电力系统防雷保护
电力系统防雷保护-高电压技术考点复习讲义和题库
考点5:电力系统防雷保护5.1 输电线路的感应雷过电压一、雷击线路附近大地时,线路上的感应雷过电压1、先导在导线轴线方向上的电场强度X E 将导线两端与雷云电荷异号的正电荷,吸引到最靠近先导通道的一段导线上,成为束缚电荷。
导线上的负电荷则被排斥而向两侧运动,经线路泄露电导和系统中性点进入大地。
导线上电流很小,忽略线路工作电压,导线电位仍保持的电位。
正束缚电荷产生的电场在导线高度处被电导中负电荷产生的电场所抵消。
2、主放电先导通道中的负电荷自下而上被迅速中和,相应的电场被迅速减弱,使导线上正束缚电荷迅速释放,形成电压波向两侧传播,形成的过电压称为感应过电压的静电分量。
与此同时,由于先导通道中雷电流所产生的磁场变化而引起的感应称为感应过电压的电磁分量。
(1)当雷击点离开线路的距离s>65m 时,)(25d L KV Sh I u g ⨯⨯≈ 其中L I :雷电流峰值(KA);d h :导线平均高度(m);S:为雷击点离线路的距离。
感应过电压峰值一般最大可达300~400KV,这会引起35KV 及以下钢筋混凝土杆线路绝缘闪络。
(2)加避雷线由于屏蔽作用,感应过电压下降,导线上的感应过电压为)k 1(U U gd ,gd -=因此,避雷线离导线越近,耦合系数k 越大,U 感应越小。
二、雷击线路杆塔时,导线上的感应过电压无避雷线d ah =gd U有避雷线)1(U gd ,k ah d -=与直击雷相比,感应过电压的特点:1、极性与雷云电荷相反,一般为正极性。
2、在三相导线上同时出现,不会直接产生相间过电压。
3、 波形较缓和,波前几微秒到几十微秒,波长可达数百微秒。
5.2 输电线路的直击雷过电压和耐雷水平一、雷击杆塔顶部1.塔顶电位塔顶电流i gt <雷电流L i ,即L i i β=gt 雷电流到达峰值时,塔顶电压有最大值6.2(ch L R U gt L td I +=β其中β为分流系数,设雷电流具有斜角波前,at i =,则t L R L L bib t ++=11β,t 取T/2,(T 1波前时间2.6us)2.导线电位和线路绝缘上的电位当塔顶电位为td U 时,在塔顶的避雷线也有同样的电位,导线上产生的耦合电压为td kU ,由于通道电磁场的作用,导线上有感应过电压)1(a k h d -, 此电压与塔顶电位极性相反,所以导线电位的幅值d U 为)1(a U U td k h k d d --=作用在线路绝缘上的总电压k)-)(1ah (U U U U d td j +=-=d td 对于斜角波前的雷电波6.2L 1LI I a T == )1)(6.26.2(ch L k h I d gt j L R U -++=ββ 3.耐雷水平的计算 耐雷水平:]6.2)6.2[)(1(ch %501d gt h k L R U I ++-=β提高耐雷水平:↓↑↓β,,R ch k ,加强线路绝缘。
电力系统防雷保护(二)
可将避雷器上的电压ub近似 为一斜角平顶波。波头上升 部分斜率为侵入波的陡度, 幅值为Ub-5
只要避雷器上电压<变压器冲 击电压,则可保护
17
二、距离效应
由于避雷器离被保护设备有一段距离,在波的折反射过程中,被 保护设备的电压将不同于避雷器上的电压。
at
L
B
T
at
L
B
T l2
l1
(a)
雷电波侵入变电站的典型接线
例题:
一条220kV线路架设在平原地区,绝缘子串13片,正极性50%放电 电压为1410V;杆塔冲击接地电阻为7,避雷线半径为5.5mm, 弧垂fd=7m,导线弧垂fd=12m。求该线路的耐雷水平和雷击跳闸 率。 解:(1) 求耦合系数
避雷线的平均高度
导线的平均高度 h
d
h b 29 . 1
13
对于110kV以下的配电装置,绝缘水平高,可 用构架避雷针,并就近装设辅助接地装置。 对于变压器,由于最重要,因此不能装设构架 避雷针 对于35kV以下的变电站,由于绝缘水平低,故 只能装设独立避雷针,接地电阻不能超过10 发电厂厂房一般不能装设避雷针。 现在国标也推荐采用避雷线。
2 降低杆塔接地电阻
工频接地电阻一般为10-30
3
架设耦合地线
在某些雷击故障频繁的线路上,在导线下方架设一条耦合地线。 可起到分流、增加耦合的作用。
4
采用不平衡绝缘方式
在同塔双回线的情况下,采用不平衡绝缘,可避免双回线同时跳 闸而完全停电。 10
常用措施(二):
5 6 装设自动重合闸
我国110kV以上线路自动重合闸成功率在75%-95%以上
高电压技术_7电力系统防雷保护
6
1 ~ 2km
A
F1
F2
(a )
F3
F1
F2
(b )
(10-3-1) 35kv 及以上变电所的进线保护接线
(a )未沿全线路架设避雷线的 35~110kv 线路的变电所的进线保护接线 (b )全线有避雷线的变电所的进线保护接线
7
二、图中各元件的名称和作用: 图中各元件的名称和作用: 1)进线段的作用 进线段的作用:进线段内防止雷击导线,进线段 进线段的作用 以外进雷时,由于进线段本身阻抗的作用,使流经 避雷器的雷电流受到限制,同时由于冲击电晕的影 响,将使入侵波陡度和幅值下降。 2)F3的作用 F 的作用:限制入侵波的幅值。 3)(管型避雷器)F2的作用 )F2 (管型避雷器)F 的作用:在雷季保护断路器和隔 离开关.断路器闭合运行时,入侵雷电波不应使其动 作。 )F1的作用 4)(阀式避雷器)F1的作用 (阀式避雷器)F1的作用:DL合闸状态时,保护一 切绝缘。
8
§7-3 变压器中性点保护 -
一、全绝缘
变压器中性点的绝缘水平与相线端是一样的。 1、35~60KV非有效接地系统中,变压器中性点一般不需 要保护装置。 2、对110KV且为单进线的变电所,宜在中性点上加设避 雷器。
二、分级绝缘
变压器中性点的绝缘水平比相线端低得多。 对于中性点接地系统中,有些不接地的变压器需要保护。
不平衡绝缘的原则是使两回路的绝缘子串片数有差异,这 样,雷击时绝缘串片数少的回路先闪络,闪络后的导线相当 于地线,增加了对另一回路导线的耦合作用,提高了另一回 路的耐雷水平以保证继续供电,一般两回路绝缘水平的差异 为 3 倍的相电压(峰值)。
3
五、架设自动重合闸
雷击造成的闪络大多能在跳闸后自行恢复绝缘性能。
电力系统的安全防雷
电力系统的安全防雷引言近年来,随着电力系统的快速发展和智能化进程的推进,电力系统的安全性和可靠性需求也日益增长。
其中,雷电是电力系统运行过程中的常见天气现象,但同时也是造成电力系统设备损坏和事故发生的主要原因之一。
为了确保电力系统的安全稳定运行,各国都十分重视电力系统的安全防雷工作。
本文将对电力系统的安全防雷进行详细探讨,以提供有关的技术和指导。
一、雷电对电力系统的影响雷电是指一种天气现象,通常伴随着闪电、雷声和电场强烈变化。
雷电对电力系统造成的主要影响包括:设备损坏、线路故障、电力中断以及人员伤亡等。
设备损坏:雷电会通过接触或感应作用,对电力系统中的设备造成直接击中或间接伤害。
例如,变压器、避雷器、断路器等设备受到雷击后,可能发生断裂、烧毁、内部故障等问题。
线路故障:雷电还会对电力系统的输电线路造成损害。
例如,由于雷电击中导线或塔杆,会导致线路短路、接地故障等,进而影响供电能力。
电力中断:雷电击中电力系统的设备或线路,可能导致系统的电力中断,进而影响用户的正常用电和生活。
人员伤亡:在雷电天气下,电力系统设备和金属物体会成为电场的集中区域,当人员触碰到这些物体时,有可能引起触电事故,进而造成人员伤亡。
二、电力系统的安全防雷技术为了有效防止雷电对电力系统的影响,各国电力系统普遍采用了一系列的安全防雷技术。
以下将介绍常用的几种技术措施。
避雷器:避雷器是电力系统中常用的主要防雷设备之一。
它可以根据其特殊结构和材料,在雷电击中时将产生的过电压迅速导入地面,起到保护设备和线路免受雷击的作用。
接地系统:良好的接地系统不仅可以保护设备和线路免受雷击,还可以降低接地电阻,提高系统的防雷能力。
在电力系统中,通过合理设计和施工接地系统,可以有效分散雷电的能量,减少雷电对设备的损害。
防护罩:在电力系统的高压设备和敏感设备上设置合适的防护罩,可以起到防止雷电直接击中设备的作用。
光纤接地电阻器:光纤接地电阻器是一种新型的防雷设备,在电力系统中发挥着重要的作用。
电力系统的防雷保护方法
雷 电具有 极大 的破坏 作用 ,不 仅 能够 击 毙人畜 、劈 断树木 、破 坏 建筑物 及各种 工农 业设 施 ,还 能够 引 起 火灾和爆 炸事 故 。雷 电 以其 极大 的破坏 力给人 类 社会 带来 了惨重 的灾难 。近 几年 来 ,雷 电灾害频 繁 发 生 ,对 国 民经济 造成 的危 害 日趋 严重 。 因此 ,防 雷是 电力系 统一 项重 要 的防火 防爆安 全措 施 。
1 低压架空线路的防雷保护措施 . 2
m ea ur s e.
ห้องสมุดไป่ตู้
Ke wo d Dee dt et u d r  ̄a so me , dc n e t eg o n e ie fg t n te t r a db i ns l tecr ut y r f n n e, n f r r a o n c r u dd v c , hnigat se , h h n h t i n u l o t  ̄ h ic i d i
LuJ n i u xa
Ab t a t 1 l u d ra dfg ti gh s esr n e r a g c o o eee ti o rs se s a ds o l a s s r c 1et n e n hn n a to g r e ka ef t n f rt lcrcp we y tm . n h ud t c u e h i h t b un i h o t y a tn o o. i e a y e h e e i g o l c c p we y tm h u d ra g st e m eho t e opa te t n t Th stxta l z d t e d f nd n f e e  ̄i o rs se t e t n e e i h t d wi t i n h h h
电气设备的防雷与过电压保护
电气设备的防雷与过电压保护随着科技的不断发展,电气设备在我们的生活中扮演着越来越重要的角色。
然而,雷击和过电压问题成为我们在使用电气设备时需要面对的挑战之一。
本文将讨论如何有效地进行电气设备的防雷与过电压保护。
一、防雷保护雷击是指由于大气激发电荷不平衡而产生的电流放电现象。
电气设备一旦遭受雷击,会造成严重的损坏甚至失效。
因此,防雷保护是至关重要的。
1. 接地系统接地系统是防雷保护中的关键措施之一。
通过将设备的金属外壳或导体与地下的导体相连接,可以将雷击引流至大地,并减少对设备的损坏。
接地系统应该保持良好的导电性能,确保电流能够有效地通过地下导体流入地面。
2. 避雷针避雷针是传统的防雷保护工具之一。
它通常安装在高架建筑物的顶部,可以吸引雷电,并通过导线将电流引入地下。
避雷针的安装应符合相关的安全规范,并经常进行检查和维护,确保其正常工作。
3. 避雷器避雷器是一种可以吸收和分散过电压的设备。
它通常安装在电气设备的输入端,当遭遇过电压时,避雷器会迅速反应,将电压分散到接地系统中,从而保护设备免受损坏。
二、过电压保护过电压是指系统中超过额定电压的电压波动。
过电压可能是由于雷击、电力系统故障或其他原因引起的。
过电压会对电气设备造成严重的损坏,因此过电压保护也是非常重要的。
1. 过电压保护器过电压保护器是专门用于保护电气设备免受过电压的损害。
它可以迅速检测到过电压,并通过自动切断或分散电压的方式来保护设备。
过电压保护器应根据系统的需求进行适当选择,并定期检查和更换以确保其正常工作。
2. 断路器断路器是一种用于保护电气设备免受过电压的开关装置。
当系统中出现过电压时,断路器会自动切断电流,防止电流超过设备的承受能力。
选择合适的断路器对于过电压保护至关重要,并应根据设备的负载和额定电压进行合理设置。
3. 绝缘保护绝缘保护是通过绝缘材料和绝缘设备来预防过电压。
合适的绝缘材料可以减少电压波动对设备的影响,并保护设备免受过电压的损害。
电力系统的安全防雷
电力系统的安全防雷是保障电力系统正常运行和用户用电安全的重要措施。
雷电是自然界的一种常见天气现象,其强烈的电磁辐射和电流冲击波对电力系统设备和用户用电产生很大影响,可能导致设备损坏、线路故障、电能质量问题甚至引发火灾事故,因此,针对雷电的威胁,合理佈雷电保护系统至关重要。
本文主要从电力系统的防雷概述、防雷系统设计原则、防雷器件选择、接地系统设计、设备保护和维护等方面对电力系统的安全防雷进行详细阐述,以期为电力系统的雷电保护提供可行可靠的解决方案。
一、电力系统的防雷概述雷电是由大气层中云与地之间产生的巨大电荷分布引起的。
当云层内部电荷分布不均匀时,就会形成雷云,产生雷电现象。
雷电不仅具有强大的电流和电磁辐射,还会引发大型的电压冲击波,对电力系统设备和用户用电构成威胁。
电力系统的防雷主要从以下几个方面进行保护:1. 接地保护:通过合理设计接地系统,将雷电击中的电荷迅速导入地下,降低雷电伤害。
2. 避雷器保护:通过安装避雷器,将雷电引入地下,保护设备和线路免受雷电冲击。
3. 屏蔽保护:通过设计合理的屏蔽和防护措施,降低雷电对电力设备的干扰。
4. 保护设备安装:合理选择并正确安装各类防雷设备,提高设备的抗雷能力。
5. 线路保护:通过设置保护装置和合理规划线路结构,提高线路的耐雷能力。
二、防雷系统设计原则电力系统的防雷系统设计应遵循以下原则:1. 全面性原则:应对电力系统各个环节和设备进行全面防护,包括配电线路、变电站、变压器、电缆等。
2. 经济性原则:设计合理的防雷方案,既能确保系统的安全,又能尽量节约成本。
3. 可靠性原则:选择符合国家标准和技术规范的雷电保护设备,保证其可靠性和稳定性。
4. 可维护性原则:设备安装位置合理,易于检修和维护,提高设备的使用寿命。
5. 灵活性原则:根据实际情况选择不同类型的雷电保护设备和方案,能适应不同地区和不同设备的需求。
三、防雷器件选择1. 避雷器选择:避雷器是电力系统中重要的防雷设备,可将雷电引入地下,保护设备和线路免受雷电冲击。
电力系统的防雷保护
电力系统的防雷保护摘要:从发展的角度来看,电力系统的雷电灾害普遍存在,防雷工作既是传统的行业又是具有发展前景的新兴行业,所以防雷研究在电力系统中意义十分重大。
就电力系统而言,雷电可以造成较为严重的破坏,需要加强重视。
该文针对电力系统对雷电的防护办法以及措施进行分析。
关键词:电力系统电力线路发电厂变电所配电线路1 雷电对电力系统的危害闪电在放电时会产生火花,这个火花就是人们平时所说的雷电现象,当空气在短时间内受热造成剧烈膨胀而产生的爆炸声就是雷声,在经过不同物体的声音反射之后形成连续的轰隆声。
地球是一个大的导体,平时我们所看到的雷电,就是由于自然现象产生的强烈的放电现象,天空形成携带正极电或者负极电的雷之后,当电场强度达到25~30千伏/em,就会破坏空气间的绝缘平衡,最后出现正负雷云或者是雷云和大地之间的放电现象。
一般情况而言,放电持续的时间是非常短的,一般就是50~100微秒之间,但是这么短的时间内,放电的电流却是高达几十万安培的。
由于雷电现象产生的电流很大,所以在雷电击中了电气设备和电力系统的时候,强大的电流就会对电气设备和电力系统产生热力和电磁影响。
电击持续时间很短,但是电流的强度却可以使得设备各种导线融化,造成的损失可想而知。
有种直接雷击过电压现象就是由于雷电压直接击在电气线路上造成的。
日前,在电气设备和电气线路上常用的防雷方法是:用各种不同型式的避雷器和放电间隙防止没备和线路受到感应雷的危害;用避需针和避雷线防止设备和线路受到直击雷的危害。
因为雷电是完全可以预防的,虽然雷电的危害大,但是如果我们能够在生产或生活中,在各种电气设备和电气线路上采取有效措施,那么就可以取得很好的效果。
2 电力线路的防雷保护措施2.1 高压架空线路的防雷保护措施线路的重要性、雷电活动的频率、地形地貌的特点和土壤的电阻率等情况会影响防护措施的选择,来确定是选择最合适的一种还是将几种综合到一起来达到防雷的目的。
将杆塔的接地电阻降低,加装耦合地线和线路的避雷装置,将线路的地线保护角减小,绝缘子的片数增多,改用自动闭合闸等措施是人们根据经验总结出的降低雷击跳闸频率的有效措施。
(完整版)第八章电力系统防雷保护
第八章电力系统雷电防护本章分析输电线路、发电厂和变电所以及旋转电机的防雷保护原理及措施。
§8-1 输电线路的防雷保护输电线路分布面积广,易受雷击,所以雷击是引起线路跳闸的主要起因。
同时,雷击以后雷电波将沿输电线侵入变电所,给电力设备带来危害, 因此对线路防雷保护应予以充分重视和研究。
根据过电压的形成过程,一般将线路发生的雷击过电压分为两种,一种是雷击线路附近地面, 由于电磁感应所引起的,称为感应雷过电压。
另一种是雷击于线路引起的称为直击雷过电压。
运行经验表明,直击雷过电压对高压电力系统的危害更为严重。
输电线路的耐雷性能和所采用防雷措施的效果在工程计算中用耐雷水平和雷击跳闸率来衡量。
耐雷水平是指雷击线路时线路绝缘不发生闪络的最大雷电流幅值。
线路的耐雷水平较高,就是防雷性能较好。
雷击跳闸率是指折算为统一的条件下,因雷击而引起的线路跳闸的次数, 此统一条件规定为每年40个雷暴日和100km的线路长度。
应该指出,由于雷电放电的复杂性,通过工程分析得到的计算结果可以作为衡量线路防雷性能的相对指标,而运行经验的积累和实施对策的分析则应是十分重视的。
输电线路防雷一般采取下列措施 :1 .防止雷直击导线沿线架设避雷线,有时还要装避雷针与其配合。
在某些情况下可改用电缆线路,使输电线路免受直接雷击。
2 .防止雷击塔顶或避雷线后绝缘闪络输电线路的闪络是指雷击塔顶或避雷线时,使塔顶电位升高。
为此,降低杆塔的接地电阻,增大耦合系数,适当加强线路绝缘,在个别杆塔上采用线路型避雷器等,是提高线路耐雷水平,减少绝缘闪络的有效措施。
3 .防止雷击闪络后转化为稳定的工频电弧当绝缘子串发生闪络后,应尽量使它不转化为稳定的工频电弧,不建立这一电弧,则线路就不会跳闸。
适当增加绝缘子片数,减少绝缘子串上工频电场强度,电网中采用不接地或经消弧线圈接地方式,防止建立稳定的工频电弧。
4 .防止线路中断供电可采用自动重合闸,或双回路、环网供电等措施,即使线路跳闸,也能不中断供电。
高电压技术-第08章 电力系统防雷保护
电磁分量较小,通常只考虑其静电压为 (无避雷线时,雷直击于导线, 规程)
Ug
=
25I
h d
配合 2)它的伏安特性应保证其残压低于被保护绝缘的冲
击电气强度 3)被保护绝缘必须处于该避雷器的保护距离之内。
38
被保护绝缘与避雷器之间的电压差 ΔU ,对右图 中的接线图,经过波的多次折反射分析可知:
ΔU = 2a l v
被保护绝缘与避雷器间的电气距离l 越大、进波陡度 a或a′越大,电压差值 ΔU也就越大。
39
阀式避雷器动作以后有一个不大的电 压降,然后保持残压水平,由于被保护设 备与避雷器间有距离,致使电压波产生振 荡,波形接近冲击截波,因此对于变压器
类电力设备来说,往往采用2 μs截波冲击耐
压值作为他们的绝缘冲击耐压水平。
40
绝缘冲击耐压水平应满足: U w (i) ≥ U is + Δ U
Uis 阀式避雷器的残压
=
I(βRi
+
β
Lt 2.6
+
hc )(1−k) 2.6
a为雷电流波前陡度,取其平均陡度
18
耐雷水平
35kV: 20-30kA 110kV: 40-75kA 220kV: 75-110kA 330kV: 100-150kA 500kV: 125-175kA
19
雷击避雷线最严重的情况是雷击点处于档距中央 时。真正击中档距中央避雷线的概率只有10%左右。20
12
雷击塔顶时的过电压
电力系统防雷设计方案
电力系统防雷设计方案一、引言随着电力系统设备逐渐增多和电力网络规模的不断扩大,雷电对电力系统的损坏问题越来越严重。
为了保证电力系统的正常运行和设备的安全,必须采取有效的防雷措施。
本文将就电力系统的防雷设计方案进行讨论。
二、防雷基本概念1.雷电雷电是在大气中发生的一种天然放电现象,通常伴随着云与地面之间或云与云之间电位差的产生,螺旋状的通道将电荷传递到地面,造成严重的电磁干扰和设备损坏。
2.雷击雷击是由雷电引发的意外电流,雷电击中电力系统中的设备或线路,造成设备的损坏或短暂的供电中断。
3.防雷设计原则(1)预防为主。
通过系统设计、设备选择和地面接地等,减小雷击的可能性和对设备的影响。
(2)合理防护。
配置合适的防雷设备和防护措施,降低雷电对设备的损害。
(3)可靠性。
设计要符合国家和行业标准,确保防雷方案的可靠性和稳定性。
1.外部防雷设计(1)地面接地:采用合适的地面接地方式,通过接地系统将雷电引导到地中,减小雷击的可能性。
在设计中要考虑地面电阻的大小和接地装置的位置等因素。
(2)避雷针:在建筑物的高处安装避雷针,将雷电引导到地面,减小对设备的影响。
(3)防雷带:在电力线路和设备周围安装防雷带,具有优良的导电和导雷性能,能够迅速将雷电导向地面。
2.内部防雷设计(1)防雷电容:在电力设备内部安装防雷电容,通过减小雷电产生的电位差,降低设备被雷电击中的可能性。
(2)防雷保护器:安装合适的防雷保护器,能够迅速对雷电进行击穿,将雷电引导到地面,保护设备不被损坏。
(3)避雷器:安装避雷器来保护线路和设备,避免雷电击穿和过电压的产生。
3.维护与监测(1)定期检测:对防雷设备和防护措施进行定期检测和维护,确保其正常运行和使用。
(2)监测系统:安装雷电监测系统,实时监测雷电的动态和变化,及时采取相应的防护措施。
四、总结电力系统的防雷设计方案需要综合考虑外部和内部的防护措施,采取合适的设计方案和设备配置,可以有效地降低雷电对电力系统的影响。
小型化工厂电力系统防雷保护
小型化工厂电力系统防雷保护在小型化工厂中,电力系统的防雷保护至关重要。
雷电可能对电力
系统造成严重损害,因此必须采取适当的措施来保护设备和人员安全。
本文将探讨小型化工厂电力系统的防雷保护措施,包括设备选择、接
地系统设计和定期维护等方面。
一、设备选择
在设计小型化工厂的电力系统时,应选择具有良好防雷能力的电气
设备。
例如,采用防雷等级高的电力配电设备和线路保护装置,能够
有效地减少雷击损坏的风险。
此外,应选用符合国家标准的电气设备,确保其质量和可靠性。
二、接地系统设计
良好的接地系统是电力系统防雷的关键。
在小型化工厂中,接地系
统应设计合理,接地电阻低,能够有效地将雷击电流引入地下。
采用
合适的接地材料和接地方式,如埋地导体、接地网等,提高接地效果。
此外,应定期检查和维护接地系统,确保其良好运行。
三、设备保护
除了选择防雷能力强的设备外,还应配备有效的设备保护装置。
例如,安装避雷针、避雷带等设备,能够吸收并释放雷击能量,保护周
围设备免受损坏。
此外,还可以采用避雷器、浪涌保护器等装置,保
护电力设备免受雷电影响。
四、定期维护
定期维护是保障电力系统防雷效果的重要措施。
定期检查设备和接地系统,发现问题及时修复,确保其正常运行。
此外,还应定期进行防雷设备的检测和测试,确保其性能符合要求,提高防雷效果。
总之,小型化工厂电力系统的防雷保护至关重要。
通过合理选择设备、设计良好的接地系统、配备有效的设备保护装置以及定期维护,可以有效降低雷击损坏的风险,保障电力系统的安全稳定运行。
低压配电线路的防雷技术(4篇)
低压配电线路的防雷技术是保障电力系统安全稳定运行的重要措施之一。
由于雷电产生的高电压脉冲能够对低压线路和设备造成严重的破坏,因此必须采取适当的防雷措施来保护电力系统。
本文将从不同角度介绍低压配电线路的防雷技术。
一、低压配电线路的防雷原理低压配电线路的防雷原理是通过合理的导线和设备布置以及接地系统的设计,实现对雷电流和雷电电磁脉冲的防护。
主要包括以下几个方面:1. 导线和设备布置:合理的导线和设备布置可以减少雷电击中的可能性,并降低雷电传导的影响。
例如,可以采用串并联结构布置导线,减少雷电绕线感应电流;合理放置绝缘子和避雷针等设备,以提高线路的绝缘性能和防护能力。
2. 接地系统设计:良好的接地系统可以将雷击造成的电流迅速引入地下,并降低接地电阻,减少雷电对设备的影响。
合适的接地系统应包括有足够的接地电极和接地导体,并采取合适的接地方式,如接地极互相串联或并联等。
3. 避雷器:安装合适的避雷器是低压配电线路防雷的关键措施之一。
避雷器能够将雷电能量引入地下,通过分散、消耗和抑制来保护线路和设备。
根据不同需求,可选用无压力、低压力和高压力避雷器等。
4. 绝缘配合:在低压配电线路中,绝缘是防雷的重要手段之一。
通过采用合适的绝缘材料和结构设计,可以提高线路和设备的绝缘性能,减少雷电对设备的影响。
此外,对于重要设备和关键部位,还可采用局部绝缘层和避雷带等措施来增强绝缘能力。
二、低压配电线路的防雷措施1. 合理布置导线和设备:根据线路的特点和环境条件,合理布置导线和设备,减少雷电击中的可能性。
包括合理选用导线的横截面积、材料和绝缘性能;合理布置绝缘子和避雷针等设备。
2. 设计良好的接地系统:采用良好的接地系统设计,提高接地效果,减少雷电对设备的影响。
包括有足够的接地电极和接地导体;采用合适的接地方式,如接地极互相串联或并联等。
3. 安装避雷器:根据线路的要求,安装合适的避雷器,保护线路和设备免受雷击的损坏。
选择无压力、低压力或高压力避雷器,根据需求进行合理安装。
架空电力线路的防雷保护
架空电力线路的防雷保护架空电力线路是常见的电力输配电工程,其为供电系统的核心部分,地位重要。
然而,由于架空电力线路长期处于野外环境,受到风吹日晒、雨打雷击等自然灾害的侵蚀和考验,因此需要更加科学的防雷保护措施防止损伤。
本文就此进行详细探讨。
一、架空电力线路防雷保护的重要性通常情况下,架空电力线路都应该考虑到防雷的问题。
因为架空电力线路在自然环境中处于地位较高的位置,其他建筑物相对较低,雷电活动对其影响也相对更加强烈。
如果架空电力线路不采取有效的防雷措施,极易被雷击损坏,甚至导致设备损毁,生产事故发生。
特别是在雷电相对普遍、气候恶劣或者电力负荷大的地区,则更容易发生雷击事故。
因此,为了确保电力系统的安全运行和供电的可靠性,电力系统必须对于架空电力线路进行有力的防雷保护措施。
二、架空电力线路防雷保护的措施1.引入防雷技术为了实现对架空电力线路的防雷保护,引进先进的防雷技术是非常重要的一步。
这些技术包括:① 针对架空电力线路特点,实施适当的耐雷设计,如防雷针的建设、接地装置的设置等。
② 内部绝缘的改善,增加设备的耐雷能力。
③ 电力系统的资料管理和保护,减少系统遭到雷击时的屏幕和数据丢失。
④ 在架空电力线路周围使用动雷保护措施,如雷电频发的地区,可以配置钢管、导线等,将架空电力线路从雷击结果隔离开来。
2. 加强运行和管理针对架空电力线路运行过程中受到雷击的特点,必须在运行和管理方面加强保护措施,以下是几个方面的具体运行和管理措施:①珍爱现场设备及设备安装环境,经常进行巡视,发现问题及时解决。
② 加强对架空电力线路接地装置的巡检,确保接地的带动能力。
③ 进行强度测试及绝缘检测,上线前必须满足强度和绝缘的要求。
④ 做好线路的容灾备忘录,长时间遭受雷击或特殊天气情况下,应及时采取避免损失的应急措施。
三、结论总之,架空电力线路是我们生活中非常重要的一部分,一旦发生雷击事故,将无异于电力系统的一大威胁。
因此,在预防和治理雷击事故方面,科学正确的防雷保护措施必须得到重视。
浅析电力系统防雷保护措施及意义
浅析电力系统防雷保护措施及意义电力系统防雷保护是为了保护电力设备和维持电力系统的正常运行。
由于雷电对电力系统的影响很大,不仅会造成设备故障,还可能导致停电、火灾甚至人员伤亡。
因此,采取合适的防雷保护措施非常重要。
电力系统防雷保护措施主要包括以下几个方面:1.接闪器:接闪器是防止雷电直接击中设备的一种设备,它能够接受并引导雷电电流,将其安全地释放到大地中。
接闪器通常安装在高大的建筑物顶部或设备外壳上,可以有效地保护设备免受雷击的损害。
2.绝缘:绝缘是防雷保护的一个重要手段。
合理选择符合标准的绝缘材料和绝缘构造,可以保护设备不受雷电电流的侵害。
3.避雷针:避雷针是一种安装在建筑物顶部的尖峰状金属装置,它能够吸引雷电,并将其安全地释放到大地中,从而保护建筑物和设备免受雷击的破坏。
4.接地装置:接地装置是将电气设备和电力系统与大地接地的一种装置。
良好的接地系统能够有效地分散和消除雷电引起的电势差,保护设备和人员的安全。
电力系统防雷保护的意义主要体现在以下几个方面:1.保护设备和人员安全:雷电对电力设备的破坏性非常大,会导致设备的损坏甚至是人员的伤亡。
通过采取合适的防雷保护措施,能够有效地减少这种风险,保护设备和人员的安全。
2.提高电力系统的可靠性:雷电引起的设备故障和停电会导致电力系统的不可靠性,给正常生产和生活带来很大的困扰。
通过有效的防雷保护措施,可以减少设备故障的发生率,提高电力系统的可靠性。
3.减少维修和更换成本:雷电引起的设备损坏需要进行维修和更换,而这些都需要花费大量的人力和物力。
通过防雷保护措施,可以减少设备的损坏,从而降低维修和更换的成本。
4.保护环境:雷电引起的火灾和爆炸不仅会对电力设备造成损害,还会危及周围环境和生物。
通过防雷保护措施,可以减少这种风险,保护环境的安全。
总之,电力系统防雷保护措施是保护电力设备和维持电力系统正常运行的重要手段。
通过合理的防雷保护措施,不仅能够保护设备和人员的安全,提高电力系统的可靠性,还能减少维修和更换的成本,保护环境的安全。
谈电力系统的防雷保护
免 的 自然 灾 害 ,所 以对 电力 系 统 的 防 雷 保 护 关 重 要 。 l 雷 电对 电力 系 统 的 危 害
有 当 强 大 的雷 电袭 击 时 , 间 隙 上 的 空 间 距 离 被 击 穿 了 ,便 把 雷 电 流 泄 漏 到 大 地 巾 去 , 达 到 防 雷 的 目 的 。 采 用 保 护 间 隙
时 , 必 须 和 电 力 系 统 巾 电力 线 路 上 重合 闸 继 电气 配 合 ,否 则
将 两 相 间 隙 同 时 动 作 而 造 成 事 故 。 保 护 问隙 距 离 的 确 定 ,是 以它 的冲 击 电 弧 电 压 比被 保 护
负雷 云之 间或雷云与大地之 间发生 强烈放 电现象 。放 电时
间 很 短 ,一 般 约 为 5 ~ 1 0 秒 之 问 , 而 放 电 电流 可 达 几 0 0微
十 万 安 培 。 闪 电 就 是 放 电时 产 生 的 火花 , 雷 鸣 就 是 空 气 受 热 短 时 间 急 剧 膨 胀 而 形 成 的 爆 炸 声 , 由 于各 处 物 体 声 反 射 而 形 成 一 串 轰 隆 声 。 这 就 是 我们 甲 时 所说 的雷 电现 象 。 当雷 电击 到 人 和 各 种 生 物 的 身 体 上 时 , 强大 的 电 流 不 但 能 使 人 和 生 物 的神 经 麻 痹 、 心 脏 停 止 跳 动 而死 亡 , 旧时 还 能 将 皮 肤 烧 焦 。雷 电直 接 击 中 树 木 或 电柱 时 , 强 大 的 电 流 能 使 电柱 发 生 高 热 而 燃 烧 , 或 将 它 们 劈 裂 、劈 倒 。 强 大 的 雷 电 击 中 了高 人 的 囱或 房 屋 时 , 就 造 成 倒 塌 或 破 坏 。
电网防雷保护方案
电网防雷保护方案一、背景介绍随着电力系统的不断发展和扩大,电网防雷保护成为了保障电力设备安全运行的重要环节。
电网防雷保护方案是为了减少雷电对电力系统的影响,保护电力设备免受雷击损坏,确保电网的稳定运行而制定的一系列措施和规范。
二、防雷保护方案的目标1. 保护电力设备免受雷击损坏,提高电力系统的可靠性和稳定性;2. 减少雷电对电力系统的影响,降低维修和停电的成本;3. 提高电力系统的安全性,保障用户的用电质量。
三、防雷保护方案的基本原则1. 综合防护原则:采取综合的技术手段和措施,包括物理防护、电气防护和电子防护等;2. 高效性原则:确保防雷措施的有效性和可靠性,降低雷击发生的概率;3. 经济性原则:在满足防雷要求的前提下,尽量减少投资成本和维护费用;4. 可行性原则:根据具体情况制定可行的防雷保护方案,考虑实际可操作性和可维护性。
四、防雷保护方案的具体措施1. 地面接闪保护:在电力设备周围设置接闪装置,将雷电引入地下,保护设备免受雷击;2. 避雷针保护:在电力设备上安装避雷针,将来自大气的雷电引入地下;3. 避雷器保护:在电力设备的输入和输出端安装避雷器,吸收和分散雷电冲击;4. 防雷装置保护:在电力设备的关键部位安装防雷装置,提高设备的防雷能力;5. 接地系统保护:确保电力设备的接地系统良好,降低雷电对设备的影响;6. 雷电监测系统:安装雷电监测设备,实时监测雷电活动,并及时采取防护措施;7. 防雷巡检和维护:定期对电力设备进行防雷巡检和维护,确保防雷设施的正常运行。
五、防雷保护方案的实施步骤1. 需求分析:根据电力设备的特点和工作环境,确定防雷保护的需求;2. 方案设计:制定防雷保护方案,包括具体的防护措施和设备选型;3. 施工安装:按照方案要求进行施工和安装,确保防雷设施的正确性和可靠性;4. 调试测试:对安装完成的防雷设施进行调试和测试,确保其正常运行;5. 运行维护:定期对防雷设施进行巡检和维护,保证其长期有效性。
电力系统防雷保护
五、输电线路直击雷过电压
避雷线的分流作用 降低了U top
设避雷线上的电位为U top
导线避雷线间耦合作用(k) 导
线考上虑耦感合应电过压电为压kaUhct(o1p khhgc)ahc(1k)
导线电位:U ckU to pac(h 1k)
U liI(Ri 2 L .t62 h.c 6)1 (k)
(线路绝缘子串两端电压)
变电所方便
第三节 旋转电机的防雷保护(发电机、调相机、
变频机、电动机)
主要内容: 一、旋转电机防雷特点 二、直配电机防雷保护措施及接线 三、非直配电机的防雷保护
不用考虑直击雷保护(安装在户内)。 配线方式:①直配线:与相同电压等级的架空线路或电缆直接相连
②经变压器与线路相连
一、旋转电机防雷特点
1.冲击绝缘水平很低→防雷保护比变压器困难(不是浸在油中 的
一、发电厂、变电所的直击雷保护
2. 架空避雷线 (1)两端接地的避雷线
d1 [0.3Ri 0.16(hl)]
(l2 h)/(l2 l 2h)
——避雷d线2 分流0.3系数Ri,l ——避雷线两支柱间距离
l——雷击点与最近支柱点间的距离, l2 ll
(2)一端经配电装置构架接地,另一端绝缘的避雷线,( 1)
线上束缚电荷K0—u避i'(感c雷)应线u电与i(压c导)线k0间ui(的g)几u何i(耦c)合1(系k0数hhgc)
线间距离
K0
感应过电压愈低
五、输电线路直击雷过电压
雷击杆塔杆顶 雷击避雷线挡距之间 雷绕过避雷线击于导线—绕击
五、输电线路直击雷过电压
1. 雷击杆塔杆顶时的过电压和耐雷水平 雷击杆塔时 大部分电流经被击杆塔流入大地
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (6)采用长闪络避雷器(LFA) • 对于中性点非直接接地的配电系统,当线路 的工作电压与闪络路径长度的比值(即电场强度 E,E=Uph/L)减小时,由雷电闪络发展为工频 续流的可能性将大为减小。利用上述的思想,俄 罗斯学者提出了采用长闪络避雷器,解决配电线 路绝缘导线的雷击断线问题。 • (7)加局部绝缘层的厚度 • 从许多绝缘导线遭雷击后断线的事故调研, 发现了一个十分明显的规律:断线的部位,几乎 全部都处于离开绝缘子(100-300)mm范围之内, 如果在这局部范围内增加绝缘厚度,也可以防止 击穿。但是,这个方法在实际工作中,不易实现。
u
' i Βιβλιοθήκη c) ui ( c ) (1
hg hc
k0 )
ui ( c ) - 无避雷线时的感应雷击过电压 k0 - 导、地线间的几何耦合系数
4、线路本身的工频电压u2 作用在绝缘子串上的合成电压 uli ua u1 ui' (c) u2
• 采用裸导线时,当受到雷击后(包括直接雷和 感应雷),会引起线路闪络。此时,工频续流引起 的电弧由于受到电磁力的作用,使电弧向导线落雷 点的两侧迅速流动,雷电流经过开关、变压器等设 备处的避雷器迅速流入大地,或在工频电流烧断导 线之前,引起跳闸,因而很少发生断线事故。 • 当绝缘导线遭受雷击时,情况就完全不同,雷 电过电压引起绝缘子闪络,并击穿导线的绝缘层。 • 击穿点附近的绝缘物,阻碍了电弧沿着导线表 面向两侧移动。因而,电弧只能在击穿点燃烧。高 达数千安培的工频电弧电流集中在绝缘击穿点上, 并在断路器跳闸之前很快就把导线熔断。
•(4)使用钳位绝缘子 • 在绝缘导线固定处剥开绝缘层,架装引弧放电间隙与 特别设计的金属线夹。当雷击闪络时,引发的工频续流在该 金属线夹与绝缘子下金属脚间燃弧,直至被线路开关跳闸切 断,从而避免烧伤绝缘子和熔断绝缘导线。该方法的效果较 好,成本也不太高。 •缺点:当雷击闪络时,工频电弧要把电瓷伞裙烧蚀损坏, 需及时更换绝缘子;安装时要剥开绝缘层,易使线芯进水, 容易受腐蚀;要定制钳位金属线夹配套安装在各厂各规格的 支柱绝缘子上,采购及施工较麻烦。 •(5)使用穿刺式防弧金具 • 其原理为:将该金具安装在线路绝缘子附近负荷一侧 (背离电源侧)的绝缘导线上,当雷电过电压超过一定数值 时,在防弧金具的穿刺电极和接地电极之间引起闪絡,形成 短路通道,接续的工频电弧便在防弧金具上燃烧,以保护导 线免于烧伤。 •在单向供电的老线路上采用此产品效果较好,安装方便, 造价相对低一些,而环网供电的线路则需二侧安装造成工程 及费用增加和线路不简洁,鸟类较多地区易受侵袭接地。
电力系统防雷保护
电力系统的防雷保护包括了线路、变电所、发电厂等 各个环节。
第一节 架空输电线路防雷保护
输电线路耐雷性能的若干指标 线路雷害事故发展过程及防护措施
线路耐雷性能的分析计算
一、输电线路耐雷性能的若干指标
一条100km长的架空输电线路在一年中遭到数十次雷击。 线路的雷击事故在电力系统总的雷害事故中占有很大的 比重。 每100km线路的年落雷次数N
小 结
通常采用耐雷水平和雷击跳闸率来表示一条线路的耐 雷性能和所采用防雷措施的效果。 输电线路常采用避雷线、降低杆塔接地电阻、加强线 路绝缘等措施来进行防雷。
可按雷击点的不同把线路的落雷分为三种情况:绕击 导线、雷击档距中央的避雷线和雷击杆塔。
ua di ( Ri i La ) dt
线路杆塔分流系数 2、塔顶电压utop沿着避雷线传播而在导线上感应出来 的电压u1。与上一分量ua相似,杆塔电流it造成的塔顶 电位
utop ( Ri i Lt di ) dt
u1 kutop
3、雷击塔顶而在导线上产生的感应雷击过电压
•
架设耦合地线是防雷直击杆塔闪络的措施之一,对绕 击并没有什么作用。
• 定义:耦合地线是加挂在导线下面,主要是针对于土壤电 阻率较高,接地电阻降不下来的线路。 • 架设耦合地线的作用原理是: 一是增大避雷线与导线之间的耦合系数,从而减少绝 缘子串两端电压的反击电压和感应电压的分量; • 二是增大雷击塔顶时向相邻杆塔分流的雷电流。 现从运行经验来观察其防雷效果,架耦合线后,跳闸 率降低46%。
n2 N P (次/年) P 2
N – 年落雷总数 P – 绕击率
P2 – 超过绕击耐压水平 I 2的雷电流 – 建弧率
(二)雷击档距中央的避雷线 雷击避雷线最严重的情况是雷击点处于档距中央时。 真正击中档距中央避雷线的概率只有10%左右。
U A Z g l a / 4v 雷击点电压最大值 可见UA仅仅取决于它的波前陡度a,而与雷电流无关。
二、 线路雷害事故发展过程及防护措施
• 架空输电线路雷害事故的发展过程及相应的防护 措施
避雷线
提高耐雷 水平措施
降低建弧 率的措施
自动重合闸
雷电 放电
雷电 过电压
线路绝缘 冲击闪络
工频 电弧
断路器 跳闸
供电 中断
图8-1 线路雷害事故的发展过程及相应的防护措施
(一)避雷线(架空地线) 输电线路上采用的各种防雷保护措施: 110kV及以上架空输电线路防雷措施是沿全线架设 避雷线; 作用:避免雷电直接击中导线而产生极高的雷电过 电压;提高线路的耐雷水平。 保护角:110-220KV 200-300;500KV以上≤150 35kV及以下的线路主要依靠架设消弧线圈和自动重 合闸来进行防雷保护。
(二)降低杆塔接地电阻 提高线路耐雷水平和减少反击概率的主要措施。杆 塔的工频接地电阻一般为10~30Ω。(具体值见p179表
8-2)
(三)加强线路绝缘
增加绝缘子串中的片数、改用大爬距悬式绝缘子、 增大塔头空气间距等等,但有相当大的局限性。 优先采用降低杆塔接地电阻的办法来提高线路耐 雷水平。 (四)耦合地线 作为一种补救措施,具有一定的分流作用和增大导 地线之间的耦合系数,因而能提高线路的耐雷水平和 降低雷击跳闸率。
• 3.2 国内外防止绝缘导线雷击断线和雷击跳闸的防治措施 • (1)架设架空避雷线 • 利用架空避雷线的屏蔽作用来保护输电线路,是一种传统 的有效方法。该方法的效果较好,而且可以免除维护; • 缺点:a)投资成本较高;b)防止绕击的效果较差,易 使线遭受反击。 • (2)安装氧化锌避雷器 • 采用氧化锌避雷器,可以有效地截断工频续流,限制雷过 电压和配电线路的感应过电压。 • 缺点:a)保护范围小;b)全线装设的投资成本较大 (但人行道,大门口等地域根据有关规定不允许全线装 设);c)必须剥开绝缘层,导致线芯浸水,有可能使导 线内部的线芯受腐蚀;d)避雷器阀片长期承受工频电压, 容易老化。 • (3)安装线路过电压保护器 • 相当于带有外间隙的氧化锌避雷器。安装时,绝缘层不需 剥开,在运行中,平时是不承受运行电压的,因而使用寿 命较长,也可免维护。缺点:它仅能防护雷电过电压。
雷电流超过了线路耐雷水平,只会引起冲击闪络,只 有在冲击闪络之后还建立工频电弧,才会引起线路跳 闸。 由冲击闪络转变成稳定工频电弧的概率为建弧率 ( ),它与沿绝缘子串或空气间隙的平均运动电压 梯度有关。可由下式求得
(4.5E 0.75 14) 102
E-绝缘子串的平均工作电压梯度
三、线路耐雷性能的分析计算
(一)绕击导线 雷闪绕过避雷线直接击中导 线的概率,称为绕击率Pα 。 Pα之值与避雷线对边相导 线的保护角α、杆塔高度ht 及线路通过地区的地形地貌 等因素有关。 平原线路 山区线路
lg P
lg P
ht
86
ht
86
3.9
3.35
绕击跳闸次数
•
• (五)消弧线圈
• 能使雷电过电压所引起来的一相对地冲击闪络不转变成稳 定的工频电弧,即大大减小建弧率和断路器的跳闸次数。
•
(六)管式避雷器
• 仅用作线路上雷电过电压特别大或绝缘薄弱点的防 雷保护。它能免除线路绝缘的冲击闪络,并使建弧 率降为零。 • (七)不平衡绝缘 • 一回路的三相绝缘子片数少于另一路的三相。 • (八)自动重合闸 • 线路绝缘不会发生永久性的损坏或劣化。
(三)雷击杆塔 击杆率:雷击杆塔次数与落雷总数的比值。
注入线路的总电流即为雷电流 i it ig
ig 为流经避雷线的分流。 it 为流经杆塔的电流,
线路绝缘子串上所受到的雷电过电压包括四个分量: 1、杆塔电流it在横担以下的塔身电感La和杆塔冲击接 地电阻Ri上造成压降,使横担具有一定的对地电位
b 4h N Td 10
[次/(100km.年)]
为地面落雷密度 b为两根避雷线之间的距离;h为避雷线的平均对地高度 Td为雷暴日数
1、耐雷水平( I ) 耐雷水平是指雷击线路时,其绝缘尚不至于发生闪络 的最大雷电流幅值或能引起绝缘闪络的最小雷电流幅 值,单位为kA。 我国标准规定的各级电压线路应有的耐雷水平值 见表8-1