圆锥曲线焦点弦公式及应用

合集下载

专题16 圆锥曲线焦点弦 微点2 圆锥曲线焦点弦三角形面积

专题16  圆锥曲线焦点弦  微点2  圆锥曲线焦点弦三角形面积
【结论3】
3.如图,设直线 过焦点 且交椭圆 于 两点,直线 倾斜角为 ,证明:当且仅当 时, .
三、双曲线焦点弦三角形面积公式及其最值
1.双曲线同支焦点弦三角形面积公式
【结论4】
4.如图,设直线 过焦点 且交双曲线 于 、 两点,直线 倾斜角为 ,双曲线的半通径为 ,证明:双曲线同支焦点弦三角形 的面积 .
【结论2】
2.如图, 为椭圆 的左、右焦点,过 的直线 与椭圆 交于 两点,且 ,证明:椭圆焦点弦三角形 的面积 .
2.椭圆焦点弦三角形面积最大值
对公式②进行化简,得 ,
令 .
对于椭圆,离心率 ,于是由均值不等式可知
,当且仅当 ,即 时 取得最大值,即椭圆焦点弦三角形面积最大值: .
代入 ,上式可化简为 ,此时焦点弦所在直线与 轴夹角 满足 (或 ).于是我们得如下结论——
A. B. C. D.
(2022·江西·模拟预测(理))
18.设椭圆 的左右焦点分别为 ,直线l过 且与C交于A,B两点,则 内切圆半径的最大值为()
A. B. C. D.1
19.设 , 分别是双曲线 的左、右焦点,过点 ,且与 轴垂直的直线 与双曲线交于 , 两点,若 的面积为 ,则双曲线 的离心率为()
由公式⑥,显然 存在最小值: ,此时 ,即 ,焦点弦所在直线与 轴垂直.
【结论9】
9.如图,设直线 过焦点 且与抛物线 交于 两点,直线 倾斜角为 ,证明:当且仅当 时, .
典型例题:
例1
10. 分别是椭圆的 左、右焦点,过点的直线 交椭圆 于 两点.
(1)若 的面积为 ,求 的长;
(2)求 面积的最大值及此时直线 的方程.
(1)求椭圆 的标准方程;

圆锥曲线中点弦直角弦焦点弦三大弦案

圆锥曲线中点弦直角弦焦点弦三大弦案

圆锥曲线中点弦直角弦焦点弦三大弦案一、用“点差法”解圆锥曲线的中点弦问题我们可以使用“点差法”来解决圆锥曲线的中点弦问题,即将弦的端点坐标代入圆锥曲线方程并作差,得到一个关于弦的中点和斜率的式子,从而减少运算量。

例1:对于椭圆x^2/4+y^2/2=1,如果AB是不平行于对称轴的弦,M是其中点,那么我们可以使用点差法证明K_AB=-2b^2/2a^2.例2:对于双曲线x^2/4-y^2/9=1,如果AB是不平行于对称轴的弦,M是其中点,那么我们可以使用点差法证明K_AB=2b^2/2a^2.二、直角弦对于椭圆x^2/8+y^2/4=1上的点P(2,2),我们可以通过作两条互相垂直的XXX和PB来求直线AB的方程。

例2:对于双曲线-x^2/4+y^2/1=1的顶点M(2,0),如果过M作两条互相垂直的直线与椭圆x^2/8+y^2/4=1相交于A、B 两点,我们需要判断直线AB是否过定点。

例3:对于抛物线y^2=2x上的点M(2,2),我们可以通过作两条互相垂直的弦MP和MQ来求直线AB过的定点。

例4:对于椭圆x^2/84+y^2/36=1,如果OA垂直OB,且直线AB的斜率为1,我们需要求直线AB的方程。

三、焦点弦1、对于抛物线y=x^2上的点P,如果线段PF1垂直于F1F2且PF1=8,我们需要求过P且倾斜角为θ的直线与抛物线的交点。

2、对于椭圆x^2/9+y^2/4=1,如果点P(3,0)在其上,且线段F1P和F2P的长度之和为10,我们需要求离心率。

3、对于双曲线x^2/16-y^2/9=1,如果其右焦点为(5,0),且过点P(1,2)且斜率为k的直线与双曲线交于两点,我们需要求离心率。

4、对于椭圆x^2/16+y^2/9=1,如果其左、右焦点分别为(-3,0)和(3,0),过点P(0,2)的直线与椭圆交于A、B两点,且A、B关于点M(0,-2)对称,我们需要求四边形面积的最小值。

练:1、对于椭圆x^2/4+y^2/2=1,如果点P在其上,且PF1垂直于F1F2且PF1=4,PF2=3,我们需要求椭圆的标准方程和直线l的方程。

圆锥曲线专题解析3:焦点弦问题

圆锥曲线专题解析3:焦点弦问题

圆锥曲线专题解析3:焦点弦问题圆锥曲线专题解析3:焦点弦问题Ø方法导读圆锥曲线是高考的必考内容,主要命题点有直线与圆锥曲线的位置关系的应用,圆锥曲线中的弦长、弦中点、面积、定点、定值、最值、取值范围、存在性问题,综合性较强.从近三年高考情况来看,多考查直线与椭圆或抛物线的位置关系,常与向量、圆等知识结合,难度较大.解题时,充分利用数形结合思想,转化与化归思想,同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养.在解题过程中常用到点差法、根与系数的关系、设而不求、整体代换等技巧,注意掌握.如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦.圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识.焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的.Ø高考真题【2018·全国I卷理·19】设椭圆的右焦点为,过的直线与交于,两点,点M的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.Ø解题策略【过程分析】第一问,先求出椭圆的右焦点的坐标,由于与轴垂直,所以可求出直线的方程,从而求出点的坐标,再利用直线方程的两点式,即可求出直线的方程;第二问,对直线分三类讨论:当直线与轴重合时,直接求出.当直线与轴垂直时,可直接证得.当直线与轴不重合也不垂直时,设的方程为,,,利用斜率公式表示出,把直线的方程代入椭圆的方程,消去转化为关于X的一元二次方程,利用根与系数的关系即可证明,从而证得.【深入探究】破解此类解析几何题的关键,一是“图形”引路,一般需画出大致图形,把已知条件翻译到图形中,利用直线方程的点斜式或两点式,即可快速表示出方程;二是“转化”桥梁,即会把要证的两角相等,根据图形的特征,转化为斜率之间的关系,再把直线与椭圆的方程联立,利用根与系数的关系,以及斜率公式即可证得结论.Ø解题过程(1)由已知得,的方程为.由已知可得,点的坐标为或,所以的方程为或.(2)当与轴重合时,.当与轴垂直时,为的垂直平分线,所以.当与轴不重合也不垂直时,设的方程为,,,则,,直线,的斜率之和为.由,得.将代入得.所以,,则.从而,故,的倾斜角互补,所以.综上,.Ø解题分析本题考查椭圆的标准方程及其简单性质、焦点弦斜率问题,考查考生的推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想,考查的核心素养是逻辑推理、直观想象、数学运算.对比2015年全国I卷理科数学第20题:在直角坐标系中,曲线与直线交于,两点.(1)当时,分别求在点和处的切线方程;(2)轴上是否存在点,使得当变动时,总有说明理由.2018年的全国I卷的第19题只是把2015年全国I卷的第20题的“抛物线”变为“椭圆”,仍然考查直线与圆锥曲线有两个交点的位置关系,都是“求方程”与“相交弦的斜率”问题,只是去掉了原来的是否存在型的外包装.在强调命题改革的今天,通过改编、创新等手段来赋予高考典型试题新的生命,这成为高考命题的一种新走向,所以我们在复习备考的过程中要注意对高考真题的训练,把握其实质,掌握其规律,规范其步骤,做到“胸中有高考真题”,那么我们就能做到以不变应万变.Ø拓展推广1.圆锥曲线过焦点的所有弦中最短的弦过焦点且与对称轴垂直的弦称为通径.(1)椭圆过焦点的最短弦为通径,长为.(2)双曲线过焦点的最短弦为通径或实轴长,长为或.注意:对于焦点在轴上的椭圆、双曲线,上述结论仍然成立.(3)抛物线过焦点的最短弦为通径,长为.注意:对于焦点在轴负半轴上,焦点在轴上的抛物线,上述结论仍然成立.2.圆锥曲线的焦半径公式圆锥曲线上任意一点到焦点的距离叫做圆锥曲线关于该点的焦半径,利用圆锥曲线的第二定义很容易得到圆锥曲线的焦半径公式.(1)椭圆的焦半径公式①若为椭圆上任意一点,点,分别为椭圆的左右焦点,则,.②若为椭圆上任意一点,点,分别为椭圆的上下焦点,则,.(2)双曲线的焦半径公式①若为双曲线上任意一点,点,分别为双曲线的左右焦点,当点在双曲线的左支上时,则,;当点在双曲线的右支上时,则,.①若为双曲线上任意一点,点,分别为双曲线的上下焦点,当点在双曲线的下支上时,则,;当点在双曲线的上支上时,则,.(3)抛物线的焦半径公式①若为抛物线上任意一点,则;②若为抛物线上任意一点,则;③若为抛物线上任意一点,则;④若为抛物线上任意一点,则.3.圆锥曲线的焦点弦的两个焦半径倒数之和为定值(1)椭圆的焦点弦的两个焦半径倒数之和为常数,(其中).(2)双曲线的焦点弦的两个焦半径倒数之和为常数,当焦点弦的两个端点,在同支时,;当,在异支时,(其中).注意:对于焦点在轴上的椭圆、双曲线,上述结论仍然成立.(3)抛物线的焦点弦的两个焦半径倒数之和为常数(其中).涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.另外熟记圆锥曲线焦点弦的一些重要结论,可以快速求解与焦点弦有关的最值或范围问题.变式训练1如图,椭圆的右焦点为,过点的直线与椭圆交于、两点,直线与轴相交于点,点在直线上,且满足轴.(1)当直线与轴垂直时,求直线的方程;(2)证明:直线AM经过线段的中点.变式训练2已知抛物线的焦点与椭圆的右焦点重合,抛物线的动弦过点,过点且垂直于弦的直线交抛物线的准线于点.(1)求抛物线的标准方程;(2)求的最小值.变式训练3设抛物线的焦点为,过且斜率为()的直线与交于两点,.(1)求的方程;(2)求过点且与的准线相切的圆的方程.变式训练4已知抛物线的焦点为,过的直线交抛物线于,两点.(1)若以,为直径的圆的方程为,求抛物线的标准方程;(2)过,分别作抛物线的切线,,证明:,的交点在定直线上.变式训练5抛物线的焦点为,是上一点,且.(1)求的方程;(2)过点的直线与抛物线相交于,两点,分别过点,两点作抛物线的切线,,两条切线相交于点,点关于直线的对称点,判断四边形是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由.。

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程关于直线与圆锥曲线相交求弦长,通用方法是将直线b kx y +=代入曲线方程,化为关于x 的一元二次方程,设出交点坐标()(),,,,2211y x B y x A 利用韦达定理及弦长公式]4))[(1(212212x x x x k -++求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷.一、椭圆的焦点弦长若椭圆方程为)0(12222>>=+b a by a x ,半焦距为c>0,焦点)0,(),0,(21c F c F -,设过1F 的直线l 的倾斜角为l ,α交椭圆于两点()(),,,,2211y x B y x A 求弦长AB .解:连结B F A F 22,,设y B F x A F ==11,,由椭圆定义得y a B F x a A F -=-=2,222,由余弦定理得222)2(cos 22)2(x a c x c x -=⋅⋅-+α,整理可得αcos 2⋅-=c a b x ,同理可求得αcos 2⋅+=c a b y ,则ααα222222cos 2cos cos c a ab c a b c a b y x AB -=⋅++⋅-=+=;同理可求得焦点在y 轴上的过焦点弦长为α2222sin 2c a ab AB -=(a 为长半轴,b 为短半轴,c 为半焦距).结论:椭圆过焦点弦长公式:⎪⎪⎩⎪⎪⎨⎧⋅-⋅-=).(sin2),(cos222222222轴上焦点在轴上焦点在ycaabxcaabABαα二、双曲线的焦点弦长设双曲线(),0,012222>>=-babyax其中两焦点坐标为)0,(),0,(21cFcF-,过F1的直线l的倾斜角为α,交双曲线于两点()(),,,,2211yxByxA求弦长|AB|.解:(1)当ababarctanarctan-<<πα时,(如图2)直线l与双曲线的两个交点A、B在同一支上,连BFAF22,,设,,11yBFxAF==,由双曲线定义可得ayBFaxAF2,222+=+=,由余弦定理可得222222)2()cos(22)2(,)2(cos22)2(aycycyaxcxcx+=-⋅⋅-++=⋅⋅-+απα整理可得αcos2⋅+=cabx,αcos2⋅-=caby,则可求得弦长;cos2coscos222222αααcaabcabcabyxAB-=⋅-+⋅+=+=(2)时或当παπα<<-<≤ababarctanarctan0,如图3,直线l 与双曲线交点()()2211,,,y x B y x A 在两支上,连F 2A,F 2B,设,,11y B F x A F == 则a y B F a x A F 2,222-=+=,由余弦定理可得222)2(cos 22)2(a x c x c x +=⋅⋅-+α,222)2(cos 22)2(a y c y c y -=⋅⋅-+α,整理可得,则,cos ,cos 22a c b y a c b x -⋅=+⋅=αα .cos 2cos cos 222222a c ab a c b a c b x y AB -⋅=+⋅--⋅=-=ααα因此焦点在x 轴的焦点弦长为⎪⎪⎩⎪⎪⎨⎧<<-<≤--<<-=).arctan arctan 0(cos 2),arctan (arctan cos 222222222παπααπααa b a b ac ab a ba b c a ab AB 或 同理可得焦点在y 轴上的焦点弦长公式⎪⎪⎩⎪⎪⎨⎧-<<-<<-<≤-=).arctan (arctan sin 2),arctan arctan 0(sin 222222222a b a b a c ab a ba b c a ab AB πααπαπαα或 其中a 为实半轴,b 为虚半轴,c 为半焦距,α为AB 的倾斜角.三、 抛物线的焦点弦长若抛物线)0(22>=p px y 与过焦点)0,2(pF 的直线l 相交于两点()()2211,,,y x B y x A ,若l 的倾斜角为α,求弦长|AB|.(图4)解:过A 、B 两点分别向x 轴作垂线AA 1、BB 1,A 1、B 1为垂足,y FB x FA ==,设,则点A 的横坐标为αcos 2⋅+x p ,点B 横坐标为αcos 2⋅-y p,由抛物线定。

圆锥曲线焦点弦的八大结论

圆锥曲线焦点弦的八大结论

圆锥曲线焦点弦的八大结论圆锥曲线是几何学中的一类重要的曲线,包括圆、椭圆、双曲线和抛物线。

在圆锥曲线的研究中,焦点和弦是两个重要的概念,它们之间有着许多有趣的关系。

本文将介绍圆锥曲线焦点弦的八大结论。

一、椭圆的焦点弦椭圆有两个焦点,分别为F1和F2。

对于任意一条经过椭圆两个焦点的弦AB,有以下结论:1. 弦中点M在线段F1F2上;2. 焦点到弦的距离之和等于弦长,即AF1 + BF2 = AB;3. 焦点到弦的距离之差等于弦段所在直线与椭圆长轴的距离之差,即AF1 - BF2 = PM - PN,其中P和N分别为弦AB的两个端点在椭圆上的垂足;4. 焦点到弦的距离之比等于弦段所在直线与椭圆焦点连线的斜率,即AF1/AF2 = MF/MG,其中M为弦中点,G为椭圆长轴的中点;5. 弦中点M到椭圆两个焦点的距离之差等于弦段所在直线与椭圆长轴的距离之差,即MF1 - MF2 = PM - PN;6. 弦端点P和N到椭圆两个焦点的距离之差相等,即PF1 - PF2 = NF1 - NF2;7. 椭圆的两个焦点到弦的距离之积等于椭圆长轴的平方减去弦长的平方,即AF1·BF2 = AC - AB,其中AC为椭圆长轴的长度;8. 弦段所在直线与椭圆中心连线的斜率等于椭圆长轴和短轴的比值,即PG/PM = b/a,其中a和b分别为椭圆长轴和短轴的长度。

二、双曲线的焦点弦双曲线有两个焦点,分别为F1和F2。

对于任意一条经过双曲线两个焦点的弦AB,有以下结论:1. 弦中点M在线段F1F2的延长线上;2. 焦点到弦的距离之差等于弦长,即AF1 - BF2 = AB;3. 焦点到弦的距离之和等于弦段所在直线与双曲线渐近线的距离之和,即AF1 + BF2 = PM + PN,其中P和N分别为弦AB的两个端点在双曲线上的垂足;4. 焦点到弦的距离之比等于弦段所在直线与双曲线渐近线的斜率,即AF1/AF2 = MF/MG,其中M为弦中点,G为双曲线渐近线的中点;5. 弦中点M到双曲线两个焦点的距离之和等于弦段所在直线与双曲线渐近线的距离之和,即MF1 + MF2 = PM + PN;6. 弦端点P和N到双曲线两个焦点的距离之差相等,即PF1 - PF2 = NF2 - NF1;7. 双曲线的两个焦点到弦的距离之积等于双曲线的常数c的平方减去弦长的平方,即AF1·BF2 = c - AB,其中c为双曲线的常数;8. 弦段所在直线与双曲线中心连线的斜率等于双曲线焦点之间的距离和双曲线渐近线的斜率之和的倒数,即PG/PM = (F1F2/c) + (c/PN)。

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式一、圆锥曲线的极坐标方程椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系.椭圆、双曲线、抛物线统一的极坐标方程为: θρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 .当0<e <1时,方程表示椭圆;当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线;当e=1时,方程表示开口向右的抛物线.二、圆锥曲线的焦半径公式设F 为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P 为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PQ e PF =,∴)cos (p PF e PF +=θ,其中FH p =,=θ〈x 轴,FP 〉 ∴焦半径θcos 1e ep PF -=. 当P 在双曲线的左支上时,θcos 1e ep PF +-=. 推论:若圆锥曲线的弦MN 经过焦点F ,则有ep NF MF 211=+.三、圆锥曲线的焦点弦长若圆锥曲线的弦MN 经过焦点F ,1、椭圆中,cb c c a p 22=-=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=. 2、双曲线中,若M 、N 在双曲线同一支上,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2222cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ. 3、抛物线中,θθπθ2sin 2)cos(1cos 1p p p MN =--+-=. 四、直角坐标系中的焦半径公式设P (x,y )是圆锥曲线上的点,1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF -=2;2、若1F 、2F 分别是双曲线的左、右焦点,当点P 在双曲线右支上时,a ex PF +=1,a ex PF -=2;当点P 在双曲线左支上时,ex a PF --=1,ex a PF -=2;3、若F 是抛物线的焦点,2p x PF +=.。

焦点弦定理公式

焦点弦定理公式

焦点弦定理公式嘿,咱今天就来好好唠唠这焦点弦定理公式。

要说这焦点弦定理公式啊,那在数学的圆锥曲线里可是个重要角色。

咱们先从抛物线说起,在抛物线中,焦点弦长等于 x₁ + x₂ + p (这里的 x₁、x₂是焦点弦端点的横坐标,p 是抛物线的焦准距)。

这公式看着简单,可真要用起来,那得好好琢磨琢磨。

我记得有一次给学生讲这个知识点的时候,有个小家伙瞪着大眼睛一脸懵地看着我,嘴里嘟囔着:“老师,这咋这么复杂呀?”我就笑着跟他说:“别着急,咱们一步步来。

”然后我就给他举了个例子,比如说抛物线 y² = 2px ,有一条焦点弦的两个端点坐标是 (x₁, y₁) 和 (x₂,y₂) ,那根据抛物线的方程,咱就能得到 y₁² = 2px₁,y₂² = 2px₂。

然后呢,通过一系列的推导和计算,就能把焦点弦长给算出来啦。

再说说椭圆里的焦点弦,那也有它独特的公式。

对于椭圆 x²/a² +y²/b² = 1 (a > b > 0),焦点弦长可以用2ab² / (b² + c²sin²α) 来表示(这里的 c 是椭圆的半焦距,α 是焦点弦与长轴的夹角)。

在双曲线中呢,焦点弦长公式又有所不同。

双曲线 x²/a²- y²/b² = 1 ,焦点弦长是 2ab² / (|b² - c²sin²α|) 。

学习这些公式的时候,可不能死记硬背,得理解其中的原理。

就像搭积木一样,一块一块弄清楚了,才能搭出漂亮的城堡。

比如说在做练习题的时候,有这么一道题:已知抛物线 y² = 8x ,有一条焦点弦的两个端点横坐标分别是 2 和 6,让求这条焦点弦的长度。

这时候,咱们就可以先算出 p = 4 ,然后根据公式,焦点弦长就等于 2+ 6 + 4 = 12 。

圆锥曲线焦点弦与准线的相关性

圆锥曲线焦点弦与准线的相关性

圆锥曲线焦点弦与准线的相关性今天,我们要讨论的是圆锥曲线焦点弦与准线的相关性。

圆锥曲线是一种常见的曲线,它以极坐标形式进行参数化。

它有两个焦点F1和F2,以及椭圆弦段AB。

圆锥曲线的参数化公式为:r(θ)= c+ae^(bθ)这里,c,a,b是圆锥曲线的常量参数,可以用来描述特定的类型的圆锥曲线。

焦点弦AB是圆锥曲线的重要部分。

两个参数的变化会导致其形状的变化。

另一个重要的概念是准线,它是圆锥曲线以一定比例放大或缩小的过程中所构成的直线。

那么,圆锥曲线焦点弦与准线是如何相关的呢?首先,圆锥曲线的焦点弦AB与准线在相同的位置上。

它们之间的联系是由“焦点弦”准则定义的。

根据这一准则,以此圆锥曲线的两个焦点为端点的准线的斜率应该等于焦点弦AB的斜率。

其次,准线的方向也和圆锥曲线的焦点弦AB有关。

当焦点弦AB 在椭圆轴上时,准线的方向应该与椭圆轴方向相同。

当焦点弦AB不在椭圆轴上时,准线的方向应该与焦点弦AB的方向相同。

此外,准线还与圆锥曲线的半径有关。

根据焦点弦定理,准线与两个焦点之间的距离应该等于椭圆轴上半径之差。

这个距离可以通过观察焦点弦AB的斜率和长度来计算出来。

最后,圆锥曲线的焦点弦AB的位置也和准线的位置有关。

例如,若所求准线的斜率为k,则焦点弦AB的位置是椭圆轴上等于k/b的位置,其中b为参数化公式中的常量参数。

综上所述,圆锥曲线的焦点弦AB与准线之间存在着一种复杂的相互关系。

参数化的变化会影响圆锥曲线焦点弦AB的形状,从而影响准线的形状。

此外,准线的方向和位置也都和圆锥曲线焦点弦AB 有关。

因此,理解圆锥曲线焦点弦AB与准线的相关性非常重要,不仅可以用来推导圆锥曲线特定参数的变化,而且可以用来计算准线的位置和方向。

圆锥曲线焦半径公式的进一步推导及应用

圆锥曲线焦半径公式的进一步推导及应用

㊀㊀㊀圆锥曲线焦半径公式的进一步推导及应用◉浙江省诸暨市草塔中学㊀金铁强椭圆㊁双曲线的焦点弦或焦半径的问题是解析几何中的常规考点,很多老师在讲解的时候喜欢用 设而不求 来解决问题.但用此法来处理焦点弦问题也有其弊端,一是步骤过多,二是有些问题不能直接用此法求解,必须再要用到 设而求之 才能解决.对于现在的多变题型,已经达不到通解通法的要求,因此有必要对圆锥曲线焦半径公式进行进一步的挖掘和整理,才能适应当前高考题型的发展趋势,让学生能够更直观地解题.图11焦点在x 轴上的椭圆焦半径公式的推导及应用㊀㊀如图1,设椭圆E 为x 2a2+y 2b2=1(a >b >0),F 1,F 2为椭圆E 的焦点,P Q 为椭圆E 过点F 1的焦点弦.当P Q 垂直于x 轴时,弦P Q 为过F 1的所有弦中最短的一条,即通径,满足|P Q |=2b2a;当P Q 垂直于y 轴时,弦P Q 为过F 1的所有弦中最长的一条,即长轴,满足|P Q |=2a .除了这两条特殊的焦点弦,我们任意作一条焦点弦,连接P F 2,构成焦点三角形P F 1F 2,令øP F 1F 2为α,为焦点弦P Q 的倾斜角.设|P F 1|=x ,则|P F 2|=2a -x .在әP F 1F 2中由余弦定理得c o s α=x 2+(2c )2-(2a -x )24x c.整理得到x =a 2-c 2a -c c o s α=b2a -c c o s α,即|P F 1|=b 2a -c c o s α.当α=π2,0时,就是最短弦与最长弦.同样地,在图1中,若我们连结Q F 2,构成焦点三角形Q F 1F 2,可得|Q F 1|=b2a -c c o s (π-α),即|Q F 1|=b2a +c c o s α,得到焦点弦|P Q |=b 2a -c c o s α+b 2a +c c o s α=2a b2a 2-c 2 c o s 2α.这个公式把焦点弦分成上下两部分,每部分的焦半径都有自己的表达式,这样对于条件运用可以更直接明了.例1㊀设F 1,F 2分别为椭圆x 23+y 2=1的左右焦点,点A ,B 在椭圆上,若F 1A ң=5F 2B ң,则点A 的坐标是.图2解析1:(常规解法)如图2,已知椭圆x 23+y 2=1,则焦点F 1(-2,0),F 2(2,0).因为F 1A ң=5F 2B ң,则F 1A ң与F 2B ң共线,即F 1A 与F 2B 平行.延长A F 1与椭圆交于点C ,由椭圆与两个焦点都关于(0,0)对称,可知C F 1ң=F 2B ң,则F 1A ң=5C F 1ң.那么问题就转化到焦点弦A C 了.可验证当点A 在x 轴上时,不满足条件,故设A (x 1,y 1),C (x 2,y 2),直线A C 为x =m y -2,求出A (x 1,y 1)的坐标.到这里,我们发现,该题目其实不能用 设而不求 ,因为最后问的是x 1及y 1的值,最后反而是 设而求之 .联立x =m y -2与x 23+y 2=1,消去x ,得到方程(3+m 2)y 2-22m y -1=0.则y 1+y 2=22m m 2+3,y 1y 2=-1m 2+3.又y 1=-5y 2,解得y 21=1.则A (0,1)或A (0,-1).解析1虽步骤不多,但运算复杂.如果我们用焦半径公式,整个问题就豁然开朗.解析2:(焦半径公式法)首先,利用椭圆与平行线的点对称问题同上解,问题转化到焦点弦A C 中来.设A C 的倾斜角为α,由F 1A ң=5C F 1ң,可直接利用公式得到方程b 2a -c c o s α=5b2a +c c o s α,则6c c o s α=4a ,即c o s α=2a 3c =2332=63.所以直线A C 的斜率k =22,直线A C 方程为y =22x +1,联立椭圆方程x23+y 2=1,易得x =0,y =1.即A (0,1).再利用对称性可得A (0,-1)(此时倾斜角α为352022年9月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀解法探究复习备考Copyright ©博看网. All Rights Reserved.㊀㊀㊀钝角,斜率k=-12).运算可简便很多.综上可知:A(0,1)或A(0,1).分析公式的本源可得出很简单的结论,焦点弦的弦长及被焦点分开的两段焦半径的比例值其实与椭圆的形状(即a,c的值),与焦点弦所在直线的方向(即斜率k或倾斜角α)存在关系,即a,c,α三个量决定了焦点弦的一切,那我们不妨直接利用这样的代数关系来解决问题,解题就方便多了.2焦点在x轴上的双曲线焦半径公式的应用同样地,该公式也适用于双曲线.例2㊀已知双曲线方程:x23-y2=1,左焦点为F,过F作两条相互垂直的直线与双曲线相交于A,B,C,D四点,求四边形A B C D面积的最小值.解析:由条件知,若焦点弦为一条交于双支,一条交于单支,则不能构成四边形,则两条焦点弦都交于左支或都交于双支.(1)若两条焦点弦都交于双支,令一条焦点弦的倾斜角为α,另一条焦点弦的倾斜角为π2+α,则满足不等式t a nα<33,且0>t a nπ2+αæèçöø÷>-33,不存在这样的α.(2)若两条焦点弦都交于左支,令一条焦点弦的倾斜角为α,另一条焦点弦的倾斜角为π2+α,则满足不等式t a nα>33,且t a nπ2+αæèçöø÷<-33,则αɪπ6,π3æèçöø÷.S A B C D=|A C| |B D|2=122a b2(a2-c2 c o s2α)2a b2a2-c2 c o s2α+π2æèçöø÷éëêêùûúú=33-4c o s2α233-4s i n2α=69-4+16c o s2α s i n2α=65+4s i n22αȡ23.当s i n22α=1,即α=π4时,等号成立,此时四边形A B C D面积的最小值为23.利用公式直接代入,解题过程简洁明了,优点显而易见.3焦点在y轴上的圆锥曲线焦半径公式如图3,设椭圆T:y2a2+x2b2=1(a>b>0),F1,F2为椭圆T的焦点,上准线为y=a2c,P Q为椭圆T的焦图3点弦,P Q的倾斜角为α,P H与上准线垂直于H,N为上准线与y轴的交点.由|P F1||P H|=ca,|PH|=a2c+(|P F1|s i nα-c),可以得a|P F1|=c a2c-c+|P F1|s i nαæèçöø÷,即|P F1|=b2a-c s i nα.同理,|Q F1|=b2a+c s i nα,且|P Q|=2a b2a2-c2s i n2α.焦点在y轴上的椭圆的焦半径公式只需把焦点在x轴上的焦半径公式中的c o sα换成s i nα,其他不变.因此,简单总结如下:(1)焦点在x轴上的椭圆或双曲线(双曲线要求焦点弦P Q与双曲线同一支交于两点,即焦点弦的斜率满足k>ba或k<-ba时),其焦点弦为P Q,焦点弦的倾斜角为α.P Q被焦点分成P F1与P F2两段,其中较长的一条为|P F1|=b2a-c c o sα,较短的一条为|Q F1|=b2a+c c o sα;当曲线为双曲线时,若其焦点弦P Q与双曲线两支分别相交一点,即焦点弦的斜率满足-b a<k<b a时,此时较长的一条|P F1|=b2c c o sα-a,较短的一条|Q F1|=b2c c o sα+a(绝对值取决于倾斜角为锐角还是钝角).(2)焦点在y轴上的椭圆或双曲线,把上述公式中的c o sα换成s i nα即可.唯一有变化的是当焦点弦P Q与双曲线同一支交于两点,焦点弦的斜率满足-b a<k<b a;当双曲线的焦点弦P Q与双曲线两支分别相交一点,焦点弦的斜率满足k>ba,或k<-b a.即α的取值范围要求发生变化,而公式的结构不变,只需把公式中的c o sα换成s i nα,而且,由于αɪ[0,π),s i nαȡ0恒成立,有绝对值的部分可以去掉.参考文献:[1]人民教育出版社,课程教材研究所,中学数学课程教材研究开发中心.普通高中课程标准实验教科书 数学 选修2G1(A版)[M].2版.北京:人民教育出版社,2007.[2]丁益民.数学公式的 二次处理 对学生思维的培养.数学通讯,2010(22):1G2.F45复习备考解法探究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年9月上半月Copyright©博看网. All Rights Reserved.。

高考高频考点(圆锥曲线)9、两套抛物线的焦半径与焦点弦公式

高考高频考点(圆锥曲线)9、两套抛物线的焦半径与焦点弦公式

第9讲 两套抛物线的焦半径与焦点弦公式知识与方法1.设点()00,P x y 在抛物线上,()11,A x y 、()22,B x y ,AB 是抛物线的焦点弦,则抛物线p pp p2.如图,设抛物线22y px =()0p >的焦点为F ,AB 为抛物线的一条焦点弦,AFO α∠=.则抛物线的“角版”焦半径、焦点弦、面积公式如下: ①1cos pAF α=+;②22sin p AB α=;③22sin AOBp S α=.典型例题【例1】抛物线22y px =()0p >的焦点为F ,点()1,P m 在抛物线上,且3PF =,则p =______. 【解析】由焦半径公式,1342pPF p =+=⇒= 【答案】4变式1 抛物线24x y =−的焦点为F ,点A 在抛物线上,且4AF =,则点A 的坐标为______.【解析】设()00,A x y ,则()20000143123AF y y x x P =−=⇒=−⇒=⇒=±±−.【答案】()3±−变式2 抛物线2:2C y x =的焦点为F ,过F 且倾斜角为60°的直线l 被抛物线C 截得的弦长为______.【解析】解法1:由题意,1,02F ⎛⎫ ⎪⎝⎭,设1:2l y x ⎫=−⎪⎭,代入22y x =整理得:233504x x −+=, 设两根为1x 和2x ,则1253x x +=,故直线l 被抛物线C 截得的弦长12813L x x =++=.解法2:直线l 被抛物线C 截得的弦长22228sin sin 603p L α===︒.【答案】83变式3 抛物线2:2C y x =的焦点为F ,过F 且斜率为2的直线被抛物线C 截得的弦长为______.【解析】设直线的倾斜角为α,tan 2sin αα=⇒=⇒弦长22225sin 2p L α===⎝⎭. 【答案】52【例2】过抛物线2:4C y x =焦点F 的直线l 与抛物线C 交于A 、B 两点,若3AF =,则BF =_____.【解析】设AFO α∠=,则231cos AF α==+,所以1cos 3α=−,故()231cos 2BF πα==+−.【答案】32变式1 过抛物线2:4C y x =的焦点F 的直线l 与抛物线C 交于A 、B 两点,若8AB =,且AF BF >,则AF BF=______.【解析】不妨设直线l 的倾斜角为锐角,如图,设AFO α∠=,则22418sin sin sin 2AB ααα==⇒=⇒=, 所以135α=︒,45BFO ∠=︒,从而)211cos135AF ==++︒,)211cos 45BF ==+︒故3AF BF=+【答案】3+变式2 过抛物线2:4C y x =焦点F 的直线l 与抛物线C 交于A 、B 两点,若2AF BF =,则AB =______.【解析】不妨设直线l 为如图所示的情形,设AFO α∠=,则21cos AF α=+,()221cos 1cos BF παα==+−−,2222144922cos 1cos 1cos 3sin 1cos 2AF BF AB ααααα=⇒=⋅⇒=−⇒===+−−.【答案】92变式3 已知抛物线2:2C y px =()0p >的焦点为F ,准线为l ,过点F 作倾斜角为120°的直线与准线l 相交于点A ,线段AF 与抛物线C 相交于点B ,且43AB =,则抛物线C 的方程为______.【解析】如图,作BD l ⊥于D ,直线AF 的倾斜角为120°2601cos603p pBFO BF ⇒∠=︒⇒==+︒,由抛物线定义,BD BF =,所以23p BD =, 易得60ABD ∠=︒,所以213cos 423p BD ABD AB ∠===,解得:1p =,故抛物线C 的方程为22y x =.【答案】22y x =变式4 设F 为抛物线2:2C y px =()0p >的焦点,经过点F 且倾斜角为02παα⎛⎫<< ⎪⎝⎭的直线l 与抛物线相交于A 、B 两点,O 为原点且OAB 的面积为32sin α,若线段AB 的中垂线与x 轴相交于点M ,则FM =______.【解析】解法1:如图,,02p F ⎛⎫⎪⎝⎭,设直线():02p l x my m =+>,()11,A x y ,()22,B x y ,其中cos sin m αα=,联立222p x my y px⎧=+⎪⎨⎪=⎩消去x 整理得:2220y pmy p −−=,故122y y pm +=,()212122x x m y y p pm p +=++=+,所以AB 中点为2,2p G pm pm ⎛⎫+ ⎪⎝⎭,AB 中垂线的方程为22p y pm m x pm ⎛⎫−=−−− ⎪⎝⎭,令0y =得:232x p pm =+,所以23,02M p pm ⎛⎫+ ⎪⎝⎭,故22322p FM p pm p pm =+−=+,又21222AB x x p pm p =++=+,原点O 到直线l的距离d =所以()21122222OABp SAB d pm p =⋅=⋅+=由题意,32sin OABSα=,32sin α=,将cos sin m αα=代入整理得:22sin p α=,所以()22222cos 112sin sin pFM p pm p m p ααα⎛⎫=+=+=+== ⎪⎝⎭. 解法2:如图,22sin pAB α=,则22sin AOBp Sα=, 23322sin 2sin 2sin 2sin OAB p S p αααα=⇒=⇒=①,设AB 中点为G ,则()22112cos 21cos 2sin sin p p p FG AF AG AF AB απααα=−=−=−⋅=+−, 所以2cos sin FG pFM αα==,由①知22sin p α=,故2FM =.【答案】2变式5 过抛物线2:4C y x =焦点F 作两条互相垂直的直线分别与抛物线C 交于A 、B 和D 、E 四点,则四边形ADBE 面积的最小值为______.【解析】解法1:由题意,()1,0F ,设直线AB 的方程为1x my =+()0m ≠,()11,A x y ,()22,B x y , 联立214x my y x =+⎧⎨=⎩消去x整理得:2440y my −−=,所以124y y m +=,()21212242x x m y y m +=++=+,故212244AB x x m =++=+,用1m−替换m 可得:244DE m =+,从而四边形ADBE 的面积()2222114144482823222S AB DE m m m m ⎛⎛⎫⎛⎫=⋅=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝当且仅当1m =±时等号成立,即四边形ADBE 面积的最小值为32.解法2:不妨设直线AB 为02παα⎛⎫<< ⎪⎝⎭,则直线DE 的倾斜角为2πα+,由焦点弦公式,24sin AB α=,2244cos sin 2DE παα==⎛⎫+ ⎪⎝⎭, 四边形ADBE 的面积2222211448323222sin cos sin cos sin 2S AB CD ααααα=⋅=⋅⋅==≥, 当且仅当4πα=时取等号,所以四边形ADBE 面积的最小值为32.【答案】32强化训练1.(★★)抛物线22y px =()0p >的焦点为F ,点()2,P m 在抛物线上,且4PF =,则p =______.【解析】由焦半径公式,2442pPF p =+=⇒=. 【答案】42.(★★)抛物线22x y =的焦点为F ,点A 在抛物线上,且3AF =,则点A 的坐标为______. 【解析】设()00,A x y ,则200000155325222AF y y x y x A ⎛⎫=+=⇒=⇒==⇒=⇒ ⎪⎝⎭.【答案】52⎛⎫ ⎪⎝⎭3.(★★)抛物线2:4C y x =的焦点为F ,过F 斜率为3的直线l 与抛物线C 交于A 、B 两点,则AB =______.【解析】设直线l 的倾斜角为α,2440tan 3sin sin 9AB ααα=⇒=⇒==. 【答案】4094.(★★★)抛物线2:2C y x =的焦点为F ,过F 的直线l 与抛物线C 交于A 、B 两点,若4AB =,则AOB 的面积为______. 【解析】设AOF α∠=,则224sin AB α==,所以sin 2α=,故12sin 2AOBS α==.5.(★★★)过抛物线2:2C y x =焦点F 的直线l 与C 交于A 、B 两点,若4AF =,则BF =______.【解析】如图,设AFO α∠=,则()131144cos 1cos 41cos 1cos 7AF BF ααπαα==⇒=−⇒===++−−.【答案】476.(★★★)过抛物线2:2C y x =的焦点F 的直线1与C 交于A 、B 两点,若8AB =,则AF BF ⋅=______【解析】设直线l 的倾斜角为α, 则222211118sin 4sin 41cos 1cos sin AB AF BF ααααα==⇒=⇒⋅=⋅==−+. 【答案】47.(★★★)过抛物线2:3C y x =的焦点F 的直线与C 交于A 、B 两点,若2AF BF =,则AB =______.【解析】设AFO α∠=,则1cos p AF α=+,()1cos 1cos p pBF παα==+−−,22212232722cos 1cos 1cos 3sin 1cos 8113p p p pAF BF AB ααααα=⇒=⋅⇒=−⇒====+−−⎛⎫−− ⎪⎝⎭【答案】2788.(2012·重庆·★★★)过抛物线22y x =的焦点F 作直线交抛物线于A 、B 两点,若2512AB =,AF BF <,则AF =______.【解析】不妨设直线AB 的倾斜角为锐角,如图,设BFO α∠=, 则2225sin 12AB α==,所以sin α=,从而1cos 5α=−,故()1151cos 1cos 6AF παα===+−−.【答案】569.(★★★)如下图所示,经过抛物线2:2C y px =()0p >的焦点F 的直线l 与抛物线C 及其准线相交于A 、B 、C 三点,若4BC BF =,且4AF =,则p =______.【解析】设AFO α∠=,则BFO πα∠=−, 过B 作BD ⊥准线于D ,则BD BF =,144cos 4BD BC BF BC BD CBD BC=⇒=⇒∠==()11cos cos cos cos 44BFO πααα⇒∠=−=−=⇒=−, 所以4431cos 3p AF p p α===⇒=+.【答案】310.(★★★★)过抛物线2:4C y x =的焦点F 的直线l 交抛物线C 于P 、Q 两点,交圆()2211x y −+=于M 、N 两点,其中P 、M 位于第一象限,则11PM QN+的最小值为______. 【解析】如图,设()0PFO ααπ∠=<<,由题意,1FM FN ==, 21cos 111cos 1cos PM PF FM PF ααα−=−=−=−=++,()21cos 111cos 1cos QN QF FN QF απαα+=−=−=−=+−−, 所以()()()()()222221cos 1cos 1cos 111cos 1cos 1cos 1cos 1cos 1cos sin PM QN αααααααααα+++−+−+=+==−++− ()222222sin 2cos 2cos 212sin sin ααααα+⎛⎫==+≥ ⎪⎝⎭, 当且仅当2πα=时取等号,故11PM QN+的最小值为2.【答案】211.(★★★)已知F 为抛物线()220y px p =>的焦点,经过F 且倾斜角为45°的直线与抛物线交于A 、B 两点,线段AB 的中垂线与x 轴相交于点M ,则4pFM=______. 【解析】解法1:由题意,,02p F ⎛⎫⎪⎝⎭,直线AB 的方程为2p x y =+,设()11,A x y ,()22,B x y ,联立222p x y y px ⎧=+⎪⎨⎪=⎩消去x 整理得:2220y py p −−=,所以122y y p +=,12123x x y y p p +=++=, 从而AB 中点G 为3,2p p ⎛⎫⎪⎝⎭,故AB 中垂线的方程为32y p x p ⎛⎫−=−−⎪⎝⎭令0y =得:52x p =,所以5,02p M ⎛⎫⎪⎝⎭,故5222p FM p p =−=,所以42p FM =.解法2:如图,G 为AB 中点,由题意,MFG 是等腰直角三角形,12FG AF AG AF AB =−=−2121cos1352sin 45p p =−⋅=+︒︒,所以422pFM p FM=⇒=.【答案】212.(★★★★)已知抛物线()2:20C y px p =>的焦点为F ,准线为l ,若位于x 轴上方的动点A 在准线l 上,线段AF 与抛物线C 相交于点B ,且1AF AF BF−=,则抛物线C 的方程为______.【解析】解法1(特值法):取,2p A p ⎛⎫− ⎪⎝⎭,则1AF k =−,直线AF 的方程为2p x y =−+,由222p x y y px ⎧=−+⎪⎨⎪=⎩得:2220y py p +−=,解得:()1y p =−, 显然点B 在x轴上方,所以)1B y p =,故(2322B B p y x p −==, 从而点B的坐标为()3,12pp ⎛⎫−⎪− ⎪⎝⎭因为1AF AF BF−=,而AF =,((3222p p BF p −=+=,1−=,解得:1p =,故抛物线C 的方程为22y x =. 解法2(特值法):取直线AB 的倾斜角为120°, 如图,则60AFK ABD ∠=∠=︒,此时22AF FK p ==,而11213AF AB BF AB AB BFBFBFBD+==+=+=+=,所以233AF pBF==,将2AF p =、23p BF =代入1AF AF BF−=可得1p =, 故抛物线C 的方程为22y x =.解法3(极限位置分析法):让点A 无限接近点,02p ⎛⎫− ⎪⎝⎭,则点B 无限接近原点, 此时1AFAF BF −=即为21p −=,解得:1p =,所以抛物线C 的方程为22y x =解法4:设()00,B x y ,则02p BF x =+,由~FBT FAK 可得AF KF BF TF =,即02AF p p BF x =− 所以0022p p AF x p x ⎛⎫=+⋅ ⎪⎝⎭−,代入1AF AF BF −=知0001222p p p x p p x x ⎛⎫−+⋅= ⎪⎝⎭−−,解得1p =, 故抛物线C 的方程为22y x =.解法5:过B 作BD l ⊥于D ,因为1AFAF BF −=,所以AF AF BF BF −⋅=, 故AF BF AF BF −=⋅,由图可知AF BF AB −=,所以AB AF BF =⋅,又BF BD =,所以AB AF BD =⋅,故1BDAB AF =,从图上来看,cos BD ABD AB=∠,而ABD AFK ∠=∠,所以1cos KFAFK AF AF∠==,故1KF =,即1p =,所以抛物线C 的方程为22y x =. 解法6(用焦半径公式):设BFO α∠=,则1cos p BF α=+,cos cos p AF KF p AF αα==⇒=,代入1AF AF BF−=得:cos 1cos 1cos p p p ααα−=+, 解得:1p =,所以抛物线C 的方程为22y x =【答案】y 2=2x。

专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用

专题16  圆锥曲线焦点弦  微点3  圆锥曲线焦点弦长公式及其应用
15.过双曲线 的右焦点F作倾斜角为 的直线,交双曲线于P、Q两点,则 的值为__________.
16.过双曲线 的右焦点 作倾斜角为 的直线,交双曲线于 两点,则 的值为________.
17.过抛物线 的焦点 作倾角为 的直线,与抛物线分别交于 、 两点( 在 轴左侧),则 _______________________.
注意:夹角不是直线的倾斜角,而是直线与焦点所在轴的夹角,这样就不需要区的右焦点F作倾斜角为 的直线,交双曲线于 两点,求弦长 .
三、圆锥曲线坐标式焦点弦长公式
1.椭圆的坐标式焦点弦长公式
例9
9.已知椭圆 ,若过左焦点的直线交椭圆于 两点,求 .
【结论6】椭圆的坐标式焦点弦长公式:
我们有如下结论:
【结论6】双曲线的坐标式焦点弦长公式:
(1)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: ;
(2)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: .
3.抛物线的坐标式焦点弦长公式
由抛物线的定义易得
【结论7】抛物线的坐标式焦点弦长公式:
(1)抛物线 的焦点弦长公式: ;
(2)抛物线 的焦点弦长公式: ;
说明:特殊情形,当倾斜角为 时,即为椭圆的通径,通径长 .
2.双曲线的倾斜角式焦点弦长公式
例2
2.设双曲线 ,其中两焦点坐标为 ,过 的直线 的倾斜角为 ,交双曲线于 , 两点,求弦长 .
可得如下结论2:
【结论2】双曲线的倾斜角式焦点弦长公式:
(1) 为双曲线 的左、右焦点,过 倾斜角为 的直线 与双曲线 交于 两点,则 .
专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用
专题16圆锥曲线焦点弦

圆锥曲线焦点弦公式及应用

圆锥曲线焦点弦公式及应用

圆锥曲线焦点弦公式及应用湖北省阳新县高级中学邹生书焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。

定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。

(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。

证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。

由圆锥曲线的统一定义得,,又,所以。

(1)当焦点内分弦时。

如图1,,所以。

图1(2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以。

图2评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。

例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。

若,则的离心率为()解这里,所以,又,代入公式得,所以,故选。

例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心率为。

过右焦点且斜率为的直线于相交于两点,若,则()解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为的直线,与抛物线交于两点(点在轴左侧),则有____图3解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,设,又,代入公式得,解得,所以。

例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。

例5(自编题)已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。

若,则___解这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。

定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准距(焦点到对应准线的距离)为。

圆锥曲线焦半径公式及其应用(学生版)

圆锥曲线焦半径公式及其应用(学生版)

圆锥曲线焦半径公式及其应用一、坐标形式的焦半径公式1.椭圆的坐标形式的焦半径公式(1)设点),(00y x P 是椭圆)0(12222>>=+b a b y a x 上任意一点,21,F F 是其左右焦点,则=1PF ,=2PF ,记忆方式:(2)设点),(00y x P 是椭圆)0(12222>>=+b a b x a y 上任意一点,21,F F 是其下上焦点,则=1PF ,=2PF ,记忆方式:2.双曲线的坐标形式的焦半径公式(1)设点),(00y x P 是双曲线)0,0(12222>>=-b a by a x 上任意一点,21,F F 是其左、右焦点,则①当点P 在右支上时,=1PF ,=2PF ,②当点P 在左支上时,=1PF ,=2PF ,记忆方式:(2)设点),(00y x P 是双曲线)0,0(12222>>=-b a bx a y 上任意一点,21,F F 是其下、上焦点,则①当点P 在上支上时,=1PF ,=2PF ,②当点P 在下支上时,=1PF ,=2PF ,记忆方式:(3)若弦AB 过左焦点,则=AB ;若弦AB 过右焦点,则=AB 3.抛物线的坐标形式的焦半径公式(1)设),(00y x P 是抛物线)0(22>=p px y 上任意一点,F 为其焦点,则=PF (2)设),(00y x P 是抛物线)0(22>-=p px y 上任意一点,F 为其焦点,则=PF (3)设),(00y x P 是抛物线)0(22>=p py x 上任意一点,F 为其焦点,则=PF (4)设),(00y x P 是抛物线)0(22>-=p py x 上任意一点,F 为其焦点,则=PF 例1.(2021年新高考Ⅰ卷)已知21,F F 是椭圆C :14922=+y x 的两个焦点,点M 在C 上,则21MF MF ⋅的最大值为()A.13B.12C.9D.6例2.(2019年全国Ⅲ卷理)设21,F F 为椭圆C :1203622=+y x 的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则点M 的坐标为例3.点),(00y x P 为双曲线C :132422=-y x 的右支上一点,若点P 到右焦点的距离等于02x ,则=0x例4.双曲线116922=-y x 的两个焦点为21,F F ,点P 在双曲线上,若21PF PF ⊥,则点P 到x轴的距离为例5.(2011年辽宁卷)已知F 是抛物线x y =2的焦点,B A ,是该抛物线上两点,3=+BF AF ,则线段AB 的中点到y 轴的距离为A.43 B.1C.45 D.47例8.(2013年全国Ⅱ卷)设抛物线C :)0(22>=p px y 的焦点为F ,点M 在C 上,5=MF ,若以MF 为直径的圆过点)2,0(,则C 的方程为()A.x y 42=或x y 82= B.x y 22=或x y 82=C.x y 42=或xy 162= D.x y 22=或xy 162=注:以抛物线的焦半径为直径的圆与y 轴相切二、角度形式的焦半径公式1.椭圆的角度形式的焦半径公式(1)设过椭圆)0(12222>>=+b a b y a x 的焦点F 的弦AB 的倾斜角为θ,则=AF ;=BF ;焦点弦长=AB ;(2)设过椭圆)0(12222>>=+b a bx a y 的焦点F 的弦AB 的倾斜角为θ,则=AF ;=BF ;焦点弦长=AB ;2.双曲线的角度形式的焦半径公式设过双曲线)0,0(12222>>=-b a by a x 右焦点)0,(c F 的弦AB 的倾斜角为α,渐近线xa b y ±=的倾斜角为θ,则(1)当θπαθ-<<时,焦点弦AB 在右支上,=AF ;=BF ;=AB ,弦AB 在双曲线一支上时,焦点弦最短为(2)当θα<≤0或παθπ<<-焦点弦AB 在两支上,=AF ;=BF ;=AB ,弦AB 交双曲线两支上时,焦点弦最短为3.抛物线的角度形式的焦半径公式(1)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p px y 于B A ,两点,则=AF ;=BF ;=AB (2)设过焦点F 且倾斜角为θ的直线交抛物线)0(22>=p py x 于B A ,两点,则=AF ;=BF ;=AB 例1.如图,设过椭圆13422=+y x 的右焦点F 的直线l 交椭圆于B A ,两点,线段AB 的垂直平分线交x 轴于点M ,则=ABMF例2.如图,过椭圆13422=+y x 的左焦点F 任作一直线交椭圆于B A ,两点,若=+BF AF BF AF λ,则=λ例2.已知椭圆12322=+y x 的左右焦点分别为21,F F ,过1F 的直线交椭圆于D B ,两点,过2F 的直线交椭圆于C A ,两点,且BD AC ⊥,则四边形ABCD 的面积的最小值为例3.过双曲线)0,0(12222>>=-b a by a x 的一个焦点F 作平行于渐近线的两直线,与双曲线分别交于B A ,两点,若a AB 2=,双曲线的离心率为e ,则[]=e 例4.已知双曲线191622=-y x 的左焦点弦交双曲线左支于B A ,两点,且772=AB ,求直线AB 的方程例5.已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则DE AB +的最小值为三、焦半径定比模型(1)设AB 为焦点在x 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θcos e ;=e (2)设AB 为焦点在y 轴上的圆锥曲线的过焦点F 的弦,AB 的倾斜角为θ,斜率为k ,且FB AF λ=,则=θsin e ;=e 例1.(2010年辽宁理科)设椭圆C :)0(12222>>=+b a by a x 的左焦点为F ,过点F 的直线与椭圆C 相交于B A ,两点,直线l 的倾斜角为060,FB AF 2=,则椭圆的离心率为例2.(2010年全国Ⅰ卷)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于D ,FD BF 2=,则C 的离心率为例3.(2010年全国Ⅱ卷)已知椭圆)0(12222>>=+b a by a x 的离心率为23,过右焦点F 且斜率为)0(>k k 的直线与C 相交于B A ,两点,若FB AF 3=,则=k ()A.1B.2C.3D.2例4.(2014年全国Ⅱ卷理)设21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N ,若直线MN 在y 轴上的截距为2,且N F MN 15=,则椭圆C 的方程为。

用圆锥曲线焦点弦结论巧算高考题

用圆锥曲线焦点弦结论巧算高考题

用圆锥曲线焦点弦结论巧算高考题重庆巴蜀科学城中学校(401331)李兰[摘要]圆锥曲线焦点弦结论具有统一形式,利用焦点弦结论可以快速解决高考题,为考生打开解题思路,提高学生的解题能力。

[关键词]圆锥曲线;焦点弦;高考题[中图分类号]G633.6[文献标识码]A[文章编号]1674-6058(2023)17-0024-03一、公式及其证明圆锥曲线中的焦点弦就是过焦点的弦长,弦长公式AB=1+k2||x1-x2,圆锥曲线有统一方程,思考由抛物线的焦点弦与弦长倾斜角度、离心率(抛物线的离心率为1)有关的弦长公式,类比推导圆锥曲线的另一个统一公式:焦半径=半通径1±e⋅cosθ=b2a1±e⋅cosθ(半通径就是垂直于焦点所在轴的焦半径,抛物线为y2=2px(p>0)中的p)。

证明如下:①椭圆x2a2+y2b2=1中,直线l过右焦点F与椭圆交于A、B两点,其中A(x1,y1),B(x2,y2),l的倾斜角为θ(锐角),则焦半径AF=b2a1+e·cosθ,BF=b2a1-e·cosθ。

(如图1)x=a2cθ图1由A、B两点分别向右准线作垂线,垂足为M、N,由A点向x轴作垂线,垂足为D,由圆锥曲线统一定义,椭圆上点到焦点的距离比到准线的距离等于离心率得||AF||AM=ca,所以||AF=||AM e=e·()a2c-x1=a-ex1,||FD=||AF cosθ。

所以c+||AF cosθ=x1,即c+||AF cosθ=a-||AFe,即||AF(1+e cosθ)=a-c2a=b2a。

所以AF=b2a1+e·cosθ,同理BF=b2a1-e·cosθ。

②双曲线x2a2-y2b2=1中,直线l过焦点F与同一支交于A、B两点,结论同上,证明略。

③抛物线y2=2px(p>0),直线l过右焦点F与抛物线交于A、B两点,则AF=p1-cosθ,BF=p1+cosθ,长短视角度而定。

圆锥曲线的焦半径公式及其应用

圆锥曲线的焦半径公式及其应用

圆锥曲线的焦半径公式及其应用圆锥曲线上任意一点到焦点的距离叫做圆锥曲线关于该点的焦半径。

利用圆锥曲线的第二定义很容易得到圆锥曲线的焦半径公式。

1.椭圆的焦半径公式(1)若P(x,y)为椭圆+=1(a>b>0)上任意一点,F、F分别为椭圆的左、右焦点,则=a+e x,=a-e x.(2) 若P(x,y)为椭圆+=1(a>b>0)上任意一点,F、F分别为椭圆的上、下焦点,则=a+e y,=a-e y.2.双曲线的焦半径公式(1)若P(x,y)为双曲线-=1(a>0,b>0)上任意一点,F、F分别为双曲线的左、右焦点,则①当点P在双曲线的左支上时,=-e x-a,= -e x+a.②当点P在双曲线的右支上时,=e x+a,= e x-a.(2)若P(x,y)为双曲线-=1(a>0,b>0)上任意一点, F、 F分别为双曲线的上、下焦点,则①当点P在双曲线的下支上时,=-e y-a,= -ey+a.②当点P在双曲线的上支上时,=ey+a,= ey-a.3.抛物线的焦半径公式(1)若P(x,y)为抛物线y=2px(p>0)上任意一点,则= x+(2) 若P(x,y)为抛物线y=-2px(p>0)上任意一点,则= -x+(3) 若P(x,y)为抛物线x=2py(p>0)上任意一点,则= y+(4)若P(x,y)为抛物线x=-2py(p>0)上任意一点,则= -y+下面举例说明上述各公式的应用例1.求椭圆+=1上一点M(2.4,4)与焦点F、F的距离.解:易知a=5,e=且椭圆的焦点在轴上,∴= a+ey=5+×4=,= a-e y=5-×4= 。

例2.试在椭圆+=1上求一点P,使它到左焦点的距离是它到右焦点的距离的两倍.解:由,得。

设P(x, y),则=a+ex,即5+x=,解之得x=,所以P(,).例3.在双曲线-=1上求一点M,使它到左、右两焦点的距离 的比为3:2,并求M点到两准线的距离。

焦点弦的常用公式

焦点弦的常用公式

当前位置:首页>>高中数学>>学生中心>>解题指导圆锥曲线有关焦点弦的几个公式及应用湖北省阳新县高级中学邹生书如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。

圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。

焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。

本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。

定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。

(1)当焦点内分弦时,有;(2)当焦点外分弦时(此时曲线为双曲线),有。

证明设直线是焦点所对应的准线,点在直线上的射影分别为,点在直线上的射影为。

由圆锥曲线的统一定义得,,又,所以。

(1)当焦点内分弦时。

如图1,,所以。

图1(2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以。

图2评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。

例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。

若,则的离心率为()解这里,所以,又,代入公式得,所以,故选。

例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心率为。

过右焦点且斜率为的直线于相交于两点,若,则()解这里,,设直线的倾斜角为,代入公式得,所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜角为的直线,与抛物线交于两点(点在轴左侧),则有____图3解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴左侧时,设,又,代入公式得,解得,所以。

例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___解设直线与焦点所在的轴的夹角为,则,又,代入公式得,所以。

关于圆锥曲线弦长的“万能公式”及其应用

关于圆锥曲线弦长的“万能公式”及其应用

关于圆锥曲线弦长的“万能公式”及其应用众所周知,我们把圆、椭圆、双曲线、抛物线统称为圆锥曲线(即二次曲线)。

一般直接用公式解决弦长问题时,计算量大,容易出错,这正是高考命题需要考查学生计算能力的一个重要方面。

我们通常用“设而不求”的方法,可得到其弦长公式。

这种“设而不求”的思想,在处理圆锥曲线相关问题中占有重要地位。

本文将给同学们介绍“圆锥曲线弦长万能公式”,用它来解题可以简化运算过程。

假设设直线l的方程为:y=kx+m(特殊情况要讨论k的存在性),圆锥曲线为f(x,y)=0(可以是圆、椭圆、双曲线、抛物线),把直线l的方程代入二次曲线方程,可化为ax2+bx+c=0,(或ay2+by+c=0),不妨设直线和二次曲线的两交点为A(x1,y1),B(x2,y2),那么:x1,x2是方程ax2+bx+c=0的两个实数解,于是有。

圆锥曲线的极坐标方程 焦半径公式 焦点弦公式

圆锥曲线的极坐标方程 焦半径公式 焦点弦公式

椭圆、 曲线、抛物线统一的极坐标方程为
ρ = ep . 1 − e cosθ
其中 p 是定点 F 到定直线的距离,p>0 .
当 0 e 1 时,方程表示椭圆
当 e>1 时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允
许ρ 0,方程就表示整个 曲线
当 e=1 时,方程表示开口向右的抛物线.
二、圆锥曲线的焦半径公式
推论 若圆锥曲线的弦 MN 过焦点 F,则有 1 + 1 = 2 . MF NF ep
、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 过焦点 F,
1、椭圆中, p = a 2 − c = b2 , MN = ep +
ep
= 2ab2 .
c
c
1− ecosθ 1− ecos(π −θ) a2 − c2 cos2 θ
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式
湖北省天门中学 薛德斌
一、圆锥曲线的极坐标方程
椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定
直线(准线)的距离的比等于常数 e 的点的轨迹.
以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点 F 作相
应准线的垂线,垂足为 K,以 FK 的 向延长线为极轴建立极坐标系.
3、抛物线中, MN = p +
p
= 2p .
1 − cosθ 1 − cos(π − θ ) sin 2 θ
四、直角坐标系中的焦半径公式 设 P x,y 是圆锥曲线 的点,
1、若 F1、F2 分别是椭圆的左、右焦点,则 PF1 = a + ex ,、 F2 分别是 曲线的左、右焦点,
设 F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线 的右支、抛物线) 任一点,则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线焦点弦公式及应用
湖北省阳新县高级中学邹生书
焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。

定理1已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且。

(1)当焦点内分弦时,有
;(2)当焦点外分弦时(此时曲线为双曲线),有。

证明设直线是焦点所对应的准线,点在直线上的射影分别为,
点在直线上的射影为。

由圆锥曲线的统一定义得,,又
,所以。

(1)当焦点内分弦时。

如图1,,所以。

图1
(2)当焦点外分弦时(此时曲线为双曲线)。

如图2,,所以。

图2
评注特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。

例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右
焦点为,过且斜率为的直线交于两点。

若,则的离心率为()
解这里,所以,又,代入公式得,所
以,故选。

例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的
离心率为。

过右焦点且斜率为的直线于相交于两点,若,则()
解这里,,设直线的倾斜角为,代入公式得,
所以,所以,故选。

例3 (08高考江西卷理科第15题)过抛物线的焦点作倾斜
角为的直线,与抛物线交于两点(点在轴左侧),则有____
图3
解如图3,由题意知直线与抛物线的地称轴的夹角,当点在轴
左侧时,设,又,代入公式得,解得,所以。

例4(2010年高考全国卷Ⅰ理科第16题)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为___
解设直线与焦点所在的轴的夹角为,则,又,代
入公式得,所以。

例5(自编题)已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。

若,则___
解这里,,因直线与左右两支相交,故应选择公式
,代入公式得,所以所以,所以。

定理2已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准
距(焦点到对应准线的距离)为。

过点的弦与曲线的焦点所在的轴的夹
角为,则有。

证明设点在准线上的射影分别为,过点作轴的垂线交
直线于点,交直线于点。

由圆锥曲线的统一定义得,
,所以。

图4
(1)当焦点内分弦时。

如图4,,。


所以较长焦半径,较短焦半径。

所以。

(2)当焦点外分弦时(此时曲线为双曲线)。

图5
如图5,,。

所以,
所以较长焦半径,较短焦半径。

所以。

综合(1)(2)知,较长焦半径,较短焦半径。

焦点弦的弦长公式为。

特别地,当曲线为无心曲线即为抛物线时,焦准距就是径之半,较长焦半径
,较短焦半径,焦点弦的弦长公式为。


曲线为有心曲线即为椭圆或双曲线时,焦准距为。

注由上可得,当焦点内分弦时,有。

当焦点外分弦时,有。

例6 (2009年高考福建卷理科第13题)过抛物线的焦点作
倾斜角为的直线,交抛物线于两点,若线段的长为8,则___解由抛物线焦点弦的弦长公式为得,,解得。

例7(2010年高考辽宁卷理科第20题)已知椭圆的右焦点为,经过且倾斜角为的直线与椭圆相交于不同两点,已知。

(1)求椭圆的离心率;(2)若,求椭圆方程。

解(1)这里,,由定理1的公式得,解得。

(2)将,代入焦点弦的弦长公式得,,
解得,即,所以①,又,设
,代入①得,所以,所以,故所求椭圆方程为。

例8(2007年重庆卷第16题)过双曲线的右焦点作倾斜角为
的直线,交双曲线于两点,则的值为___
解易知均在右支上,因为,离心率,点准距
,因倾斜角为,所以。

由焦半径公式得,。

例9(由2007年重庆卷第16题改编)过双曲线的右焦点作倾斜角为的直线,交双曲线于两点,则的值为___
解因为,离心率,点准距,因倾斜角为
,所以。

注意到分别在双曲线的两支上,由焦半径公式得,。

例10 (2007年高考全国卷Ⅰ)如图6,已知椭圆的左、右焦点分
别为,过的直线交椭圆于两点,过的直线交椭圆于两点,且。

求四边形面积的最小值。

图6
解由方程可知,,则。

设直线与轴的夹角为,因为,所以直线与轴
的夹角为。

代入弦长公式得,
,。

故四边形的面积为,。

所以四边形面积的最小值为。

相关文档
最新文档