高一数学人教版必修1课件:函数的表示方法

合集下载

人教A版必修第一册3.1.2函数的表示法PPT课件

人教A版必修第一册3.1.2函数的表示法PPT课件

课本P72,习题3.1 3 , 7 P101 7
例如,当x=2时, M(2)=max{f(2),g(2)}=max{3,9}=9,请分别用图 像法和解析法表示M(x)
P73页13.函数f (x) [x]的函数值表示不超过x的最大整数, 例如,[3.5] 4,[2.1] 2.当x (2.5,3]时, 写出函数f (x)的解析式,并画出函数的图像。
2.求抽象函数的定义域的方法:
已知f(x)的定义域,求f(g(x))的定义域:
已知f(g(x))的定义域,求f(x)的定义域:
(1)定义域是指x的取值范围; (2)f(x)与f(g(x))这两个括号的范围是一致的
探索点二 求函数的值域 (金版 P49)
【例 2】 (1)函数 y= 的值域为 (-∞,2)∪(2,+∞) .
4
x, x 0
3
y x, x 0
2
1
-3 -2 -1 O 1 2 3 x
在定义域内不同部分上,有不同的 解析表达式的函数通常叫做分段函数
分段函数:对于一个函数,在定义域的不同部 分,有不同的表达式,图象由不同的几段构成.
(1)分段函数是一个函数, 不要把它误认为是几个函数;
(2)分段函数的定义域是各段定义域的 并集,值域是各段值域的并集.
测 试
成绩 序 第1次
号 姓名
第2次
第3次 第4次
第5次 第6次
王伟
98
87
91
92
88
95
张城
90
76
88
75
86
80
赵磊
68
65
73
72
75
82
班级平均分 88.2 78.3 85.4 80.3 75.7 82.6

人教版高中数学必修一1.2.2函数的表示法 (1)ppt课件

人教版高中数学必修一1.2.2函数的表示法 (1)ppt课件

例5、下列映射是不是A到B的一一映射?
A
B
A
B
f
1
3
f
1
3
2
5
3
7
5 2
7
3
9
4
9
4
1
(1)
(2)
解:(1) 是
(2) 不是。由于B中元素1在集合A中没有原像
例6、 下列对应是不是A到B的映射? 1 A={1,2,3,4},B={3,4,5,6,7,8,9} ,f:乘2加1 2 A=N+,B={0,1} ,f: x 除以2得的余数 3 A=R+,B=R,f:求平方根 4 A={x|0≤ x<1},B={y|y≥1} f:取倒数
5 , 1 5 < x 2 0 , 2 1
图公交车票价.gsp
05
10
15
20
我们把上述两例中的函数叫做分段函数: 即分区间定义的函数. 分段函数的图象要分段作出!
注意: (1)有时表示函数的式子可以不止一个,对于分几个 表示的函数,不是几个函数,而是一个函数,我们把它 分段函数.
(2) 函数图象既可以是连续的曲线,也可以是直线、 线、离散的点等等。
注意:解析法表示函数是中学研究函数的主要表示方法;用 法表示函数时,必须注明函数的定义域.
2.图像法:用函数图像表示两个变量之间的对应关系。
如:心电图,气象台应用自动记录器描绘温度随时间变 化的曲线,股市走向图等都是用图象法表示函数关系的.
例如: 我国人口出生率变化曲线:
图像法的优点: 能直观形象的表示出函数的变化情况。
(1)对于任何一个实数a,数轴上都有唯一的点P和它对
(2)对于坐标平面内任何一个点A,都有唯一的有序实数 (x,y)和它对应;

人教A版必修高一数学函数的表示法教学课件

人教A版必修高一数学函数的表示法教学课件
(2)函数推广为映射,只是把函数中的两个数集 推广为两个任意的集合,通过实例进一步理解映射的 概念,会利用映射的概念来判断“对应关系”是否是 映射,一一映射.
情感态度与价值观
(1)让学生感受到学习函数表示的必要性,渗 透数形结合思想方法.
(2)映射在近代数学中是一个极其重要的概念, 是进一步学习各类映射的基础.
人 教 A 版 必 修 1 高 一 数学 第 一章 1 .2. 2函数的 表示法 教 学 课件(共 41张P PT)
思考
列表、描点、连线(视其定义域决定是否连线).
函数的图象既可以是连续的曲线,也可以是 直线、折线、离散的点等.
注 意 y = 3x(x R) 是连续的直线,但
y = 3x(x {1, 2, 3,4,5}) 却是5个离散的点.
人 教 A 版 必 修 1 高 一 数学 第 一章 1 .2. 2函数的 表示法 教 学 课件(共 41张P PT)
人 教 A 版 必 修 1 高 一 数学 第 一章 1 .2. 2函数的 表示法 教 学 课件(共 41张P PT)
所有的函数都能用解析法表示 吗?
人 教 A 版 必 修 1 高 一 数学 第 一章 1 .2. 2函数的 表示法 教 学 课件(共 41张P PT)
第三次 第三次
91
92
88 75
73 72
85.4 80.3
第五次 第六次
88 95 86 80 75 82 75.7 82.6
对这三位同学在高一学年度的数学学习情况做 一个分析.
人 教 A 版 必 修 1 高 一 数学 第 一章 1 .2. 2函数的 表示法 教 学 课件(共 41张P PT)
人 教 A 版 必 修 1 高 一 数学 第 一章 1 .2. 2函数的 表示法 教 学 课件(共 41张P PT)

人教版高中数学必修一:《集合与函数概念》之《函数的表示法》教学PPT

人教版高中数学必修一:《集合与函数概念》之《函数的表示法》教学PPT

.E D C B A
些孤立的点。
01 2 3 4 5
想一想:下列图形中可作为函数y=f(x)的图像的有哪些?
__(_A_)_,(_D_)。
y
y
y
y
o x
o
1
o x -1
xox
(A)
(B)
o
o
(C)
(D)
点评:判断一个图形是否是一个函数图像 的依据就是函数的定义。
比较函数的三种表示方法,它们各自 的优点是什么?所有的函数都能用解析法 表示吗?
§1.2.2 函数的表示方法
第一课时
学习目标
学 科网
1、掌握函数的三种表示法:列表法、图象法、解析法, 体会三种表示方法的特点。(重点)
2、能根据实际问题情境选择恰当的方法表示一个函数。
3、体会数形结合思想在理解函数概念中的重要作用, 在图形的变化中感受数学的直观美。
复 习 引入
y
3
1.试画出函数y=x-1的图像. 2
例题分析
例5 请画出函数 y | x | 的图像:
解: 由绝对值的意义,有
y=
x -x
x≥0 x<0
所以,函数图像为第一和第二象限的角平
分线.
y
4
3
21-ຫໍສະໝຸດ 0 1 2 3 xP23T3
注意: (1)有时表示函数的式子可以不止一个, 对于分几个式子表示的函数,不是几个函数, 而是一个函数,我们把它称为分段函数.
笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25
例题分析
它的图像如图所示,由五个孤立的点
A (1, 5),B (2,10),C(3,15),D(4,20),

函数的表示方法ppt

函数的表示方法ppt
例如,在物理学中,通过绘制物体的运动轨迹图,可以直观地了解物体的运动规律;在工程中,通过绘 制电路图,可以直观地了解电路的工作原理和连接方式。
03 表格法
定义
01
表格法是一种通过表格的形式来表示函数的方法。
02
它通过列出自变量和因变量的对应关系来描述函数。
03
表格中的每一行表示自变量的一种取值,每一列表 示因变量对应的取值。
THANKS FOR WATCHING
感谢您的观看
举例
例如,函数 (f(x) = x^2 + 2x + 1) 可以 表示为如下表格
| --- | --- |
| x | f(x) |
举例
| -2 | 1 |
| -1 | 0 |
|0|1|
举例
|1|4|
|2|9|
VS
应用场景
01
表格法适用于表示简单函数或离散函数的值。
02
在实际应用中,表格法常用于描述一些具有离散性质
举例
例如,对于函数 (f(x) = x^2),其图象是一个开口向上的抛物线, 位于x轴上方。
当x的值从负无穷增大到正无穷时,y的值也随之增大,表示 函数随着x的增大而增大。
应用场景
图象法在数学、物理、工程等多个领域都有广泛的应用。
在解决实际问题时,图象法可以帮助我们直观地理解函数的性质和变化规律,从而更好地解决相关问题。
应用场景
• 解析法适用于需要精确描述函数关系的情况,如科 学计算、工程设计和数学研究等领域。由于解析法 具有精确性和可操作性,因此在实际应用中得到了 广泛的应用。
02 图象法
定义
函数图象法是一种通过绘制函数的图 形来表示函数的方法。

高一数学优秀课件《函数的表示法》

高一数学优秀课件《函数的表示法》

掌握用三种方法表示函数
【例4】某种笔记本的单价是5元,买x x 1,2,3,4,5个
笔记本需要y元。试用函数的三种表示法表示函数
解:这个函数的定义域是数集{1,2,3,4,5}
用解析法可将函数y=f(x)表示为 y 5x, x 1,2,3,4,5
用列表法可将函数表示为
笔记本数x 1 2 3 4 5
可以看出: 王伟同学的数学成绩始终高于平均水平,学习情况稳定 且成绩优秀。 张城同学的数学成绩不大稳定,总在班级平均水平上下 波动,且波动幅度较大; 赵磊同学的数学成绩低于班级平均水平,但他成绩在稳步 提高.
例8. 依法纳税是每个公民应尽的义务,个人取得的所得应依照 《中华人
民共和国个人所得税法》向国家缴纳个人所得税 (简称个税).2019年1月
(3)恩格尔系数 (列表法)
我们在初中已经接触过函数的三种表示法:解析法、列表法和图象法. 解析法,就是用数学表达式表示两个变量之间的对应关系,如3.1.1的问题1、2. 列表法,就是列出表格来表示两个变量之间的对应关系,如3.1.1的问题4. 图象法,就是用图象表示两个变量之间的对应关系,如3.1.1的问题3. 这三种方法是常用的函数表示法.
72
75
82
班级平均分 88.2 78.3 85.4 80.3 75.7 82.6
请你对这三人的学习情况进行分析. 思考2: 上述4个函数能用解析法表示吗?表格能否直观地分 析出三位同学成绩高低? 你能用图象法表示吗?
班级 平均
王伟
赵磊 张城
解:为了直观地反映每位同学和班级平均成绩的变化情况, 我们用图象法将表格中的4个函数表示出来,如图。
0.35t 85920, 6600000 t 960000,

人教版高一数学必修一函数的表示法课件PPT

人教版高一数学必修一函数的表示法课件PPT

4.每次在课堂上给学生布置任务时,要事先想好如何应对 那些很快就完成任务的学生。同时,要注意提醒那些动作 缓慢,迟迟没有动手的学生。
5.做好准备。备课时就要准备妤课堂材料。这样,在讲 课的时候,才能顺利地从一个主题过渡到下一个主题,不会 因冷场而出现空闲时间。
课题导入
1.已知f (x) 2x 1,求f (3) 2.已知f (x 1) 2x 1,求f (2) 思考第二个问中,可以通过条件 得到f (x)的解析式么?
1.2.2函数的表示法
第二课时 抽象函数的解析式求法
目标引领
1.掌握解析式的几种求法 2.理解在解决函数问题中的整体代换的思
想。
独立自学
1.2.2函数的表示法
第二课时 抽象函数的解析式求法
目标引领
1.掌握解析式的几种求法 2.理解在解决函数问题中的整体代换的思
想。
独立自学
想一想: 已知f (2x 1) x2 x 1,求f (x)
引导探究
1.换元法求函数解析式
例 1.已知 f( x+1)=x+2 x,求 f(x).
2.用配凑法求解析式
3.待定系数法求函数解析式
例4.若f{f[f(x)]}=27x+26,求一次函数f(x) 的解析式。
已知f(x)是二次函数,且满足f(0)=1, f(x+1)-f(x)=2x,求f(x)的解析式.
4.用消去法求函数解析式
例5.已知3f(x)+2f(-x)=2x,求f(x)
1.若3 f (1 ) 2 f (x) 2x, 求f(x) x
1.求解抽象函数解析式的方法 (1)换元法 (2)配凑法 (3)待定系数 (4)消去法 2.理解函数问题中整体代换的思想
当堂诊学

3.1.1函数的概念及其表示课件高一上学期数学人教A版(2019)必修一

3.1.1函数的概念及其表示课件高一上学期数学人教A版(2019)必修一

【对点练清】 1.下列对应或关系式中是 A 到 B 的函数的是
A.A=R ,B=R ,x2+y2=1 B.A={1,2,3,4},B={0,1},对应关系如图: C.A=R ,B=R ,f:x→y=x-1 2
()
D.A=Z ,B=Z ,f:x→y= 2x-1
解析: A 错误,x2+y2=1 可化为 y=± 1-x2,显然对任意 x∈A,y 值不 唯一.B 正确,符合函数的定义.C 错误,2∈A,在 B 中找不到与之相对 应的数.D 错误,-1∈A,在 B 中找不到与之相对应的数. 答案:B
区间可以用数轴表示,在数轴表示时,用实心点表示包括在区间内的端点, 用空心点表示不包括在区间内的端点.
定义
名称
区间
数轴表示
{x|a≤x≤b}
闭区间
_[a_,___b_]
{x|a<x<b}
开区间
(a,_b_)_
{x|a≤x<b} 半开半闭区间 [a,_b_)_
续表
{x|a<x≤b} 半开半闭区间 (a,b]
函数的定义域. 推理素养.
4.能够正确使用区间表示数集.
பைடு நூலகம்
知识点一 函数的有关概念 (一)教材梳理填空 1.函数的概念:
定义
一般地,设A,B是 非空的实数集 ,如果对于集合A中的 任意一个数x ,按照某种确定的对应关系f,在集合B中都有 _唯__一__确__定__的__数__y_和它对应,那么就称 f:A→B 为从集合A到集 合B的一个函数
(2)f(x)与f(a)有何区别与联系?
提示:(1)这种看法不对. 符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加 的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以 是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变 量值对应的函数值.y=f(x)仅仅是函数符号,不表示“y等于f与x的乘积”.在研 究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.

人教版高中数学必修一《函数的表示法》PPT课件

人教版高中数学必修一《函数的表示法》PPT课件
图 1-2-7 思路探究:可按点 E 所在的位置分 E 在线段 AB,E 在线段 AD 及 E 在线段 CD 三类分别求解.
人教版高中数学必修一
[解] 过点 A,D 分别作 AG⊥BC,DH⊥BC,垂足分别是 G,H. 因为四边形 ABCD 是等腰梯形,底角为 45°,AB=2 2 cm, 所以 BG=AG=DH=HC=2 cm, 又 BC=7 cm,所以 AD=GH=3 cm. (1)当点 F 在 BG 上,即 x∈[0,2]时,y=21x2; (2)当点 F 在 GH 上,即 x∈(2,5]时,y=x+2x-2×2=2x-2;
人教版高中数学必修一
PART 02
自主预习·探新知
S E L F S T U D YA N D E X P LO R I G N E W K N O W L E D G E
[自 主 预 习·探 新 知]
分段函数 如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围 ,有着不同的 对对应关系,则称这样的函数为分段函数. 思考:分段函数对于自变量x的不同取值区间对应关系不同,那么分段函数是 一个函数还是几个函数?分段函数的定义域和值域分别是什么? [提示] 分段函数是一个函数,而不是几个,各段定义域的并集即为分段函数 的定义域,各段值域的并集即为分段函数的值域.
3),f

f

-52的值;
(2)若 f(a)=3,求实数 a 的值.
人教版高中数学必修一
[解] (1)由-5∈(-∞,-2],- 3∈(-2,2),-52∈(-∞,-2],知 f(-5)= -5+1=-4, f(- 3)=(- 3)2+2×(- 3)=3-2 3. ∵f -52=-52+1=-23, 而-2<-32<2, ∴f f -52=f -32=-322+2×-23=94-3=-43.

3.1.2 函数的表示(第一课时)课件-高一上学期数学人教A版(2019)必修第一册

3.1.2 函数的表示(第一课时)课件-高一上学期数学人教A版(2019)必修第一册
只可能是 ( B )
03
拓展提升
Expansion And Promotion
函数的表示
解析式的求法 - 代入法
题型一. 由f(x)的解析式求f[g(x)]的解析式.
例1.已知f(x)=x2 +x -1,则f(x+1)=________.
【解析】因为f (x) x2 x 1, 所以f (x 1) (x 1)2 (x 1) 1
函数的表示
【分析】从图像中我们可以直观地看到:王伟同学的成绩一直稳定在班级的前茅, 张 城同学的成绩波动较大,赵磊同学的成绩整体有下降趋势,但三位同学的成绩基本上 都大幅领先于班级平均水平.
函数的表示
【练习1】已知f (x) x 1,则f ( f (2)) _______. x
【解析】因为f (2)
【解析】令t x 1 1, 则 x t 1, x (t 1)2 所以f (t) (t 1)2 2(t 1) t 2 1 所以f (t) t 2 1,t 1 所以f (x) x2 1,x 1
换元法:已知f(g(x))=h(x),求f(x)时,往往可设g(x)=t,从中解出x,代入h(x)
代入法:已知f (x)求f(g(x)),只需把f (x)中的x用g(x)代入即可; 配凑法:已知f (g(x))=h(x),求f (x)的问题,往往把右边的h(x)整理或配凑成只
含g(x)的式子, 再用x将g(x)替换即可得f(x); 换元法:已知f(g(x))=h(x),求f (x)时,往往可设g(x)=t,从中解出x,代入h(x) 进行
【解析法】y=5x,x∈{1,2,3,4,5} 【图像法】函数图像可以表示如图:
y
【列表法】函数可以表示如下表:
笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25

高中数学必修第一册3.1函数的概念及其表示课件

高中数学必修第一册3.1函数的概念及其表示课件
那么你认为该怎样确定一个工人每周的工资?一个工人的工资w
(单位:元)是他工作天数d的函数吗?
对于任一个给定的天数d,都有唯一确
定的工资w与之对应;
= 350
变量w和d之间是否是函数关系?它们各自的变化范围是什么 ?
试用集合 A,B 表示?
= 350
集合A
集合B
一一对应
1
2
3
4
5
6
350
记作:y=f(x) , x∈A
注意:
(1)x 叫做自变量,x的取值范围构成的集合A叫做函
数的定义域;
(2)与x的值相对应的 y值 叫做函数值;函数值组成的
集合
叫做函数的值域。
C={y|y=f(x), x∈A}
深化概念
高中和初中函数概念的区分和联系

定义的扩大:初中强调变量之间的关系;高中是在映射概念和集合的概念的基础上进
∈ , , , , , , , . ,
∈ . , . , . , . , . , . , . , . , . , .
集合B
集合A
(3)对于集合A中的任意一个元素 x,在集合B
中都有唯一确定的元素 y 与之对应。
不同点
分别通过解析式、图象、表格刻画变量之间的对
应关系





设A、B是非空数集,如果按照某种确定的
对应关系 f,使对于集合A中的任意一个数 x,
在集合B中都有唯一确定的数 f(x) 和它对应,
就称f : A→B 为从集合A到集合B的一个函数,
700
1050
1400
1750
2100
解析法
实例2:

最新人教A版高中数学必修一课件:3.1.2 第一课时 函数的表示法

最新人教A版高中数学必修一课件:3.1.2 第一课时 函数的表示法

【对点练清】 1.已知函数f(x)的图象如图所示,则此函数的定义域是________,
值域是________. 解析:结合图象,知函数f(x)的定义域为[-3,3],值域为[-2,2]. 答案:[-3,3] [-2,2]
2.画出下列函数的图象: (1)y=x+1(x≤0); (2)y=x2-2x(x>1或x<-1). 解:(1)y=x+1(x≤0)表示一条射线,图象如图1. (2)y=x2-2x=(x-1)2-1(x>1或x<-1)是抛物线y=x2-2x去掉-1≤x≤1 之间的部分后剩余曲线.如图2.
3.1.2 函数的表示法
明确目标
发展素养
1.掌握函数的三种表示方法:解 1.通过用图象法表示函数,培养直观想
析法、图象法、列表法. 象素养.
2.会根据不同的需要选择恰当的 2.通过求函数解析式及分段函数求值,
方法表示函数.理解函数图象 培养数学运算素养.
的作用. 3.利用分段函数解决实际问题,培养数
【学透用活】 [典例 3] 求下列函数的解析式: (1)已知函数 f( x+1)=x+2 x,求 f(x); (2)已知函数 f(x)是二次函数,且 f(0)=1,f(x+1)-f(x)=2x,求 f(x); (3)已知函数 f(x)对于任意的 x 都有 f(x)-2f(-x)=1+2x,求 f(x).
题型三 函数解析式的求法 [探究发现] (1)什么是函数解析式? (2)一次函数、二次函数、反比例函数的解析式各是什么? 提示:(1)用数学表达式表示两个变量 x,y 之间的对应关系. (2)一次函数的解析式是 y=kx+b(k≠0),二次函数解析式是 y=ax2+bx+
c(a≠0),反比例函数的解析式是 y=kx(k≠0).
()

高中数学必修一122《函数的表示方法》(新人教版A)PPT课件

高中数学必修一122《函数的表示方法》(新人教版A)PPT课件

钱数y
5 10 15 20 25
6
用图象法可将函数表示为下图
yy

25
. 20
. 15 .. 10
5
012345
x
7
问题 (1)用解析法表示函数是否一定要写出自变量的取值范围?
函数的定义域是函数存在的前提,再写函数 解析式的时候,一定要写出函数的定义域。 (2)用描点法画函数图象的一般步骤是什么?本题中的图象 为什么不是一条直线? 列表、描点、连线(视其定义域决定是否连线)
14
x
知识探究(三)
某市某条公交线路的总里程是20公里,在这条线 路上公交车“招手即停”,其票价如下: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元 (不足5公里按照5公里计算).
思考1:里程与票价之间的对应关系是否为函 数?若是,函数的自变量是什么?定义域是 什么?
2
2x 3, 1 x 5
(3)f (x )
x
2
,
x
1
x 2 3, x 0 (4 )f (x )
x - 1, x 5 A 、( 1)( 2 ) B 、(1)(4)
C 、(2)(4)
D 、(3)(4)
18
问题探究
2x+3, x<-1,
4. 已知函数f (x)= x2, -1≤x<1,
函数的图象既可以是连续的曲线,也可以是直线、折线、 离散的点等。
8
知识探究(二)
下表是某校高一(1)班三位同学在高一学年度六 次数学测试的成绩及班级平均分表:
第一次 第二次 第三次 第四次 第五次 第六次
王 伟 98 87 91 92 88 95 张 城 90 76 88 75 86 80 赵 磊 68 65 73 72 75 82 班平分 88.2 78.3 85.4 80.3 75.7 82.6

函数的表示法 课件

函数的表示法 课件
x 1 x2
【解题指导】
【规范解答】令 1 1, t…………………………………2分
x
则x 1 , t, …1①…………………………………………4分
t 1
1

f
t
1
t (
1 1
)2……t2t…12…t .………………………8分
t 1
又t2-2t≠0,∴t≠0且t≠2,
∴t≠0,且t≠1,t≠2②, …………………………………10分 ∴f(x)= x (x1≠0,且x≠1,x≠2).……………………12分
缺 只能近似求出自变量的

值所对应的函数值,而 且有时误差较大
2.函数三种表示方法的内在联系 (1)解析法、图象法和列表法分别从三个不同的角度刻画了自 变量和函数值的对应关系.
(2)在已知函数的解析式研究函数的性质时,可以先由解析式确 定函数的定义域,然后通过取一些有代表性的自变量的值与对 应的函数值列表,描点连线作出函数的图象,利用函数图象形 象直观的优点,能够帮助我们理解概念和有关性质.数形结合是 研究数学的一种重要的数学思想,是解题的一种有效途径.
【规范训练】(12分)用长为l的铁丝弯成下部为矩形,上部为
半圆形的框架,若矩形底边长为2x,求此框架围成的面积y
与x的函数关系式,并指出其定义域.
【解题设问】(1)矩形的另一边怎样表示? l 2x . x
2
(2)矩形的边长应满足什么关系?_两__边__均__大__于__0.
【规范答题】由条件知,矩形的底边长为2x,即半圆的半径
【想一想】(1)解答题2的关键点是什么? (2)用换元法求函数解析式应注意什么问题? 提示:(1)解答题2的关键点是设出所求函数解析式利用恒等式 求解. (2)用换元法求函数解析式时,要注意新元的取值范围,即换 元后的函数的定义域.

人教新课标版数学高一必修1课件函数的表示法

人教新课标版数学高一必修1课件函数的表示法
解析答案
(2) 集 合 A = {P|P 是 平 面 直 角 坐 标 系 中 的 点 } , 集 合 B = {(x , y)|x∈R , y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应; 解 按照建立平面直角坐标系的方法可知,平面直角坐标系中的任意 一个点,都有唯一的一个实数对与之对应,所以这个对应f:A→B是从 集合A到集合B的一个映射.
教学目标
1.了解函数的三种表示法及各自的优缺点; 2.掌握求函数解析式的常见方法; 3.尝试作图和从图象上获取有用的信息. 4.给出分段函数,能研究有关性质; 5.了解映射的概念.
自主学习
1.列表法 通过列出_自__变__量___与_对__应__函_数__值___的表来表示函数关系的方法叫做列表法. 2.图象法 用“图形”表示函数的方法叫做图象法. 3.解析法(公式法) 如果在函数 y=f(x)(x∈A)中,f(x)是用__代__数_式__(_或__解__析__式_)___来表达的,则这 种表示函数的方法叫做解析法(f(x)>0;
解 f(x)>0,即x≤-1,

4>0
或--12<x+x≤2>3,0

或 x->43>,0

解①得x≤-1,解②得-1<x<1,解③得x∈∅. 所以f(x)>0的解集为(-∞,-1]∪(-1,1)∪∅=(-∞,1).
解析答案
(3)若直线y=a与f(x)的图象无交点,求实数a的取值范围. 解 f(x)的图象如下:
合作探究
探究点1 解析法 问题 任何一个函数都能用解析法表示吗? 答案 不一定,如某地的天气与日期之间存在函数关系,但无法用解析 法表示.实际上,能够用解析法表示的函数是少之又少的.

人教版高中数学必修一函数的表示法(一)课件PPT

人教版高中数学必修一函数的表示法(一)课件PPT
解:设票价为y元,里程为x公里,由题意知自变量的取值范围是(0,20].
根据“票价规则”,得到以下解析式:
y 5 4 3
2 1
2,0 x 5
y
3,5 x 10 4,10 x 15
5,15 x 20
o 5 10 15 20 x
例5.某路公共汽车,行进的站数与票价 关系如下表:
行进的 站数
例5.A、B两地相距150km,某汽车以每
小时50km的速度从A地到B地,在B地停留 2小时后,又以每小时60km的速度返回A 地. (1)写出该车离开A地的距离s(km)关于
时间t(h)的函数关系; (2)并画出图象.
例6.如图,在边长为4的正方形ABCD的 边上有一点P,沿着折线BCDA由B点 (起 点)向A点(终点)移动,设P点移动的路程 为S,△ABP的面积为y,求△ABP的面积 y与P点移动的路程S间的函数关系式.
例5.A、B两地相距150km,某汽车以每
小时50km的速度从A地到B地,在B地停留 2小时后,又以每小时60km的速度返回A 地. (1)写出该车离开A地的距离s(km)关于
时间t(h)的函数关系; (2)并画出图象.
例6.如图,在边长为4的正方形ABCD的 边上有一点P,沿着折线BCDA由B点 (起 点)向A点(终点)移动,设P点移动的路程 为S,△ABP的面积为y,求△ABP的面积 y与P点移动的路程S间的函数关系式.
2.三种函数表示方法的相互转换; 3.分段函数的定义及表示法; 4.分段函数的表达式虽然不止一个,
但它不是几个函数,而是一个函数.
课后作业
1.阅读教材; 2.习案:作业7,第P160至P161; 3.预习下节内容.
思考题:你能作出函数 的函数图象吗?

函数的表示法(高一数学人教A版必修一册)PPT课件

函数的表示法(高一数学人教A版必修一册)PPT课件
国家中小学课程资源
函数的表示法
授课教师:XX
日期:XX年XX月XX日
温故知新
函数三要素:定义域、对应关系和值域
函数三种表示法:图象法、列表法和解析法
高中数学
3.1.1问题3:下图是北京市2016年11月23日的空气
质量指数 (AIR Quality Index,简称AQI)变化图:
图象法
定义域:
高中数学
解析法抽象而精准,
图象法直观而形象,
二者相辅相成,能更
好的理解这一函数,
这就是所谓数形结合.
例3 给定函数 = + 1, = + 1 2 , ∈ R,
(1)在同一坐标系中画出 , 的图象;
(2)∀ ∈ R,用 表示 , 中的较大者,记为
∈ |0 ≤ ≤ 24 .
高中数学
图象法:以自变量的取值为横坐标,对应的函数值为
纵坐标,在平面直角坐标系中描出各个点,这些点构成
了函数的图象,这种用图象表示两个变量之间函数关系
的方法叫做图象法.
自变量的取值范围为函数的定义域.
高中数学
3.1.1 问题4:我国某省城镇居民恩格尔系数变化情况表
高中数学
例1 某种笔记本的单价是5元,买( ∈ {1,2,3,4,5})个笔记本需要元.试
用函数的三种表示法表示函数 = ().
【分析】由列表的过程可知,在得到表中第二行钱数的值的时候,也是需
要通过题意简单计算的.其所用的计算式为 = 5, ∈ 1,2,3,4,5 .
解:这个函数的定义域是数集{1,2,3,4,5},
用解析法可将函数 = ()表示为:
= 5, ∈ {1,2,3,4,5}.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

里程 x 0 x 5 5 x 10 10 x 15 15 x 20
票价 y
2
3
4
5
➢分段函数概念
里程 x 0 x 5 5 x 10 10 x 15 15 x 20
票价 y
2
3
4
5
解:设里程为x公里,票价为y元,
则可得函数解析式为
y
2, 0<x 5
5
y
3, 5<x 10
出生率 ()
4.5 4.0 3.5
能不能用解
析法 ?
3.0
2.5
2.0
1.5
1.0
0.51950 1955 1960 1970 1975 1980 1985 时间(年)
能不能用图
1,x为有理数 (2) y= 0,x为无理数
象法?
并非所有的函数都能用这三种方法来表示!
二、例题分析
例4、下表是某校高一(1)班三位同学在高一学年度 几次数学测试的成绩及班级平均分表:
动幅度较大; 赵磊同学数学成绩低于班级平均水平, 但他的成绩呈上升
趋势,表明他的成绩在稳步提高.
二、例题分析
函数图象作图要点:
例5、画出函数 y = | x |(的1)图字象母。O, x, y
列表
解:
(2)必要的点、值
描点
由绝对值的概念可得:(3)标上函数解析式 连线
y
x
x
, ,
x 0, x 0,
它可以是解析式,可以是图象,也可以是表格.
三、例题分析
例思3考、1某:种笔记本的单价是5元,买x(x∈{1,2,3,4,
5若})例个1笔中记的本函需数要y=yf元(x;)的试定用义函域数改的为三种[1表,示5]法,表则示其函将
数图象y=会f (发x)生. 怎样的变化? 解:
一条线段
用解析法可将函数 y=f (x)表示为:
若将“成绩”与“测试序号”之间的关系用函 数图象表示出来,那么将……
若将“成绩”与“测试序号”之间的关系用函数图象表示出来, 直观反映成绩变化:
虚线部分并不是 图象的一部分
分析上图: 王伟同学的数学成绩始终高于班平均水平, 学习情况较为
稳定且成绩优秀; 张城同学数学成绩不稳定, 总在班平均水平上下波动,且波
一、基础知识讲解
1、分段函数:
在定义域中,对于自变量x的不同取值范围,对应关 系不同,这样的函数称为分段函数.
例:y
x
x ,
x
,
x 0, x 0,
y
|
x
|
x x
, ,
x 0, x 0,
一、基础知识讲解
1、分段函数:
(1)分段函数是一个函数,其定义域是各段“x取值 范围”的并集,其值域是各段“y的取值范围”的并 集。(定义域的区间端点需不重不漏!)
变化趋向。
⑶列表法:列出表格来表示两个变量的函数关系。
➢优点:不需要计算就可以直接看出与自变量相对应的函数值。
三、例题分析 例3、某种笔记本的单价是5元,买x(x∈{1,2,3,4, 5})个笔记本需要y元;试用函数的三种表示法表示函 数 y=f (x) .
分析: “y=f (x)”可以用哪三种方法表示?.
A
B
C
D
➢分段函数概念
例6、某市“招手即停”公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里票价增加1元(不足5公里 按5公里算).如果某条线路的总里程为20公里,请根据题意, 写出票价与里程之间的函数解析式,并画出函数图象。
解:设里程为x公里,票价为y元,
(2)求分段函数的函数值时,自变量的取值范围在哪 一段,就用哪一段的解析式。
0 例:已知f
(
x)
2x 3 x
化情况:
图象法
实例3:
列表法
二、基础知识讲解
常用的函数的三种表示法各自的优点
⑴解析法:用数学表达式表示两个变量之间的对应关系。
➢优点:①简明、全面地概括了变量间的关系;
②可通过解析式求出每个自变量对应的函数值。 ⑵图象法:用函数图象表示两个变量之间的关系。
➢优点:直观形象地表示随着自变量的变化,相应函数值的
(1) f ( x) 3 x
(2) f ( x) 2 3 x
(3) f ( x) 2x2 3x 5
[0, )
(, 2) (2, ) [ 31 , )
8
一、复习回顾
实例1:炮弹距地面的高度h(单位:m)随时间t(单位:s)
变化的规律是 : h=130t-5t2
解析法
实例2:南极上空臭氧空洞的面积从1979~2001年的变
4
3
4, 10<x 15如何写出解
5, 15<x 20
析式? 2
1
函数图象如右:
O
y y
y
y
5
2x , x 1
x2,1 x0
x2 , x 0
2, 0 x 5
2x x x2
2
((yx 1354,,,115051x)xxx 0121)500 (x 0)
10 15 20 x
定义域的区间端点需不重不漏!
பைடு நூலகம்
y=5x , x∈{1 , 2 , 3 , 4 , 5 }
用列表法可将函数 y=f (x)表示为:
笔记本数 x 1 2 3 4 5 钱数 y 5 10 15 20 25
用图象法可将函数 y=f (x)表示为:
五个点:(1, 5)、(2,10)、(3,15)、(4, 20)、(5, 25)
思考2:每一个函数都能用这三种方法表示吗? (1) 出生率与年份间的函数关系:
第一次 第二次 第三次 第四次 第五次 第六次
王伟
98
87
91
92
88
95
张城
90
76
88
75
86
80
赵磊
68
65
73
72
75
82
班平均分 88.2 78.3 85.4 80.3 75.7 82.6
解析:请从你表对中这可三知个每同位学同在学高在一每学次年测度试的中数的学成学绩习, 但情不况易做分一析个每分位析同.学的成绩变化情况。
(4)尺规作图
列表: x -2 -1 0 1
y
|
x
|
x
x
, ,
x 0, x 0,
y 2101
建立坐标系作出图象如右所示
思考2: 函数图象可以是连续的曲线,也可以是直线、折
线、离散的点等等;那么,如何判断在坐标平面中的
图象是否为函数图象呢? ←任意性、唯一性
B ➢随练:下列四个图象中,不是函数图象的是( )
人教版数学 高中必修一
函数的表示方法
函数的表示方法 (第1课时)
➢随练
7、求下列函数的定义域,并用区间表示
(1) f ( x) 3 x x 1 [1, 3]
(2) f ( x) 1 x1
(1, )
(3) f ( x) 2 3 x
(, 0) (0, )
8、求下列函数的值域,并用区间表示
相关文档
最新文档