线性代数 1-5行列式习题课
线性代数行列式计算习题课
![线性代数行列式计算习题课](https://img.taocdn.com/s3/m/57683f3e6bd97f192279e982.png)
3 2
a bc d
a
3
b a c d
1 x2
b b
3
c a b d
1
2
a bc
d d
3 2
1
2
c c
3 2
r4 r3
a
x1
2
xn
x1 a b c d x1
n 1
a
b 2 2 x2 xn a b c d a n 1 b x 2 a
2 3 3 2
c d ( xi x j ) ni j 1c d a b a b c d
* c in *
6、 某 行 ( 列 ) 的 k倍 加 到 另 一 行 ( 列 ) 上 , 行 列 式 值 不 变
ri k r j ( c i k c j )
第 5页
行列式按行(列)展开
行列式等于它的任一行 ( 列 ) 各元素与其对应的代数余子 式乘积之和:
D n a i1 Ai1 a i 2 Ai 2 a 1 i A1 i a 2 i A 2 i a in A in a ni Ani
5 3 1 4 3
0 4 9
20
第16页
a. 行(列)元素之和相等的行列式
1 7. D 1 1 x 1 1 1 x 1 1
b
1 x 1 1 1 1
x 1 1 1 1
bx 1
c1 c 2 c1 c 3
x x x x 1 0
1 1 x 1 1 0 x
1 x 1 1 1
x 1 1 1 1
c1 c 4
1 a b 1
c1 x
x
1 b a 1 1 x 1
线性代数课后习题答案第一章 行列式
![线性代数课后习题答案第一章 行列式](https://img.taocdn.com/s3/m/d74c566bcaaedd3383c4d3d1.png)
第一章 行列式1. 利用对角线法则计算下列三阶行列式:(1)381141102---;解381141102--- =2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(2)ba c ac b c b a ; 解ba c a cbc b a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a cb a ; 解222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x(x+y)y+yx(x+y)+(x+y)yx-y3-(x+y)3-x3=3xy(x+y)-y3-3x2y-x3-y3-x3=-2(x3+y3).2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;解逆序数为0(2)4 1 3 2;解逆序数为4:41, 43, 42, 32.(3)3 4 2 1;解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1.(4)2 4 1 3;解逆序数为3: 2 1, 4 1, 4 3.(5)1 3 ⋅⋅⋅ (2n-1) 2 4 ⋅⋅⋅ (2n);解逆序数为2)1(-nn:3 2 (1个)5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)(6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n -2) (n -1个) 3. 写出四阶行列式中含有因子a 11a 23的项. 解 含因子a 11a 23的项的一般形式为(-1)t a 11a 23a 3r a 4s ,其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项 分别是(-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44, (-1)t a 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42. 4. 计算下列各行列式:(1)7110025*******214; 解 7110251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---=143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 265232112131412-26503212213041224--=====cc 041203212213041224--=====rr000003212213041214=--=====r r .(3)efcf bf decd bd ae ac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b ec b e c b ad f ---=a b c d e fa d fbc e 4111111111=---=.(4)dc b a 100110011001---.解dc b a100110011001---dc b a ab ar r 10011001101021---++=====d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cdc ad a ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213ab a b a a b a ab ac c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3. (2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b ba a a a (c 4-c 3, c 3-c 2得) 022122212221222122222=++++=d d c c b ba a .(4)444422221111d c b a d c b a d c b a=(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明444422221111d c b a d c b a d c b a)()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b a d a c a b ---------=)()()(111))()((222a d d a c c a b b dc b ad a c a b +++---=))(())((00111))()((a b d b d d a b c b c c bd b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ). (5)1221 1 000 00 1000 01a x a a a a x x x n n n +⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1,则D n 按第一列展开, 有111 00 10 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得nnnn a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,11112 n nnn a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ,11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明DD D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以nnn n n n nnnn a a a aa a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a DD n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n Tn n 2)1(2)1()1()1(---=-=.D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算 下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解a a a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n行展开))1()1(10 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a a n n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1 )1()1(=an-a n -2=a n -2(a 2-1).(2)xa a a x aa a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a aa a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 ,再将各列都加到第一列上 , 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1.(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有nnn n n n n n n n a a a n a a a na a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112;解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开)nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+.再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=ni i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |,4321 4 01233 10122 21011 3210)d e t (⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2. (6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n ≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121n n n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 11113121121110 00011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=n nn a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i nn a a a a a a a a 1111131********0010000 10000 01000 001)11)((121∑=+=ni in a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D , 2841120351*******1512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==DD x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为665510006510006510065100065==D ,15075100165100065100650000611==D , 114551010651000650000601000152-==D ,7035110065000060100051001653==D , 39551000601000051000651010654-==D ,2121105100065100651100655==D ,所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ)=(1-λ)3+2(1-λ)2+λ-3.令D=0,得λ=0,λ=2或λ=3.于是,当λ=0,λ=2或λ=3时,该齐次线性方程组有非零解.。
线性代数1-5章习题
![线性代数1-5章习题](https://img.taocdn.com/s3/m/75a694a95901020207409cf4.png)
线性代数习题集皖西学院金数学院编制第一章 行 列 式一、判断题1.行列式如果有两列元素对应成比例,则行列式等于零. ( 1 )2. 213210124121012342=-.( 2 ) 3. 13434121.42042=-( 1) 4. 123213123213123213.a a a b b b b b b a a a c c c c c c =( 1 ) 5. 123123123123123123.a a a a a a b b b b b b c c c c c c ---------=---( 1 ) 6. n 阶行列式n D 中元素ij a 的代数余子式ij A 为1n -阶行列式. ( 1 )7. 312143245328836256=.( 2 ) 8. 111213212223313233a a a a a a a a a 122r r + 111213211122122313313233222+++a a a a a a a a a a a a ( 2 ) 9.如果齐次线性方程组有非零解,则它的系数行列式必等于零. ( 1 )10. 如果方程个数与未知数个数相等,且系数行列式不为零,则方程组一定有解. (1 ) 二、选择题1.若12532453r s a a a a a 是5阶行列式中带正号的一项,则,r s 的值为( B ). A.1,1r s == B.1,4r s ==C.4,1r s ==D.4,4r s ==2.下列排列是偶排列的是( C )A. 4312B. 51432C. 45312D. 6543213.若行列式21120312x--=-, 则x =( C ). A.–2 B. 2 C. -1 D. 14.行列式0000000000a b c d e f的值等于(B ).A. abcdefB. abdf -C. abdfD. cdf5.设abc ≠0,则三阶行列式000dc b a的值是( C ). A .a B .-b C .0 D .abc 6.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a++=( D ).A .-3B .-1C .1D .37.设非齐次线性方程组123123123238223105ax x x ax x x x x bx ++=⎧⎪++=⎨⎪++=⎩有唯一解,则,a b 必须满足( D )..0,0A a b ≠≠ 2.,03B a b ≠≠ 23.,32C a b ≠≠ 3.0,2D a b ≠≠8. 215152521112223030223-=---是按( B )展开的.A .第2列B .第2行C .第1列D .第1行9.设111211212n i i in n n nna a a D a a a a a a =L L LL L L L LL L L L L L L L L则下式中( B )是正确的. 1122.0i i i i in in A a A a A a A +++=L 1122.0i j i j ni nj B a A a A a A +++=L 1122.i i i i in ni C a A a A a A D +++=L 1122.i j i j ni nj D D a A a A a A =+++L10. 349571214的23a 的代数余子式23A 的值为( C ). A. 3 B. -3 C. 5 D. -5 三、填空题1. 排列36715284的逆序数是____13____.2. 四阶行列式中的一项14322341a a a a 应取的符号是____正___. 3.若,0211=k 则k=_1/2__________. 4.行列式1694432111中32a 元素的代数余子式A 32=____-2________.5.598413111=_____5_____. 6.行列式0001001010000100=__-1____.7.行列式004003002001000=______24____. 8.非零元素只有1n -行的n 阶行列式的值等于_____0_____.9. 1231231238,a a a b b b c c c =则123123123222c c c b b b a a a ---=____16______. 10. n 阶行列式n D 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系是ij A =____(1)i j ijM +-______,nD 按第j列展开的公式是n D =____1122j j j j nj nj a A a A a A +++L ______.第二章 矩 阵一、判断题1.若A 是23⨯矩阵,B 是32⨯矩阵,则AB 是22⨯矩阵. ( 1 )2.若,AB O =且,A O ≠则.=B O ( 2 )3. 12103425X ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的解110122534X -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭. ( 2 )4.若A 是n 阶对称矩阵,则2A 也是n 阶对称矩阵. ( 1 ) 5. n 阶矩阵A 为零矩阵的充分必要条件是0.A = ( 2 )6. 若,A B 为同阶可逆矩阵,则11()kA kA --=. ( 2 )7. 42042069126232110110⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭. ( 2 )8. n 阶矩阵A 为逆矩阵的充分必要条件是0.A ≠ ( 1 )9.设,A B 为同阶方阵,则 A B A B +=+. ( 2 )10.设 ,A B 为n 阶可逆矩阵,则 111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭.( 1 ) 二、选择题1. 若,A B 为n 阶矩阵,则下式中( D )是正确的.22.()()A A B A B A B -+=- .(),=.-=≠B A B C O A O B C 且,必有 222.(+)+2+B A B A AB B = .D AB A B =2.若,s n n l A B ⨯⨯,则下列运算有意义的是( A )..T T A B A .B BA .+C A B .+T D A B3.若,m n s t A B ⨯⨯,做乘积AB 则必须满足( C )..=A m t .=B m s .=C n s .=D n t4.矩阵1111A --⎛⎫= ⎪⎝⎭的伴随矩阵*=A ( D )A .⎪⎪⎭⎫ ⎝⎛--1111B .⎪⎪⎭⎫ ⎝⎛--1111C .⎪⎪⎭⎫ ⎝⎛--1111D .⎪⎪⎭⎫ ⎝⎛--11115.设2阶矩阵a b A c d ⎛⎫=⎪⎝⎭,则*=A ( A )A .⎪⎪⎭⎫ ⎝⎛--a c b dB .⎪⎪⎭⎫ ⎝⎛--a b c dC .⎪⎪⎭⎫ ⎝⎛--a cb dD .⎪⎪⎭⎫ ⎝⎛--a b c d 6. 矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( C )A .⎪⎪⎭⎫ ⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫ ⎝⎛-13110D .⎪⎪⎪⎭⎫ ⎝⎛-01311 7. 设2阶方阵A 可逆,且A -1=⎪⎭⎫ ⎝⎛--2173,则A=( B ). A .⎪⎭⎫ ⎝⎛--3172 B .⎪⎭⎫ ⎝⎛3172 C .⎪⎭⎫ ⎝⎛--3172 D .⎪⎭⎫ ⎝⎛21738. n 阶矩阵A 行列式为,A 则kA 的行列式为( B ).A. kA B. n k A C. k A D. -k A9. 设,A B 为n 阶矩阵满足=,AB A 且A 可逆,则有(C )..==A A B E .=B A E .=B B E .,D A B 互为逆矩阵10.设A 是任意阶矩阵,则( C )是对称阵..(+)T T A A A .+T B A A .T C AA .T T D A AA三、填空题1.设矩阵120210001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100021013B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则2+=A B _____320252027⎛⎫⎪⎪ ⎪⎝⎭________2.设A=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023,B=,010201⎢⎣⎡⎥⎦⎤则AB =___326010142⎛⎫⎪⎪ ⎪⎝⎭________. 3.设矩阵A=⎪⎪⎭⎫ ⎝⎛21,B=⎪⎪⎭⎫ ⎝⎛31,则A T B =______7______. 4.⎪⎪⎪⎭⎫⎝⎛321(1,2,3)=______ 123246369⎛⎫⎪⎪ ⎪⎝⎭____.5.n 1111⎪⎪⎭⎫⎝⎛=___11112222n n n n ----⎛⎫⎪⎝⎭_______. 6.⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-0410******** =________ 2554⎛⎫⎪⎝⎭______________. 7.设2阶矩阵A =⎪⎪⎭⎫⎝⎛3202,则A *A =_____6666⎛⎫ ⎪⎝⎭________. 8.设矩阵A=⎪⎭⎫⎝⎛4321,则行列式|A 2|=_____4_____. 9.设A=⎪⎪⎭⎫ ⎝⎛d c b a ,且det(A)=ad-bc≠0,则A -1=____ 1d b ad bc c a -⎛⎫⎪--⎝⎭______ . 10. 设 ,A B 为n 阶可逆矩阵,则 1O A B O -⎛⎫= ⎪⎝⎭ _____ 11.--⎛⎫⎪⎝⎭O B AO __________.第三章 矩阵的初等变换与线性方程组一、选择题1.设n 元齐次线性方程组0AX =的系数矩阵的秩为r ,则0AX =有非零解的充分必要条件是( B )(A) r n = (B) r n <(C) r n ≥ (D) r n >2.设A 是m n ⨯矩阵,则线性方程组AX b =有无穷解的充要条件是( D )(A) ()r A m < (B) ()r A n < (C) ()()r Ab r A m =< (D) ()()r Ab r A n =<3.设A 是m n ⨯矩阵,非齐次线性方程组AX b =的导出组为0AX =,若m n <,则( C )(A) AX b =必有无穷多解 (B) AX b =必有唯一解 (C) 0AX =必有非零解 (D) 0AX =必有唯一解4.已知12,ββ是非齐次线性方程组AX b =的两个不同的解,12,αα是导出组0AX =的基础解系,12,k k 为任意常数,则AX b =的通解是( B ) (A) 1211212()2k k ββααα-+++(B) 1211212()2k k ββααα++-+(C) 1211212()2k k ββαββ-+++ (D) 1211212()2k k ββαββ++-+5.设A 为m n ⨯矩阵,则下列结论正确的是(D )(A) 若0AX =仅有零解 ,则AX b =有唯一解 (B) 若0AX =有非零解 ,则AX b =有无穷多解 (C) 若AX b =有无穷多解 ,则0AX =仅有零解 (D) 若AX b =有无穷多解 ,则0AX =有非零解6.线性方程组123123123123047101x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩ ( C )(A) 无解 (B) 有唯一解 (C) 有无穷多解 (D) 其导出组只有零解 二、判断题1.若,αβ是线性方程组Ax b =的两个解向量, 则αβ-是方程组0Ax =的解。
线性代数习题册行列式-习题详解.doc
![线性代数习题册行列式-习题详解.doc](https://img.taocdn.com/s3/m/8d0171d9ddccda38376bafd9.png)
行列式的概念一、选择题1. 下列选项中错误的是 ( )a b c d (B)a b d b (A)da b ; c dc ;caa 3cb 3d a b a ba b (C)cdc ; (D)c dc.dd答案: D2.行列式 D n 不为零,利用行列式的性质对 D n 进行变换后,行列式的值().(A) 保持不变; (B) 可以变成任何值;(C) 保持不为零; (D)保持相同的正负号.答案: C二、填空题1.log a b 1 =.1log b a解析: log ab1 log a b log b a1 1 1 0 .1 log b acos sin2.36=.sincos 3 6cos sin解析:3 6 cos cos sin sin cos0sin cos 3 63 6 23 62x 1 33. 函数 f (x)x x 1 中, x 3 的系数为;21 x2x 1 1g( x)x x x 中, x 3的系数为.12x答案: -2 ; -2.阶行列式 D n中的n最小值是.答案: 1.1 2 35.三阶行列式0 2 4 中第2行第1列元素的代数余子式3 1 1等于.答案: 5.6.若 2x 8 0 ,则x= .1 2答案: 2.7. 在n 阶行列式 D a ij 中,当 i<j 时,aij 0(i, j 1,2, L ,n) ,则D= .答案: a11 a22 a nn.a b 0b a 0 0.1 0 1a b 0( 1ab )解析: b a 0 ( a2 b2 ) 01 0 1b a故 a 0, b 0 .三、解答题1.用行列式的定义计算 .0 1 0 11 0 1 0(1)1 0;0 00 0 1 11 1 0 1 0 1 解:原式 =1 ( 1)1 20 0 0 1 ( 1)1 4 0 1 00 1 0 0 0 18. 设a, b 为实数,则当a=, b=时,0 0 1 0 1解:由对角线法则,得 D 111 2 , D 21 0 0 111 2a b 0 0 若 D 1 D 2 , 则 于是1或 1.0 c d 0(2)四、证明题0 0 e.f1. (略)g h 0行列式的性质c d 0 0 d 0原式 = a 0 efb 0 ef一、选择题h 0 0g 0 0x 0 1 2 3 2e f0 f 0 f1.设行列式 D 10 x 1 0 , D 2 1 5 3 , 若 D 1 D 2 ,10 x3 1 1=a cdbdh g= adfhbdfg则 x 的取值为 ( ).(A)2 ,-1 ; (B)1 , -1 ;(C)0 ,2;(D)0,1.0 1 3 1 1答案: B2. 设行列式 D 10 1 0 ,D 2 2 3 2 , 若 D 1 D 2 ,a 11 a 12 a 1311 5 32.若 Da 21a 22a233 ,求 的值 .a31a32a332a11 5a13 a12 a13则 D1 2a21 5a23 a22 a23=().2a31 5a33 a32 a33(A)30;(B) -30 ;(C)6 ;(D)-6.答案: C二、填空题1.若三阶行列式 D 的第一行元素分别是1,2,0, 第三行元素的余子式分别是8,x,19,则 x =.解析: 1 8 2x 0 19 0, x 4 .2016 2018=.2.201620142016 2018 2 2 2 2 解析:2016 2014 2016 0 4 .2014 2a b c3. 行列式D b a c ,则 A11 A21 A31= .d b c1 b c解析: A11 A21 A31 1 a c 0 .1 b c5x 1 2 34. 行列式D42 1 x 3x x 2的展开式中, x 4的系数31 2 1 3x为; x3 的系数为.5x 1 2 3 5x 1 2 32 1 x3 x x 2 3解析: D 4x 2 3 2 1 x 3x1 2 1 3x 1 2 1 3x5x 1 2 30 x1 8 125 5 52 1 x 31 2 1 3x含 x4, x3的项仅有主对角线上元素之积项,故x 4, x3的系数分别为 15, -3.三、解答题1. 计算下列行列式 .1 2 3 42 3 4 1 (1);3 4 1 2 4 1 2 3解:各行加到第一行,得10 10 10 10 1 1 1 1 2 3 4 1 2 3 4 1 原式 =4 1 2 104 1 2 3 3 41 2 3 4 1 2 31 1 1 1 1 1 1 10 1 2 1 0 1 2 1 = 101 2 1 100 4 160 .0 0 0 03210 041 1 1 1 11 234 52 2 22(2) 12 3 4 5 ;3 3 3 3 1 2 345 4444 1 234 5解:原式 =(5-4)(5-3)(5-2)(5-1)(4-3)(4-2)(4-1)(3-2)(3-1) =288.1 4 9 16 4 9 16 25 ;(3)16 25 3691625 36491 4 9 16 1 4 9 16 3 5 7 9 3 5 7 9 原式 =7 9 11 2 2 2 0 .5 2 7 9 11 132 2 2 20 y 0 xx 0 y 0;(4)x 0 yy 0 x 0x y 0 x 0 y 原式 = y 0 0 y x 0 x 0y x 0 y 0 x= y 2 xy x 2 x y ( x 2 y 2 ) 2 . y x y x1 x yz(5) 1 y zx ;1 z xy1 x yz原式 = 0 y x z( y x)0 z x y( z x)=1 z( y x)( z x) ( x y )( y z )( z) .y x11 0 1 0 00 2 1 0 0(6) 3 1 0 0 0 ;0 0 0 2 10 0 0 0 21 0 1 01 0 1 1 0 10 2 1 04 0 2 1 4 0 2 1原式 = 21 0 033 1 0 0 1 30 0 0 2=2 14 20 .1 31 x1 1 1 11 1 x2 1 1;(7)1 1 1 x3 11 1 1 1 x41 x1 x1 x1 x1解:原式 = 1 x2 0 0 1 0 x3 0 1 0 0 x41x1 x1 x1x1 x1 x1 x1x3x2 x4= 0 x2 0 00 0 x3 00 0 0 x4= x1 x2 x3 x4 x2 x3 x4 x1 x3 x4 x1 x2 x4 x1 x2 x3.1 5 1 31 1 3 4,计算 A41 A42 A43 A44的值.2. 设D1 2 312 23 4其中 A4 j ( j 1,2,3,4) 是 D 的代数余子式.1 5 1 3解: A41 A42A431 1 3 4A441 26 .1 31 1 1 13 5 2 13. 已知D1 1 0 1 M11M21M31M41.1 3 1, 求12 4 1 1解: M 11M21M31M41=1 M11( 1)M 21 1 M 31 ( 1)M 411 52 11 1 0 1=3 1=0.1 11 4 1 14. 计算下列n 阶行列式.2 1 1 1 1 1 1 (1) 1 2 1 ;y x y y解:原式 = x (n 1) y y y x y1 1 2n 1 1 1 1 1 1解:原式n 1 2 1 1 2 1 = = (n 1)n 1 1 2 1 1 21 1 1= (n 1) 0 1 0.n 1 0 0 1x y y yy x y y (2) y y x y ;y y y xy y y x1 1 1 10 x y 0 0= x (n 1) y 0 0 x y 00 0 0 x y= x (n 1) y ( x y) n 1.0 1 1 11 x1 0 0(3) 1 0 x2 0 ( x i 0,i 1,2, ,n) .1 0 0 x nn1111i 1 x i解:原式 =0 x 1 0 0 00 x 2 0x n=x 1 x 2x n (n1) .i 1x i四、证明题11 1= (b a)(c a)112ab a 2c 2ac a 2b= (b a)(c a)(c 2 b 2ac ab)= (b a)(ca)(c b)( a b c) =0,由于 a , b , c 是互异的实数,故要上式成立,当且仅当 a+b+c=0.abcd2. 证明a a+ba b c c a b c da 4a 2ab 3a 2b 4a 3b 2cd a3a b 6a 3b c 10a 6b 3c d1. 设 a , b , c 是互异的实数,证明a b c 0 的充分必要条 a bc da 3b 3c 3r 4r 30 a a ba b c件是 a+b+c=0.证明:左边r 3 r 2a2a b3a2bc11 1 1r 2r 10 a 3a b 6a 3b c证明: ab c a b a c a a bc d a bc da3b 3c 3a 3b 3 a 3c 3 a 3r 3 0 a a b a b c0 a a b a b cr 44r 3 r 21 0 0ar 4r 3a ab ac a2a b 0 2a b =a 3 c 3 a 30 0a3a b0 0ab 3=右边克莱姆法则一、选择题x1 x2 x3 1,1.方程组x1 x2 x3 1, ,有唯一解,则( ).x1 x2 x3 1(A) 1且 2 ;(B) 1 且 2 ;(C) 1且 2 ;(D) 1 且 2 .1 1解析:由克莱姆法则,当 1 1 (2 )( 1) 2 0 ,即1 11且 2 ,选B.ax z 0,2. 当a ()时,方程组2x ax z 0, 只有零解.ax 2 y z 0(A) -1 ;(B) 0 ;(C) -2 ; (D) 2.解析:由克莱姆法则,a 0 1 0 0 1当 2 a 1 2 a a 1 2(a 2) 0a 2 1 0 2 1即a 2 ,选D.三、解答题1.用克莱姆法则下列解方程组 .x 2 y z 2,(1) x 2 y 2z 3,2x y z 3;1 2 1解: D 1 2 2 3 0 ,2 1 1由克莱姆法则知,此方程组有唯一解,22 1D13 2 2 3 ,31 11 2 1 1 2 2D 2 1 3 2 6 , D 3 1 3 3 9 ,2 3 1 2 3 3因此方程组的解为D1 D 22 , z D 33 .x 1, yDD Dx1 2 x2 x3 x4 1,2x1 3x2 x3 2x4 3, (2)3x2 2x3 x4 ..x1 2, 2x1 4x2 3x3 3x4 21 2 1 1解: D 2 3 1 24 01 32 12 43 3由克莱姆法则知,此方程组有唯一解,1 2 1 1 1 1 1 13 3 1 28 , D 22 3 1 2D13 2 1 1 2 22 ,2 12 43 3 2 2 3 31 2 1 1 1 2 1 12 3 3 2D 42 3 1 32 .D33 22 ,1 32 21 12 4 23 24 3 2因此方程组的解为D12 , x2D 2 1 D 3 1 D 4 1x1D, x3D, x4D.D 2 2 22x1 2x2 x3 0,2. 判断线性方程组x1 2x2 4 x3 0, 是否有非零解5x1 8x2 2x3 02 2 1 1 2 4解:因为系数行列式 D 1 2 4 2 2 15 8 2 5 8 21 2 4 1 2 4= 0 6 9 0 6 9 30 0 ,0 18 22 0 0 5所以,方程组只有零解.x1 kx2 x3 0,3. 已知齐次线性方程组kx1 x2 x3 0, 有非零解,求k 的值.2x1 x2 x3 0解:因为齐次线性方程组有非零解,所以该方程组的系数行列式必为零,即1 k 1 1 k 1k 1 1 0 1 k 2 1 k2 1 1 0 1 2k 3= 3(1 k 2 ) (1 k)(1 2k)= (1 k)( 4 k ) 0解得, k=-1 或 k=4.2x1 4x2 ( 1) x3 0 4. 当取何值时,齐次线性方程组 ( 3) x1 x2 2x3 0 有非x1 (1 ) x2 x3 0 零解解:由齐次线性方程组有非零解的条件可知,2 4 13 1 2 0 ,解得0,2,3 .1 1 1第一章综合练习一、判断题1. n 阶行列式D n中的 n 最小为2.( ╳ )2. 在 n 阶行列式D a ij 中元素 a ij (i, j 1,2, L) 均为整数,则D必为整数 .( √ )a 11 0a 14a22a23a 14 a 23a 32 a 41 .(╳3.a32a33a 11a22 a 33 a44a410 0a44)二、选择题1. 若 D 13x 1 x 2x 11 1x 1, D 2x,则 D 1 与 D 2 的大12小关系是 ( ).(A) D 1D 2 ; (B) D 1 D 2 ; (C) D 1 D 2 ; (D) 随 x 值变化而变化 . 答案: Ca bcos20 sin 40 =.1.cos40sin 20解析:cos20 sin 40 cos20 cos40sin 20cos401cos60.2 2. 若 x 2y 2 x x , 则 x+y =. 1 1yy解析:由 x2y 2 xx ,得 x 2 y 21 1 y y即 ( xy) 2 0 ,从而 x+y =0.sin 20 sin 402xy2. 行列式 (a,b,c, d 1,1,2 ) 的所有可能值中, 最大 c d的是 ( ).(A) 0 ; (B)2 ; (C)4 ; (D)6.答案: D3. 已知x2 0,x y 1,则 y = .1 1 11x 2 x y 解析:由1 10,1 , 得 x =2, x-y =1, 从而 y =11 1三、填空题13 54.若a2b2c2a2 A2b2 B2c2 C 2,则 C 2化简后的结果24 6等于.解析: C21 32 .2 42x x 1 25. 设f ( x) 1 x 1 14 的系数为; x3的3 2 x,则 x11 1 1 x系数为.解析:当 f ( x)的主对角线的 4 个元素相乘才能得出x 4,系数3为 2;含x的项只能是a12 , a21, a33 , a44的乘积,系数为-1.1 2 3 4 51 1 12 26. 设D 3 2 1 4 6 ,2 2 2 1 14 3 2 10则 (1) A31A32 A33= ; (2)A34A35 ;( 3)A51 A52 A53 A54 A55 .解析: A31A32A33 2( A34 A35 ) 02(A31A32 A33 ) ( A34 A35 ) 0于是A31 A32 A33 0 , A34 A35 0 .1 2 3 4 51 1 12 2A51A52A53A54A55 3 2 1 4 62 2 2 1 11 1 1 1 11 2 3 4 51 1 12 23 2 14 60 .3 3 3 3 31 1 1 1 1即 A51A52A53A54A550 .四、解答题1.计算下列行列式 .x1 y1 x1 y2 x1 y3 x1 y4(1) x2 y1 x2 y2 x2 y3 x2 y4 ;x3 y1 x3 y2 x3 y3 x3 y4x4 y1 x4 y2 x4 y3 x4 y4x1 y1 y2 y1 y3 y1 y4 y1x2 y1 y2 y1 y3 y1 y4 y1 解:原式 =x3 y1 y2 y1 y3 y1 y4 y1x4 y1 y2 y1 y3 y1 y4 y1x1 y1 y2 y1 y3 y1 y4 y1x2 x1 0 0 0 =x1 0 00 .x3 0x4 x1 0 0 01 x1 1 1 11 1 x2 1 1(2) ;1 1 1 x3 11 1 1 1 x41 x1 x1 x1 x11 x2 0 0解:原式 =0 x3 011 0 0 x41x1 x1 x1x1 x1 x1x1x3 x4x2= 0 x2 0 00 0 x3 00 0 0 x4= x1 x2 x3 x4 x2 x3 x4 x1 x3 x4 x1 x2 x4 x1 x2 x3.0 0 0 1 0 0 0 2 0 0(3)2005 0 0 .0 02006 0 0 0 00 0 0 0 20072006 2005解:原式 = 2007 ( 1) 2 2006! = 2007!1 2 3 4 52 2 2 1 12. 已知D 3 1 2 4 527 ,1 1 12 24 3 15 0求 (1) A41A42 A43;(2)A44A45.解: 1 A41 1 A42 1 A43 2( A44 A45 ) 272( A41 A42 A43 ) ( A44 A45 ) 0得 A41A42A439 , A44A4518 .3.计算下列 n 阶行列式.1 1 12 2 2 2n(1) D n 3 32 3n;n n 2 n n解:(利用范德蒙行列式计算)1 1 1D n D n T1 2 nn! 3 32 3n1 2n 1 n n 1n!(2 1)(3 1) ( n 1)(3 2)(4 2) (n 2) n ( n 1)n!(n 1)!( n 2)! 2! .2 1 1(2) 1 2 1 ;1 1 2n 1 1 1 1 1 1解:原式n 1 2 1 1 2 1 = = (n 1)n 1 1 2 1 1 21 1 1= (n 1) 0 1 0.n 1 0 0 1x1 m x2 x nx1 x2 m x n(3) D nx1 x2 x n m解:将第 2 列,L,第n列分别加到第一列,并提取第一列的公因子,得x1 x2 x n m x2 x nD nx1 x2 x n m x2 m x nx1 x2 x n m x2 x n m1 x2 x n( x1 x2 x n1 x2 m x nm)1 x2 x n m1 0 0( x1 x 2 x n1 m 0m)1 0 m( x1 x2 x n m)( m) n1b1 b2 b3 b n 1 b na1 a2 0 0 0 (4) D n 0 a2 a3 0 00 0 0 a n 1 a n(其中 a i 0,i 1,2, , n )a1 a2 0 0 解: D n ( 1)1 n b n0 a2 0 00 0 0 an 1b1 b2 b n 2 b n 1a1 a2 0 0 a n 0 a2 0 00 0 a n 2 an 1a1 a2 a n b nanDn 1a na1 a2 nb i.a na ii 1三、证明题1. 试证:如果n次多项式f ( x) a0 a1 x a n x n对 n+1 个不同的 x 值都是零,则此多项式恒等于零.( 提示:用范德蒙行列式证明)。
线性代数课后习题与答案
![线性代数课后习题与答案](https://img.taocdn.com/s3/m/26094eaedd3383c4bb4cd269.png)
《线性代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式: (1)2345 (2)2163- (3)xxx x cos sin sin cos - (4)11123++-x x x x(5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)1014300211321221---(3)5000000004000300020001000 (4)dcb a 100110011001---.4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:(1)123112101 (2)15810644372---- (3)3610285140 (4)6555655562.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a a b ab a -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211n n a a a a a a ---(5)xaaa x a a a x(6)abb a b a b a 000000000000习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)335111243152113------, (5)nn n n n b a a a a a b a a a a D ++=+212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。
线性代数讲解习题课
![线性代数讲解习题课](https://img.taocdn.com/s3/m/2692fd1b964bcf84b9d57be7.png)
place定理 place定理 是一个n阶行列式 中取某K行 或列 或列), 是一个 阶行列式, 中取某 定义 设D是一个 阶行列式,在D中取某 行(或列 则含于此k阶行 或列)中的所以 阶行(或列 中的所以k阶子式与其代数余子 则含于此 阶行 或列 中的所以 阶子式与其代数余子 式的乘积之和恰好等于D.即 式的乘积之和恰好等于 即
设排列 该排列中在 ai右边比 (i=1,2,---,n). 于是
ai小的数有 ai −1− ki个
τ (anan−1 ⋯a2a1 ) = (a1 −1− k1 ) + (a2 −1− k2 ) +⋯+ (an −1− kn )
= (a1 + a2 +⋯+ an ) − n − (k1 + k2 +⋯+ kn )
1 对 、 角行 式 列 λ1 D= λ2 ⋱ λn
λ1 D= λn λ2 ⋰ = (−1)
n(n−1) 2
= λ1λ2 ⋯λn ;
λ1λ2 ⋯λn.
2、上、下 三角行列 式。 a11 a12 ⋯ a1n 0 a22 ⋯ a2n ⋮ 0 ⋮ 0 ⋱ ⋮ ⋯ ann a11 0 ⋯ a21 a22 ⋯ 0 0
D = N 1 A1 + N 2 A2 + ⋯ + N t At
其中 N1 , N 2 ,⋯ N t是D的被选定的k行(或列)所含的K阶 的被选定的k 或列)所含的K 子式, 子式, A1 , A2 ,⋯ At 分别是它们的代数余子式. t = C k 分别是它们的代数余子式.
n
二.几个重要的公式
3.设 3.设A是m阶方阵,B是n阶方阵,则 阶方阵, 阶方阵,
a11 ⋯ a1m ⋮ ⋮ am1 ⋯ amm D= c11 ⋯ c1m ⋮ ⋮ cn1 ⋯ cnm 0 ⋮ ⋯ 0 ⋮
行列式及其计算
![行列式及其计算](https://img.taocdn.com/s3/m/1b9cdea6b0717fd5360cdc6f.png)
= ( A − E )2 = ( A − E )( A − E ) = 1 (3E − A)
2
2
2
4
4、解矩阵方程
1)
⎜⎝⎛
2 1
54⎟⎠⎞ X
=
⎜⎝⎛
3 0
−15⎟⎠⎞
解:
X
=
⎜⎝⎛
2 1
5 4
⎟⎠⎞
−1
⎜⎝⎛
3 0
−15⎟⎠⎞
=
1 3
⎜⎝⎛
4 −1
−25⎟⎠⎞⎜⎝⎛
3 0
−5 1
⎟⎠⎞
=
⎜⎛ ⎜ ⎜⎜⎝
0 a L0 0 0 O0
0
a
n−1
LLL L a
1 0 0 L 0 n−1
a
0
= a n + (−1)1+n ×1× (−1)n−1+1 O
a n − a n−2 = a n−2 (a 2 − 1)
0
a
n−2
a
1
a
1
解四:
Dn
按第二 行展开
a(−1)
2+
2
O
按第二 行展开
a
⋅
a(−1)
2+
2
O
1
a
= a11x12 + a12 x1x2 + a13 x1x3 + a21x2 x1 + a22 x22 + a2 x2 x3 + a31x3 x1 + a32 x3 x2 + a33 x32
3、设方阵 A 满足 A2 − A − 2E = 0 ,证明 A 圾 A+2E 都可逆,并求 A−1 及 ( A + 2E)−1
线性代数习题-[第一章]行列式
![线性代数习题-[第一章]行列式](https://img.taocdn.com/s3/m/79f60d30f01dc281e53af094.png)
习题1—1 全排列及行列式的定义1. 计算三阶行列式123456789。
2. 写出4阶行列式中含有因子1324a a 并带正号的项。
3. 利用行列式的定义计算下列行列式:⑴00040030020010004D⑵0000000005251424132312524232221151********a a a a a a a a a a a a a a a a D =⑶000100002000010nn D n -=4. 利用行列式的定义计算210111()021111xx x f x x x-=中34,x x 的系数。
习题1—2 行列式的性质1. 计算下列各行列式的值:⑴214101211202562-⑵efcfbfde cd bdae ac ab---⑶2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a2. 在n 阶行列式nnn n nna a a a a a a a a D 212222111211=中,已知),,2,1,(n j i a a ji ij =-=,证明:当n 是奇数时,D=0. 3. 计算下列n 阶行列式的值:⑴xaaa x a a a xD n=⑵nn a a a D +++=11111111121()120n a a a ≠习题1—3 行列式按行(列)展开1. 已知ij A 是行列式122305403--的元素ij a (3,2,1,=j i )的代数余子式,求323127A A +的值。
2. 按第三列展开下列行列式,并计算其值:11111110101dcb a ------3. 计算下列n 阶行列式的值⑴aa a aD n 01000000100=⑵xy yx y x y x D n 000000000000=4. 试用数学归纳法证明:n n n n n n nn a x a x a x a x a a a a x x xD ++++=+---=----1111221100000100001习题1—4 克拉默法则1. 用克拉默法则解下列方程组:⑴⎪⎩⎪⎨⎧=+-=+--=-+44522272532z y x z y x z y x⑵⎪⎪⎩⎪⎪⎨⎧-=++-=+-+=---=-++8232422383226232t z y x t z y x t z y x t z y x2. 判断齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=-+028*******z y x z y x z y x 是否仅有零解?3. 问λ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(z y x z y x z y x λλλ有非零解?4. λ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=+-=-+=-+0200z y x z y x z y x λλ仅有零解?。
《线性代数》第一章行列式精选习题及解答
![《线性代数》第一章行列式精选习题及解答](https://img.taocdn.com/s3/m/f53a7c1252d380eb62946d55.png)
(C)0, 2
(D)0,1
解 按 三 阶 行 列 式 的 对 角 线 法 则 得 D1 = (λ + 1)(λ − 1)2 , D2 = 0 . 若 D1 = D2 , 则
(λ + 1)(λ −1)2 = 0 ,于是 λ = 1,−1,故正确答案为(B).
例 1.5
方程组 ⎪⎨⎧λx1x1++λxx22
故逆序数为 1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B).
例 1.2 下列排列中( )是偶排列.
(A)54312 (B)51432
(C) 45312
(D) 654321
解 按照例 1 的方法计算知:排列 54312 的逆序数为 9;排列 51432 的逆序数为 7;排列
例17分析如果行列式的各行列数的和相同时一般首先采用的是将各列行加到第一列行提取第一列行的公因子简称列行加法这个行列式的特点是各列4个数的和为10于是各行加到第一行得10101010分析此类确定系数的题目首先是利用行列式的定义进行计算
第一章 行列式
1.1 目的要求
1.会求 n 元排列的逆序数; 2.会用对角线法则计算 2 阶和 3 阶行列式; 3.深入领会行列式的定义; 4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质; 7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.
(2) A34 + A35 = ( ), (3) A51 + A52 + A53 + A54 + A55 = ( ).
分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,
(完整版)线性代数课后习题答案第1——5章习题详解
![(完整版)线性代数课后习题答案第1——5章习题详解](https://img.taocdn.com/s3/m/359de08eff00bed5b9f31ddf.png)
第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
行列式习题课PPT课件
![行列式习题课PPT课件](https://img.taocdn.com/s3/m/a020ff9002768e9950e73815.png)
8
第8页/共36页
a1 a2 a3 p
例2 设四阶行列式 D b1
b2
b3
p ,
c1 c2 c3 p
d1 d2 d3 p
则其第1列元素的代数余子式之和A11+A21+A31+A41=___0__.
解 因为当p=0时,有A11=0, A21=0, A31=0, A41=0. 因而 A11+A21+A31+A41= 0. p ≠ 0时, 由与 pA11+pA21+pA31+pA41= 0, 即 p(A11+A21+A31+A41)= 0, 得 A11+A21+A31+A41= 0.
a1n xn 0, a2n xn 0,
ann xn 0
的系数行列式D ≠ 0, 则方程组没有非零解.
若齐次线性方程组有非零解,则它的系数行列式必为 零.
4
第4页/共36页
三、重要公式
1、对角行列式
λ1
D=
λ2
λ1λ2 λn ;
λn
λ1
D=
λ2
n ( n 1)
(1) 2 λ1λ2 λn.
cos n.
0
0
0
1
0
0
0
1 2cos
证:对阶数n用数学归纳法
因为 D1= cosα,
D cos
2
1
1 2cos2 1 cos 2, 2cos
所以n=1,2,结论成立. 20 第20页/共36页
假设对阶数小于n的行列式结论成立,下面对于阶数
等于n的行列式也成立. 将 Dn 按最后一行展开
线性代数第一章到五章(答案)
![线性代数第一章到五章(答案)](https://img.taocdn.com/s3/m/877da907cc17552707220881.png)
第一章 行列式一 填空题1. n 阶行列式ij a 的展开式中含有11a 的项数为 (n-1)!2.行列式12n λλλ=(1)212(1)n n n λλλ--3. 行列式1112131422232433344400a a a a a a a a a a 的值11223344a a a a4.在n 阶行列式A =|ij a |中,若j i <时, ij a =0(j i ,=1,2,…,n),则A =1122nna a a解: A 其实为下三角形行列式. 5. 排列134782695的逆序数为 10 . 解:0+0+0+0+0+4+2+0+4=106. 已知排列9561274j i 为偶排列,则=),(j i (8,3) . 解:127435689的逆序数为5,127485639的逆序数为107. 四阶行列式中带有负号且包含a 12和a 21的项为 -a 12a 21a 33a 44 . 解:四阶行列式中包含a 12和a 21的项只有-a 12a 21a 33a 44和a 12a 21a 43a 348.在函数xx xx x x f 21112)(---=中,3x 的系数为 -2 解: 行列式展开式中只有对角线展开项为3x 项.9. 行 列 式xx x x x 2213212113215 含 4x 的项410x解:含4x 的 项 应 为4443322111025x x x x x a a a a =⋅⋅⋅=.10. 若n 阶行列式ij a 每行元素之和均为零,则ij a = 0解:利用行列式性质:把行列式的某一行的各元素乘以同一数然后加到另一行对应的元素上去,行列式不变11. =5678901201140010302001000 120 .解:将最后一行一次与其前一行互换的到三角行列式12.行列式ccb ba a ------1111111的值是 1 。
解ccb ba a------1111111=1011111a b b cc----=101111a b cc--=1010101abc =113. 行 列 式210000121000002100001200000121012-------- 的 值是 27 。
线性代数1-5章习题1
![线性代数1-5章习题1](https://img.taocdn.com/s3/m/b67e9f422e3f5727a5e96253.png)
线性代数习题集第一章行列式一、判断题1.行列式如果有两列元素对应成比例,则行列式等于零. ( )2. 213210 124121 012342=-.( )3. 13434121.42042=-( )4.123213123213123213.a a ab b bb b b a a ac c c c c c=( )5.123123123123123123.a a a a a ab b b b b bc c c c c c---------=---( )6. n阶行列式n D中元素ij a的代数余子式ij A为1n-阶行列式. ( )7. 312143 245328 836256=.( )8.111213212223313233a a aa a aa a a122r r+111213211122122313313233222+++a a aa a a a a aa a a( )9.如果齐次线性方程组有非零解,则它的系数行列式必等于零. ( )10. 如果方程个数与未知数个数相等,且系数行列式不为零,则方程组一定有解. ( )二、选择题1.若12532453r sa a a a a是5阶行列式中带正号的一项,则,r s的值为().A.1,1r s ==B.1,4r s ==C.4,1r s ==D.4,4r s ==2.下列排列是偶排列的是( )A. 4312B. 51432C. 45312D. 6543213.若行列式210120312x --=-, 则x =( ).A.–2B. 2C. -1D. 14.行列式0000000000a bc d e f的值等于( ). A. abcdef B. abdf - C. abdf D. cdf5.设abc ≠0,则三阶行列式00000d c b a的值是( ).A .aB .-bC .0D .abc 6.设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a ++=( ).A .-3B .-1C .1D .37.设非齐次线性方程组123123123238223105ax x x ax x x x x bx ++=⎧⎪++=⎨⎪++=⎩有唯一解,则,a b 必须满足( )..0,0A a b ≠≠ 2.,03B a b ≠≠ 23.,32C a b ≠≠ 3.0,2D a b ≠≠ 8. 215152521112223030223-=---是按( )展开的.A .第2列B .第2行C .第1列D .第1行9.设111211212ni i inn n nna a a D a a a a a a =则下式中( )是正确的. 1122.0i i i i in in A a A a A a A +++= 1122.0i j i j ni nj B a A a A a A +++=1122.i i i i in ni C a A a A a A D +++= 1122.i j i j ni nj D D a A a A a A =+++10. 349571214的23a 的代数余子式23A 的值为( ).A. 3B. -3C. 5D. -5 三、填空题1. 排列36715284的逆序数是________.2. 四阶行列式中的一项14322341a a a a 应取的符号是_______. 3.若,0211=k 则k=___________. 4.行列式1694432111中32a 元素的代数余子式A 32=____________.5.598413111=__________. 6.行列式0001001010000100=______.7.行列式0004003002001000=__________. 8.非零元素只有1n -行的n 阶行列式的值等于__________.9. 1231231238,a a a b b b c c c =则123123123222c c c b b b a a a ---=__________. 10.n 阶行列式nD 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系是ij A =__________,n D 按第j 列展开的公式是n D =__________.四、计算题1.写出五阶行列式中含1325a a 并带有正号的所有项.2.计算四阶行列式1002210002100021的值.3.求4阶行列式1111112113114111的值.4.计算行列式D =1111123414916182764的值.5. 计算行列式122224242λλλ--+---+6.计算n 阶行列式011110111101111.7. 计算n 阶行列式 00 n a D a⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅, 其中对角线上元素都是a , 未写出的元素都是0;8. 计算n 阶行列式 n x a a a xaD a ax⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅五、证明题1.33()ax byay bz az bx x y z ay bzaz bx ax by a b yz x az bx ax byay bzzxy++++++=++++2.2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b cc c cd d d d ++++++=++++++六.用克拉默法则解方程1. 12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩; 2.121232343454556156056056051x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪+=⎩.七. 问λ取何值时, 齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?第二章 矩 阵一、判断题1.若A 是23⨯矩阵,B 是32⨯矩阵,则AB 是22⨯矩阵. ( )2.若,AB O =且,A O ≠则.=B O ( )3. 12103425X ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的解110122534X -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭. ( ) 4.若A 是n 阶对称矩阵,则2A 也是n 阶对称矩阵. ( ) 5. n 阶矩阵A 为零矩阵的充分必要条件是0.A = ( )6. 若,A B 为同阶可逆矩阵,则11()kA kA --=. ( )7. 42042069126232110110⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭. ( )8. n 阶矩阵A 为逆矩阵的充分必要条件是0.A ≠ ( )9.设,A B 为同阶方阵,则 A B A B +=+. ( )10.设 ,A B 为n 阶可逆矩阵,则 111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭.( ) 二、选择题1. 若,A B 为n 阶矩阵,则下式中( )是正确的.22.()()A A B A B A B -+=- .(),=.-=≠B A B C O A O B C 且,必有222.(+)+2+B A B A AB B = .D AB A B =2.若,s n n l A B ⨯⨯,则下列运算有意义的是( )..T T A B A .B BA .+C A B .+T D A B3.若,m n s t A B ⨯⨯,做乘积AB 则必须满足( )..=A m t .=B m s .=C n s .=D n t4.矩阵1111A --⎛⎫=⎪⎝⎭的伴随矩阵*=A ( )A .⎪⎪⎭⎫ ⎝⎛--1111B .⎪⎪⎭⎫ ⎝⎛--1111C .⎪⎪⎭⎫ ⎝⎛--1111D .⎪⎪⎭⎫ ⎝⎛--11115.设2阶矩阵a b A c d ⎛⎫= ⎪⎝⎭,则*=A ( ) A .⎪⎪⎭⎫ ⎝⎛--a c b d B .⎪⎪⎭⎫ ⎝⎛--a b c d C .⎪⎪⎭⎫ ⎝⎛--a cb dD .⎪⎪⎭⎫⎝⎛--a b c d 6. 矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( )A .⎪⎪⎭⎫ ⎝⎛-3310B .⎪⎪⎭⎫ ⎝⎛-3130C .⎪⎪⎭⎫⎝⎛-13110 D .⎪⎪⎪⎭⎫ ⎝⎛-01311 7. 设2阶方阵A 可逆,且A -1=⎪⎭⎫ ⎝⎛--2173,则A=( ).A .⎪⎭⎫ ⎝⎛--3172 B .⎪⎭⎫ ⎝⎛3172 C .⎪⎭⎫ ⎝⎛--3172 D .⎪⎭⎫ ⎝⎛21738. n 阶矩阵A 行列式为,A 则kA 的行列式为( ).A. kA B. n k A C. k A D. -k A9. 设,A B 为n 阶矩阵满足=,AB A 且A 可逆,则有( )..==A A B E .=B A E .=B B E .,D A B 互为逆矩阵10.设A 是任意阶矩阵,则( )是对称阵..(+)T T A A A .+T B A A .T C AA .T T D A AA三、填空题1.设矩阵120210001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100021013B ⎛⎫⎪= ⎪ ⎪⎝⎭,则2+=A B _____________2.设A=⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023,B=,010201⎢⎣⎡⎥⎦⎤则AB =___________. 3.设矩阵A=⎪⎪⎭⎫ ⎝⎛21,B=⎪⎪⎭⎫ ⎝⎛31,则A TB =____________. 4.⎪⎪⎪⎭⎫⎝⎛321(1,2,3)=__________. 5.n1111⎪⎪⎭⎫ ⎝⎛=__________. 6.⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-0410******** =______________________. 7.设2阶矩阵A =⎪⎪⎭⎫⎝⎛3202,则A *A =_____________.8.设矩阵A=⎪⎭⎫⎝⎛4321,则行列式|A 2|=__________. 9.设A=⎪⎪⎭⎫ ⎝⎛d c b a ,且det(A)=ad-bc≠0,则A -1=__________ .10. 设 ,A B 为n 阶可逆矩阵,则 1O A B O -⎛⎫= ⎪⎝⎭_______________.四、计算题1.已知110123011,124,111021A B ⎡⎤⎡⎤⎢⎥⎢⎥=----⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦求()TA B +.2.计算下列乘积1).431712325701⎛⎫⎛⎫ ⎪⎪- ⎪⎪ ⎪⎪⎝⎭⎝⎭;2).3(123)21⎛⎫⎪⎪ ⎪⎝⎭;3).)21(312-⎪⎪⎭⎫⎝⎛;4).13121400121134131402⎛⎫⎪-⎛⎫ ⎪⎪ ⎪--⎝⎭⎪-⎝⎭;5).111213112312222321323333()a a a xx x x a a a xa a a x⎛⎫⎛⎫⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭.3.求矩阵方程.1)25461321X-⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;2)211113210432111X-⎛⎫-⎛⎫⎪=⎪⎪⎝⎭⎪-⎝⎭;3)142031121101X⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭;4)010100143100001201001010120X-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.4.设矩阵21=53A⎛⎫⎪⎝⎭,13=20B⎛⎫⎪⎝⎭,求矩阵方程=XA B的解X.5.设321=111101A ⎡⎤⎢⎥⎢⎥⎢⎥⎦⎣,求-1A .6.设101=210,325A ⎛⎫ ⎪⎪ ⎪--⎝⎭求-1A7.设101=210325A ⎛⎫ ⎪ ⎪ ⎪--⎝⎭,求-1A .8.设⎪⎪⎪⎪⎪⎭⎫⎝⎛=2500380000120025A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=2600140000540023B . 求:AB BA 和9. 设A 为3阶矩阵, , 求-1(2)-5A A *.10.设(1,2,1),28,A diag A BA BA E *=-=- 求.B11.设34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭, 求8A |及4A .五、证明题1. 设,A B 为n 阶矩阵,且A 为对称矩阵,证明TB AB 也是对称矩阵.2.设,A B 为n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA =.3.设为n 阶矩阵A 满足235,A A E O --=试证A E +可逆,且()14A E A E -+=-.4. 设A 为n 阶矩阵,且2,A A =且A E ≠,证明A 是不可逆矩阵.第三章 矩阵的初等变换与线性方程组一、选择题1.设n 元齐次线性方程组0AX =的系数矩阵的秩为r ,则0AX =有非零解的充分必要条件是( )(A) r n = (B) r n <(C) r n ≥ (D) r n >2.设A 是m n ⨯矩阵,则线性方程组AX b =有无穷解的充要条件是( )(A) ()r A m < (B) ()r A n < (C) ()()r Ab r A m =< (D) ()()r Ab r A n =<3.设A 是m n ⨯矩阵,非齐次线性方程组AX b =的导出组为0AX =,若m n <,则( )(A) AX b =必有无穷多解 (B) AX b =必有唯一解 (C) 0AX =必有非零解 (D) 0AX =必有唯一解4.已知12,ββ是非齐次线性方程组AX b =的两个不同的解,12,αα是导出组0AX =的基础解系,12,k k 为任意常数,则AX b =的通解是( ) (A) 1211212()2k k ββααα-+++(B) 1211212()2k k ββααα++-+(C) 1211212()2k k ββαββ-+++ (D) 1211212()2k k ββαββ++-+5.设A 为m n ⨯矩阵,则下列结论正确的是( )(A) 若0AX =仅有零解 ,则AX b =有唯一解 (B) 若0AX =有非零解 ,则AX b =有无穷多解 (C) 若AX b =有无穷多解 ,则0AX =仅有零解(D) 若AX b =有无穷多解 ,则0AX =有非零解6.线性方程组123123123123047101x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩ ( )(A) 无解 (B) 有唯一解 (C) 有无穷多解 (D) 其导出组只有零解 二、判断题1.若,αβ是线性方程组Ax b =的两个解向量, 则αβ-是方程组0Ax =的解。
线性代数1-5
![线性代数1-5](https://img.taocdn.com/s3/m/b3a911eb856a561252d36f94.png)
⊕
r4 + r3
1 −1 2 − 3 1 0 −2 1 −5 3 − 0 0 1 −1 2 × (− 2 )
0 0 0 −1 0 0 0 2 2 −2
⊕
r4 + r3
1 −1 2 − 3 1 0 −2 1 −5 3 − 0 0 1 −1 2 × (− 2 )
0 0 0 −1 0 0 0 2 2 −2
要证: 要证 D
L L L L L L L
a1n L a jn L, ain L ann
ri ↔ rj r1 ↔ r3 ci ↔c j c2 ↔ c4
−D 1
D = ∑ (− 1) a1 p1 Laipi La jp j Lanpn
t
(− 1)t b1 p Lb jp Lbip Lbnp =∑
1 i j
;
性质6 (2): ri + k × rj 性质6
a11 M ai1 M a j1 M an1
a12 M ai 2 M a j2 M an 2
L L L L
a1n M ain M a jn M ×k ann
+
ri + krj
a11 M ai 1 + ka j3; ka j 2 M a j2 M an2
1 −1 2 − 3 1 0 0 −1 0 − 2 r5 − 4r1 0 2 0 4 −1 0 −2 1 −5 3 0 0 2 2 −2
1 −1 2 0 −2 1
−0 0 0 2 0 0 0 −1 2
r2 ↔ r4
−3 −5
4 0 2
1
3 −1 −2 −2
⊕
1 −1 0 −2 r2 ↔ r4 −0 2 0 0 0 0
(完整版)线性代数课后习题答案第1——5章习题详解
![(完整版)线性代数课后习题答案第1——5章习题详解](https://img.taocdn.com/s3/m/359de08eff00bed5b9f31ddf.png)
第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
《线性代数》第一章行列式精选习题及解答
![《线性代数》第一章行列式精选习题及解答](https://img.taocdn.com/s3/m/f53a7c1252d380eb62946d55.png)
a1 ...
∏ a2
...
... ...
an ...
=
(a j − ai ) .
1≤i< j≤n
a1n−1
a
n−1 2
... ann−1
1.2.6 计算行列式的常用方法
1.利用对角线法则计算行列式,它只适用于 2、3 阶行列式;
2.利用 n 阶行列式定义计算行列式;
3.利用行列式的性质化三角形法计算行列式;
(C) 10 (D) 9
解 在排列 14536287 中,1 排在首位,逆序数为 0;4、5、6、8 各数的前面没有比它们
自身大的数,故这四个数的逆序数为 0;3 的前面比它大的数有 2 个(4、5),故逆序数为 2;
2 的前面比它大的数有 4 个(4、5、3、6),故逆序数为 4;7 的前面比它大的数有 1 个(8),
MM MM
M
11 1 1L2
1 −1 −1 −1 L −1
n +1 0 0 0 L 0
11 0 0L0
求和,故共有 n!项. 1.2.2 行列式的性质
1.行列式和它的转置行列式相等; 2.行列式的两行(列)互换,行列式改变符号; 3.行列式中某行(列)的公因子可提到行列式的的外面,或若以一个数乘行列式等于 用该数乘此行列式的任意一行(列);
4.行列式中若有两行(列)成比例,则该行列式为零; 5.若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和, 即
即 ( A31 + A32 + A33 ) + 2( A34 + A35 ) =0. 同理 2( A31 + A32 + A33 ) + ( A34 + A35 ) =0
行列式习题课.ppt
![行列式习题课.ppt](https://img.taocdn.com/s3/m/1da18b2ea1c7aa00b42acbc5.png)
假 设 对 阶 数 小 于n的 行 列 式 结 论 成 立, 下 证 对
于阶数等于n的行列式也成立.现将 Dn 按最后一行 展开, 得
Dn 2cos Dn1 Dn2 .
由归纳假设,
Dn1 cos(n 1) , D cos(n 2) ,
n2
Dn 2cos cos(n 1) cos(n 2) [cosn cos(n 2) ] cos(n 2)
n
x ai
a1
a2
an
i 1
n
x ai
x
a2 an
i 1
Dn1
x
n
ai
a2
x
an
i 1
n
x ai
a2
a3
x
i 1
提取第一列的公因子,得
1 a1 a2 an
1 x a2 an
n
Dn1 ( x ai) 1
a2
x
an .
i1
1 a2 a3 x
将第1列的( a1)倍加到第2列,将第1列的
cos n;
所以对一切自然数n结论成立.
7 用展开、递推法
求值
an
0
bn
D2n 0
a1 b1 c1 d1
cn
0
dn
an1
0
bn1 0
按第一行 0
a1 b1
0
展开 an
c1 d1
cn1
0
dn1 0
0
0 dn
0 (1)2n1 bn 0
an1
0
bn1
a1 b1
0
c1 d1
cn1
d n1
cn
0
0
加到另一行(列)上去,行列式值不变
工程数学线性代数同济第五版课件1-5
![工程数学线性代数同济第五版课件1-5](https://img.taocdn.com/s3/m/376d3b0290c69ec3d5bb75dd.png)
n1
.
0
上页
下页
a
b ab 2a b 3a b
c abc 3a 2b c 6a 3b c
d abcd 4a 3b 2c d 10 a 6 b 3 c d
例4 计算
D
a a a
解
从第4行开始,后行减前行
r4 r 3 r3 r2 r 2 r1
D 0.
上页 下页
性质3 行列式的某一行(列)中所有的元素都 乘以同一数 k ,等于用数 k 乘此行列式.
第行 i (列)乘以
a 11 a 12 a1n ka i 1 ka i 2
k ,记作 ri k ( c i k )
a 11 a 12 a1n
ai2 a in
2n
解 将第2n行依次与第2n-1行、…、第2行对调 (共作2n-2次相邻对换),再把第2n列依次与第 2n-1列、…、第2列对调,得到
上页 下页
a c 0 D 2n ( 1)
2(2n 2)
b d 0
0 0 a
0 0 b
a c
b d d
2( n 1)
0
0
c
由上例题,得到递推公式
D 2 n ( ad bc ) D 2 ( n 1 ) ( ad bc ) D 2 ( n 2 )
1 3 1 2 2
上页 下页
r3 3 r1
r4 4 r1
0 0 0 0
r 2 r4
0 0 0 0
1
1 2 0 0 0
2 1 1 1 2
3 5 1 0 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学科学学院 陈建华
机动
目录
上页
下页
返回
结束
1.5 习题课
机动
目录
上页
下页
返回
结束
行列式计算方法小结
• 利用行列式的定义
• 化三角形法
• 拆行(列)法 • 按某一行(列)或某k行(列)展开 • 数学归纳法 • 递推法 • 加边法(升阶法) • 利用已知行列式的结论
机动
目录
上页
下页
返回
结束
i 2,3,, n
a
i 1
n
i
b
a2
an b
机动
目录
上页
下页
返回
结束
a
i 2,3,, n
n
ri r1
i 1
i
b
a2
an 0
0 0
n
b 0
b
( b )n1 ( ai b )
i 1
注:本题首行乘以(-1)加至2至n 行可得箭形行列式
机动 目录 上页 下页 返回 结束
(3)
1 2 D 3 4
2 3 4 1
3 4 1 2
4 1 2 3
观察:每行元素 之和都等于10
4 10 0 1 0 2 0 3
4 3 4 4 2 1 2 1 3 1 2 1 4 3 2 1
解:
10 10 D 10 10
10 0 0 0
1 1 a2 1 1
1 1
1 1
1 1 1 (ai 0, i 1, 2, , n)
例6 计算
D
1 1
1 a3 1 1
1 1 an
[分析]首行乘以(-1)加至2至n行可得箭形行列式
解:
1 a1 a1 D a1 a1 0
n
1 a2 0
1 1 0 0 a3 0
机动 目录 上页 下页 返回 结束
例4.计算 D
a1 b a2 a1 a2 b a1 a2
i n
an an
每行元素之和相同, 2—n列加至首列
an b
a2 an an
解:
c1 ci
a
i 1 n
b
D
a
i 1
i
b a2 b
1 0
c1 (
1 a1
a1 ) ci ai
a1 i 2 ai
n
1
1 1
1 0 0
0 i 2,3,, n
0 0 0
a2 0 0 0 a3 0 0
0 0 an
n a1 1 a2a3 an (1 a1 ) a1a2 an (1 ) i 2 ai i 1 ai
i 2,3,n 1 i 1
1 a2 a1
n
a3 a2 x an
( x ai )( x a1 )( x a2 ) ( x an )
i 1
( x ai ) ( x ai )
i 1 i 1
n
n
机动
目录
上页
下页
返回
结束
1 a1 1
机动
目录
上页
下页
返回
结束
x a1 a1
a1 x
a2 an a2 an x an x
例5 计算行列式 D a a 1 2
a2
a3
[分析]每行元素之和相同,2至末列加至首列.此后无法通过2至末
行减首行化上三角形,可首列提取公因子后利用第一列的元素1化 下三角形行列式.
解:
r1 ri n i 2,3,, n 1 i 1
机动
目录
上页
下页
返回
结束
2 4 1 2 3 7 1 4 D 5 9 2 7 2 5 1 2
1 4 2 2 r2 r4 0 1 4 0 0 1 9 3 0 3 5 6
化 上 三 角 形
1 4 r3 ( 1) r2 0 1 r4 3 r2 0 0 0 0
机动 目录 上页
0 0 an
下页
返回
结束
x
a1 x a2 a2 a2
a3
a2 an 1 1 a2 an 1 1 x an 1 1 a3 a3
例7. 解方程
a1 a1 a1 a1
0
x an
a n 1
n 1
1 1
an
n
1.2 例解方程 解法 (一)末列×(-ai)加至第i列(i=1,2,…,n)得上三角形.
2 Dn2
n 2
n ( n 1)
机动 目录 上页 下页 返回 结束
例10 计算
(P26)
D
x a1 a1 a1 a1
a2 x a2 a2 a2
a3 a3
an an an x an ( n 2) ( x 0)
x a3 a3
c3 a3
b1
a3 b3
c1 c2 c3 a1 a2 a3
c1 c2
b1 2 b2 b3
c1 a1 c2 a 2 c3 a 3
a2 b2 2 b2 c2 c3 a3 b3 b3
c2 c3
c1 c3
a1 2 a2 a3
b1 b2 b3
c1 c2 =右 c3
a2 a2
a3 a3
a n 2 a n 1 x a n 1
机动
an
a n 1 a n x
目录 上页 下页 返回 结束
a
例8 计算 (P23)
b a a c c
0
b d
b
D2 n
0
c
0
d d
0
特点:“0”多 方法: 降阶找递推公式
机动 目录 上页 下页 返回 结束
=… =(ad-bc)n-1D2 =(ad-bc)n
法(三)d=0,用定义;d≠0, 化下三角形行列式.
机动 目录 上页 下页 返回 结束
例9
Dn
1
1
1
解:按首行(列)展开, 后一行列式再按首列(行)展开得 Dn ( ) Dn1 Dn-2 变形为: D D ( D D ) 2 ( D D )
按另一种方式变形为:
①
Dn Dn1 ( Dn1 Dn2 ) =… n ②
①、②消去Dn-1得
( ) Dn
n1
n1
n 1 n 1 时 Dn ( )
n 时 Dn Dn1 n ( n1 Dn2 )
2 2 1 4 7 4 0 r ( 5 ) r 0 1 5 3 0 0 7 6 0 0
4 3
2 2 4 0 5 3 0 9 5
=9
机动
目录
上页
下页
返回
结束
方法二
2 4 1 2 3 7 1 4 r2 ( 1) r1 D 5 9 2 7 r3 2 r1 , r4 r1 2 5 1 2
n n1
n1 n 2
n 2
n 3
=… n2 ( D2 D1 )
2 n n 2 ( ) ( )
①
下页 返回 结束
机动
目录
上页
Dn ( ) Dn1 Dn2
Dn Dn1 n
(一) 2至n列加至首列,再2至n行减首行得上三角形行列式 (二) 2至n行减首行得箭形行列式 (三) 加边(升阶)法
机动
目录
上页
下页
返回
结束
解:
Dn
x a1 a1 a1 a1
?
!
化 上 三 1 7 3 4 D 2 9 5 7 1 5 2 2
1 4 2 2 r2 ( 1) r1 0 3 5 6 0 1 9 3 r3 2 r1 , r4 r1 0 1 4 0
1 4 2 2 r2 r4 0 1 4 0 0 1 9 3 0 3 5 6
解:法(一) 按第1行展开, 再 按末行展开,有:
a a D2 n a c 0 c b d d 0 0 d b 0
0 a ( 1)2 n1 b a c 0 c c 0 b d
b
d 0
=adD2(n-1)-bcD2(n-1) =(ad-bc)D2(n-1) 递推公式: 2D ( ad - bc ) D = ( ad - bc ) D2n= 2(n-1) 2(n-2) =… =(ad-bc)n-1D2 =(ad-bc)n
2 3 4 1
2 1 0 0
3 4 1 2
3 1 4 0
=160
机动 目录 上页 下页 返回 结束
例3.证明
b1 c1 b2 c2 b3 c3
c1 a1 c2 a 2 c3 a 3
a1 b1
a1
b1 b2 b3
c1 c2 c3
a2 b2 2 a2 a3 b3 a3
1 1 1 2 3 4 4 9 16 8 27 64
=(2-1)(3-1)(4-1)(3-2)(4-2)(4-3)=12
1 范德蒙行列式 x1 V4 2 x1 3 x1 1 x2 2 x2 3 x2 1 x3 2 x3 3 x3 1 x4 ( x j xi ) 2 1i j 4 x4 3 x4