛钦定理
S X ( ) RX ( )e j d
1 RX ( ) 2
S X ( )e j d
成立条件是Rx(τ)和Sx(ω)绝对可积
4.2 功率谱密度与自相关函数之间的关系
典型的傅氏变换
(t )
1 cos0t 1 2 ( ) ( 0 ) ( 0 ) rect( ) 2a a2 2 a a a 2 ( 0 ) 2 a 2 ( 0 ) 2 sin 2 ( ) 2 ( )2 2
6. 互谱密度的幅度平方满足
G XY ( ) G X ( )GY ( )
2
4.4 互谱密度及其性质 相干函数定义
XY ( )
G XY ( ) G X ( )GY ( )
1/ 2
相干函数用于数据分析,系统辨识和功率谱估计
4.5 白噪声
白噪声定义
N0 S N ( ) 2
100 m 1 2
将周期图再加以平均
1 10 ˆ 10 G100 ( ) G100 ,m ( ) 10 m1
合理选择分段方法:如修正周期图法或Welch法
4.5 功率谱估值的经典方法
1. 平滑法
将全部数据用来计算出—个周期图,然后在频域将其平滑
1 iL ˆ G ( i ) LGN ( j ) 2 L 1 j i
其中, G0 0, m n, 分母应该无实数根
(1) 6 3 2 3
2
√
2
它符合有理功率谱密度的性质,所以是功率 谱密度的正确表达式。
(2) exp[( 1) ]
×
该函数不关于纵轴对称,更不是偶函数, 所以它不是功率谱密度的正确表达式
(3) 4 ( ) 1
5. 若X(t)和Y(t)是两个不相关的平稳过程,分别有均值mX 和mY,则
GXY ( ) GYX ( ) 2mX mY ( )
RXY ( ) E[ X (t )Y (t )] E[ X (t )]E[Y (t )] mX mY R YX ( )
cos cos 2 ]
1 8 ( 2 ) [ ( ) ( )] 2 1 [ ( 2 ) ( 2 )]
2 2 1 e e 2 2 可求出均方值为:
2 1 E[ X (t )] RX (0) 2
2
?本题有同学用留数定理求积分,但出
现了很多计算错误
4.12 解:现已知:
平稳过程X (t )的自相关函数为 RX ( ) 4e cos cos 2 首先复习一下基本信号的傅立叶变换:
*
4.4 互谱密度及其性质
互谱密度性质 1.
* * GXY ( ) GYX ( ) GYX ( ) GXY ( )
2. Re[GXY(ω)]和Re[GYX(ω)]实部是ω的偶函数; Im[GXY(ω)]和Im[GYX(ω)]虚部是ω的奇函数。
Re[GXY ( )] Re[GXY ( )] Re[GYX ( )] Re[GYX ( )]
2n 2 n2
4.4 互谱密度及其性质
互谱密度 定义实过程X(t)和Y(t)的互谱密度函数为
E[YT ( , ) X T ( , )] E[YT ( , ) X T ( , )] GYX ( ) lim lim T T 2T 2T