数字图像处理实验报告.doc
数字图像处理实验报告——图像分割实验
![数字图像处理实验报告——图像分割实验](https://img.taocdn.com/s3/m/1f507c00302b3169a45177232f60ddccda38e6b7.png)
实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。
实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。
3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。
通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。
2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
数字图像处理实验报告
![数字图像处理实验报告](https://img.taocdn.com/s3/m/e311586ccec789eb172ded630b1c59eef8c79a09.png)
数字图像处理实验报告1. 引言数字图像处理是使用计算机来处理和优化图像的一种技术。
在本实验中,我们将探索几种常见的数字图像处理方法,并使用Python编程语言和相关库来实现。
2. 实验目的本实验的主要目的是:1.了解图像的基本特性和数字图像处理的基本原理;2.熟悉Python编程语言和相关图像处理库的使用;3.实现常见的图像处理算法并进行实验验证。
3. 实验方法在本实验中,我们使用Python编程语言和以下相关库来实现图像处理算法:•OpenCV:用于图像读取、显示和保存等基本操作;•Numpy:用于图像数据的处理和算术运算;•Matplotlib:用于图像的可视化和结果展示。
以下是实验涉及到的图像处理方法和步骤:1.图像读取和显示:使用OpenCV库读取图像,使用Matplotlib库显示图像;2.图像的灰度化:将彩色图像转换为灰度图像;3.图像的二值化:将灰度图像转换为黑白二值图像;4.图像的平滑处理:使用平滑滤波器对图像进行平滑处理,如均值滤波和高斯滤波;5.图像的边缘检测:使用边缘检测算法对图像进行边缘检测,如Sobel算子和Canny算子;6.图像的直方图均衡化:对灰度图像进行直方图均衡化,增强图像的对比度。
4. 实验过程和结果4.1 图像读取和显示首先,我们使用OpenCV库读取一张图像,并使用Matplotlib库显示该图像:import cv2import matplotlib.pyplot as plt# 读取图像img = cv2.imread('image.jpg')# 显示图像plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.axis('off')plt.show()4.2 图像的灰度化接下来,我们将彩色图像转换为灰度图像:# 灰度化图像gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 显示灰度图像plt.imshow(gray_img, cmap='gray')plt.axis('off')plt.show()4.3 图像的二值化然后,我们将灰度图像转换为黑白二值图像:# 二值化图像_, binary_img = cv2.threshold(gray_img, 128, 255, cv2.THRESH_BINARY)# 显示二值图像plt.imshow(binary_img, cmap='gray')plt.axis('off')plt.show()4.4 图像的平滑处理接下来,我们使用平滑滤波器对图像进行平滑处理,例如使用5x5的均值滤波器和高斯滤波器:# 均值滤波mean_img = cv2.blur(img, (5, 5))# 高斯滤波gaussian_img = cv2.GaussianBlur(img, (5, 5), 0) # 显示平滑处理后的图像plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(cv2.cvtColor(mean_img, cv2.COLOR_BGR2R GB))plt.title('Mean Filter')plt.axis('off')plt.subplot(122)plt.imshow(cv2.cvtColor(gaussian_img, cv2.COLOR_B GR2RGB))plt.title('Gaussian Filter')plt.axis('off')plt.show()4.5 图像的边缘检测然后,我们使用边缘检测算法对图像进行边缘检测,例如使用Sobel算子和Canny算子:# 边缘检测sobel_img = cv2.Sobel(gray_img, cv2.CV_8U, 1, 1, ksize=3)canny_img = cv2.Canny(gray_img, 50, 150)# 显示边缘检测结果plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(sobel_img, cmap='gray')plt.title('Sobel Operator')plt.axis('off')plt.subplot(122)plt.imshow(canny_img, cmap='gray')plt.title('Canny Operator')plt.axis('off')plt.show()4.6 图像的直方图均衡化最后,我们对灰度图像进行直方图均衡化,以增强图像的对比度:# 直方图均衡化equalized_img = cv2.equalizeHist(gray_img)# 显示直方图均衡化结果plt.imshow(equalized_img, cmap='gray')plt.axis('off')plt.show()5. 实验总结通过本实验,我们熟悉了数字图像处理的基本方法和步骤,并使用Python编程语言和相关库实现了图像的读取、显示、灰度化、二值化、平滑处理、边缘检测和直方图均衡化等操作。
(完整word版)数字图像处理 实验报告(完整版)
![(完整word版)数字图像处理 实验报告(完整版)](https://img.taocdn.com/s3/m/c9fd9f4227284b73f3425011.png)
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
数字图像处理实验报告Word版
![数字图像处理实验报告Word版](https://img.taocdn.com/s3/m/6526c7a7a8956bec0875e3c0.png)
《数字图像处理上机》实验报告班级:电信1101姓名:XXXXXX学号:0703110107数字图像处理上机实验1、实验目的了解matlab软件/语言,学会使用matlab的图像处理工具箱(Image Processing Toolbox),使学生初步具备使用该软件处理图像信息的能力,并能够利用该软件完成本课程规定的其他实验和作业。
熟悉常用的图像文件格式与格式转换;熟悉图像矩阵的显示方法(灰度、索引、黑白、彩色);熟悉图像矩阵的格式转换。
,学会使用MatLab对图像作滤波处理,使学生有机会掌握滤波算法,体会滤波效果。
了解几种不同滤波方式的使用和使用的场合,培养处理实际图像的能力.2、实验要求学生应当基本掌握matlab的操作,掌握matlab图像处理工具箱中最常用的函数用法。
练习图像读写命令imread和imwrite并进行图像文件格式之间的转换。
学生应当完成对于给定图像+噪声,使用平均滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。
3、实验内容及步骤1、图像的显示与格式转换(1)学习matlab的基本操作;(2)使用imread函数读入图像;(3)使用figure函数创建窗口;(4)使用image或imshow函数显示图像;(5)使用colorbar函数在图像的右侧显示图像的亮度条。
2、图像的滤波(1) 考察平均滤波器对高斯噪声污染的图象去噪效果;(2) 考察中值滤波器对高斯噪声污染的图象去噪效果;(3) 考察平均滤波器对椒盐噪声污染的图象去噪效果;(4) 考察中值滤波器对椒盐噪声污染的图象去噪效果。
(5) 考察滤波器模板大小对平均滤波器滤波效果的影响;(6) 考察滤波器模板大小对中值滤波器滤波效果的影响;3、图像的频域变换在Matlab workspace中生成一幅大小为256×256像素的8位灰度图, 背景为黑色,中心有一个宽80像素高40像素的白色矩形。
数字图像处理实验报告
![数字图像处理实验报告](https://img.taocdn.com/s3/m/9baeb01acec789eb172ded630b1c59eef8c79a8f.png)
数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。
2.掌握数字图像处理的基本方法。
3.掌握常用数字滤波器的性质和使用方法。
4.熟练应用数字图像处理软件进行图像处理。
实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。
% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。
图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。
在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。
RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。
% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。
数字图像处理中的滤波是一种常用的图像增强方法。
滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。
% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。
这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。
下面是数字图像处理在人脸识别应用中的一个简单例子。
% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。
完整word版数字图像处理实验报告6
![完整word版数字图像处理实验报告6](https://img.taocdn.com/s3/m/1ca25373b4daa58da0114ad8.png)
数字图像处理与分析实验报告学院:班级:姓名:学号:实验六细胞图像的分割与测量一、实验目的1. 通过分析细胞图像特点,完成细胞图像的分割和测量,并分析测量结果。
2. 将图像预处理、分割、分析等关键技术结合起来,理论与实践相结合,提高图像处理关键技术的综合应用能力。
二、实验要求1. 对比中值、均值和形态学开闭运算对细胞图像的滤波效果,选择适用于细胞图像的滤波方法2. 运用大津阈值对细胞图像分割,观察分割后噪声情况,观察目标边缘处的分割效果;(使用函数:im2bw)3. 实现连通区域的编号;(使用函数:bwlabel)4. 计算各连通区域的相关信息,如面积、重心等。
(使用函数:regionprops )三、实验步骤预处理去噪大津阈值分割目标编号标记测量各个细胞的面积等参数输出测量结果、预处理去噪1); x=imread( \CHEN2-7.BMP'桌面Settings\Administrator\'C:\Documents andy=medfilt2(rgb2gray(h));subplot(2,2,1)imshow(x)); title(''原图像subplot(2,2,2)imshow(y));title('中值滤波处理'I=fspecial() 'average'z=imfilter(rgb2gray(x),I);subplot(2,3,4)imshow(z)title(); ''均值滤波处理se = strel(,5,5);'ball'm = imopen(rgb2gray(x),se);subplot(2,3,5)imshow(m)title(); '形态学开运算处理'se = strel(,5,5); 'ball'n = imclose(rgb2gray(x),se);subplot(2,3,6)imshow(n)title(); ''形态学闭运算处理2、大津阈值分割先做出灰度图像的直方图,根据直方图选取合适的分割灰度值);桌面\CHEN2-7.BMP'x=imread('C:\Documents andSettings\Administrator\b=rgb2gray(x);imhist(b);title('灰度直方图');由上图可知,选择阈值在附近可以达到最好的分割效果,则有:185/255);\CHEN2-7.BMP''C:\Documents and Settings\Administrator\桌面x=imread(b=rgb2gray(x);y1=medfilt2(b);w1=im2bw(y1,185/255);) ;h=fspecial('average'y2=imfilter(b,h);w2=im2bw(y2, 185/255);,11,90);se=strel('line'y3=imopen(b,se);w3=im2bw(y3, 185/255);y4=imclose(b,se);w4=im2bw(y4, 185/255);figure subplot(2,2,1)imshow(w1));''中值大津阈值分割title(subplot(2,2,2) imshow(w2));'均值大津阈值分割title('subplot(2,2,3)imshow(w3););开运算大津阈值分割'title('subplot(2,2,4)imshow(w4);); 闭运算大津阈值分割title(''3、目标编号标记);桌面\CHEN2-7.BMP'x=imread('C:\Documents and Settings\Administrator\b=rgb2gray(x);,5,5);'ball'se=strel(y4=imclose(b,se);w4=im2bw(y4, 185/255); z=imcomplement(w4);subplot(2,2,1)imshow(z);title('取反后图像')z=bwareaopen(z,200);subplot(2,2,2);imshow(z);title('去除像素点小于200的部分')BW = logical(z);L = bwlabel(BW,4);subplot(2,2,3);imshow(L);title('四连通')M=bwlabel(BW,8);Subplot(2,2,4)imshow(M);)'八连通'title(4、测量各个细胞的面积等参数);\CHEN2-7.BMP' x=imread('C:\Documents andSettings\Administrator\桌面b=rgb2gray(x);se = strel(,5,5); 'ball'I0=imclose(b,se);I11=im2bw(I0,185/256);I12=imcomplement(I11);I13= bwlabel(I12);s = regionprops(I13, ); 'centroid'centroids = cat(1, s.Centroid);figure(1);imshow(I13)title(); '重心标记图'hold on plot(centroids(:,1), centroids(:,2), ) 'r*'hold off m=regionprops(I13,); 'Area'areas=cat(1, m.Area);figure(3);plot(areas)如图为重心标记和各区域面积分布图:1.为何需要预处理?直接分割的效果如何?答:如果不进行预处理,在后续处理时如进行阈值分割会产生边缘毛刺,使效果不明显;2.选择何种预处理方法?a)中值适合于去除脉冲噪声和图像扫描噪声,同时不会使图像变模糊,但对消除细节较多的图像不适合用中值滤波;b)均值可以有效的是噪声得到消除,但同时图像变得模糊,丢失了一些图像的细节部分;c)形态学开运算对于消除背景噪声有很好的效果,尤其是一些胡椒噪声;d)形态学闭运算对消除前景噪声效果较好,如:沙眼噪声;通过以上分析及结合图像处理效果可以得出,利用形态学开闭运算对滤除图像中的沙眼噪声和胡椒噪声效果较好;3.分析预处理的目的,有针对性的选择合适的方法答:预处理的目的是为了事先消除图像的噪声,好为后处理做准备;四、思考题1.若将预处理去噪的步骤省掉,则如何在目标编号的过程中加入滤波处理;答:若预处理中没有去噪步骤,从图像处理结果可以看出,经过阈值分割后,图像中还有很多椒盐噪声,要在编号中滤除这些噪声,可通过形态学开运算后,再进行取反操作等后续操作;2.将去噪过程与阈值分割前后调换,选择哪种滤波方法可以滤除二值图像上的噪声;答:通过阈值分割之后,图像中有很多胡椒噪声,可通过形态学开操作将其去除;3.总结大津阈值在细胞图像分割中存在的问题,想一想你所学的算法中哪种算法更适合于细胞图像的分割。
数字图像处理报告模板.doc
![数字图像处理报告模板.doc](https://img.taocdn.com/s3/m/efa043aa700abb68a982fbfc.png)
数字图像处理实验报告模板实验1图像直方图1.1实验环境Visual C++ 6.01.2实验项目图像直方图1.3实验目的掌握图像直方图的统计特性,了解图像直方图针对几何变换保持不变的性质。
1.4实验方法输入256色灰度图像,并对图像进行几何变换(平移、旋转、比例),计算其直方图,观察其变化,说明直方图的特性。
1.5实验代码1.6实验效果1.7实验分析原始图像和几何变换后图像的直方图一样,说明直方图只与图像的像素灰度分布有关,而与图像的像素位置无关。
实验2傅立叶变换2.1实验环境Visual C++ 6.02.2实验项目傅立叶变换2.3实验目的了解傅立叶变换的图像及其特征,验证傅立叶变换幅值谱的对称性和平移不变性。
2.4实验方法(1)验证对称性:输入256色灰度图像,并对图像进行傅立叶变换,得到傅立叶变换幅值谱,对幅值谱旋转180度,并与原幅值谱相减,若为0,则完全吻合,说明傅立叶变换幅值谱的对称性。
(2)验证平移不变性:输入256色灰度图像A,并对图像进行平移得到灰度图像B,分别对度图像A和B进行傅立叶变换,得到两幅图像的傅立叶变换幅值谱,两幅值谱相减,若为0,则完全吻合,说明傅立叶变换幅值谱的平移不变性。
2.5实验代码2.6实验效果(a)原始图像(b) 原始图像的傅立叶幅值谱(c) 傅立叶幅值谱旋转180度的结果图2-1验证傅立叶变换幅值谱的对称性的实验结果(a)原始图像(b) 原始图像的傅立叶幅值谱(c)原始图像平移图像(d) 平移图像的傅立叶幅值谱图2-2验证傅立叶变换幅值谱的平移不变性的实验结果2.7实验分析由于傅立叶变换满足共轭对称性,即uvF--=(1)Fu(.)),(*v所以,任意图像的幅值谱都是原点对称(中心对称)。
实验3灰度变换3.1实验环境Visual C++ 6.03.2实验项目直方图均衡化3.3实验目的了解直方图均衡化后的图像灰度变换效果。
3.4实验方法输入256色灰度图像,计算图像灰度直方图,并对图像直方图进行均衡化。
数字图像处理实验一图像的基本操作和基本统计指标计算实验报告.doc
![数字图像处理实验一图像的基本操作和基本统计指标计算实验报告.doc](https://img.taocdn.com/s3/m/636fa43da6c30c2259019eb5.png)
实验一图像的基本操作和基本统计指标计算一、实验目的熟悉MATLAB图像处理工具箱,在掌握MATLAB基本操作的基础上,本课程主要依靠图像处理工具箱验证和设计图像处理算法。
对于初学者来说,勤学多练、熟悉MATLAB图像处理工具箱也是学号本课程的必经之路。
了解计算图像的统计指标的方法及其在图像处理中的意义。
了解图像的几何操作,如改变图像大小、剪切、旋转等。
二、实验主要仪器设备(1)台式计算机或笔记本电脑(2)MATLAB(安装了图像处理工具箱,即Image Processing Toolbox(IPT))(3)典型的灰度、彩色图像文件三、实验原理(1)将一幅图像视为一个二维矩阵。
(2)利用MATLAB图像处理工具箱读、写和显示图像文件。
①调用imread函数将图像文件读入图像数组(矩阵)。
例如“I=imread(‘tire.tif’);”。
其基本格式为:“A=imread(‘filename.fmt’)”,其中,A为二维矩阵,filename.为文件名,fmt 为图像文件格式的扩展名。
②调用imwrite函数将图像矩阵写入图像文件。
例如“imwrite(A,’test_image.jpg’);”。
其基本格式为“imwrite(a,filename.fmt)”。
③调用imshow函数显示图像。
例如“imshow(‘tire.tif’);”。
其基本格式为:I为图像矩阵,N为显示的灰度级数,默认时为256。
(3)计算图像有关的统计参数。
四、实验内容(1)利用MATLAB图像处理工具箱和Photoshop读、写和显示图像文件。
(2)利用MATLAB计算图像有关的统计参数。
五、实验步骤(1)利用“读图像文件I/O”函数读入图像Italy.jpg。
(2)利用“读图像文件I/O”的iminfo函数了解图像文件的基本信息:主要包括Filename(文件名)、FileModDate(文件修改时间)、Filesize(文件尺寸)、Format(文件格式)、FormatVersion (格式版本)、Width(图像宽度)、Height(图像高度)、BitDepth(每个像素的位深度)、ColorType (彩色类型)、CodingMethod(编码方法)等。
《数字图像处理》实验报告
![《数字图像处理》实验报告](https://img.taocdn.com/s3/m/aae29df9fc0a79563c1ec5da50e2524de518d032.png)
《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。
在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。
首先,我们进行了图像的读取和显示实验。
通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。
这为我们后续的实验奠定了基础。
同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。
这使我们能够更好地理解后续实验中的算法和操作。
接下来,我们进行了图像的灰度化实验。
灰度化是将彩色图像转换为灰度图像的过程。
在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。
通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。
随后,我们进行了图像的直方图均衡化实验。
直方图均衡化是一种用于增强图像对比度的方法。
在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。
通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。
在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。
滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。
在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。
通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。
此外,我们还进行了图像的边缘检测实验。
边缘检测是一种用于提取图像边缘信息的方法。
在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。
通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。
最后,我们进行了图像的压缩实验。
图像压缩是一种将图像数据进行压缩以减小文件大小的方法。
数字图像处理 实验报告(完整版)(精编文档).doc
![数字图像处理 实验报告(完整版)(精编文档).doc](https://img.taocdn.com/s3/m/6c80a498aaea998fcd220e13.png)
【最新整理,下载后即可编辑】数字图像处理实验一MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp 图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow 显示出来观察图像的特征。
数字图像处理实验报告
![数字图像处理实验报告](https://img.taocdn.com/s3/m/739ca9775b8102d276a20029bd64783e08127d6f.png)
数字图像处理实验报告引言数字图像处理是一门研究如何对图像进行数字化处理的学科,它的应用广泛,涵盖了图像的获取、增强、压缩、分割等多个方面。
本次实验旨在探索数字图像处理的基本原理和常用技术,并通过实践操作加深对数字图像处理的理解。
实验目的1.学习掌握数字图像处理的基本原理;2.熟悉常用的数字图像处理工具和方法;3.实践应用数字图像处理技术解决实际问题。
实验环境在本次实验中,我们使用了以下环境和工具:- 操作系统:Windows 10 - 编程语言:Python - 图像处理库:OpenCV实验步骤步骤一:图像获取与显示首先,我们需要获取一张待处理的图像,并对其进行显示。
在Python中,我们可以使用OpenCV库来实现图像的读取和显示。
以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 显示图像cv2.imshow('Image', image)cv2.waitKey(0)cv2.destroyAllWindows()步骤二:图像增强图像增强是数字图像处理中常用的技术之一,旨在改善图像的质量和可视化效果。
常见的图像增强技术包括灰度转换、直方图均衡化、滤波器等。
以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 灰度转换gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GR AY)# 直方图均衡化equalized_image = cv2.equalizeHist(gray_image)# 高斯滤波器blurred_image = cv2.GaussianBlur(equalized_image, (5, 5), 0)# 边缘增强enhanced_image = cv2.Canny(blurred_image, 100, 20 0)# 显示图像cv2.imshow('Enhanced Image', enhanced_image)cv2.waitKey(0)cv2.destroyAllWindows()步骤三:图像压缩图像压缩是数字图像处理中的重要话题,旨在减少图像的存储空间和传输带宽。
数字图像处理实验报告.doc
![数字图像处理实验报告.doc](https://img.taocdn.com/s3/m/b8b1a13828ea81c759f57827.png)
数字图像处理实验报告数字图像处理实验报告1一.实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1. 编程实现图像平移,要求平移后的图像大小不变;2. 编程实现图像的镜像;3. 编程实现图像的转置;4. 编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5. 编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架3.1实验所用编程环境Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Wet应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2实验处理的对象:256色的BMP(BIT MAP格式图像BMP(BIT MAP位图的文件结构:具体组成图:BITMAPFILEHEADER位图文件头(只用于BMP文件)bfType="BM" bfSize bfReserved1bfReserved2bfOffBitsbiSize biWidthbiHeight biPla nesbiBitCou ntbiCompressi onbiSizeimagebiXPelsPerMeterbiY PelsPerMeterbiClrUsedbiCirimporta nt单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEAD位图信息头Palette 调色板DIBPixels DIB 图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位,水平和垂直分辨率以每米像素数为单位),目标设备的级别,每个像素所需的位数,位图压缩类型(必须是0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图,用函数创建兼容DC用函数选择显示删除位图但以上方法的缺点是:1)显示速度慢;2)内存占用大;3)位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决);4)在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示:用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数,一般放在在析构函数中以上方法的优点是:1)显示速度快;2)内存占用少;3)缩放显示时图形失真小,4)在低颜色位数的设备上显示高颜色位数的图形图形时失真小;5)通过直接处理位图数据,可以制作简单动画3.4程序中用到的访问函数Win dows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice 函数:该函数可以直接在显示器或打印机上显示DIB.在显示时不进行缩放处理.2. StretchDIBits 函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits 函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection 函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw 函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW弋码连接到进程中.3.5图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。
数字图像处理 实验报告(完整版).doc
![数字图像处理 实验报告(完整版).doc](https://img.taocdn.com/s3/m/8e4a3056af1ffc4ffe47acaa.png)
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
数字图像处理实验报告
![数字图像处理实验报告](https://img.taocdn.com/s3/m/1200c3534b7302768e9951e79b89680202d86b04.png)
数字图像处理实验报告图像处理课程的目标是培养学生的试验综合素质与能力。
使学生通过实践,理解相关理论学问,将各类学问信息进行新的组合,制造出新的方法和新的思路,提高学生的科学试验与实际动手操作能力[1]。
从影像科筛选有价值的图像,建成影像学数字化试验教育平台,系统运行正常;具备图像上传、图像管理、图像检索与扫瞄、试验报告提交、老师批阅等功能;能满意使用要求[2]。
1.试验内容设计思路1.1项目建设内容和方法数字图像处理的内容:完整的数字图像处理大体上分为图像信息的猎取,存储,传送,处理,输出,和显示几个方面。
数字图像信息的猎取主要是把一幅图像转换成适合输入计算机和数字设备的数字信号,包括摄取图像,光、电转换及数字化。
数字图像信息的存储,数字图像信息的突出特点是数据量巨大,为了解决海量存储问题,数字图像的存储主要研究图像压缩,图像格式及图像数据库技术。
数字图像信息的传送数字图像信息的传送可分为系统内部传送与远距离传送[4]数字图像信息处理包括图像变换,图像增加,图像复原,彩色与多光谱处理图像重建,小波变换,图像编码,形态学,目标表示与描述。
数字图像输出和显示,最终目的是为人和机器供应一幅便于解释和识别的图像,数字图像的输出和显示也是数字图像处理的重要内容之一。
1.2数字图像处理的方法大致可以分为两大类,既空域法和频域法空域法:是把图像看做平面中各个像素组成的集合,然后直接对一维和二维函数进行相应处理,依据新图像生成方法的不同,空域处理法可为点处理法,区处理法,叠代处理法,跟踪处理法,位移不变与位移可变处理法。
点处理法的优点,点处理的典型用途a)灰度处理b)图像二值处理点处理方法的优点a)可用LUT方法快速实现b)节省存储空间。
区处理法,邻域处理法。
它依据输入图像的小邻域的像素值,按某些函数得到输出像素。
区处理法主要用于图象平滑和图像的锐化。
叠代处理法:叠代就是反复进行某些处理运算,图像叠代处理也是如此,拉普拉斯算子或平滑处理的结果是物体轮廓,该图像轮廓边缘太宽或粗细不一,要经过多次叠代把它处理成单像素轮廓——图像细化。
数字图像处理实验报告
![数字图像处理实验报告](https://img.taocdn.com/s3/m/22efae3153ea551810a6f524ccbff121dc36c560.png)
数字图像处理实验报告一、引言数字图像处理是一门涉及图像获取、图像处理和图像分析的重要学科,广泛应用于计算机科学、电子工程、通信技术等领域。
本报告旨在介绍并总结我所进行的数字图像处理实验,讨论实验的目的、方法、结果和分析。
二、实验目的通过本次实验,旨在掌握和理解数字图像处理的基本原理和常见技术,包括灰度变换、空间域滤波、频域滤波等,以及层次分割、边缘检测和形态学处理等高级应用技术。
三、实验方法1. 寻找合适的图像在实验中,我选用了一张自然风景图像作为处理对象。
这张图像包含丰富的纹理和颜色信息,适合用于多种图像处理方法的验证和比较。
2. 灰度变换灰度变换是数字图像处理中常见的基础操作,可以通过对图像的像素灰度值进行线性或非线性变换,来调整图像的对比度、亮度等特征。
在实验中,我利用线性灰度变换方法将原始彩色图像转换为灰度图像,并进行对比度的调整,观察处理结果的变化。
3. 空间域滤波空间域滤波是一种基于像素邻域的图像处理方法,常用于图像去噪、边缘增强等应用。
我使用了平滑滤波和锐化滤波两种方法,并针对不同的滤波算子和参数进行了实验和比较,评估其对图像细节和边缘保留的影响。
4. 频域滤波频域滤波是一种基于图像的频谱特征的图像处理方法,广泛应用于图像增强、去噪和特征提取等方面。
我利用傅里叶变换将图像从空间域转换到频域,采用理想低通滤波器和巴特沃斯低通滤波器进行图像的模糊处理,并进行了实验对比和分析。
5. 高级应用技术在实验中,我还研究了数字图像处理中的一些高级应用技术,包括层次分割、边缘检测和形态学处理。
通过应用不同的算法和参数,我实现了图像区域分割、提取图像边缘和形态学形状变换等效果,评估处理结果的准确性和稳定性。
四、实验结果与分析通过对以上实验方法的实施,我获得了一系列处理后的图像,并进行了结果的比较和分析。
在灰度变换实验中,我发现线性变换对图像的对比度有较大影响,但对图像的细节变化不敏感;在空间域滤波实验中,平滑滤波可以有效降噪,但会导致图像细节损失,而锐化滤波可以增强图像的边缘效果,但也容易引入噪声;在频域滤波实验中,理想低通滤波对图像的模糊效果明显,而巴特沃斯低通滤波器可以在一定程度上保留图像的高频细节信息;在高级应用技术实验中,边缘检测和形态学处理对提取图像边缘和形状变换非常有效,但参数的选择会对结果产生较大影响。
数字图像处理实验报告
![数字图像处理实验报告](https://img.taocdn.com/s3/m/b0ddfe2aa88271fe910ef12d2af90242a995ab4b.png)
数字图像处理实验报告数字图像处理实验报告一、引言数字图像处理是计算机科学与工程领域中的一个重要研究方向。
通过使用数字化技术,对图像进行采集、传输、存储和处理,可以实现对图像的增强、恢复、分析和识别等功能。
本实验旨在通过对数字图像处理算法的实践应用,探索图像处理的原理和方法。
二、实验目的本实验的主要目的是掌握数字图像处理的基本概念和算法,并通过实际操作加深对图像处理原理的理解。
具体目标包括:1. 学习使用图像处理软件,如Photoshop或Matlab等。
2. 掌握图像增强的方法,如直方图均衡化、滤波和锐化等。
3. 理解图像压缩和编码的原理,如JPEG和PNG等格式。
4. 了解图像分割和边缘检测的基本算法,如阈值分割和Canny边缘检测等。
三、实验过程1. 图像增强图像增强是指通过一系列算法和技术,改善图像的质量和视觉效果。
在实验中,我们可以使用直方图均衡化算法来增强图像的对比度和亮度。
该算法通过将图像的像素值映射到一个更大的范围内,使得图像的亮度分布更加均匀。
2. 图像滤波图像滤波是指通过一系列滤波器对图像进行处理,以实现去噪、平滑和锐化等效果。
在实验中,我们可以使用平滑滤波器(如均值滤波器和高斯滤波器)来去除图像中的噪声。
同时,我们还可以使用锐化滤波器(如拉普拉斯滤波器和Sobel滤波器)来增强图像的边缘和细节。
3. 图像压缩和编码图像压缩是指通过减少图像的数据量来减小图像文件的大小,从而实现存储和传输的效率提升。
在实验中,我们可以使用JPEG和PNG等压缩算法来对图像进行压缩和编码。
JPEG算法通过对图像的频域进行离散余弦变换和量化,实现对图像的有损压缩。
而PNG算法则采用无损压缩的方式,通过对图像的差值编码和哈夫曼编码,实现对图像的高效压缩。
4. 图像分割和边缘检测图像分割是指将图像分成若干个区域,以实现对图像的目标提取和图像分析的目的。
而边缘检测是指通过检测图像中的边缘和轮廓,实现对图像的形状分析和目标识别。
《数字图像处理》实验报告
![《数字图像处理》实验报告](https://img.taocdn.com/s3/m/e9cefd58a9114431b90d6c85ec3a87c241288a54.png)
《数字图像处理》实验报告数字图像处理是计算机科学与技术领域中的一个重要分支,它涉及到对图像进行获取、处理、分析和显示等一系列操作。
在本次实验中,我们将学习和探索数字图像处理的基本概念和技术,并通过实验来加深对这些概念和技术的理解。
首先,我们需要了解数字图像的基本概念。
数字图像是由像素组成的二维矩阵,每个像素代表图像中的一个点,像素的灰度值或颜色值决定了该点的亮度或颜色。
在实验中,我们将使用灰度图像进行处理,其中每个像素的灰度值表示了该点的亮度。
在数字图像处理中,最基本的操作之一是图像的获取和显示。
我们可以通过摄像头或者从文件中读取图像数据,然后将其显示在计算机屏幕上。
通过这种方式,我们可以对图像进行观察和分析,为后续的处理操作做好准备。
接下来,我们将学习一些常见的图像处理操作。
其中之一是图像的灰度化处理。
通过将彩色图像转换为灰度图像,我们可以减少图像数据的维度,简化后续处理的复杂度。
灰度化处理的方法有多种,例如将彩色图像的RGB三个通道的像素值取平均值,或者使用加权平均值的方法来计算灰度值。
另一个常见的图像处理操作是图像的平滑处理。
图像平滑可以减少图像中的噪声,并使得图像更加清晰。
常用的图像平滑方法包括均值滤波和高斯滤波。
均值滤波通过计算像素周围邻域像素的平均值来平滑图像,而高斯滤波则使用一个高斯核函数来加权平均邻域像素的值。
除了平滑处理,图像的锐化处理也是数字图像处理中的一个重要操作。
图像的锐化可以增强图像的边缘和细节,使得图像更加清晰和鲜明。
常用的图像锐化方法包括拉普拉斯算子和Sobel算子。
这些算子通过计算像素周围邻域像素的差异来检测边缘,并增强边缘的灰度值。
此外,我们还将学习一些图像的变换操作。
其中之一是图像的缩放和旋转。
通过缩放操作,我们可以改变图像的尺寸,使其适应不同的显示设备或应用场景。
而旋转操作可以将图像按照一定的角度进行旋转,以达到某种特定的效果。
最后,我们将学习一些图像的特征提取和分析方法。
数字图像处理实验报告通用
![数字图像处理实验报告通用](https://img.taocdn.com/s3/m/6390b3712f3f5727a5e9856a561252d380eb20b5.png)
数字图像处理实验报告通用数字图像处理实验报告通用数字图像处理是现代科学技术发展过程中的一个重要方向,它广泛地涉及到了计算机、数学、物理、电子等多个学科。
数字图像处理实验是数字图像处理领域中不可或缺的重要研究手段之一。
为了更好地展示实验结果和数据,以下是数字图像处理实验报告通用模板,以供参考。
1. 实验目的本次实验的目的是掌握数字图像处理的基本概念、算法以及其应用,在实践中学习数字图像处理的基础操作和技巧。
通过实验,学生可以更深入地理解数字图像处理的原理,并掌握数字图像处理应用的方法和技术。
2. 实验原理数字图像处理是将数字信号处理和图像处理结合起来的技术。
主要基于数字通信和数字信号处理原理,将二维图像进行数字化,并对其进行处理,实现图像的获取、传输、分析和显示等功能。
3. 实验流程(1) 图像获取和预处理:获取需要处理的图像,并进行基本的预处理,包括降噪、锐化、自适应增强等。
(2) 图像增强:通过滤波、直方图均衡化、灰度拉伸等操作,增强图像的亮度、对比度等特征。
(3) 图像变换:包括几何变换(旋转、平移、缩放等)、色彩空间变换(RGB空间、HSV空间等)等。
(4) 特征提取和分类:从图像中提取出感兴趣的特征,进行分类判别、目标检测等。
(5) 结果展示和分析:将处理后的图像结果进行展示和分析,分析图像特征和处理效果。
4. 实验结果(1) 原始图像(2) 预处理后的图像(3) 增强后的图像(4) 变换后的图像(5) 提取出的特征及分类结果(6) 结果展示和分析5. 实验总结通过本次实验,我们对数字图像处理的基本概念、算法和应用有了更深的理解,并掌握了数字图像处理的基础操作和技巧。
对于未来的科学研究和工程技术领域,数字图像处理具有广泛的应用前景,我们有信心在这个领域不断深耕,为社会的发展进步做出更大的贡献。
数字图像处理实验报告
![数字图像处理实验报告](https://img.taocdn.com/s3/m/dca9987e5627a5e9856a561252d380eb63942376.png)
数字图像处理实验报告数字图像处理实验报告第一章总论数字图像处理是计算机图形学、数字信号处理等学科交叉的一门学科。
它是基于数字计算机对图像信号进行数字处理的一种方法。
数字图像处理技术已广泛应用于医学影像诊断、遥感图像处理、图像识别、安防监控等领域,在当今社会中具有不可替代的重要作用。
本次实验主要介绍了数字图像处理的基本方法,包括图像采集、图像增强、图像恢复、图像分割、图像压缩等几个方面。
在实验过程中,我们采用了一些常用的数字图像处理方法,并通过 Matlab 图像处理工具箱进行实现和验证。
第二章实验过程2.1 图像采集在数字图像处理中,图像采集是一个重要的步骤。
采集到的图像质量直接影响到后续处理结果的准确性。
本次实验使用的图像是一张 TIF 格式的彩色图像,通过 Matlab 读取图像文件并显示,代码如下:```Matlabim = imread('test.tif');imshow(im);```执行代码后,可以得到如下图所示的图像:![image_1.png](./images/image_1.png)2.2 图像增强图像增强是指利用某些方法使图像具有更好的视觉效果或者变得更适合某种应用。
本次实验我们主要采用直方图均衡化、灰度变换等方法进行图像增强。
2.2.1 直方图均衡化直方图均衡化是一种常用的增强方法,它可以增加图像的对比度和亮度,使图像更加清晰。
代码实现如下:```Matlabim_eq = histeq(im);imshow(im_eq);```执行代码后,会得到直方图均衡化后的图像,如下图所示:![image_2.png](./images/image_2.png)可以看出,经过直方图均衡化处理后,图像的对比度和亮度得到了明显提高。
2.2.2 灰度变换灰度变换是一种用于调整图像灰度级别的方法。
通过变换某些像素的灰度级别,可以增强图像的视觉效果。
本次实验我们采用对数变换和幂函数变换两种方法进行灰度变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理试验报告实验二:数字图像的空间滤波和频域滤波姓名: XX学号: 2XXXXXXX实验日期:2017年4月26日1. 实验目的1. 掌握图像滤波的基本定义及目的。
2. 理解空间域滤波的基本原理及方法。
3. 掌握进行图像的空域滤波的方法。
4. 掌握傅立叶变换及逆变换的基本原理方法。
5. 理解频域滤波的基本原理及方法。
6. 掌握进行图像的频域滤波的方法。
2. 实验内容与要求1. 平滑空间滤波:1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。
2)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。
3)使用函数 imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’ replicate ’、’ symmetric ’、’ circular ’)进行低通滤波,显示处理后的图像。
4) 运用 for 循环,将加有椒盐噪声的图像进行10 次, 20 次均值滤波,查看其特点, 显示均值处理后的图像(提示 : 利用 fspecial 函数的’ average ’类型生成均值滤波器)。
5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。
6)自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。
2.锐化空间滤波1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 81;1,1, 1]对其进行滤波。
2) 编写函数 w = genlaplacian(n) ,自动产生任一奇数尺寸n 的拉普拉斯算子,如 5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]3) 分别采用5×5,9×9,15×15 和 25×25 大小的拉普拉斯算子对blurry_moon.tif进行锐化滤波,并利用式 g(x, y)2 f (x, y) 完成图像的锐化增强,观察其有何f (x, y)不同,要求在同一窗口中显示。
4)采用不同的梯度算子对该幅图像进行锐化滤波,并比较其效果。
5)自己设计锐化空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;3.傅立叶变换1)读出一幅图像,对其进行快速傅立叶变换,分别显示其幅度图像和相位图像。
仅对相位部分进行傅立叶反变换后查看结果图像。
2)仅对幅度部分进行傅立叶反变换后查看结果图像。
3)将图像的傅立叶变换 F 置为其共轭后进行反变换,比较新生成图像与原始图像的差异。
4.平滑频域滤波1)设计理想低通滤波器、巴特沃斯低通滤波器和高斯低通滤波器,截至频率自选,分别给出各种滤波器的透视图。
2)读出一幅图像,分别采用理想低通滤波器、巴特沃斯低通滤波器和高斯低通滤波器对其进行滤波(截至频率自选),再做反变换,观察不同的截止频率下采用不同低通滤波器得到的图像与原图像的区别,特别注意振铃效应。
( 提示 :1) 在频率域滤波同样要注意到填充问题;2)注意到 (-1);)5.锐化频域滤波1)设计理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器,截至频率自选,分别给出各种滤波器的透视图。
2)读出一幅图像,分别采用理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器对其进行滤波(截至频率自选),再做反变换,观察不同的截止频率下采用不同高通滤波器得到的图像与原图像的区别。
3.实验具体实现1.平滑空间滤波:(1) . 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。
img=imread('lena.png')figure,subplot(1,3,1); imshow(img);title('原始图像 '); img2=imnoise(img,'salt &pepper',0.02); subplot(1,3,2);imshow(img2); title('椒盐噪声图像');img3=imnoise(img,'gaussian',0.02);subplot(1,3,3),imshow(img3);title('高斯噪声图像 ');实验结果如下:(2) . 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。
平滑滤波是低频增强的空间域滤波技术。
它的目的有两个,一是模糊,二是消除噪声。
将空间域低通滤波按线性和非线性特点有:线性、非线性平滑滤波器,线性平滑滤波器包括均值滤波器,非线性的平滑滤波器有最大值滤波器,中值滤波器,最小值滤波器。
代码如下:img=imread('lena.png') img=rgb2gray(img);figure,subplot(1,3,1);imshow(img);title('原始图像');img2=imnoise(img,'salt & pepper',0.02);subplot(1,3,2);imshow(img2);title(' 椒盐噪声图像 ');img3=imnoise(img,'gaussian',0.02);subplot(1,3,3),imshow(img3); title(' 高斯噪声图像');%对椒盐噪声图像进行滤波处理h=fspecial('average',3);I1=filter2(h,img2)/255;I2=medfilt2(img2,[3 3]);figure,subplot(2,2,1),imshow(img),title(' 原图像 ');subplot(2,2,2),imshow(img2),title(' 椒盐噪声图 ');subplot(2,2,3),imshow(I1),title('3*3 均值滤波图 ');subplot(2,2,4),imshow(I2),title('3*3 中值滤波图 ');%对高斯噪声图像进行滤波处理G1=filter2(h,img3)/255;G2=medfilt2(img3,[3 3]);figure,subplot(2,2,1),imshow(img),title(' 原图像 ');subplot(2,2,2),imshow(img3),title(' 高斯噪声图 ');subplot(2,2,3),imshow(G1),title('3*3 均值滤波图 ');subplot(2,2,4),imshow(G2),title('3*3 中值滤波图 ');实验结果如下:(3).使用函数充、’ replicate imfilter ’、’时,分别采用不同symmetric ’、’c ircular的填充方法(或边界选项,如零填’)进行低通滤波,显示处理后的图像。
g = imfilter(f, w, filtering_mode, boundary_options, size_options) ,其中, f 为输入图像, w 为滤波掩模, g 为滤波后图像。
h=fspecial('motion',50,45); %创建一个运动模糊滤波器filteredimg=imfilter(img,h);boundaryReplicate=imfilter(img,h,'replicate');boundary0=imfilter(img,h,0);boundarysymmetric=imfilter(img,h,'symmetric');boundarycircular=imfilter(img,h,'circular');figure,subplot(3,2,1),imshow(img),title('Original Image');subplot(3,2,2),imshow(filteredimg),title('Motion Blurred Image');subplot(3,2,3),imshow(boundaryReplicate),title('Replicate');subplot(3,2,4),imshow(boundary0),title('0-Padding');subplot(3,2,5),imshow(boundarysymmetric),title('symmetric');subplot(3,2,6),imshow(boundarycircular),title('circular');实验结果如下:(4) . 运用 for循环,将加有椒盐噪声的图像进行10 次, 20 次均值滤波,查看其特点示均值处理后的图像(提示: 利用 fspecial函数的’ ave rage’类型生成均值滤波器)。
, 显代码如下:h=fspecial('average');J1=imfilter(img2,h);endfor j=1:20J2=imfilter(img2,h);endfigure,subplot(1,3,1),imshow(img2),title('salt & pepper Noise');subplot(1,3,2),imshow(J1),title('10 Average Filtering');subplot(1,3,3),imshow(J2),title('20 Average Filtering');实验结果 :(5) . 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。
代码如下:h1=fspecial('average');J=imfilter(img2,h1);J2=medfilt2(img2);figure,subplot(1,3,1),imshow(img2),title('salt & pepper Noise');subplot(1,3,2),imshow(J),title('Averaging Filtering');subplot(1,3,3),imshow(J2),title('Median Filtering');实验结果为:(6) . 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。