(江苏专版)2018版高考数学二轮复习专题一三角函数与平面向量第3讲平面向量试题理
2018年高考数学文科江苏专版二轮专题复习与策略课件:专题七 平面向量 精品

1.如图 7-1,在△ABC 中,BO 为边 AC 上的中线,B→G=2G→O,设C→D∥A→G, 若A→D=51A→B+λA→C(λ∈R),则 λ 的值为________.
图 7-1
6 5
[因为B→G=2G→O,所以A→G=13A→B+23A→O=13A→B+31A→C.
又C→D∥A→G,可设C→D=mA→G.从而A→D=A→C+C→D=A→C+m3 A→B+m3 A→C=1+m3
(3)设 D,E 分别是△ABC 的边 AB,BC 上的点,AD=12AB,BE=23BC.若D→E =λ1A→B+λ2A→C(λ1,λ2 为实数),则 λ1+λ2 的值为________.
(1)A→D
(2)0
1 (3)2
[(1)设A→B=a,A→C=b,则E→B=-12b+a,F→C=-12a+b,
热 点 题 型 · 探 究
专题七 平面向量
专 题 限 时 集 训
题型一| 平面向量的概念与运算
(1)设 D,E,F 分别为△ABC 的三边 BC,CA,AB 的中点,则E→B +F→C=________.
(2)已知向量 a=(1,-3),b=(4,-2),若(λa+b)∥b,则 λ=________.
(1)2 (2)-4 [(1)如图,以 A 为原点,以 AB 所在的直 线为 x 轴,建立直角坐标系,则 A(0,0),B(2a,0),C-1a, a3, ∵O 为△ABC 的外心,∴O 在 AB 的中垂线 m:x=a 上,
又在 AC 的中垂线 n 上,AC 的中点-21a,2a3,AC 的斜率为 tan 120°=- 3,
题型三| 数量积的综合应用
(1)已知 O 为△ABC 的外心,AB=2a,AC=a2,∠BAC=120°,若A→O =αA→B+βA→C,则 α+β 的最小值为________.
(江苏专版)2018年高考数学二轮复习 第2部分 八大难点突破 难点1 与三角变换、平面向量综合的三角形问题课

【例 2】 (2017·江苏省无锡市高考数学一模)在△ABC 中,a,b,c 分别为角 A, B,C 的对边.若 acos B=3,bcos A=1,且 A-B=π6. (1)求边 c 的长; (2)求角 B 的大小. 【导学号:56394089】
[解] (1)∵acos B=3,bcos A=1,∴a×a2+2ca2c-b2=3,b×b2+2cb2c-a2=1, 化为:a2+c2-b2=6c,b2+c2-a2=2c. 相加可得:2c2=8c,解得 c=4.
(2)由 α∈0,π2,β∈0,2π得,α-β∈-π2,π2.
因
sin(α-β)=
1100,则
cos(α-β)=3
10 10 .
则 sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)
=255×31010- 55× 1100= 22,
若 P 是△ABC 内的一点,BA→→PP==tλ||BB→→AA→ →AABB||++||BB→→AA→ →CCCC||,,tλ>>00
⇒P 是△ABC 的内心; 若 D、E 两点分别是△ABC 的边 BC、CA 上的中点,且
D→P·P→B=D→P·P→C E→P·P→C=E→P·P→A
∴16sin2B+π6-16sin2B=8sin22B+π6, ∴ 1 - cos 2B+π3 - (1 - cos 2B) = sin2 2B+π6 , 即 cos 2B - cos 2B+π3 = sin22B+π6, ∴-2sin2B+6πsin-6π=sin22B+6π, ∴sin2B+6π=0 或 sin2B+6π=1,B∈0,152π. 解得:B=π6.
6.2 判断三角形形状 三角形的边可以看做向量的模长,三角形的内角可以看做向量的夹角,所以可 利用向量的数量积和夹角公式或者其他线性运算,结合平面几何知识来判断三 角形的形状
江苏专版18版高考数学二轮复习专题一三角函数与平面向量微点突破三角函数解三角形中的实际应用问题课件理

则四边形 BCEF 的面积为 1 2S 梯形 ABCD=S 梯形 BCEG+S△EFG,
1 1 1 3 3 1 3 即2×2× 3×(1+2)=2× 2 ×1+2+2×GF×2,解 3 得 GF= 6 , 所以 EF= EG +GF = 21 = (km). 3 21 答:灌溉水管 EF 的长度为 3 km.
=1 km.现过边界CD上的点E处铺设一条直的灌溉水管EF,将
绿地分成面积相等的两部分.
(1)如图1,若E为CD的中点,F 在边界AB上,求灌溉水管EF 的长度;
(2)如图2,若F在边界AD上,求灌溉水管EF的最短长度.
解 (1)因为 AD=DC=2, BC=1, ∠ABC=∠BAD=90°, 所以 AB= 3. 3 如图 1,取 AB 的中点 G,连接 EG,则 EG=2,
微点突破
三角函数、解三角形中的实际 应用问题
【例】 (2013· 江苏卷)如图,游客从某旅游景区的 景点 A 处下山至 C 处有两种路径.一种是从 A 沿 直线步行到 C,另一种是先从 A 沿索道乘缆车到 B,然后从 B 沿直线步行到 C.现有甲、乙两位游客从 A 处下山,甲沿 AC 匀速步行,速度为 50 m/min.在甲出发 2 min 后,乙从 A 乘缆车到 B,在 B 处停留 1 min 后,再从 B 匀速步行到 C. 假设缆车匀速直线运行的速度为 130 m/min,山路 AC 长为 12 3 1 260 m,经测量,cos A=13,cos C=5.
实际问题经抽象概括后,已知量与未知量全部集中在一个 三角形中,可用正弦定理或余弦定理求解;二是实际问题 经抽象概括后,已知量与未知量涉及两个或两个以上三角 形,这时需要作出这些三角形,然后逐步求解其他三角形, 有时需设出未知量,从几个三角形中列出方程(组),解方 程(组)得出所要的解.
2018届高考数学理二轮复习江苏专用课件:专题二 三角函数与平面向量 第1讲 精品

[微题型 2] 三角函数图象与性质的综合应用
【例 2-2】 (2016·苏、锡、常、镇调研)设函数 f(x)=sin2ωx+ 2 3sin ωx·cos ωx-cos2ωx+λ(x∈R)的图象关于直线 x=π 对称,其中 ω,λ为常数,且 ω∈12,1.
(1)求函数 f(x)的最小正周期; (2)若 y=f(x)的图象经过点π4 ,0,求函数 f(x)在 x∈0,π2 上 的值域.
答案 π 38π+kπ,78π+kπ(k∈Z)
考点整合 1.常用三种函数的易误性质
函数
y=sin x
y=cos x
y=tan x
图象
在-π2 +2kπ, π2 +2kπ 单
(k∈Z)上单调递增;在 调 性 π2 +2kπ, 3π 2 +2kπ
(k∈Z)上单调递减
在[-π+2k π,2kπ](k∈Z) 在-π2 +kπ, 上单调递增;在 [2kπ,π+2k π2 +kπ(k∈Z) π](k∈Z)上单 上单调递增 调递减
2.(2011·江苏卷)函数 f(x)=Asin(ωx+φ),(A,ω,
φ是常数,A>0,ω>0)的部分图象如图所示,
则 f(0)=________. 解析 因为由图象可知振幅 A= 2,T4=71π2 -π3 =π4 ,
所以周期 T=π=2ωπ,解得 ω=2,将71π2 ,- 2代入 f(x)
= 2sin(2x+φ),解得一个符合的 φ=π3 ,
∴ω=2Tπ=21π6 =π8 .∴y=4sinπ8 x+φ,
把点(6,0)代入得:π8 ×6+φ=0,得 φ=-3π 4 . ∴y=4sinπ8 x-3π 4 ,又∵|φ|<π2 .∴y=-4sinπ8 x+π4 .
(2)根据图象可知,A=2,34T=111π2 -π6 ,所以周期 T=π,
2018版高考数学文江苏专用大一轮复习讲义文档 高考专

1.(2016·江苏镇江中学质检)已知函数y =2sin ωx (ω>0)在⎣⎡⎦⎤-π3,π4上的最大值为2,则ω的值是________. 答案 1解析 由题意得T 4>π4,即T >π,从而2πω>π,即0<ω<2,故函数在x =π4时取得最大值,即2sin(π4ω)=2,也即sin(π4ω)=22,又π4ω∈(0,π2),故π4ω=π4, 解得ω=1.2.在△ABC 中,AC ·cos A =3BC ·cos B ,且cos C =55,则A =________. 答案 45°解析 由题意及正弦定理得sin B cos A =3sin A cos B , ∴tan B =3tan A ,∴0°<A <90°,0°<B <90°,又cos C =55, 故sin C =255,∴tan C =2,而A +B +C =180°,∴tan(A +B )=-tan C =-2,即tan A +tan B1-tan A tan B =-2,将tan B =3tan A 代入,得4tan A1-3tan 2 A =-2,∴tan A =1或tan A =-13,而0°<A <90°,则A =45°.3.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则P A 2+PB 2PC 2=________. 答案 10解析 将△ABC 的各边均赋予向量, 则P A 2+PB 2PC 2=P A →2+PB →2PC →2=(PC →+CA →)2+(PC →+CB →)2PC→2=2PC →2+2PC →·CA →+2PC →·CB →+CA →2+CB →2PC →2=2|PC →|2+2PC →·(CA →+CB →)+|AB →|2|PC →|2=2|PC →|2-8|PC →|2+|AB →|2|PC →|2=|AB →|2|PC →|2-6=42-6=10.4.(2016·天津改编)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连结DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为________. 答案 18解析 如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以AD →=12AB →,DF →=DE →+EF →=12AC →+14AC →=34AC →,所以AF →=12AB →+34AC →.又BC →=AC →-AB →,则AF →·BC →=⎝⎛⎭⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB → =34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.5.(2017·江苏如东中学月考)若函数f (x )=sin(ωπx -π4) (ω>0)在区间(-1,0)上有且仅有一条平行于y 轴的对称轴,则ω的最大值是________. 答案 54解析 令ωπx -π4=k π+π2,则得x =4k +34ω(k ∈Z ),∴当k =-1时,得y 轴左侧第1条对称轴为-14ω;当k =-2时,得y 轴左侧第2条对称轴为-54ω,因此-1<-14ω<0且-1≥-54ω,解得14<ω≤54,故ωmax =54.题型一 三角函数的图象和性质例1 已知函数f (x )=sin(ωx +π6)+sin(ωx -π6)-2cos 2ωx2,x ∈R (其中ω>0).(1)求函数f (x )的值域;(2)若函数y =f (x )的图象与直线y =-1的两个相邻交点间的距离均为π2,求函数y =f (x )的单调增区间. 解 (1)f (x )=32sin ωx +12cos ωx +32sin ωx -12cos ωx -(cos ωx +1) =2(32sin ωx -12cos ωx )-1=2sin(ωx -π6)-1. 由-1≤sin(ωx -π6)≤1,得-3≤2sin(ωx -π6)-1≤1,所以函数f (x )的值域为[-3,1].(2)由题设条件及三角函数图象和性质可知,y =f (x )的周期为π,所以2πω=π,即ω=2.所以f (x )=2sin(2x -π6)-1,再由2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ).所以函数y =f (x )的单调增区间为 [k π-π6,k π+π3](k ∈Z ).思维升华 三角函数的图象与性质是高考考查的重点,通常先将三角函数化为y =A sin(ωx +φ)+k 的形式,然后将t =ωx +φ视为一个整体,结合y =sin t 的图象求解.已知函数f (x )=5sin x cos x -53cos 2x +523(其中x ∈R ),求:(1)函数f (x )的最小正周期; (2)函数f (x )的单调区间;(3)函数f (x )图象的对称轴和对称中心.解 (1)因为f (x )=52sin 2x -532(1+cos 2x )+52 3=5(12sin 2x -32cos 2x )=5sin(2x -π3),所以函数的周期T =2π2=π.(2)由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12 (k ∈Z ),所以函数f (x )的单调增区间为 [k π-π12,k π+5π12](k ∈Z ).由2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),得k π+5π12≤x ≤k π+11π12(k ∈Z ),所以函数f (x )的单调减区间为 [k π+5π12,k π+11π12](k ∈Z ).(3)由2x -π3=k π+π2(k ∈Z ),得x =k π2+5π12(k ∈Z ),所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z ).由2x -π3=k π(k ∈Z ),得x =k π2+π6(k ∈Z ),所以函数f (x )的对称中心为(k π2+π6,0)(k ∈Z ).题型二 解三角形例2 (2016·苏北四市期中)在△ABC 中,已知角A ,B ,C 所对的边分别为a ,b ,c ,且tan B =2,tan C =3. (1)求角A 的大小; (2)若c =3,求b 的长.解 (1)因为tan B =2,tan C =3,A +B +C =π, 所以tan A =tan [π-(B +C )]=-tan(B +C ) =-tan B +tan C 1-tan B tan C =-2+31-2×3=1,又A ∈(0,π),所以A =π4.(2)因为tan B =sin Bcos B =2,且sin 2B +cos 2B =1,又B ∈(0,π),所以sin B =255,同理可得,sin C =31010.由正弦定理得b =c sin Bsin C =3×25531010=2 2.思维升华 根据三角形中的已知条件,选择正弦定理或余弦定理求解;在做有关角的范围问题时,要注意挖掘题目中隐含的条件,正确对结果进行取舍.(2016·无锡期中)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知b sin A=3a cos B . (1)求角B 的值; (2)若cos A sin C =3-14,求角A 的值. 解 (1)因为a sin A =bsin B ,所以b sin A =a sin B ,又b sin A =3a cos B , 所以3a cos B =a sin B ,即tan B =3,所以角B =π3.(2)因为cos A sin C =3-14, 所以cos A sin(2π3-A )=3-14,cos A (32cos A +12sin A )=32cos 2A +12sin A ·cos A =32·1+cos 2A 2+14sin 2A =3-14, 所以sin(2A +π3)=-12,因为0<A <2π3,所以2A +π3∈(π3,5π3),所以2A +π3=7π6,A =5π12.题型三 三角函数和平面向量的综合应用例3 已知向量a =(cos x ,sin x ),b =(-cos x ,cos x ),c =(-1,0). (1)若x =π6,求向量a 与c 的夹角;(2)当x ∈[π2,9π8]时,求函数f (x )=2a·b +1的最大值,并求此时x 的值.解 (1)设a 与c 的夹角为θ, 当x =π6时,a =(32,12),cos θ=a·c |a||c |=32×(-1)+12×0(32)2+(12)2×(-1)2+02=-32.∵θ∈[0,π],∴θ=5π6. (2)f (x )=2a·b +1=2(-cos 2x +sin x cos x )+1 =2sin x cos x -(2cos 2x -1) =sin 2x -cos 2x =2sin(2x -π4),∵x ∈[π2,9π8],∴2x -π4∈[3π4,2π],故sin(2x -π4)∈[-1,22],∴当2x -π4=3π4,即x =π2时,f (x )max =1.思维升华 (1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cosB =13,b =3,求:(1)a 和c 的值; (2)cos(B -C )的值.解 (1)由BA →·BC →=2,得c ·a cos B =2. 又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×2=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得a =2,c =3或a =3,c =2. 因为a >c ,所以a =3,c =2. (2)在△ABC 中,sin B =1-cos 2B =1-(13)2=223,由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角, 因此cos C =1-sin 2C =1-(429)2=79.于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327.1.已知函数f (x )=A sin(x +π4),x ∈R ,且f (5π12)=32.(1)求A 的值;(2)若f (θ)+f (-θ)=32,θ∈(0,π2),求f (3π4-θ).解 (1)∵f (5π12)=A sin(5π12+π4)=A sin 2π3=32A =32,∴A = 3.(2)由(1)知f (x )=3sin(x +π4),故f (θ)+f (-θ)=3sin(θ+π4)+3sin(-θ+π4)=32,∴3[22(sin θ+cos θ)+22(cos θ-sin θ)]=32, ∴6cos θ=32,∴cos θ=64.又θ∈(0,π2),∴sin θ=1-cos 2θ=104,∴f (3π4-θ)=3sin(π-θ)=3sin θ=304.2.(2016·山东)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝⎛⎭⎫π6的值. 解 (1)f (x )=23sin(π-x )sin x -(sin x -cos x )2=23sin 2x -(1-2sin x cos x )=3(1-cos 2x )+sin 2x -1 =sin 2x -3cos 2x +3-1 =2sin ⎝⎛⎭⎫2x -π3+3-1. 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ).所以f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z )⎝⎛⎭⎫或⎝⎛⎭⎫k π-π12,k π+5π12(k ∈Z ). (2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π3+3-1, 把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变).得到y =2sin ⎝⎛⎭⎫x -π3+3-1的图象.再把得到的图象向左平移π3个单位,得到y =2sin x +3-1的图象,即g (x )=2sin x +3-1. 所以g ⎝⎛⎭⎫π6=2sin π6+3-1= 3. 3.(2016·江苏南京学情调研)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边的锐角α和钝角β的终边分别与单位圆交于点A ,B .若点A 的横坐标是31010,点B 的纵坐标是255.(1)求cos(α-β)的值; (2)求α+β的值.解 (1)因为锐角α的终边与单位圆交于点A ,且点A 的横坐标是31010,所以,由任意角的三角函数的定义可知,cos α=31010,从而sin α=1-cos 2α=1010.因为钝角β的终边与单位圆交于点B ,且点B 的纵坐标是255, 所以sin β=255,从而cos β=-1-sin 2β=-55.cos(α-β)=cos αcos β+sin αsin β =31010×(-55)+1010×255=-210. (2)sin(α+β)=sin αcos β+cos αsin β =1010×(-55)+31010×255=22. 因为α为锐角,β为钝角,故α+β∈(π2,3π2),所以α+β=3π4.4.(2016·江苏仪征中学期初测试)设函数f (x )=A sin(ωx +φ) (A >0,ω>0,-π2<φ<π2,x ∈R )的部分图象如图所示.(1)求函数y =f (x )的解析式;(2)当x ∈[-π2,π2]时,求f (x )的取值范围.解 (1)由图象知,A =2,又T 4=5π6-π3=π2,ω>0,所以T =2π=2πω,得ω=1.所以f (x )=2sin(x +φ),将点(π3,2)代入,得π3+φ=π2+2k π(k ∈Z ),即φ=π6+2k π(k ∈Z ),又-π2<φ<π2,所以φ=π6.所以f (x )=2sin(x +π6).(2)当x ∈[-π2,π2]时,x +π6∈[-π3,2π3],所以sin(x +π6)∈[-32,1],即f (x )∈[-3,2].5.已知向量a =(k sin x 3,cos 2x 3),b =(cos x3,-k ),实数k 为大于零的常数,函数f (x )=a·b ,x ∈R ,且函数f (x )的最大值为2-12. (1)求k 的值;(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若π2<A <π,f (A )=0,且a =210,求AB →·AC →的最小值. 解 (1)由题意,知f (x )=a·b =(k sin x 3,cos 2x 3)·(cos x 3,-k )=k sin x 3cos x 3-k cos 2x3=12k sin 2x3-k ·1+cos2x32 =k 2(sin 2x 3-cos 2x 3)-k 2 =2k 2(22sin 2x 3-22cos 2x 3)-k2 =2k 2sin(2x 3-π4)-k 2. 因为x ∈R ,所以f (x )的最大值为(2-1)k 2=2-12,则k =1.(2)由(1)知,f (x )=22sin(2x 3-π4)-12,所以f (A )=22sin(2A 3-π4)-12=0, 化简得sin(2A 3-π4)=22, 因为π2<A <π,所以π12<2A 3-π4<5π12, 则2A 3-π4=π4,解得A =3π4. 因为cos A =-22=b 2+c 2-a 22bc =b 2+c 2-402bc, 所以b 2+c 2+2bc =40,则b 2+c 2+2bc =40≥2bc +2bc ,所以bc ≤402+2=20(2-2). 则AB →·AC →=|AB →||AC →|cos 3π4=-22bc ≥20(1-2), 所以AB →·AC →的最小值为20(1-2).。
2018年江苏省高考数学一轮训练试题考点3:三角函数,解三角形与平面向量

2018-2019学年度第一学期江苏省南通市六所省重点高中联考试卷 数 学 Ⅰ试 题 2018.17、设(0,)2x π∈,则函数(222211sin )(cos )sin cos x x x x++的最小值是 ▲ 答案:42511、在△ABC 中,π6A ∠=,D 是BC 边上任意一点(D 与B 、C 不重合), 且22||||AB AD BD DC =+⋅,则B ∠等于 ▲ 12、已知函数x x x f sin )(=,∈x R ,则)5(πf ,)1(f ,)(3π-f 的大小关系为 ▲16、(本题满分14分)已知向量)sin ,(sin B A =,)cos ,(cos A B =,C n m 2sin =⋅, 其中A 、B 、C 为ABC ∆的内角. (Ⅰ)求角C 的大小;(Ⅱ)若A sin ,C sin ,B sin 成等差数列,且18)(=-⋅,求AB 的长. 解:(Ⅰ))sin(cos sin cos sin B A A B B A +=⋅+⋅=⋅ ………………………(2分)对于C B A C C B A ABC sin )sin(0,,=+∴<<-=+∆ππ,.sin C =⋅∴………………………(4分)又C n m 2sin =⋅ ,.3,21cos ,sin 2sin π===∴C C C C ………………………(7分) (Ⅱ)由B A C B C A sin sin sin 2,sin ,sin ,sin +=得成等差比数列, 由正弦定理得.2b a c +=………………………(9分)18,18)(=⋅∴=-⋅ ,即.36,18cos ==ab C ab……………………(12分)由余弦弦定理ab b a C ab b a c 3)(cos 22222-+=-+=,36,3634222=⨯-=∴c c c ,.6=∴c …………………(14分)江苏省2018高考数学模拟题(压题卷)3.已知点O 为△ABC 的外心,且4AC = ,2AB =,则AO BC ⋅ 的值等于 6 .4.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a,则c 的最大值是2. 6. 已知2πn x ≠,函数xx 22cos 4sin 1+的最小值是 8 . 二、1.已知在△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,向量(cos ,sin )m A A =,(cos ,sin )n B B =,cos m n B C ⋅=- . (1)求角A 的大小;(2)若a =3,求△ABC 面积的最大值.解:(1)cos cos sin sin m n A B A B ⋅=+,又cos()m n B A B ⋅=++cos cos sin sin B A B A B =+-,s i n 2s i ns i n B B A =, sin 2A =, 3A π∴=或23A π=. (2)2222cos a b c bc A =+-, ①当3A π=时,229b c bc bc +-=≥,1s i n 2s b c A b ∴=;②当23A π=时,2293b c bc bc =++≥,故3bc ≤,1sin 2S bc A ∴=≤.六、函数题1.如图,海岸线MAN ,2,A θ∠=现用长为l 的拦网围成一养殖场,其中,B MA C NA ∈∈.(1)若BC l =,求养殖场面积最大值;(2)若B 、C 为定点,BC l <,在折线MBCN 内选点D , 使B D D C l +=,求四边形养殖场DBAC 的最大面积.解:(1)设,,0,0.AB x AC y x y ==>>2222cos222cos2l x y xy xy xy θθ=+-≥-,22222cos 24sin l l xy θθ≤=-,22211cos sin 22sin cos 224sin 4sin l l S xy θθθθθθ=≤⋅⋅=, 所以,△ABC 面积的最大值为2cos 4sin l θθ,当且仅当x y =时取到.(2)设,(AB m AC n m n ==,为定值). 2BC c =(定值) ,由2DB DC l a +==,a =12l ,知点D 在以B 、C 为焦点的椭圆上,1sin 22ABC S mn θ∆=为定值. 只需D B C ∆面积最大,需此时点D 到BC 的距离最大, 即D 必为椭圆短轴顶点. BCD b S ∆==面积的最大值为122c b c ⋅⋅=因此,四边形ACDB 面积的最大值为1sin 22m n c θ⋅⋅+2. 如图,某机场建在一个海湾的半岛上,飞机跑道AB 的长为4.5km ,且跑道所在的直线与海岸线l 的夹角为60o (海岸——可以看作是直线),跑道上离海岸线距离最近的点B 到海岸线的距离,BC D =为海湾一侧海岸线CT 上的一点,设()CD x km =,点D 对跑道AB 的视角为θ.(1)将tan θ表示为x 的函数; (2)求点D 的位置,使θ取得最大值.解:(1)过A 分别作直线CD ,BC 的垂线,垂足分别为E ,F .由题知, 4.5,906030AB BC ABF ==∠=︒-︒=︒,所以94.5sin 30, 4.5cos304CE AF BF AE CF BC BF ==⨯︒==⨯︒===+=,因为(0C D x x =>,所以tan BC BDC CD ∠== 当94x >时,9,tan 4AE ED x ADC ED=-∠=494x ==-(如图1),当904x <<时, 9,4ED x =-tan AE ADC ED ∠=-=(如图2), 所以tan tan tan()ADB ADC BDC θ=∠=∠-∠tan tan 1tan tan ADC BDC ADC BDC ∠-∠==+∠⋅∠=0x >且9.4x ≠ 当94x =,tan 48CE BC θ==符合上式.所以tan 0x θ=>.(2)4)tan ,0400(49)3004(4)414x x x x x x θ+==>-+++-+,因为4004(4)4141394x x ++-≥=+, 当且仅当4004(4)4x x +=+,即6x =时取等号. 所以当6x =时,4004(4)414x x ++-+取最小值39, 所以当6x =时,tan θ取最大值13由于tan y x =在区间(0,)2π上是增函数,所以当6x =时θ取最大值,答:在海湾一侧的海岸线CT 上距C 点6km 处的D 点处观看飞机跑道的视角最大.2019届江苏省苏州市迎二模六校联考数学试题9.在△ABC 中,已知b =22,a =2,如果三角形有解,则角A 的取值范围是 答案:(0,π4]二、16.(本小题满分14分) 在∆ABC 中,点M 是BC 的中点,∆AMC 的三边长是连续三个正整数,tan ∠C •tan ∠BAM=1 (1)判断∆ABC 的形状;(2)求∠BAC 的余弦值。
(江苏专版)高考数学二轮复习 专题一 三角函数与平面向量 第3讲 平面向量试题 理-人教版高三全册数

第3讲 平面向量高考定位 平面向量这部分内容在高考中的要求大部分都为B 级,只有平面向量的应用为A 级要求,平面向量的数量积为C 级要求.主要考查:(1)平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考查,填空题难度中档;(2)平面向量的数量积,以填空题为主,难度低;(3)向量作为工具,还常与三角函数、解三角形、不等式、解析几何结合,以解答题形式出现.真 题 感 悟1.(2015·某某卷)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析 ∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =2-5=-3.答案 -32.(2017·某某卷)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),则m +n =________.解析 如图,设OD →=mOA →,DC →=nOB →,则在△ODC 中有OD =m ,DC =n ,OC =2,∠OCD =45°,由tan α=7,得cos α=210, 又由余弦定理知⎩⎨⎧m 2=n 2+(2)2-22n cos 45°,n 2=m 2+(2)2-22m cos α,即⎩⎪⎨⎪⎧m 2-n 2=2-2n , ①n 2-m 2=2-25m , ② ①+②得4-2n -25m =0,即m =10-5n ,代入①得12n 2-49n +49=0,解得n =74或n =73,当n =73时,m =10-5×73=-53<0(不合题意,舍去),当n =74时,m =10-5×74=54,故m +n=54+74=3. 答案 33.(2016·某某卷)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.解析 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4. 又∵D 为BC 中点,E ,F 为AD 的两个三等分点, 则AD →=12(AB →+AC →)=12a +12b ,AF →=23AD →=13a +13b , AE →=13AD →=16a +16b ,BF →=BA →+AF →=-a +13a +13b =-23a +13b ,CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝ ⎛⎭⎪⎫-23a +13b ·⎝ ⎛⎭⎪⎫13a -23b =-29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292.又BE →=BA →+AE →=-a +16a +16b =-56a +16b ,CE →=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝ ⎛⎭⎪⎫-56a +16b ·⎝ ⎛⎭⎪⎫16a -56b=-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.答案 784.(2017·某某卷)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解 (1)∵a ∥b ,∴3sin x =-3cos x ,∴3sin x +3cos x =0,即sin ⎝⎛⎭⎪⎫x +π6=0.∵0≤x ≤π,∴π6≤x +π6≤76π,∴x +π6=π,∴x =5π6.(2)f (x )=a·b =3cos x -3sin x =-23sin ⎝⎛⎭⎪⎫x -π3.∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,∴-32≤sin ⎝⎛⎭⎪⎫x -π3≤1,∴-23≤f (x )≤3,当x -π3=-π3,即x =0时,f (x )取得最大值3;当x -π3=π2,即x =5π6时,f (x )取得最小值-2 3.考 点 整 合1.平面向量的两个重要定理(1)向量共线定理:向量a (a ≠0)与b 共线当且仅当存在唯一实数λ,使b =λa . (2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底. 2.平面向量的两个充要条件若两个非零向量a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.3.平面向量的三个性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.4.平面向量的三个锦囊(1)向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是OP →=λ1OA →+λ2OB →(其中λ1+λ2=1).(2)三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量OP →与向量OA →,OB →的关系是OP →=12(OA →+OB →). (3)三角形重心坐标的求法:G 为△ABC 的重心⇔GA →+GB →+GC →=0⇔G ⎝ ⎛⎭⎪⎫x A +x B +x C 3,y A +y B +y C 3.热点一 平面向量的有关运算 [命题角度1] 平面向量的线性运算【例1-1】 (1)(2017·某某卷)在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.(2)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.解析 (1)AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=⎝ ⎛⎭⎪⎫13AB →+23AC →·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.(2)法一 如图,AE →=AB →+BE →=AB →+13BC →,AF →=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE →·AF →=⎝ ⎛⎭⎪⎫AB →+13BC →·⎝ ⎛⎭⎪⎫BC →+1λAB →=⎝ ⎛⎭⎪⎫1+13λAB →·BC →+1λAB →2+13BC →2=⎝ ⎛⎭⎪⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2.法二 建立如图所示平面直角坐标系.由题意知:A (0,1),C (0,-1),B (-3,0), D (3,0).由BC =3BE ,DC =λDF , 可求点E ,F 的坐标分别为E ⎝ ⎛⎭⎪⎫-233,-13,F ⎝ ⎛⎭⎪⎫3⎝ ⎛⎭⎪⎫1-1λ,-1λ,∴AE →·AF →=⎝ ⎛⎭⎪⎫-233,-43·⎝ ⎛⎭⎪⎫3⎝ ⎛⎭⎪⎫1-1λ,-1λ-1=-2⎝ ⎛⎭⎪⎫1-1λ+43⎝ ⎛⎭⎪⎫1+1λ=1,解得λ=2. 答案 (1)311(2)2探究提高 用平面向量基本定理解决此类问题的关键是先选择一组基底,并运用平面向量的基本定理将条件和结论表示成基底的线性组合,再通过对比已知等式求解. [命题角度2] 平面向量的坐标运算【例1-2】 (1)(2017·某某冲刺卷)已知向量a =(2,1),b =(0,-1).若(a +λb )⊥a ,则实数λ=________.(2)(2016·全国Ⅲ卷改编)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =________.解析 (1)由题意可得a +λb =(2,1-λ),则(a +λb )·a =(2,1-λ)·(2,1)=5-λ=0,解得λ=5.(2)|BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →|·|BC →|=32,则∠ABC =30°. 答案 (1)5 (2)30°探究提高 若向量以坐标形式呈现时,则用向量的坐标形式运算;若向量不是以坐标形式呈现,则可建系将之转化为坐标形式,再用向量的坐标运算求解更简捷.[命题角度3] 平面向量的数量积【例1-3】 (1)(2017·全国Ⅰ卷)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.(2)(2017·某某二模)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.解析 (1)|a +2b |2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →, ∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918. 法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系, 则B (2,0),C ⎝ ⎛⎭⎪⎫32,32,D ⎝ ⎛⎭⎪⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝ ⎛⎭⎪⎫2-12λ,32λ,F ⎝ ⎛⎭⎪⎫12+19λ,32,λ>0,所以AE →·AF →=⎝ ⎛⎭⎪⎫2-12λ⎝ ⎛⎭⎪⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0,当且仅当29λ=12λ,即λ=23时取等号,故AE →·AF →的最小值为2918.答案 (1)2 3 (2)2918探究提高 (1)①数量积的计算通常有三种方法:数量积的定义、坐标运算、数量积的几何意义,特别要注意向量坐标法的运用;②可以利用数量积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算;③在用|a |=a 2求向量的模时,一定要把求出的a 2进行开方.(2)求解几何图形中的数量积问题,通过对向量的分解转化成已知向量的数量积计算是基本方法,但是如果建立合理的平面直角坐标系,把数量积的计算转化成坐标运算也是一种较为简捷的方法.【训练1】 (1)(2017·全国Ⅱ卷改编)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是________.(2)(2017·某某、某某模拟)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.解析 (1)如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0).设P (x ,y ),则PA →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ). 所以PA →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝ ⎛⎭⎪⎫y -322-32.当x =0,y =32时,PA →·(PB →+PC →)取得最小值为-32. (2)法一 以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系(以射线AB ,AD 的方向分别为x 轴、y 轴的正方向),则B (2,0),E (2,1).设F (x ,2),则AF →=(x ,2),又AB →=(2,0),∴AB →·AF →=2x =2,∴x =1,∴F (1,2),∴AE →·BF →= 2. 法二 ∵AB →·AF →=|AB →||AF →|cos ∠BAF =2,|AB →|=2,∴|AF →|cos ∠BAF =1, 即|DF →|=1,∴|CF →|=2-1,∴AE →·BF →=(AB →+BE →)·(BC →+CF →)=AB →·BC →+AB →·CF →+BE →·BC →+BE →·CF →=AB →·CF →+BE →·BC →=2×(2-1)×(-1)+1×2×1= 2.答案 (1)-32(2) 2热点二 平面向量与三角的交汇【例2】 (2017·某某模拟)已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈⎝⎛⎭⎪⎫0,π2,t 为实数.(1)若a -b =⎝ ⎛⎭⎪⎫25,0,求t 的值;(2)若t =1,且a ·b =1,求tan ⎝⎛⎭⎪⎫2α+π4的值. 解 (1)因为向量a =(2cos α,sin 2α),b =(2sin α,t ), 且a -b =⎝ ⎛⎭⎪⎫25,0,所以cos α-sin α=15,t =sin 2α.由cos α-sin α=15,得(cos α-sin α)2=125,即1-2sin αcos α=125,从而2sin αcos α=2425.所以(cos α+sin α)2=1+2sin αcos α=4925.因为α∈⎝⎛⎭⎪⎫0,π2,所以cos α+sin α=75,所以sin α=(cos α+sin α)-(cos α-sin α)2=35,所以t =sin 2α=925.(2)因为t =1,且a ·b =1,所以4sin αcos α+sin 2α=1,即4sin αcos α=cos 2α. 因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α≠0,从而tan α=14,所以tan 2α=2tan α1-tan 2α=815, 所以tan ⎝⎛⎭⎪⎫2α+π4=tan 2α+tan π41-tan 2α·tan π4=815+11-815=237.探究提高 三角函数和平面向量是高中数学的两个重要分支,内容繁杂,且平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,都会出现交汇问题中的难点,对于此类问题的解决方法就是利用向量的知识将条件“脱去外衣”转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.【训练2】 (2017·苏北四市模拟)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量p =(cos B +sin B ,2sin B -2),q =(sin B -cos B ,1+sin B ),且p ⊥q .(1)求B 的大小;(2)若b =2,△ABC 的面积为3,求a ,c . 解 (1)因为p ⊥q ,所以p ·q =(cos B +sin B )(sin B -cos B )+(2sin B -2)·(1+sin B )=0, 即sin 2B -cos 2B +2sin 2B -2=0, 即sin 2B =34,又角B 是锐角三角形ABC 的内角, 所以sin B =32,所以B =60°. (2)由(1)得B =60°,又△ABC 的面积为3, 所以S △ABC =12ac sin B =3,即ac =4.①由余弦定理得b 2=a 2+c 2-2ac cos B ,又b =2, 所以a 2+c 2=8,② 联立①②,解得a =c =2.1.平面向量的数量积的运算有两种形式:(1)依据模和夹角计算,要注意确定这两个向量的夹角,如夹角不易求或者不可求,可通过选择易求夹角和模的基底进行转化;(2)利用坐标来计算,向量的平行和垂直都可以转化为坐标满足的等式,从而应用方程思想解决问题,化形为数,使向量问题数量化.2.根据平行四边形法则,对于非零向量a ,b ,当|a +b |=|a -b |时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|a +b |=|a -b |等价于向量a ,b 互相垂直.3.两个向量夹角的X 围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线.一、填空题1.(2017·某某卷)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析 cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3-λ3+11+λ2=12,解之得λ=33. 答案332.(2015·卷)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =__________;y =__________. 解析 MN →=MC →+→=13AC →+12CB →=13AC →+12(AB →-AC →) =12AB →-16AC →,∴x =12,y =-16. 答案 12 -163.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.解析 由AO →=12(AB →+AC →),可得O 为BC 的中点,故BC 为圆O 的直径,所以AB →与AC →的夹角为90°. 答案 90°4.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________(填重心、垂心、内心或外心). 解析 由已知,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,设△ABC中BC 边的中点为D ,知AB →+AC →=2AD →,所以点P 的轨迹必过△ABC 的重心.故填重心.答案 重心5.(2017·苏、锡、常、镇调研)在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP→=AB →+λAC →,且BP →·CP →=1,则实数λ的值为________.解析 由AB =1,AC =2,∠A =60°,得BC 2=AB 2+AC 2-2AB ·AC ·cos A =3,即BC = 3.又AC 2=AB 2+BC 2,所以∠B =π2.以点A 为坐标原点,AB →,BC →的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,则B (1,0),C (1,3).由AP →=AB →+λAC →,得P (1+λ,3λ),则BP →·CP →=(λ,3λ)·(λ,3λ-3)=λ2+3λ(λ-1)=1,即4λ2-3λ-1=0,解得λ=-14或λ=1. 答案 -14或1 6.(2014·某某卷)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.解析 由题图可得,AP →=AD →+DP →=AD →+14AB →, BP →=BC →+CP →=BC →+34CD →=AD →-34AB →. ∴AP →·BP →=⎝⎛⎭⎪⎫AD →+14AB →·⎝ ⎛⎭⎪⎫AD →-34AB → =AD →2-12AD →·AB →-316AB →2=2, 故有2=25-12AD →·AB →-316×64,解得AD →·AB →=22. 答案 227.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________(写出所有正确结论的编号).①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →.解析 ∵AB →2=4|a |2=4,∴|a |=1,故①正确;∵BC →=AC →-AB →=(2a +b )-2a =b ,又△ABC 为等边三角形,∴|BC →|=|b |=2,故②错误;∵b =AC →-AB →,∴a·b =12AB →·(AC →-AB →)=12×2×2×cos 60°-12×2×2=-1≠0,故③错误; ∵BC →=b ,故④正确;∵(AB →+AC →)·(AC →-AB →)=AC →2-AB →2=4-4=0,∴(4a +b )⊥BC →,故⑤正确.答案 ①④⑤8.如图,在△ABC 中,C =90°,且AC =BC =3,点M 满足BM →=2MA →,则CM →·CB→=________.解析 法一 如图,建立平面直角坐标系.由题意知:A (3,0),B (0,3),设M (x ,y ),由BM →=2MA →,得⎩⎪⎨⎪⎧x =2(3-x ),y -3=-2y ,解得⎩⎪⎨⎪⎧x =2,y =1, 即M 点坐标为(2,1),所以CM →·CB →=(2,1)·(0,3)=3.法二 CM →·CB →=(CB →+BM →)·CB →=CB →2+CB →·⎝ ⎛⎭⎪⎫23BA →=CB →2+23CB →·(CA →-CB →) =13CB →2=3. 答案 3二、解答题9.已知向量a =⎝ ⎛⎭⎪⎫cos 3x 2,sin 3x 2,b =⎝ ⎛⎭⎪⎫cos x 2,-sin x 2,且x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求a ·b 及|a +b |;(2)若f (x )=a ·b -2λ|a +b |的最小值是-32,求λ的值. 解 (1)a ·b =cos 3x 2cos x 2-sin 3x 2sin x 2=cos 2x , |a +b |=⎝ ⎛⎭⎪⎫cos 3x 2+cos x 22+⎝⎛⎭⎪⎫sin 3x 2-sin x 22 =2+2cos 2x =2cos 2x ,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ≥0, 所以|a +b |=2cos x .(2)由(1),可得f (x )=a ·b -2λ|a +b |=cos 2x -4λcos x ,即f (x )=2(cos x -λ)2-1-2λ2. 因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以0≤cos x ≤1. ①当λ<0时,当且仅当cos x =0时,f (x )取得最小值-1,这与已知矛盾;②当0≤λ≤1时,当且仅当cos x =λ时,f (x )取得最小值-1-2λ2,由已知得-1-2λ2=-32,解得λ=12; ③当λ>1时,当且仅当cos x =1时,f (x )取得最小值1-4λ,由已知得1-4λ=-32,解得λ=58,这与λ>1相矛盾.综上所述λ=12. 10.(2017·某某模拟)已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝ ⎛⎭⎪⎫0,π2,且m ⊥n .(1)求cos 2α的值;(2)若sin(α-β)=1010,且β∈⎝⎛⎭⎪⎫0,π2,求角β的值. 解 (1)由m ⊥n ,得2cos α-sin α=0,sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1, 又α∈⎝⎛⎭⎪⎫0,π2,则cos α=55, 故sin α=255,则cos 2α=cos 2α-sin 2α=-35.(2)由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,得α-β∈⎝ ⎛⎭⎪⎫-π2,π2. 因为sin(α-β)=1010,所以cos(α-β)=31010, 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =255×31010-55×1010=22. 因为β∈⎝⎛⎭⎪⎫0,π2,所以β=π4. 11.(2017·南师附中调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a ,3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.解 (1)因为m ∥n ,所以a sin B -3b cos A =0,由正弦定理,得sin A sin B -3sin B cos A =0,又sin B ≠0,从而tan A =3,由于0<A <π,所以A =π3. (2)法一 由余弦定理,得a 2=b 2+c 2-2bc cos A ,而a =7,b =2,A =π3,得7=4+c 2-2c , 即c 2-2c -3=0,因为c >0,所以c =3,故△ABC 的面积为S =12bc sin A =332. 法二 由正弦定理,得7sin π3=2sin B , 从而sin B =217,又由a >b ,知A >B , 所以cos B =277,故sin C =sin(A +B )=sin ⎝⎛⎭⎪⎫B +π3 =sin B cos π3+cos B sin π3=32114. 所以△ABC 的面积为S =12ab sin C =332.。
专题03 三角函数讲-2018年高考数学二轮复习讲练测江苏

2018年高三二轮复习讲练测之讲案【苏教版数学】专题三 三角函数考向一 三角恒等变形 1.讲高考(1) 考纲要求:1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差 的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换.(2)命题规律:1.预计2018年高考仍将在角的变换、角的范围、方面对三角恒等变形进行考查,对两角和与差、二倍角公式将重点考查;2.对三角恒等变换的考查力度与以往不会有变化,还是和向量、不等式等综合考察,复习时需加强这方面的训练.例1【2017北京,理12】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,cos()αβ-=___________. 【答案】79-【考点】1.同角三角函数;2.诱导公式;3.两角差的余弦公式.【名师点睛】本题考查了角的对称的关系,以及诱导公式,常用的一些对称关系包含,α与β关于y 轴对称,则2k αβππ+=+ ,若α与β关于x 轴对称,则02k αβπ+=+ ,若α与β关于原点对称,则2k αβππ-=+ k Z ∈.例2在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是 ▲ . 【答案】8【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C ==⇒+=,又tan tan tan tan tan 1B+CA=B C -,因此tan tan tan tan tan tan tan 2tan tan 22tan tan tan tan tan tan 8,A B C A B C A B C A B C A B C =++=+≥⇒≥即最小值为8.【考点】三角恒等变换,切的性质应用【名师点睛】消元与降次是高中数学中的主旋律,利用三角形中隐含的边角关系作为消元依据是本题突破口,斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,这类同于正、余弦定理,是一个关于切的等量关系,平时应多总结积累常见的三角恒等变形,提高转化问题能力,培养消元意识.此类问题的求解有两种思路:一是边化角,二是角化边.2.讲基础1.巧记六组诱导公式 对于“απ±2k ,Z k ∈的三角函数值”与“α角的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限.2.“死记”两组三角公式(1)两角和与差的正弦、余弦、正切公式βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos( =±βαααβαtan tan 1tan tan )tan( ±=±(2)二倍角的正弦、余弦、正切公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=3.讲典例【例1】【徐州市第三中学2017~2018学年度高三第一学期月考】设α为锐角,若4cos 65πα⎛⎫+= ⎪⎝⎭,则sin 212πα⎛⎫+= ⎪⎝⎭__________.【答案】17250【解析】sin 212πα⎛⎫+= ⎪⎝⎭ ππ2ππsin 2sin2cos264266ααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+-=+-+ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 因为α为锐角, 所以2ππ3πππ24sin 1cos sin22sin cos 66566625ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=-+=∴+=++= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 2ππ167cos22cos 121662525αα⎛⎫⎛⎫+=+-=⨯-=⎪ ⎪⎝⎭⎝⎭ 因此sin 212πα⎛⎫+= ⎪⎝⎭ 22471722252550⎛⎫-= ⎪⎝⎭ 点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.【趁热打铁】【无锡市2018届高三上期中基础性检测】已知22sin 2sin cos 3cos 0x x x x +-=,则cos 2x =______________.【答案】0或45-【名师点睛】观察次数上的差异和角的差异,故齐次化、弦切互化和用二倍角公司分别计算tan ,cos 2x x .【例2】【溧水高级中学2018届高三上期初模拟】已知0,2πα⎛⎫∈ ⎪⎝⎭, ,2πβπ⎛⎫∈⎪⎝⎭, 7cos29β=-,()7sin 9αβ+=. (1)求cos β的值; (2)求sin α的值.【答案】(1)1cos 3β=-(2)13【名师 点睛】据β的范围,确定cos 0β<,直接利用二倍角的余弦,求cos β的值;(2)根据(1)求 出sin β,再求出()42cos 9αβ+=-,通过 ()()()cos cos sin sin sin sin ααββαββαββ⎡⎤=+-=+-+⎣⎦,求sin α的值.【趁热打铁】已知()10,,cos 3απα∈=-. (1)求cos 4πα⎛⎫-⎪⎝⎭的值; (2)求223sin πα⎛⎫+⎪⎝⎭的值. 【答案】(1)426-;(2)427318-.【解析】(1)∵22sin cos 1αα+=, 1cos 3α=-∴28sin 9α=,又∵()0,απ∈ ∴22sin 3α=,又∵cos 4πα⎛⎫- ⎪⎝⎭= cos cos sin sin 44ππαα+=212222323⎛⎫-+⋅= ⎪⎝⎭ 426-. (2)∵22sin 3α=, 1cos 3α=- ,42sin22sin cos 9ααα=⋅=-227cos2cos sin 9ααα=-=-, 2sin 23πα⎛⎫+ ⎪⎝⎭=22sincos2cos sin233ππαα⋅+⋅= 371422929---⋅+⋅427318-=. 【名师点睛】复合角与特殊角有关,故可以利用两角和差的公式计算,注意需要计算2α的三角函数.4.讲方法三角恒等变形是指利用同角公式、诱导公式、两角和与差的三角函数公式等对三角式进行各种有目的的变形.变形中主要涉及角、函数名、结构、运算方式的变形,其技巧常有化异为同、辅助角、三角代换、和差配凑、幂指变换等.三角恒等变形涉及范围广泛,包括三角式的化简、求值、恒等式的证明、三角不等式的证明等,熟练掌握同角公式、诱导公式、两角和与差的三角函数公式,倍角公式,降幂公式,辅助角公式等是解决问题的前提.几个常见的变形切入点: ①ααcos sin 可凑倍角公式; ②αcos 1±可用升次公式;③αsin 1±可化为⎪⎭⎫ ⎝⎛-±απ2cos 1,再用升次公式;或21sin sin cos 22ααα⎛⎫±=± ⎪⎝⎭④()ϕααα++=+sin cos sin 22b a b a (其中 ab=ϕtan )这一公式应用广泛,熟练掌握. ⑤当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式;⑥当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”. ⑦常见的配角技巧:22αα=⋅;()ααββ=+-;()αββα=--;1[()()]2ααβαβ=++-;1[()()]2βαβαβ=+--;()424πππαα+=--;()44ππαα=--. 5.讲易错若函数1cos 2()sin cos()224sin()2xx xf x a x ππ+=--+的最大值为2,试确定常数a 的值.【错因】上述表达式中要根据诱导公式以及二倍角公式的降幂变形,最后利用辅助角公式将函数转化为关于x 的三角函数的表达式,用错公式是本题出错的原因.【正解】∵222cos 111()sin cos cos sin sin()4cos 222244x x x a f x a x a x x x ϕ=+=+=++,1tan a ϕ=,由已知得214154a a +=⇒=±. 考向二 三角函数的图象和性质 1.讲高考(1)考纲要求:1.能画出sin y x =,cos y x =,tan y x =的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数的性质(如单调性、最大值和最小值以及与x 轴交点等),理解正切函数的性质;3.了解函数sin()y A x ωϕ=+的物理意义:能画出sin()y A x ωϕ=+的图象,了解参数A ,ω,ϕ对函数图象变化的影响.(2)命题规律:1.预计2016年高考仍将作为基础内容出现于综合题中,分值为5到12分;2.三角函数的周期性、单调性、有界性及图象的平移和伸缩变换,以函数性质为主的结合图象的综合题,在复习时应予以关注.例1. 【2016江苏,9】定义在区间[0,3π]上的函数sin 2y x =的图象与cos y x =的图象的交点个数是 . 【答案】7【考点】三角函数图象【名师点睛】求函数图象的交点个数,有两种方法:一是直接求解,如本题,解一个简单的三角方程,此方法立足于易于求解;二是数形结合,分别画出函数图象,数出交点个数,此法直观,但对画图要求较高,必须准确,尤其是要明确函数的增长幅度.例 2. 【2017天津,理7】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则ω=_______,ϕ=________ 【答案】23ω=,12ϕπ=【考点】求三角函数的解析式【名师点睛】有关sin()y A x ωϕ=+问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定A ,再根据周期或12周期或14周期求出ω,最后再利用最高点或最低点坐标满足解析式,求出满足条件的ϕ值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求ω或ϕ的值或最值或范围等.讲基础函数sin y x =的图象变换得到sin()y A x ωϕ=+的图象的步骤(1)确定sin()(0,0,||)y A x k A ωϕωϕπ=++>><中的参数的方法: 在由图象求解析式时,若最大值为M ,最小值为m ,则2M m A -=,2M mk +=,ω由周期T 确定,即由2T πω=求出,ϕ由特殊点确定.(2)由sin y x =的图象变换到sin()y A x ωϕ=+的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是||ϕ个单位;而先周期变换(伸缩变换)再相位变换,平移的量是||(0)ϕωω>个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是于x ω加减多少值.3.讲典例【例1】【福建省数学基地校2018届高三毕业班总复习 三角函数 单元过关测试卷(文科,B 卷)】数学试题将函数sin y x =的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得的图象向左平移6π个单位长度后得到函数()f x 的图象. (Ⅰ)写出函数()f x 的解析式; (Ⅱ)若对任意x ∈ ,612ππ⎡⎤-⎢⎥⎣⎦, ()()210f x mf x --≤恒成立,求实数m 的取值范围; (Ⅲ)求实数a 和正整数n ,使得()()F x f x a =-在[]0,n π上恰有2017个零点.【答案】(1)()sin 23f x x π⎛⎫=+⎪⎝⎭(2)0m ≥(3)见解析 【解析】(Ⅰ) ()sin 23f x x π⎛⎫=+⎪⎝⎭;(Ⅲ)问题可转化为研究直线y a =与曲线()y f x =的交点情况.()sin 23f x x π⎛⎫=+ ⎪⎝⎭在[]0,π上的草图为:当1a >或1a <-时,直线y a =与曲线()y f x =没有交点;当1a =或1a =-时,直线y a =与曲线()y f x = []0,π上有1个交点,由函数()y f x =的周期性可知,此时2017n =; 当331,122a a <<-<<时,直线y a =与曲线()y f x = []0,π上有2个交点,由函数()y f x =的周期性可知,直线直线y a =与曲线()y f x = []0,n π上总有偶数个交点; 当32a =时,直线y a =与曲线()y f x = []0,π上有3个交点,由函数()y f x =的周期性及图象可知,此时1008n =.综上所述,当1a =, 2017n =或1a =-, 2017n =,或3,10082a n ==时, ()()F x f x a =-在[]0,n π上恰有2017个零点.【趁热打铁】【2017届四川资阳市高三上学期第一次诊断数学(理)】已知函数()12sin cos 62f x x x πωω⎛⎫=-⋅+ ⎪⎝⎭ (其中0ω>)的最小正周期为π.(Ⅰ) 求ω的值;(Ⅱ) 将函数()y f x =的图象向左平移6π个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()g x 的图象.求函数()g x 在[]ππ-,上零点. 【答案】(Ⅰ)1ω=;(Ⅱ)6π-和56π. 【解析】 (Ⅰ) ()2112sin cos 3sin cos cos 622f x x x x x x πωωωωω⎛⎫=-⋅+=⋅-+ ⎪⎝⎭ 31sin2cos2sin 2226x x x πωωω⎛⎫=-=- ⎪⎝⎭.由最小正周期22T ππω==,得1ω=.【名师点睛】(Ⅰ)首先利用两角差的正弦函数与倍角公式化简函数的解析式,然后根据周期求得ω的值;(Ⅱ)首先根据三角函数图象的平移伸缩变换法则求得()g x 的解析式,然后利用正弦函数的图象与性质求得函数的零点、两角差的正弦函数;2、倍角公式;3、三角函数图象的平移伸缩变换;4、正弦函数的图象与性质.【例2】 【江西省K12联盟2018届高三教育质量检测(理)】函数()2sin 1cos 22wx wx f x -=+,且12w >, x R ∈,若()f x 的图像在()3,4x ππ∈内与x 轴无交点则w 的取值范围是__________.【答案】7111115,,12161216⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦ 【解析】()2sin 12cos sin 2224wx wx f x wx π-⎛⎫=+=+ ⎪⎝⎭,显然π2T >,故1ω12<<.由对称中心可知: k π4wx π+=,可得: 1x k π4πω⎛⎫=- ⎪⎝⎭, k Z ∈,假设在区间()3,4ππ内存在交点,可知:11416312k k ω-<<-,当k 2,3,4=时, 771111155ωωω16121612164<<<<<<,,,现不属于区间()3,4ππ,所以以上的并集在全集1ω12<<中做补集,得7111115ω,,12161216⎡⎤⎡⎤∈⋃⎢⎥⎢⎥⎣⎦⎣⎦,故答案为: 7111115,,12161216⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦点睛:本题采用了正难则反的策略把无交点问题转化为有交点问题,利用补集思想得到最终的结果,对于否定性问题经常这样思考. 【趁热打铁】函数()2sin 1cos 22x x f x ωω-=+,且0w >, x R ∈,若()f x 在,2ππ⎡⎤⎢⎥⎣⎦是单调函数,则ω的取值范围是__________. 【答案】点睛:一般地,如果()f x 在,2ππ⎡⎤⎢⎥⎣⎦是单调函数,我们通常利用对称轴去讨论,本题需求出对称轴,区间,2ππ⎡⎤⎢⎥⎣⎦应该在相邻的两个对称轴之间,通过不等式组解出整数k 的值从而确定104ω<≤.讲方法1.函数sin()(0,0)y A x A ωϕω=+>>的图象的作法(1)五点法:用“五点法”作sin()y A x ωϕ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取0,2π,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. (2)图象变换法:由函数sin y x =的图象通过变换得到sin()y A x ωϕ=+的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.2.确定sin()(0,0)y A x b A ωϕω=++>>的步骤和方法 (1)求A ,b ,确定函数的最大值M 和最小值m ,则2M m A -=,2M mb +=.(2)求ω,确定函数的周期T ,则可得2Tπω=. (3)求ϕ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y b =的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定ϕ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)时0x ωϕ+=;“第二点”(即图象的“峰点”)时2x πωϕ+=;“第三点”(即图象下降时与x 轴的交点)时x ωϕπ+=;“第四点”(即图象的“谷点”)时32x πωϕ+=;“第五点”时2x ωϕπ+=.3.利用三角函数图象与x 轴的相邻两个交点之间的距离为三角函数的12个最小正周期,可求解参数ω的值,利用图象的最高点、低点为三角函数最值点,可求解参数A 的值.在求函数值域时,由定义域转化成x ωϕ+的范围,即把x ωϕ+看作一个整体,再结合三角函数的图象求解.5.讲易错函数|sin |cos 1y x x =-的最小正周期与最大值的和为 .【错因】在求函数的最小正周期的时候,未结合函数图象考虑,得到函数的最小正周期为π.【正解】∵1sin 21,(22)21sin 21,(22)2x k x k y x k x k ππππππ⎧-≤<+⎪⎪=⎨⎪---≤<⎪⎩,作出其图象,知原函数的最小正周期为2π,最大值为12-,故最小正周期和最大值之和为122π-. 考向三 解三角形 1.讲高考(1)考纲要求:1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;2.掌握运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(2)命题规律:1.预计2018年高考将以正弦、余弦定理的直接应用为主要考查目标,以解答题形式出现的可能性较大,难度以中档题为主,注意与基本不等式的综合;2.结合几何知识(平面几何或立体几何)构建综合性的应用题是可能的发展方向,复习时需加以关注.例1【2018 江苏】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为107cm ,容器Ⅱ的两底面对角线11,EG E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)CC上,求l没入水中部分的长度;(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱1GC上,求l没入水中部分的长度.(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱1【答案】(1)玻璃棒l 没入水中部分的长度为16cm .(2)玻璃棒l 没入水中部分的长度为20cm .答:玻璃棒l 没入水中部分的长度为16cm .( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm )(2)如图,1,O O 是正棱台的两底面中心.由正棱台的定义,1OO ⊥平面EFGH , 所以平面11E EGC ⊥平面EFGH ,1O O EG ⊥ .同理111O O E G ⊥,记玻璃棒的另一端落在1GC 上点N 处.过G 作1GK E G ⊥⊥,K 为垂足, 则132GK OO == . 因为1114,62EG E G == ,所以16214242KG -==, 从而222211243240GG KG GK =+=+=. 设1,,EGG ENG αβ∠=∠=则114sin sin cos 25KGG KGG πα⎛⎫=+∠=∠= ⎪⎝⎭.因为2παπ<<,所以3cos 5α=-.在ENG 中,由正弦定理可得4014sin sin αβ=,解得7sin 25β=. 因为02πβ<<,所以24cos 25β=.于是()()424373sin sin sin sin cos cos sin 5255255NEG παβαβαβαβ⎛⎫∠=--=+=+=⨯+-⨯= ⎪⎝⎭.记EN与水面的交点为2P ,过2P 作22PQEG ⊥,2Q 为垂足,则22P Q ⊥平面EFGH ,故2212PQ =,从而 22220sin P Q EP NEG==∠.答:玻璃棒l 没入水中部分的长度为20cm .(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm )【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向; 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化; 第三步:求结果.例2.【2017届湖北荆荆襄宜四地七校联盟高三理上联考】如图,我海监船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其东北方向与它相距16海里的B 处有一外国船只,且D 岛位于海监船正东142海里处。
2018版高考数学理江苏专用大二轮总复习与增分策略配套课件:专题三 三角函数、解三角形与平面向量 第

1 234
4.(2016·江 苏 ) 在 锐 角 三 角 形 ABC 中 , 若 sin A = 2sin Bsin C , 则tan Atan Btan C的最小值是____8____.
解析
答案
考情考向分析
正弦定理和余弦定理以及解三角形问题是高考的必考内容,主要考查: 1.边和角的计算; 2.三角形形状的判断; 3.面积的计算; 4.有关的范围问题.由于此内容应用性较强,与实际问题结合起来进行 命题将是今后高考的一个关注点,不可轻视.
解析
答案
(则2)若θ=f_(x_-)_=_π3__3_s_in. (x+θ)-cos(x+θ)(-π2≤θ≤π2)是定义在 R 上的偶函数, 解析 f(x)=2sin(x+θ-π6), 由题意得 θ-π6=π2+kπ(k∈Z), 因为-π2≤θ≤π2,所以 k=-1,θ=-π3.
解析答案
热点二 正弦定理、余弦定理
专题三 三角函数、解三角形与平面向量
第2讲 三角变换与解三角形
栏目索引
1 高考真题体验 2 热点分类突破 3 高考押题精练
高考真题体验
1 234
64 1.(2016·课标全国丙改编)若 tan α=34,则 cos2α+2sin 2α=___2_5____.
解析 tan α=34, 则 cos2α+2sin 2α=cocos2sα2α++2ssiinn22αα=11++4tatann2αα=6245.
解析答案
(2)求sin A+sin C的取值范围. 解 由(1)知,C=π-(A+B) =π-(2A+π2)=π2-2A>0,∴A∈(0,π4), 于是 sin A+sin C=sin A+sin(π2-2A) =sin A+cos 2A=-2sin2A+sin A+1 =-2(sin A-14)2+98, ∵0<A<π4,∴0<sin A< 22, 因此 22<-2(sin A-14)2+98≤98,
(江苏专版)2018版高考数学二轮复习专题一三角函数与平面向量第1讲三角函数的图象与性质课件理

的最小正周期为________.
利用函数 y = Asin(ωx + φ) 的周期公式求解 . 函数 y = 2π π 3sin2x+ 的最小正周期为 T= 2 =π. 4
答案 π
2.(2011· 江苏卷)函数f (x)=Asin(ωx+φ)(A,ω,φ是常数,A> 0,ω>0)的部分图象如图所示,则f (0)=________.
π 3 4.(2017· 全国Ⅱ卷)函数 f (x)=sin x+ 3cos x-4x∈0, 2 的最大值是________.
2
π 3 解析 f (x)=sin x+ 3cos x-4x∈0, , 2 3 2 f (x)=1-cos x+ 3cos x-4,令 cos x=t 且 t∈[0,1], 1 3 2 2 y=-t + 3t+4=-t- +1, 2 3 则当 t= 时,f (x)取最大值 1. 2
第1讲
三角函数的图象与性质
高考定位
高考对本内容的考查主要有:三角函数的有关
知识大部分是 B 级要求,只有函数 y = Asin(ωx + φ) 的图象
与性质是A级要求;试题类型可能是填空题,同时在解答 题中也有考查,经常与向量综合考查,构成低档题.
真题感悟
1.(2013· 江苏卷)函数
解析
π y=3sin2x+ 4
3.三角函数的两种常见变换 向左(φ>0)或向右(φ<0) (1)y=sin x―--------------------------―→ 平移|φ|个单位
y=sin(x+φ)
纵坐标变为原来的A倍 y=sin(ωx+φ)―--------------------------―→ 横坐标不变 y=Asin(ωx+φ)(A>0,ω >0).
2018年高考数学(理二轮复习讲学案考前专题三 三角函数、解三角形与平面向量 第3讲平面向量(含答案解析)

第3讲 平面向量1.考查平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考查,多为选择题、填空题,难度为中低档.2.考查平面向量的数量积,以选择题、填空题为主,难度为低档;向量作为工具,还常与三角函数、解三角形、不等式、解析几何结合,以解答题形式出现.热点一 平面向量的线性运算1.在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化.2.在用三角形加法法则时,要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所得的向量;在用三角形减法法则时,要保证“同起点”,结果向量的方向是指向被减向量.例1 (1)(2017届河南息县第一高级中学检测)已知平行四边形ABCD 的对角线分别为AC ,BD ,且AE →=2EC →,点F 是BD 上靠近D 的四等分点,则( )A.FE →=-112AB →-512AD →B.FE →=112AB →-512AD →C.FE →=512AB →-112AD →D.FE →=-512AB →-112AD →答案 C解析 AE →=2EC →,点F 是BD 上靠近D 的四等分点, ∴FO →=14DB →,OE →=16AC →,∴FE →=FO →+OE →=14DB →+16AC →,∵AB →+AD →=AC →,AD →-AB →=BD →, ∴FE →=14(AB →-AD →)+16(AB →+AD →)=512AB →-112AD →.故选C. (2)(2017届湖南师大附中月考)O 为△ABC 内一点,且2OA →+OB →+OC →=0,AD →=tAC →,若B ,O ,D 三点共线,则t 的值为( )A.13B.14C.12D.23 答案 A解析 由AD →=tAC →,得OD →-OA →=t (OC →-OA →), 所以OD →=tOC →+(1-t )OA →,因为B ,O ,D 三点共线,所以BO →=λOD →, 则2OA →+OC →=λt OC →+(1-t )λOA →,故有⎩⎪⎨⎪⎧2=(1-t )λ,1=λt ,t =13,故选A.思维升华 (1)对于平面向量的线性运算,要先选择一组基底,同时注意平面向量基本定理的灵活运用. (2)运算过程中重视数形结合,结合图形分析向量间的关系.跟踪演练1 (1)(2017·河北省衡水中学三调)在△ABC 中,AN →=14NC →,P 是直线BN 上的一点,若AP →=mAB →+25AC →,则实数m 的值为( ) A .-4 B .-1C .1 D .4 答案 B解析 因为AP →=AB →+BP →=AB →+kBN →=AB →+k ⎝ ⎛⎭⎪⎫15AC →-AB →=(1-k )AB →+k 5AC →,且AP →=mAB →+25AC →,所以⎩⎪⎨⎪⎧1-k =m ,k 5=25,解得k =2,m =-1,故选B.(2)(2017届福建连城县二中期中)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6) D .(-2,-4)答案 B解析 因为a =(1,2),b =(-2,m ),且a ∥b ,所以m +4=0,m =-4,2a +3b =2(1,2)+3(-2,-4)=(-4,-8),故选B. 热点二 平面向量的数量积1.数量积的定义:a ·b =|a ||b |cos θ. 2.三个结论(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若非零向量a =(x 1,y 1),非零向量b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22. 例2 (1)(2017届湖北省部分重点中学联考)若等边△ABC 的边长为3,平面内一点M 满足CM →=13CB →+12CA →,则AM →·MB →的值为( ) A .2 B .-152C.152 D. -2答案 A解析 因为AM →=CM →-CA →,MB →=CB →-CM →,则AM →·MB →=⎝ ⎛⎭⎪⎫13CB →-12CA →⎝ ⎛⎭⎪⎫23CB →-12CA →,即AM →·MB →=29CB →2-12CA →·CB →+14CA →2=2-94+94=2,故选A.(2)(2017届河北省衡水中学六调)已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|a +2b |等于( ) A .2 2 B.17 C.15 D .2 5答案 B解析 向量a ,b 满足|a |=1,|b |=2,a -b =(3,2), 可得|a -b |2=5,即|a |2+|b |2-2a ·b =5,解得a ·b =0. |a +2b |2=|a |2+4|b |2+4a ·b =1+16=17, 所以|a +2b |=17.故选B.思维升华 (1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义. (2)可以利用数量积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算.跟踪演练2 (1)(2017·全国Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43 D .-1答案 B解析 方法一 (解析法)建立平面直角坐标系如图①所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).图①设P 点的坐标为(x ,y ), 则PA →=(-x ,3-y ), PB →=(-1-x ,-y ), PC →=(1-x ,-y ),∴PA →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y ) =2(x 2+y 2-3y )=2⎣⎢⎡⎦⎥⎤x 2+⎝ ⎛⎭⎪⎫y -322-34≥2×⎝ ⎛⎭⎪⎫-34=-32.当且仅当x =0,y =32时,PA →·(PB →+PC →)取得最小值,最小值为-32.故选B. 方法二 (几何法)如图②所示,PB →+PC →=2PD →(D 为BC 的中点),则PA →·(PB →+PC →)=2PA →·PD →.图②要使PA →·PD →最小,则PA →与PD →方向相反,即点P 在线段AD 上,则(2PA →·PD →)min =-2|PA →||PD →|,问题转化为求|PA →|·|PD →|的最大值.又|PA →|+|PD →|=|AD →|=2×32=3,∴|PA →||PD →|≤⎝ ⎛⎭⎪⎫|PA →|+|PD →|22=⎝ ⎛⎭⎪⎫322=34, 当且仅当|PA →|=|PD →|时取等号,∴[PA →·(PB →+PC →)]min =(2PA →·PD →)min =-2×34=-32.故选B.(2)(2017届湖北重点中学联考)已知向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,则|a +2b |=________.答案 2解析 因为|a |=2,|b |=1,〈a ,b 〉=2π3,故a ·b =2cos 〈a ,b 〉=-1,则(a +2b )2=a 2+4a ·b +4b 2=4-4+4=4,即|a +2b |=2. 热点三 平面向量与三角函数平面向量作为解决问题的工具,具有代数形式和几何形式的“双重型”,高考常在平面向量与三角函数的交汇处命题,通过向量运算作为题目条件.例3 (2017·江苏)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾, 故cos x ≠0. 于是tan x =-33. 又x ∈[0,π],所以x =5π6.(2)f (x )=a·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎪⎫x +π6≤32,于是,当x +π6=π6,即x =0时,f (x )取得最大值3;当x +π6=π,即x =5π6时,f (x )取得最小值-2 3.思维升华 在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.跟踪演练3 已知平面向量a =(sin x ,cos x ),b =(sin x ,-cos x ),c =(-cos x ,-sin x ),x ∈R ,函数f (x )=a·(b -c ).(1)求函数f (x )的单调递减区间; (2)若f ⎝ ⎛⎭⎪⎫α2=22,求sin α的值. 解 (1)因为a =(sin x ,cos x ),b =(sin x ,-cos x ),c =(-cos x ,-sin x ),所以b -c =(sin x +cos x ,sin x -cos x ),f (x )=a·(b -c )=sin x (sin x +cos x )+cos x (sin x -cos x )=sin 2x +2sin x cos x -cos 2x =sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π4.当2k π+π2≤2x -π4≤2k π+3π2,k ∈Z ,即k π+3π8≤x ≤k π+7π8,k ∈Z 时,函数f (x )为减函数.所以函数f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+3π8,k π+7π8,k ∈Z .(2)由(1)知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4,又f ⎝ ⎛⎭⎪⎫α2=22,则2sin ⎝ ⎛⎭⎪⎫α-π4=22,sin ⎝ ⎛⎭⎪⎫α-π4=12. 因为sin 2⎝ ⎛⎭⎪⎫α-π4+cos 2⎝ ⎛⎭⎪⎫α-π4=1, 所以cos ⎝⎛⎭⎪⎫α-π4=±32. 又sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π4+π4=sin ⎝ ⎛⎭⎪⎫α-π4cos π4+cos ⎝ ⎛⎭⎪⎫α-π4sin π4,所以当cos ⎝ ⎛⎭⎪⎫α-π4=32时, sin α=12×22+32×22=2+64;当cos ⎝⎛⎭⎪⎫α-π4=-32时, sin α=12×22-32×22=2-64.综上,sin α=2±64.真题体验1.(2017·北京改编)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m·n <0”的___________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 方法一 由题意知|m |≠0,|n |≠0. 设m 与n 的夹角为θ. 若存在负数λ,使得m =λn , 则m 与n 反向共线,θ=180°,∴m ·n =|m ||n |cos θ=-|m ||n |<0.当90°<θ<180°时,m ·n <0,此时不存在负数λ,使得m =λn . 故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件. 方法二 ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π,当〈m ,n 〉∈⎝ ⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件.2.(2017·山东)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 答案33解析 由题意知|e 1|=|e 2|=1,e 1·e 2=0,|3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2. 同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12, 解得λ=33. 3.(2017·天津)在△ABC 中,∠A =60°,AB =3,AC =2.若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.答案311解析 由题意知|AB →|=3,|AC →|=2,AB →·AC →=3×2×cos 60°=3,AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,∴AD →·AE →=⎝ ⎛⎭⎪⎫13AB →+23AC →·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.4.(2017·北京)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________. 答案 6解析 方法一 根据题意作出图象,如图所示,A (-2,0),P (x ,y ). 由点P 向x 轴作垂线交x 轴于点Q ,则点Q 的坐标为(x,0).AO →·AP →=|AO →||AP →|cos θ,|AO →|=2,|AP →|=(x +2)2+y 2, cos θ=|AQ →||AP →|=x +2(x +2)2+y 2, 所以AO →·AP →=2(x +2)=2x +4.点P 在圆x 2+y 2=1上,所以x ∈[-1,1]. 所以AO →·AP →的最大值为2+4=6.方法二 如图所示,因为点P 在圆x 2+y 2=1上, 所以可设P (cos α,sin α)(0≤α<2π), 所以AO →=(2,0),AP →=(cos α+2,sin α),AO →·AP →=2cos α+4≤2+4=6,当且仅当cos α=1,即α=0,P (1,0)时“=”号成立. 押题预测1.如图,在△ABC 中,AD →=13AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N ,设AB →=a ,AC →=b ,用a ,b 表示向量AN →,则AN →等于( )A.12(a +b ) B.13(a +b ) C.16(a +b ) D.18(a +b ) 押题依据 平面向量基本定理是向量表示的基本依据,而向量表示(用基底或坐标)是向量应用的基础. 答案 C解析 因为DE ∥BC ,所以DN ∥BM , 则△AND ∽△AMB ,所以AN AM =ADAB.因为AD →=13AB →,所以AN →=13AM →.因为M 为BC 的中点,所以AM →=12(AB →+AC →)=12(a +b ),所以AN →=13AM →=16(a +b ).故选C.2.如图,BC ,DE 是半径为1的圆O 的两条直径,BF →=2FO →,则FD →·FE →等于( )A .-34B .-89C .-14D .-49押题依据 数量积是平面向量最重要的概念,平面向量数量积的运算是高考的必考内容,和平面几何知识的结合是向量考查的常见形式. 答案 B解析 ∵BF →=2FO →,圆O 的半径为1,∴|FO →|=13,∴FD →·FE →=(FO →+OD →)·(FO →+OE →)=FO →2+FO →·(OE →+OD →)+OD →·OE →=⎝ ⎛⎭⎪⎫132+0-1=-89.3.在△ABC 中,AB →=(cos 32°,cos 58°),BC →=(sin 60°sin 118°,sin 120°sin 208°),则△ABC 的面积为( )A.14B.38C.32D.34押题依据 平面向量作为数学解题工具,通过向量的运算给出条件解决三角函数问题已成为近几年高考的热点. 答案 B解析 |AB →|=cos 232°+cos 258°=cos 232°+sin 232°=1,BC →=⎝⎛⎭⎪⎫32cos 28°,-32sin 28°,所以|BC →|=⎝ ⎛⎭⎪⎫32cos 28°2+⎝ ⎛⎭⎪⎫-32sin 28°2=32. 则AB →·BC →=cos 32°×32cos 28°-sin 32°×32sin 28°=32(cos 32°cos 28°-sin 32°sin 28°) =32cos(32°+28°)=32cos 60°=34,故cos 〈AB →,BC →〉=AB →·BC →|AB →||BC →|=341×32=12.又〈AB →,BC →〉∈[0°,180°],所以〈AB →,BC →〉=60°, 故B =180°-〈AB →,BC →〉=180°-60°=120°. 故△ABC 的面积为S =12·|AB →|·|BC →|sin B=12×1×32×sin 120°=38.故选B. 4.如图,在半径为1的扇形AOB 中,∠AOB =60°,C 为AB 上的动点,AB 与OC 交于点P ,则OP →·BP →的最小值是________.押题依据 本题将向量与平面几何、最值问题等有机结合,体现了高考在知识交汇点命题的方向,本题解法灵活,难度适中. 答案 -116解析 因为OP →=OB →+BP →,所以OP →·BP →=(OB →+BP →)·BP →=OB →·BP →+BP →2.又因为∠AOB =60°,OA =OB ,所以∠OBA =60°,OB =1.所以OB →·BP →=|BP →|cos 120°=-12|BP →|.所以OP →·BP →=-12|BP →|+|BP →|2=⎝ ⎛⎭⎪⎫|BP →|-142-116≥-116,当且仅当|BP →|=14时,OP →·BP →取得最小值-116.A 组 专题通关1. 设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.2.(2017届广西省教育质量诊断性联合考试)设向量a =(1,2),b =(-3,5),c =(4,x ),若a +b =λc (λ∈R ),则λ+x 的值为( )A .-112B.112 C .-292D.292答案 C解析 由已知可得(1,2)+(-3,5)=λ(4,x )⇒⎩⎪⎨⎪⎧4λ=-2,xλ=7⇒⎩⎪⎨⎪⎧λ=-12,x =-14⇒λ+x =-292,故选C.3.已知向量a ,b ,其中a =(-1,3),且a ⊥(a -3b ),则b 在a 上的投影为( ) A.43 B .-43C.23 D .-23答案 C解析 由a =(-1,3),且a ⊥(a -3b ),得a ·(a -3b )=0=a 2-3a·b =4-3a·b ,a·b =43,所以b 在a 上的投影为a·b |a |=432=23,故选C.4.如图,在矩形ABCD 中,AB =3,BC =3,BE →=2EC →,点F 在边CD 上,若AB →·AF →=3,则AE →·BF →的值为()A .4 B.833C .0D .-4答案 D解析 如图所示,BE →=2EC →⇒BE =23BC =233,AB →·AF →=3⇒AF cos∠BAF =1⇒DF =1,以点A 为原点建立平面直角坐标系,AD 所在直线为x 轴,AB 所在直线为y 轴,则B (0,3),F (3,1),E (233,3),因此BF →=(3,-2),AE →·BF →=233×3-2×3=2-6=-4.5.在△ABC 中,AB =5,AC =6,若B =2C ,则向量BC →在BA →方向上的投影是( ) A .-75B .-77125C.77125D.75答案 B解析 由正弦定理得ACsin B=ABsin C ⇒6sin 2C =5sin C ⇒cos C =35,由余弦定理得cos C =BC 2+AC 2-AB 22AC ·BC ⇒BC =115或5,经检验知BC =5不符合,舍去,所以BC =115,cos B =AB 2+BC 2-AC 22AB ·BC =-725,则|BC →|cos B =-77125,故选B.6.(2017届吉林省普通中学调研)在等腰直角△ABC 中,AC =BC ,D 在AB 边上且满足CD →=tCA →+(1-t )CB →,若∠ACD =60°,则t 的值为( ) A.3-12 B.3-1C.3-22D.3+12答案 A解析 因为D 在AB 边上且满足CD →=tCA →+(1-t )CB →,所以BD →=tBA →,不妨设AC =BC =1,则AB =2,AD =2(1-t ),在△ACD 中,∠ACD =60°,∠CAD =45°,则∠ADC =75°,由正弦定理,得1sin 75°=2(1-t )sin 60°,解得t =3-12.故选A. 7.(2017届河南南阳一中月考)已知△ABC 的外接圆半径为1,圆心为点O ,且3OA →+4OB →+5OC →=0,则△ABC 的面积为( ) A.85 B.75C.65 D.45 答案 C解析 如图所示,|OA →|=|OB →|=|OC →|=1,由3OA →+4OB →+5OC →=0,可得3OA →+4OB →=-5OC →,两边平方可得9+24OA →·OB →+16=25,所以OA →·OB →=0,因此OA →⊥OB →.同理3OA →+5OC →=-4OB →,4OB →+5OC →=-3OA →,两边分别平方可得cos 〈OB →,OC →〉=-45,cos 〈OA →,OC →〉=-35,根据同角三角函数基本关系可得sin 〈OB →,OC →〉=35,sin 〈OA →,OC →〉=45,所以S △ABC =S △AOB +S △AOC +S △OBC=12×1×1+12×1×1×45+12×1×1×35=65,故选C. 8.已知向量OA →=(1,1),OB →=(1,a ),其中O 为原点,若向量OA →与OB →的夹角在区间⎣⎢⎡⎦⎥⎤0,π12内变化,则实数a 的取值范围是__________. 答案 ⎣⎢⎡⎦⎥⎤33,3 解析 因为OA →=(1,1),OB →=(1,a ), 所以OA →·OB →=1+a .又OA →·OB →=2·1+a 2cos θ, 故cos θ=1+a2(1+a 2), 因为θ∈⎣⎢⎡⎦⎥⎤0,π12,故cos θ∈⎣⎢⎡⎦⎥⎤6+24,1,即1+a2(1+a 2)∈⎣⎢⎡⎦⎥⎤6+24,1,解得33≤a ≤ 3. 9.(2017·辽宁省大连市双基测试)已知平面内三个单位向量OA →,OB →,OC →,〈OA →,OB →〉=60°,若OC →=mOA →+nOB →,则m +n 的最大值是______.答案233解析 由已知条件OC →=mOA →+nOB →,两边平方可得1=m 2+mn +n 2=(m +n )2-mn ,∴(m +n )2-1=mn ,根据向量加法的平行四边形法则,判断出m ,n >0,∴(m +n )2-1=mn ≤14(m +n )2,当且仅当m =n 时取等号,∴34(m +n )2≤1,则m +n ≤233,即m +n 的最大值为233. 10.(2017届陕西西安铁一中三模)已知向量m =(sin x ,-1),向量n =⎝ ⎛⎭⎪⎫3cos x ,-12,函数f (x )=(m +n )·m .(1)求f (x )的单调递减区间;(2)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,A 为锐角,a =23,c =4,且f (A )恰是f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值,求A ,b 和△ABC 的面积S . 解 (1)f (x )=(m +n )·m =sin 2x +1+3sin x cos x +12=1-cos 2x 2+1+32sin 2x +12 =32sin 2x -12cos 2x +2 =sin ⎝⎛⎭⎪⎫2x -π6+2.由2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ),得k π+π3≤x ≤k π+5π6(k ∈Z ).所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π3,k π+5π6(k ∈Z ).(2)由(1)知f (A )=sin ⎝ ⎛⎭⎪⎫2A -π6+2, 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-π6≤2x -π6≤5π6,由正弦函数图象可知,当2x -π6=π2时f (x )取得最大值3.所以2A -π6=π2,A =π3.由余弦定理,a 2=b 2+c 2-2bc cos A , 得12=b 2+16-2×4b ×12,所以b =2.所以S =12bc sin A =12×2×4sin 60°=2 3.B 组 能力提高11. (2017届江西师大附中、临川一中联考)在Rt△ABC 中,∠BCA =90°,CA =CB =1,P 为AB 边上的点,AP →=λAB →,若CP →·AB →≥PA →·PB →,则λ的最大值是( ) A.2+22B. 2-22C .1 D. 2答案 C解析 因为CP →=AP →-AC →=λAB →-AC →,PB →=AB →-AP →=AB →-λAB →,故由CP →·AB →≥PA →·PB →,可得2λ-1≥-2λ(1-λ),即2λ-1≥-2λ+2λ2, 也即λ2-2λ≤-12,解得1-22≤λ≤1+22,由于点P ∈AB ,所以1-22≤λ≤1, 故选C.12.(2017届荆、荆、襄、宜四地七校联考)如图,三个边长为2的等边三角形有一条边在同一直线上,边B 3C 3上有10个不同的点P 1,P 2,…,P 10, 记m i =AB →2·AP →i (i =1,2,…,10),则m 1+m 2+…+m 10的值为( )A .15 3B .45C .60 3D .180 答案 D解析 因为AB 2与B 3C 3垂直,设垂足为C ,所以AP i →在AB 2→上的投影为AC ,m i =AB 2→·AP i →=|AB 2→||AC →|=23×33=18,从而m 1+m 2+…+m 10的值为18×10=180.故选D.13.(2017届江西上饶一模)已知在Rt△AOB 中,AO =1,BO =2,如图,动点P 是在以O 点为圆心,OB 为半径的扇形内运动(含边界)且∠BOC =90°.设OP →=xOA →+yOB →,则x +y 的取值范围是__________. 答案 [-2,1]解析 由已知图形可知OP →,OA →的夹角∠AOP ∈[90°,180°],所以x ≤0,OP →,OB →的夹角∠BOP ∈[0°,90°],所以y ≥0,由平行四边形法则可知,当点P 沿着圆弧CB 由C 到B 移动时,负数x 逐渐增大,正数y 逐渐增大,所以当点P 在C 处时x +y 取得最小值,因为OC =2OA ,OC ⊥OB ,所以x =-2,y =0,所以x +y =-2,当点P 在点B 处时x +y 取得最大值,因为OA ⊥OB ,所以x =0,y =1, 所以x +y =1,所以x +y 的取值范围为[-2,1].14.(2017届云南曲靖一中月考)已知向量a =(-1,0),b =(cos α,sin α),c =(cos β,sin β). (1)求|a +c |的最大值;(2)若α=π4,且向量b 与向量(a +c )垂直,求cos β的值.解 (1)a +c =(cos β-1,sin β),|a +c |=(cos β-1)2+sin 2β=2-2cos β, 当cos β=-1时,|a +c |=2,|a +c |的最大值为2.(2)若α=π4,则b =⎝ ⎛⎭⎪⎫22,22,a +c =(cos β-1,sin β),∵向量b 与向量a +c 垂直, ∴22(cos β-1)+22sin β=0, ∴sin β+cos β=1,故sin 2β=(1-cos β)2=1-2cos β+cos 2β, cos 2β-cos β=0,∴cos β=0或1.当cos β=1时,sin β=0,a +c =(0,0)不符合条件, ∴cos β=0.。
2018年高考数学江苏专版三维二轮专题复习课件:专题一 三角 第1课时 三角函数(基础课)

[题组练透] 1.(2017·盐城期中)在△ABC 中,已知 sin A∶sin B∶sin C=3∶5∶7,
则此三角形的最大内角的大小为________. 解析:由正弦定理及 sin A∶sin B∶sin C=3∶5∶7 知,a∶b∶ c=3∶5∶7,可设 a=3k,b=5k,c=7k,且角 C 是最大内角, 由余弦定理知 cos C=a2+2ba2b-c2=9k22+×235kk×2-54k9k2=-12,因为 0°<C<180°,所以 C=120°. 答案:120°
1-sin2θ+π4=45.
tanθ-π4=tanθ+π4-π2=-csionsπ2π2--θθ++π4π4
=-csionsθθ++π4π4=-45×53=-43.
答案:-43
4.在△ABC 中,sin(C-A)=1,sin B=13,则 sin A=________.
解析:∵sin(C-A)=1,
∴C-A=90°,即 C=90°+A,∵sin B=13,
∴sin B=sin(A+C)=sin(90°+2A)=cos 2A=13,
即 1-2sin2A=13,∴sin A= 33.
答案:
3 3
[方法归纳]
三角恒等变换的“四大策略”
(1)常值代换:特别是“1”的代换,1=sin2θ+cos2θ=tan 45°等;
3.(2017·天津高考改编)设函数 f(x)=2sin(ωx+φ),x∈R,其中
ω>0,|φ|<π.若 f58π=2,f118π=0,且 f(x)的最小正周期大于 2π,则 ω=________,φ=________.
解析:∵f58π=2,f118π=0,∴118π-58π=T4(2m+1),m∈N, ∴T=2m3+π 1,m∈N,∵f(x)的最小正周期大于 2π,∴T=3π,
(新课标版)备战2018高考数学二轮复习专题1.3三角函数与平面向量教学案

π个单位长度,得到 12
C.把 C1 上各点的横坐标缩短到原来的 曲线 C2
1 倍,纵坐标不变,再把得到的 2
曲线向右平移 π个单位长度,得到 6
D.把 C1 上各点的横坐标缩短到原来的
1 倍,纵坐标不变,再把得到的曲线向左平移 2
π个单位长度,得到 12
曲线 C2
【答案】 D
2 .【 2017 课标 3,理 6】设函数 f ( x)= cos( x+ ) ,则下列结论错误的是 3
( 表中 k∈ Z)
y= sin x
y= cos x
图象
增区间
π
- + 2kπ 2
,
π 2 +2kπ
减区间
π 2+
2kπ,
3π 2 +2kπ
对称轴
π x= kπ+ 2
对称 中心
( kπ, 0)
2. 三角函数的两种常见变换
[ -π+ 2kπ, 2kπ]
[ 2kπ,π+ 2kπ]
x= kπ π 2 + kπ, 0
向量的坐标概念,掌握平面向量的坐标运算,掌握平面向量的数量积及其几何意义,了解用平面向量的数
量积可以处有关长度、角度和垂直问题,掌握向量垂直的条件
.
【命题规律】
(1) 高考对三角函数图象的考查主要包括三个方面:一是用五点法作图,二是图象变换,三是已知图象求解
析式或求解析式中的参数的值,常以选择题或填空题的形式考查.
15
.
17
( 2)由 cos B
15 得 sin B
8
1
,故 S△ABC = ac sin B
4 ac . 又 S△ ABC =2 ,则 ac
17
. 由余弦定理及
2018年高考数学二轮复习 专题03 三角函数与平面向量(讲)(含解析)理

专题三三角函数与平面向量考向一三角恒等变形【高考改编☆回顾基础】1.【同角三角函数、二倍角公式】【2017课标3改编】已知4sin cos3αα-=,则sin2α= .A. B.29-C.29D.79【答案】7 9 -【解析】()2sin cos17 sin22sin cos19ααααα--===--.2. 【三角函数的定义、诱导公式】【2017北京,文9】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sinα=13,则sinβ=_________.【答案】1 3【解析】3. 【三角函数的同角公式、两角和差的三角函数】【2017课标1,文15】已知π(0)2a∈,,tan α=2,则πcos()4α-=__________.【解析】【命题预测☆看准方向】三角部分主要考查三角函数的基本公式、三角恒等变换及解三角形等基本知识.三角函数与解三角形相结合或三角函数与平面向量相结合是考向的主要趋势,试题难度为中低档.三角恒等变换是高考的热点内容,主要考查利用各种三角函数进行求值与化简,其中降幂公式、辅助角公式是考查的重点,切化弦、角的变换是常考的三角变换思想.(1)预计2018年高考仍将在角的变换、角的范围方面对三角恒等变形进行考查,对两角和与差、二倍角公式将重点考查;(2)对三角恒等变换的考查力度可能会加大,对角的变换的考查,使问题更具有综合性,复习时需加强这方面的训练;(3)通过三角恒等变换,化简三角函数式,进一步研究函数的性质、解三角形等是常考题型.【典例分析☆提升能力】【例1】【2018河南省名校联盟第一次段考】已知圆:,点,,记射线与轴正半轴所夹的锐角为,将点绕圆心逆时针旋转角度得到点,则点的坐标为__________.【答案】【解析】设射线OB与轴正半轴的夹角为,有已知有,所以,且,C点坐标为 .P m,sinα=且α为第二象限.【趁热打铁】已知角α的张终边经过点(,(1)求m的值;3(2)若tan β=()()sin cos 3sin sin 2cos cos 3sin sin παβαβπαβαβ⎛⎫++ ⎪⎝⎭+--的值.【答案】(1)1m =-;(2【解析】(1)由三角函数的定义可得sin α==,解得1m =±,又α为第二象限角,所以1m =-。
江苏2018版高考数学复习突破二高考中的三角函数与平面向量问题教师用书理苏教版

高考专题突破二 高考中的三角函数与平面向量问题教师用书 理 苏教版1.(2016·江苏镇江中学质检)已知函数y =2sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为2,则ω的值是________. 答案 1解析 由题意得T 4>π4,即T >π,从而2πω>π,即0<ω<2,故函数在x =π4时取得最大值,即2sin(π4ω)=2,也即sin(π4ω)=22,又π4ω∈(0,π2),故π4ω=π4, 解得ω=1.2.在△ABC 中,AC ·cos A =3BC ·cos B ,且cos C =55,则A =________. 答案 45°解析 由题意及正弦定理得sin B cos A =3sin A cos B , ∴tan B =3tan A ,∴0°<A <90°,0°<B <90°,又cos C =55, 故sin C =255,∴tan C =2,而A +B +C =180°,∴tan(A +B )=-tan C =-2,即tan A +tan B1-tan A tan B =-2,将tan B =3tan A 代入,得4tan A1-3tan 2A=-2, ∴tan A =1或tan A =-13,而0°<A <90°,则A =45°.3.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则PA 2+PB 2PC 2=________.答案 10解析 将△ABC 的各边均赋予向量,则PA 2+PB 2PC 2=PA →2+PB →2PC→2=PC →+CA→2+PC →+CB →2PC→2=2PC →2+2PC →·CA →+2PC →·CB →+CA →2+CB →2PC→2=2|PC →|2+2PC→CA →+CB →+|AB →|2|PC →|2=2|PC →|2-8|PC →|2+|AB →|2|PC →|2=|AB →|2|PC →|2-6=42-6=10.4.(2016·天津改编)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连结DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为________. 答案 18解析 如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以AD →=12AB →,DF →=DE →+EF →=12AC →+14AC →=34AC →,所以AF →=12AB →+34AC →.又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.5.(2017·江苏如东中学月考)若函数f (x )=sin(ωπx -π4) (ω>0)在区间(-1,0)上有且仅有一条平行于y 轴的对称轴,则ω的最大值是________. 答案 54解析 令ωπx -π4=k π+π2,则得x =4k +34ω(k ∈Z ),∴当k =-1时,得y 轴左侧第1条对称轴为-14ω;当k =-2时,得y 轴左侧第2条对称轴为-54ω,因此-1<-14ω<0且-1≥-54ω,解得14<ω≤54,故ωmax =54.题型一 三角函数的图象和性质例1 已知函数f (x )=sin(ωx +π6)+sin(ωx -π6)-2cos 2ωx 2,x ∈R (其中ω>0).(1)求函数f (x )的值域;(2)若函数y =f (x )的图象与直线y =-1的两个相邻交点间的距离均为π2,求函数y =f (x )的单调增区间. 解 (1)f (x )=32sin ωx +12cos ωx +32sin ωx -12cos ωx -(cos ωx +1) =2(32sin ωx -12cos ωx )-1=2sin(ωx -π6)-1. 由-1≤sin(ωx -π6)≤1,得-3≤2sin(ωx -π6)-1≤1,所以函数f (x )的值域为[-3,1].(2)由题设条件及三角函数图象和性质可知,y =f (x )的周期为π,所以2πω=π,即ω=2.所以f (x )=2sin(2x -π6)-1,再由2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ).所以函数y =f (x )的单调增区间为 [k π-π6,k π+π3](k ∈Z ).思维升华 三角函数的图象与性质是高考考查的重点,通常先将三角函数化为y =A sin(ωx +φ)+k 的形式,然后将t =ωx +φ视为一个整体,结合y =sin t 的图象求解.已知函数f (x )=5sin x cos x -53cos 2x +523(其中x ∈R ),求:(1)函数f (x )的最小正周期; (2)函数f (x )的单调区间;(3)函数f (x )图象的对称轴和对称中心.解 (1)因为f (x )=52sin 2x -532(1+cos 2x )+52 3=5(12sin 2x -32cos 2x )=5sin(2x -π3),所以函数的周期T =2π2=π.(2)由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以函数f (x )的单调增区间为[k π-π12,k π+5π12](k ∈Z ).由2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),得k π+5π12≤x ≤k π+11π12(k ∈Z ),所以函数f (x )的单调减区间为[k π+5π12,k π+11π12](k ∈Z ).(3)由2x -π3=k π+π2(k ∈Z ),得x =k π2+5π12(k ∈Z ),所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z ). 由2x -π3=k π(k ∈Z ),得x =k π2+π6(k ∈Z ),所以函数f (x )的对称中心为(k π2+π6,0)(k ∈Z ). 题型二 解三角形例2 (2016·苏北四市期中)在△ABC 中,已知角A ,B ,C 所对的边分别为a ,b ,c ,且tan B =2,tan C =3. (1)求角A 的大小; (2)若c =3,求b 的长.解 (1)因为tan B =2,tan C =3,A +B +C =π, 所以tan A =tan[π-(B +C )]=-tan(B +C ) =-tan B +tan C 1-tan B tan C =-2+31-2×3=1,又A ∈(0,π),所以A =π4.(2)因为tan B =sin B cos B =2,且sin 2B +cos 2B =1,又B ∈(0,π),所以sin B =255,同理可得,sin C =31010.由正弦定理得b =c sin Bsin C =3×25531010=2 2.思维升华 根据三角形中的已知条件,选择正弦定理或余弦定理求解;在做有关角的范围问题时,要注意挖掘题目中隐含的条件,正确对结果进行取舍.(2016·无锡期中)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知b sinA =3a cosB .(1)求角B 的值; (2)若cos A sin C =3-14,求角A 的值. 解 (1)因为a sin A =bsin B ,所以b sin A =a sin B ,又b sin A =3a cos B ,所以3a cos B =a sin B , 即tan B =3,所以角B =π3.(2)因为cos A sin C =3-14, 所以cos A sin(2π3-A )=3-14,cos A (32cos A +12sin A )=32cos 2A +12sin A ·cos A =32·1+cos 2A 2+14sin 2A =3-14, 所以sin(2A +π3)=-12,因为0<A <2π3,所以2A +π3∈(π3,5π3),所以2A +π3=7π6,A =5π12.题型三 三角函数和平面向量的综合应用例3 已知向量a =⎝ ⎛⎭⎪⎫sin x ,34,b =(cos x ,-1).(1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求f (x )+4cos ⎝⎛⎭⎪⎫2A +π6⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π3的取值范围.解 (1)因为a ∥b , 所以34cos x +sin x =0,所以tan x =-34.cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. (2)f (x )=2(a +b )·b=2(sin x +cos x ,-14)·(cos x ,-1)=sin 2x +cos 2x +32=2sin ⎝ ⎛⎭⎪⎫2x +π4+32. 由正弦定理a sin A =bsin B,得sin A =a sin Bb=3×632=22, 所以A =π4或A =3π4.因为b >a ,所以A =π4.所以f (x )+4cos ⎝ ⎛⎭⎪⎫2A +π6=2sin ⎝ ⎛⎭⎪⎫2x +π4-12, 因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以2x +π4∈⎣⎢⎡⎦⎥⎤π4,11π12,所以32-1≤f (x )+4cos ⎝⎛⎭⎪⎫2A +π6≤2-12.所以f (x )+4cos(2A +π6)(x ∈[0,π3])的取值范围是⎣⎢⎡⎦⎥⎤32-1,2-12.思维升华 (1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC →=2,cosB =13,b =3,求:(1)a 和c 的值; (2)cos(B -C )的值.解 (1)由BA →·BC →=2,得c ·a cos B =2. 又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B . 又b =3,所以a 2+c 2=9+2×2=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得a =2,c =3或a =3,c =2.因为a >c ,所以a =3,c =2. (2)在△ABC 中,sin B =1-cos 2B =1-132=223,由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角, 因此cos C =1-sin 2C =1-4292=79. 于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327.1.已知函数f (x )=A sin(x +π4),x ∈R ,且f (5π12)=32. (1)求A 的值;(2)若f (θ)+f (-θ)=32,θ∈(0,π2),求f (3π4-θ).解 (1)∵f (5π12)=A sin(5π12+π4)=A sin 2π3=32A =32,∴A = 3. (2)由(1)知f (x )=3sin(x +π4), 故f (θ)+f (-θ)=3sin(θ+π4)+3sin(-θ+π4)=32,∴3[22(sin θ+cos θ)+22(cos θ-sin θ)]=32, ∴6cos θ=32,∴cos θ=64.又θ∈(0,π2),∴sin θ=1-cos 2θ=104,∴f (3π4-θ)=3sin(π-θ)=3sin θ=304.2.(2016·山东)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝ ⎛⎭⎪⎫π6的值. 解 (1)f (x )=23sin(π-x )sin x -(sin x -cos x )2=23sin 2x -(1-2sin x cos x ) =3(1-cos 2x )+sin 2x -1 =sin 2x -3cos 2x +3-1 =2sin ⎝⎛⎭⎪⎫2x -π3+3-1.由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ).所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )⎝ ⎛⎭⎪⎫或⎝ ⎛⎭⎪⎫k π-π12,k π+5π12k ∈Z .(2)由(1)知f (x )=2sin ⎝⎛⎭⎪⎫2x -π3+3-1,把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变).得到y =2sin ⎝⎛⎭⎪⎫x -π3+3-1的图象.再把得到的图象向左平移π3个单位,得到y =2sin x +3-1的图象, 即g (x )=2sin x +3-1.所以g ⎝ ⎛⎭⎪⎫π6=2sin π6+3-1= 3. 3.(2016·江苏南京学情调研)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边的锐角α和钝角β的终边分别与单位圆交于点A ,B .若点A 的横坐标是31010,点B 的纵坐标是255.(1)求cos(α-β)的值; (2)求α+β的值.解 (1)因为锐角α的终边与单位圆交于点A ,且点A 的横坐标是31010,所以,由任意角的三角函数的定义可知,cos α=31010,从而sin α=1-cos 2α=1010. 因为钝角β的终边与单位圆交于点B ,且点B 的纵坐标是255,所以sin β=255,从而cos β=-1-sin 2β=-55.cos(α-β)=cos αcos β+sin αsin β =31010×(-55)+1010×255=-210. (2)sin(α+β)=sin αcos β+cos αsin β =1010×(-55)+31010×255=22. 因为α为锐角,β为钝角,故α+β∈(π2,3π2),所以α+β=3π4.4.(2016·江苏仪征中学期初测试)设函数f (x )=A sin(ωx +φ) (A >0,ω>0,-π2<φ<π2,x ∈R )的部分图象如图所示.(1)求函数y =f (x )的解析式;(2)当x ∈[-π2,π2]时,求f (x )的取值范围.解 (1)由图象知,A =2,又T 4=5π6-π3=π2,ω>0, 所以T =2π=2πω,得ω=1.所以f (x )=2sin(x +φ),将点(π3,2)代入,得π3+φ=π2+2k π(k ∈Z ),即φ=π6+2k π(k ∈Z ), 又-π2<φ<π2,所以φ=π6. 所以f (x )=2sin(x +π6). (2)当x ∈[-π2,π2]时,x +π6∈[-π3,2π3], 所以sin(x +π6)∈[-32,1],即f (x )∈[-3,2]. 5.已知向量a =(k sin x 3,cos 2x 3),b =(cos x3,-k ),实数k 为大于零的常数,函数f (x )=a·b ,x ∈R ,且函数f (x )的最大值为2-12. (1)求k 的值; (2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若π2<A <π,f (A )=0,且a =210,求AB →·AC →的最小值.解 (1)由题意,知f (x )=a·b=(k sin x 3,cos 2x 3)·(cos x 3,-k ) =k sin x 3cos x 3-k cos 2x 3=12k sin 2x 3-k ·1+cos 2x 32 =k 2(sin 2x 3-cos 2x 3)-k 2=2k 2(22sin 2x 3-22cos 2x 3)-k 2=2k 2sin(2x 3-π4)-k 2. 因为x ∈R ,所以f (x )的最大值为2-k 2=2-12,则k =1. (2)由(1)知,f (x )=22sin(2x 3-π4)-12,所以f (A )=22sin(2A 3-π4)-12=0, 化简得sin(2A 3-π4)=22, 因为π2<A <π,所以π12<2A 3-π4<5π12, 则2A 3-π4=π4,解得A =3π4. 因为cos A =-22=b 2+c 2-a 22bc =b 2+c 2-402bc, 所以b 2+c 2+2bc =40,则b 2+c 2+2bc =40≥2bc +2bc ,所以bc ≤402+2=20(2-2). 则AB →·AC →=|AB →||AC →|cos 3π4=-22bc ≥20(1-2), 所以AB →·AC →的最小值为20(1-2).。
2018版高考数学文江苏专用大二轮总复习与增分策略配套课件:专题三 三角函数、解三角形与平面向量 第

(2)当 x∈[0,π6]时,f(x)的最大值为 2,求 a 的值,并求出 y=f(x)(x∈R)的
对称轴方程. 解 当 x∈[0,π6]时⇒π4≤2x+π4≤71π2, 当 2x+π4=π2,即 x=π8时,sin(2x+π4)=1.
所以 f(x)max= 2+1+a=2⇒a=1- 2.
16 A 的值为__3___3___. 押题依据 由三角函数的图象求解析式是高考 的热点,本题结合平面几何知识求A,考查了 数形结合思想.
押题依据(x)=2asin ωx·cos ωx+2 3cos2ωx- 3 (a>0,ω>0)的最大值为 2,x1,x2 是集合 M={x∈R|f(x)=0}中的任意两个元素,且|x1-x2|的最小 值为 6. (1)求函数f(x)的解析式及其图象的对称轴方程; (2)将函数y=f(x)的图象向右平移2个单位后得到函数 y=g(x)的图象,当x∈(-1,2]时,求函数h(x)=f(x)·g(x)的值域.
押题依据
解析答案
返回
本课结束
更多精彩内容请登录:
专题三 三角函数、解三角形与平面向量
第1讲 三角函数的图象与性质
栏目索引
1 高考真题体验 2 热点分类突破 3 高考押题精练
高考真题体验
1 234
1.(2016·四川改编)为了得到函数 y=sin2x-π3的图象,只需把函数 y= π
sin 2x 的图象上所有的点向__右___平行移动__6__个单位长度. 解析 由题意可知,y=sin2x-π3=sin2x-π6,则只需把 y=sin 2x 的图象向右平移π6个单位.
思维升华
解析答案
跟踪演练 2 (1)已知函数 f(x)=sin x(x∈[0,π])和函数 g(x)=12tan x 的图象 交于 A,B,C 三点,则△ABC 的面积为___43_π____. 解析 由题意得 sin x=12tan x⇒sin x=0 或 cos x=12, 因为 x∈[0,π],所以 x=0,x=π,x=π3,三点为(0,0),(π,0),(π3, 23), 因此△ABC 的面积为12×π× 23= 43π.
2018届一轮复习苏教版 三角函数与平面向量 教案

热点探究课(三) 三角函数与平面向量[命题解读] 从近五年江苏卷高考试题来看,解答题第1题主要考查三角函数与平面向量的问题.其命题方式主要体现在以下三个层面:一是平面向量与恒等变换的交汇问题;二是恒等变换与解三角形;三是平面向量与解三角形的综合问题.中档难度,在解题过程中应挖掘题目的隐含条件,注意公式的内在联系,灵活地正用、逆用、变形应用公式,并注重转化思想与数形结合思想的应用.热点1 平面向量与恒等变换的交汇问题(答题模板)以平面向量为载体,使平面向量与恒等变换交汇命题,是高考的一个热点,主要考查平面向量的坐标运算、平面向量数量积及三角恒等变换的有关知识,求解的关键是恰当运用平面向量的运算法则建立三角函数的等量关系.(本小题满分14分)(2013·江苏高考)已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.[规范解答] (1)证明:由题意得|a -b |2=2,2分即(a -b )2=a 2-2a ·b +b 2=2.又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b .6分(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧ cos α+cos β=0,sin α+sin β=1,8分 由此得,cos α=cos(π-β),由0<β<π,得0<π-β<π.10分又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,12分而α>β,所以α=5π6,β=π6.14分[答题模板]求平面向量与恒等变换交汇问题的一般步骤:第一步:(转化)将向量间的关系式化成三角函数式;第二步:(化简)借助三角恒等变换公式化简三角函数式;第三步:(求值)求三角函数式的值或求角或分析三角函数式的性质.第四步:(结论)明确表述结论.[温馨提示] 1.在第(2)问的解法中,应用了方程的消元思想,其中诱导公式的灵活应用,起到了解题的关键作用.2.要关注题设条件中角的范围,其在解题中起到限定作用,即α=π-β.[对点训练1]已知向量a=(cos α,sin α),b=(cos β,sin β),|a-b|=255.(1)求cos (α-β)的值;(2)若0<α<π2,-π2<β<0,且sin β=-513,求sin α的值. 【导学号:62172176】[解](1)∵a=(cos α,sin α),b=(cos β,sin β),∴a2=1,b2=1,a·b=cos αcos β+sin αsin β=cos(α-β).又|a-b|=25 5,∴|a-b|2=a2-2a·b+b2=4 5.即2-2a·b=45,∴a·b=35.∴cos(α-β)=35.6分(2)∵0<α<π2,-π2<β<0,∴0<-β<π2,0<α-β<π.∴sin(α-β)=1-cos 2(α-β)=1-925=45. ∴cos β=1-sin 2β=1-25169=1213.10分∴sin α=sin [(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=45×1213+35×⎝ ⎛⎭⎪⎫-513=3365.14分 热点2 三角恒等变换与解三角形的综合问题以三角形为载体,三角恒等变换与解三角形交汇命题,是近几年高考试题的一大亮点,主要考查和、差、倍角公式以及正、余弦定理的综合应用,求解的关键是根据题目提供的信息,恰当地实施边角互化.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos B -2cos A 2a -b=cos C c . (1)求a b 的值;(2)若角A 是钝角,且c =3,求b 的取值范围.[解] (1)由题意及正弦定理得sin C cos B -2sin C cos A =2sin A cos C -sin B cos C ,3分∴sin C cos B +sin B cos C =2(sin C cos A +sin A cos C ).∴sin(B +C )=2sin(A +C ).∵A +B +C =π,∴sin A =2sin B ,∴a b =2.6分(2)由余弦定理得cos A =b 2+9-a 22b ·3=b 2+9-4b 26b =9-3b 26b <0,∴b > 3. ①10分∵b +c >a ,即b +3>2b ,∴b <3, ②由①②得b 的范围是(3,3).14分[规律方法] 1.以三角形为载体,实质考查三角形中的边角转化,求解的关键是抓住边角间的关系,恰当选择正、余弦定理.2.解三角形常与三角变换交汇在一起(以解三角形的某一结论作为条件),此时应首先确定三角形的边角关系,然后灵活运用三角函数的和、差、倍角公式化简转化.[对点训练2] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝ ⎛⎭⎪⎫π4+A =2. (1)求sin 2A sin 2A +cos 2A的值; (2)若B =π4,a =3,求△ABC 的面积. [解] (1)由tan ⎝ ⎛⎭⎪⎫π4+A =2,得tan A =13, 所以sin 2Asin 2A +cos 2A =2tan A 2tan A +1=25.6分 (2)由tan A =13,A ∈(0,π),得sin A =1010,cos A =31010.8分由a =3,B =π4及正弦定理a sin A =b sin B ,得b =3 5.10分由sin C =sin(A +B )=sin ⎝ ⎛⎭⎪⎫A +π4,得sin C =255. 设△ABC 的面积为S ,则S =12ab sin C =9.14分热点3 平面向量、恒等变换与解三角形的综合应用以平面向量的运算为切入点,融恒等变换与解三角形于一体,综合考查三者间知识的内在联系,求解的关键是借助知识间的内联,实现问题的求解.(2017·启东中学高三第一次月考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos C =310.(1)若CB →·CA →=92,求c 的最小值;(2)设向量x =(2sin B ,-3),y =⎝ ⎛⎭⎪⎫cos 2B ,1-2sin 2 B 2,且x ∥y ,求sin(B -A )的值. 【导学号:62172177】[解] (1)∵CB →·CA →=92,∴ab cos C =92,∴ab =15.∴c 2=a 2+b 2-2ab cos C ≥2ab -2ab ·310=21(当且仅当a =b 时取等号).∵c >0,∴c ≥21,∴c 的最小值为21.6分(2)∵x ∥y ,∴2sin B ⎝ ⎛⎭⎪⎫1-2sin 2B 2+3cos 2B =0, 2sin B cos B +3cos 2B =0,即sin 2B +3cos 2B =0,∴tan 2B =-3,∴2B =2π3或5π3,∴B =π3或5π6.∵cos C =310<32,∴C >π6,∴B =5π6(舍去),∴B =π3.∴sin(B -A )=sin [B -(π-B -C )]=sin ⎝ ⎛⎭⎪⎫C -π3=sin C cos π3-cos C sin π3 =9110×12-310×32=91-3320.14分 [规律方法] 从本题可以看出,向量在此类问题中起穿针引线的作用,目的是建立三角恒等变换或三角形中的边与角的关系,最终的问题还是化简、求值或证明问题.[对点训练3]在△ABC中,已知AB→·AC→=3BA→·BC→.(1)求证:tan B=3tan A;(2)若cos C=55,求A的值.[解](1)证明:因为AB→·AC→=3BA→·BC→,所以AB·AC·cos A=3BA·BC·cos B,即AC·cos A=3BC·cos B.由正弦定理知ACsin B=BCsin A,从而sin B cos A=3sin A cos B.又因为0<A+B<π,所以cos A>0,cos B>0,所以tan B=3tan A.6分(2)因为cos C=55,0<C<π,所以sin C=1-cos2C=255,从而tan C=2,于是tan[π-(A+B)]=2,即tan(A+B)=-2,亦即tan A+tan B1-tan A tan B=-2.由(1)得4tan A1-3tan2A=-2,解得tan A=1或tan A=-1 3.因为cos A>0,所以tan A=1,所以A=π4.14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲 平面向量高考定位 平面向量这部分内容在高考中的要求大部分都为B 级,只有平面向量的应用为A 级要求,平面向量的数量积为C 级要求.主要考查:(1)平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考查,填空题难度中档;(2)平面向量的数量积,以填空题为主,难度低;(3)向量作为工具,还常与三角函数、解三角形、不等式、解析几何结合,以解答题形式出现.真 题 感 悟1.(2015·江苏卷)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.解析 ∵a =(2,1),b =(1,-2),∴m a +n b =(2m +n ,m -2n )=(9,-8),即⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =2-5=-3.答案 -32.(2017·江苏卷)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),则m +n =________.解析 如图,设OD →=mOA →,DC →=nOB →,则在△ODC 中有OD =m ,DC =n ,OC =2,∠OCD =45°,由tan α=7,得cos α=210, 又由余弦定理知⎩⎨⎧m 2=n 2+(2)2-22n cos 45°,n 2=m 2+(2)2-22m cos α,即⎩⎪⎨⎪⎧m 2-n 2=2-2n , ①n 2-m 2=2-25m , ② ①+②得4-2n -25m =0,即m =10-5n ,代入①得12n 2-49n +49=0,解得n =74或n =73,当n =73时,m =10-5×73=-53<0(不合题意,舍去),当n =74时,m =10-5×74=54,故m +n=54+74=3. 答案 33.(2016·江苏卷)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.解析 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4. 又∵D 为BC 中点,E ,F 为AD 的两个三等分点, 则AD →=12(AB →+AC →)=12a +12b ,AF →=23AD →=13a +13b , AE →=13AD →=16a +16b ,BF →=BA →+AF →=-a +13a +13b =-23a +13b ,CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝ ⎛⎭⎪⎫-23a +13b ·⎝ ⎛⎭⎪⎫13a -23b =-29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292.又BE →=BA →+AE →=-a +16a +16b =-56a +16b ,CE →=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝ ⎛⎭⎪⎫-56a +16b ·⎝ ⎛⎭⎪⎫16a -56b=-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.答案 784.(2017·江苏卷)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解 (1)∵a ∥b ,∴3sin x =-3cos x ,∴3sin x +3cos x =0,即sin ⎝⎛⎭⎪⎫x +π6=0.∵0≤x ≤π,∴π6≤x +π6≤76π,∴x +π6=π,∴x =5π6.(2)f (x )=a·b =3cos x -3sin x =-23sin ⎝⎛⎭⎪⎫x -π3.∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,∴-32≤sin ⎝⎛⎭⎪⎫x -π3≤1,∴-23≤f (x )≤3,当x -π3=-π3,即x =0时,f (x )取得最大值3;当x -π3=π2,即x =5π6时,f (x )取得最小值-2 3.考 点 整 合1.平面向量的两个重要定理(1)向量共线定理:向量a (a ≠0)与b 共线当且仅当存在唯一实数λ,使b =λa . (2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底. 2.平面向量的两个充要条件若两个非零向量a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. 3.平面向量的三个性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.4.平面向量的三个锦囊(1)向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是OP →=λ1OA →+λ2OB →(其中λ1+λ2=1).(2)三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量OP →与向量OA →,OB →的关系是OP →=12(OA →+OB →). (3)三角形重心坐标的求法:G 为△ABC 的重心⇔GA →+GB →+GC →=0⇔G ⎝ ⎛⎭⎪⎫x A +x B +x C 3,y A +y B +y C 3.热点一 平面向量的有关运算 [命题角度1] 平面向量的线性运算【例1-1】 (1)(2017·天津卷)在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.(2)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.解析 (1)AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=⎝ ⎛⎭⎪⎫13AB →+23AC →·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.(2)法一 如图,AE →=AB →+BE →=AB →+13BC →,AF →=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE →·AF →=⎝⎛⎭⎪⎫AB →+13BC →·⎝ ⎛⎭⎪⎫BC →+1λAB →=⎝ ⎛⎭⎪⎫1+13λAB →·BC →+1λAB →2+13BC→2=⎝⎛⎭⎪⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2. 法二 建立如图所示平面直角坐标系.由题意知:A (0,1),C (0,-1),B (-3,0),D (3,0).由BC =3BE ,DC =λDF , 可求点E ,F 的坐标分别为E ⎝ ⎛⎭⎪⎫-233,-13,F ⎝ ⎛⎭⎪⎫3⎝ ⎛⎭⎪⎫1-1λ,-1λ, ∴AE →·AF →=⎝ ⎛⎭⎪⎫-233,-43·⎝ ⎛⎭⎪⎫3⎝ ⎛⎭⎪⎫1-1λ,-1λ-1=-2⎝ ⎛⎭⎪⎫1-1λ+43⎝ ⎛⎭⎪⎫1+1λ=1,解得λ=2. 答案 (1)311(2)2探究提高 用平面向量基本定理解决此类问题的关键是先选择一组基底,并运用平面向量的基本定理将条件和结论表示成基底的线性组合,再通过对比已知等式求解. [命题角度2] 平面向量的坐标运算【例1-2】 (1)(2017·江苏冲刺卷)已知向量a =(2,1),b =(0,-1).若(a +λb )⊥a ,则实数λ=________.(2)(2016·全国Ⅲ卷改编)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =________.解析 (1)由题意可得a +λb =(2,1-λ),则(a +λb )·a =(2,1-λ)·(2,1)=5-λ=0,解得λ=5.(2)|BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →|·|BC →|=32,则∠ABC =30°. 答案 (1)5 (2)30°探究提高 若向量以坐标形式呈现时,则用向量的坐标形式运算;若向量不是以坐标形式呈现,则可建系将之转化为坐标形式,再用向量的坐标运算求解更简捷. [命题角度3] 平面向量的数量积【例1-3】 (1)(2017·全国Ⅰ卷)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.(2)(2017·佛山二模)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.解析 (1)|a +2b |2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →, ∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918. 法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系, 则B (2,0),C ⎝ ⎛⎭⎪⎫32,32,D ⎝ ⎛⎭⎪⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝ ⎛⎭⎪⎫2-12λ,32λ,F ⎝ ⎛⎭⎪⎫12+19λ,32,λ>0,所以AE →·AF →=⎝ ⎛⎭⎪⎫2-12λ⎝ ⎛⎭⎪⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0,当且仅当29λ=12λ,即λ=23时取等号,故AE →·AF →的最小值为2918.答案 (1)2 3 (2)2918探究提高 (1)①数量积的计算通常有三种方法:数量积的定义、坐标运算、数量积的几何意义,特别要注意向量坐标法的运用;②可以利用数量积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算;③在用|a |=a 2求向量的模时,一定要把求出的a 2进行开方.(2)求解几何图形中的数量积问题,通过对向量的分解转化成已知向量的数量积计算是基本方法,但是如果建立合理的平面直角坐标系,把数量积的计算转化成坐标运算也是一种较为简捷的方法.【训练1】 (1)(2017·全国Ⅱ卷改编)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是________.(2)(2017·南京、盐城模拟)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.解析 (1)如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0).设P (x ,y ),则PA →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ). 所以PA →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝ ⎛⎭⎪⎫y -322-32.当x =0,y =32时,PA →·(PB →+PC →)取得最小值为-32. (2)法一 以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系(以射线AB ,AD 的方向分别为x 轴、y 轴的正方向),则B (2,0),E (2,1).设F (x ,2),则AF →=(x ,2),又AB →=(2,0),∴AB →·AF →=2x =2,∴x =1,∴F (1,2),∴AE →·BF →= 2. 法二 ∵AB →·AF →=|AB →||AF →|cos ∠BAF =2,|AB →|=2,∴|AF →|cos ∠BAF =1, 即|DF →|=1,∴|CF →|=2-1,∴AE →·BF →=(AB →+BE →)·(BC →+CF →)=AB →·BC →+AB →·CF →+BE →·BC →+BE →·CF →=AB →·CF →+BE →·BC →=2×(2-1)×(-1)+1×2×1= 2. 答案 (1)-32(2) 2热点二 平面向量与三角的交汇【例2】 (2017·南京模拟)已知向量a =(2cos α,sin 2α),b =(2sin α,t ),α∈⎝⎛⎭⎪⎫0,π2,t 为实数.(1)若a -b =⎝ ⎛⎭⎪⎫25,0,求t 的值;(2)若t =1,且a ·b =1,求tan ⎝⎛⎭⎪⎫2α+π4的值. 解 (1)因为向量a =(2cos α,sin 2α),b =(2sin α,t ),且a -b =⎝ ⎛⎭⎪⎫25,0,所以cos α-sin α=15,t =sin 2α.由cos α-sin α=15,得(cos α-sin α)2=125,即1-2sin αcos α=125,从而2sin αcos α=2425.所以(cos α+sin α)2=1+2sin αcos α=4925.因为α∈⎝⎛⎭⎪⎫0,π2,所以cos α+sin α=75,所以sin α=(cos α+sin α)-(cos α-sin α)2=35,所以t =sin 2α=925.(2)因为t =1,且a ·b =1,所以4sin αcos α+sin 2α=1,即4sin αcos α=cos 2α. 因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α≠0,从而tan α=14,所以tan 2α=2tan α1-tan 2α=815, 所以tan ⎝⎛⎭⎪⎫2α+π4=tan 2α+tan π41-tan 2α·tan π4=815+11-815=237.探究提高 三角函数和平面向量是高中数学的两个重要分支,内容繁杂,且平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,都会出现交汇问题中的难点,对于此类问题的解决方法就是利用向量的知识将条件“脱去外衣”转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.【训练2】 (2017·苏北四市模拟)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量p =(cos B +sin B ,2sin B -2),q =(sin B -cos B ,1+sin B ),且p ⊥q .(1)求B 的大小;(2)若b =2,△ABC 的面积为3,求a ,c . 解 (1)因为p ⊥q ,所以p ·q =(cos B +sin B )(sin B -cos B )+(2sin B -2)·(1+sin B )=0, 即sin 2B -cos 2B +2sin 2B -2=0,即sin 2B =34,又角B 是锐角三角形ABC 的内角, 所以sin B =32,所以B =60°. (2)由(1)得B =60°,又△ABC 的面积为3, 所以S △ABC =12ac sin B =3,即ac =4.①由余弦定理得b 2=a 2+c 2-2ac cos B ,又b =2, 所以a 2+c 2=8,② 联立①②,解得a =c =2.1.平面向量的数量积的运算有两种形式:(1)依据模和夹角计算,要注意确定这两个向量的夹角,如夹角不易求或者不可求,可通过选择易求夹角和模的基底进行转化;(2)利用坐标来计算,向量的平行和垂直都可以转化为坐标满足的等式,从而应用方程思想解决问题,化形为数,使向量问题数量化.2.根据平行四边形法则,对于非零向量a ,b ,当|a +b |=|a -b |时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|a +b |=|a -b |等价于向量a ,b 互相垂直.3.两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线.一、填空题1.(2017·山东卷)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析 cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3-λ3+11+λ2=12,解之得λ=33. 答案332.(2015·北京卷)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =__________;y =__________. 解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →) =12AB →-16AC →,∴x =12,y =-16. 答案 12 -163.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.解析 由AO →=12(AB →+AC →),可得O 为BC 的中点,故BC 为圆O 的直径,所以AB →与AC →的夹角为90°. 答案 90°4.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________(填重心、垂心、内心或外心).解析 由已知,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,设△ABC 中BC 边的中点为D ,知AB →+AC →=2AD →,所以点P 的轨迹必过△ABC 的重心.故填重心. 答案 重心5.(2017·苏、锡、常、镇调研)在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP →=AB →+λAC →,且BP →·CP →=1,则实数λ的值为________.解析 由AB =1,AC =2,∠A =60°,得BC 2=AB 2+AC 2-2AB ·AC ·cos A =3,即BC = 3.又AC 2=AB 2+BC 2,所以∠B =π2.以点A 为坐标原点,AB →,BC →的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,则B (1,0),C (1,3).由AP →=AB →+λAC →,得P (1+λ,3λ),则BP →·CP →=(λ,3λ)·(λ,3λ-3)=λ2+3λ(λ-1)=1,即4λ2-3λ-1=0,解得λ=-14或λ=1. 答案 -14或1 6.(2014·江苏卷)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.解析 由题图可得,AP →=AD →+DP →=AD →+14AB →, BP →=BC →+CP →=BC →+34CD →=AD →-34AB →. ∴AP →·BP →=⎝⎛⎭⎪⎫AD →+14AB →·⎝ ⎛⎭⎪⎫AD →-34AB → =AD →2-12AD →·AB →-316AB →2=2, 故有2=25-12AD →·AB →-316×64,解得AD →·AB →=22. 答案 227.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________(写出所有正确结论的编号).①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →.解析 ∵AB →2=4|a |2=4,∴|a |=1,故①正确;∵BC →=AC →-AB →=(2a +b )-2a =b ,又△ABC 为等边三角形,∴|BC →|=|b |=2,故②错误;∵b =AC →-AB →,∴a·b =12AB →·(AC →-AB →)=12×2×2×cos 60°-12×2×2=-1≠0,故③错误; ∵BC →=b ,故④正确;∵(AB →+AC →)·(AC →-AB →)=AC →2-AB →2=4-4=0,∴(4a +b )⊥BC →,故⑤正确.答案 ①④⑤8.如图,在△ABC 中,C =90°,且AC =BC =3,点M 满足BM →=2MA →,则CM →·CB→=________.解析 法一 如图,建立平面直角坐标系.由题意知:A (3,0),B (0,3),设M (x ,y ),由BM →=2MA →,得⎩⎪⎨⎪⎧x =2(3-x ),y -3=-2y ,解得⎩⎪⎨⎪⎧x =2,y =1, 即M 点坐标为(2,1),所以CM →·CB →=(2,1)·(0,3)=3.法二 CM →·CB →=(CB →+BM →)·CB →=CB →2+CB →·⎝ ⎛⎭⎪⎫23BA →=CB →2+23CB →·(CA →-CB →) =13CB →2=3. 答案 3二、解答题9.已知向量a =⎝ ⎛⎭⎪⎫cos 3x 2,sin 3x 2,b =⎝ ⎛⎭⎪⎫cos x 2,-sin x 2,且x ∈⎣⎢⎡⎦⎥⎤0,π2. (1)求a ·b 及|a +b |;(2)若f (x )=a ·b -2λ|a +b |的最小值是-32,求λ的值. 解 (1)a ·b =cos 3x 2cos x 2-sin 3x 2sin x 2=cos 2x , |a +b |=⎝ ⎛⎭⎪⎫cos 3x 2+cos x 22+⎝ ⎛⎭⎪⎫sin 3x 2-sin x 22 =2+2cos 2x =2cos 2x ,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ≥0, 所以|a +b |=2cos x .(2)由(1),可得f (x )=a ·b -2λ|a +b |=cos 2x -4λcos x ,即f (x )=2(cos x -λ)2-1-2λ2. 因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以0≤cos x ≤1. ①当λ<0时,当且仅当cos x =0时,f (x )取得最小值-1,这与已知矛盾;②当0≤λ≤1时,当且仅当cos x =λ时,f (x )取得最小值-1-2λ2,由已知得-1-2λ2=-32,解得λ=12; ③当λ>1时,当且仅当cos x =1时,f (x )取得最小值1-4λ,由已知得1-4λ=-32,解得λ=58,这与λ>1相矛盾.综上所述λ=12. 10.(2017·镇江模拟)已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎪⎫0,π2,且m ⊥n .(1)求cos 2α的值;(2)若sin(α-β)=1010,且β∈⎝⎛⎭⎪⎫0,π2,求角β的值. 解 (1)由m ⊥n ,得2cos α-sin α=0,sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1,又α∈⎝⎛⎭⎪⎫0,π2,则cos α=55, 故sin α=255,则cos 2α=cos 2α-sin 2α=-35. (2)由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,得α-β∈⎝ ⎛⎭⎪⎫-π2,π2. 因为sin(α-β)=1010,所以cos(α-β)=31010, 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =255×31010-55×1010=22. 因为β∈⎝⎛⎭⎪⎫0,π2,所以β=π4. 11.(2017·南师附中调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a ,3b )与n =(cos A ,sin B )平行.(1)求A ;(2)若a =7,b =2,求△ABC 的面积.解 (1)因为m ∥n ,所以a sin B -3b cos A =0,由正弦定理,得sin A sin B -3sin B cos A =0,又sin B ≠0,从而tan A =3,由于0<A <π,所以A =π3. (2)法一 由余弦定理,得a 2=b 2+c 2-2bc cos A ,而a =7,b =2,A =π3,得7=4+c 2-2c , 即c 2-2c -3=0,因为c >0,所以c =3,故△ABC 的面积为S =12bc sin A =332. 法二 由正弦定理,得7sin π3=2sin B , 从而sin B =217,又由a >b ,知A >B , 所以cos B =277,故sin C =sin(A +B )=sin ⎝⎛⎭⎪⎫B +π3 =sin B cos π3+cos B sin π3=32114. 所以△ABC 的面积为S =12ab sin C =332.。