ansys中载荷步、载荷子步、时间步三者的关系

合集下载

ansys弧长法设置半径及收敛问题

ansys弧长法设置半径及收敛问题

收敛详细问题:如何判断收敛解答:1) 看载荷步,其中的子步数会出现999999时,代表你的模型在迭代计算中是不收敛的;2) 在后处理!READ RESULTS---BY PICKED3) 出现对话框:solution is done!就表示收敛了!对于低频电磁(不包括耦合场分析)的收敛判断手段:1) 基于失势A2) 基于电流段Current Segments3) 1) and 2)4)基于标失MAG5)基于磁通MAG Flux6) 4) and 5)*0)首先你通过typical value 和typical value的tolerance 指定标准值value * tolerance*1)对于A和MAG , ANSYS拿各个节点处前后两次平衡迭代的那些差值的L2范数(或L1或无穷大范数)与你指定的标准比较,从而判断收敛*2)对于Flux和Current segments, ANSYS拿他们的那些不平衡值(就是你施加给电流(或电流段)值与程序计算的值之间的差)的L2范数(或L1或无穷大范数)与你指定的标准比较,从而判断收敛*3)的标失磁场分析ANSYS推荐基于Flux判断收敛, 2D静磁分析ANSYS推荐基于Currentsegments来判断收敛. 一般都按默认的来就行了.收敛详细问题:系统提示出现严重扭曲的解决办法解答:1)如果系统提示单元严重扭曲,说明变形很大了,将载荷降低,再试试!2)打开了大变形开关3)使用超弹性单元,ANSYS里有这种单元用于模拟塑性材料的4)单元加密;5)增加子步数,载荷慢慢加;6)最后一点较为关键,考虑接触对的材料性能;收敛详细问题:非线性和接触的不收敛处理方式解答:先将接触模型(单元)去掉,计算,看材料非线性的收敛情况;再将材料非线性先改为线性材料,做接触模型,看其收敛情况;如果是材料非线性引起的不收敛,需适当修改材料参数或采取其他一些办法,如果是接触引起的不收敛,需调整接触参数,如接触刚度等。

ansys中子步和载荷步的含义与设置方法

ansys中子步和载荷步的含义与设置方法

在Ansys中,子步和载荷步是非常重要的概念,对于进行复杂仿真分析的工程师来说,深入理解并正确设置子步和载荷步是非常关键的。

接下来,我将从深度和广度的角度,结合自己的理解和经验,详细解释这两个概念的含义和设置方法。

1. 子步的含义与设置方法让我们来理解什么是子步。

在Ansys中,子步是为了确保仿真收敛而进行的时间步长分割。

当仿真过程中存在非线性行为或者材料模型的非线性影响较大时,我们就需要使用子步来有效地控制仿真的精度和稳定性。

在设置子步时,首先需要考虑仿真的时间范围,并根据具体情况进行合理的分割。

一般来说,我们可以根据仿真模型的非线性程度和材料特性来确定子步的数量和大小。

对于高度非线性的模型,需要细分子步以确保仿真的准确性;而对于较为线性的模型,则可以适当减少子步以提高仿真效率。

在设置子步时,还需要考虑到各个载荷的作用情况,以确保在每个子步内能够充分考虑不同载荷的影响。

通过合理设置子步,可以有效地控制仿真的收敛性,并且提高仿真结果的准确性。

2. 载荷步的含义与设置方法载荷步是指在Ansys中对载荷进行分段加载的方法。

在工程仿真中,往往会面对需要分段加载的情况,这时就需要使用载荷步来对载荷进行合理分段,并进行逐步加载以观察结构的响应。

在设置载荷步时,首先需要考虑加载的类型和大小,然后根据具体的分析目的来确定载荷的分段情况。

通常情况下,我们可以根据结构的承载能力和材料的特性来确定载荷的分段加载,并且可以根据仿真的结果来调整载荷步的设置,以得到更加准确的分析结果。

总结和回顾通过对子步和载荷步的含义和设置方法的详细解释,我们可以看到,在Ansys中合理设置子步和载荷步对于确保仿真的准确性和稳定性是非常重要的。

通过合理分割子步和载荷,我们可以更好地控制仿真的收敛性和精度,并且可以更加准确地模拟结构的响应情况。

个人观点和理解在我的实际工程仿真经验中,我发现合理设置子步和载荷步可以大大提高仿真的精度和效率。

《有限元基础及应用》课程大纲

《有限元基础及应用》课程大纲

《有限元基础及应用》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:有限元法是求解复杂工程问题进行数值模拟非常有效的方法,是现代数字化科技的一种重要基础性原理。

将它应用于科学研究中,可以成为探究物质客观规律的先进手段;将它应用于工程技术中,可成为工程设计和分析的可靠工具。

有限元法已经成为机械工程、车辆工程、航空航天工程、土木建筑等专业的必修课或选修课,有限元商用软件也是广大工程技术人员从事产品开发、设计、分析,以及生产服务的重要工具。

通过本课程的学习使同学们掌握有限元分析方法的基础知识和原理;掌握大型有限元分析软件(ANSYS)的使用;有限元方法的实际应用:能够针对具有复杂几何形状的变形体完整获取复杂外力作用下它内部准确力学信息,在准确进行力学分析的基础上,可以对所研究对象进行强度、刚度等方面的判断,以便对研究结构进行静态、动态的强度和刚度分析、参数设计以及结构优化设计。

内容由浅入深,通俗易懂,结合实践应用分析,培养学生理论联系实际和解决实际问题的能力。

(二)课程目标:课程目标1:掌握有限元方法的基本原理,分析过程和步骤,形函数的构造方法,以及针对不同维度、不同结构准确选择合适的单元的技巧;课程目标2:掌握有限元分析方法,具有对不同工程问题建立相应力学模型再选取适合的有限元模型离散,最后得到高精度低成本的数值模拟结果;课程目标3:利用有限元原理和应用软件(ANSYS),能够针对车辆结构中具有复杂几何形状的零部件完整获取复杂外力作用下其内部的准确力学信息(位移、应力和应变),并能根据强度、刚度、稳定性及疲劳等进行分析判断结构的安全性,具有分析和解决工程实际问题的能力;课程目标4:掌握大型商用有限元软件(ANSYS)对车辆结构部件的静力学、动力学和多物理场耦合问题进行数值模拟和分析。

能够了解不同单元的适用范围以及有限元方法数值模拟的局限性。

(三)课程目标与毕业要求、课程内容的对应关系本课程支撑专业培养计划中毕业要求1、2、3、5。

ANSYS软件计算的基本过程

ANSYS软件计算的基本过程

6. 定义实常数:
a. Main Menu: Preprocessor > Real Constants b. 选择 Add . . . c. 选择 OK 定义BEAM3的实常数. d. 选择 Help 得到有关单元 BEAM3的帮助. e. 查阅单元描述. f. File > Exit 退出帮助系统. g. 在AREA框中输入 28.2 (横截面积). h. 在IZZ框中输入 833 (惯性矩). i. 在HEIGHT框中输入 12.71 (梁的高度). j. 选择 OK 定义实常数并关闭对话框. k. 选择 Close 关闭实常数对话框.
a. Utility Menu: File > Save as b. 输入文件名 beamgeom.db. c. 选择 OK 保存文件并退出对话框.
9.对几何模型划分网格:
a. Main Menu: Preprocessor > MeshTool b. 选择 Mesh. c. 拾取 line. d. 在拾取对话框中选择 OK. e. (可选) 在MeshTool对话框中选择 Close.
10.保存ANSYS数据库到文件 beammesh.db:
a. Utility Menu: File > Save as b. 输入文件名: beammesh.db. c. 选择 OK 保存文件并退出对话框.
11. 施加载荷及约束:
a. Main Menu: Solution > -Loads- Apply > -StructuralDisplacement > On Nodes b. 拾取最左边的节点,在拾取菜单中选择 OK. c. 选择All DOF. d. 选择 OK. (如果不输入任何值,位移约束默认为0) e. Main Menu: Solution > -Loads- Apply > -StructuralForce/Moment > On Nodes f. 拾取最右边的节点,在选取对话框中选择OK. g. 选择 FY. h. 在 VALUE框中输入 -4000,选择 OK.

ANSYS热分析报告报告材料标准详解

ANSYS热分析报告报告材料标准详解

第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。

热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。

二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。

•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。

•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。

此外,还可以分析相变、有内热源、接触热阻等问题。

三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章 基础知识一、符号与单位W/m 2-℃二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W —— 作功;——系统内能; ——系统动能; ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量; ●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。

三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。

热传导遵循付里叶定律:dxdTk q -='',式中为热流密度(W/m 2),为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。

ANSYS中重要的后处理

ANSYS中重要的后处理

ANSYS后处理1.ANSYS后处理时如何按灰度输出云图?1)你可以到utilitymenu-plotctrls-style-colors-window colors试试2)直接utilitymenu-plotctrls-redirect plots2 将云图输出为JPG菜单->PlotCtrls->Redirect Plots->To JPEG Files3.怎么在计算结果实体云图中切面?命令流/cplane/type图形界面操作<1.设置工作面为切面<2.PlotCtrls-->Style-->Hidden line Options将[/TYPE]选项选为section将[/CPLANE]选项选为working plane4.非线性计算过程中收敛曲线实时显示solution>load step opts>output ctrls>grph solu track>on5.运用命令流进行计算时,一个良好的习惯是:使用SELECT COMMEND后.........其后再加上ALLSEL.........6.应力图中左侧的文字中,SMX与SMN分别代表最大值和最小值如你plnsolv,s,eqv则 SMX与SMN分别代表最大值等效应力和最小值等效应力如你要看的是plnsolv,u则SMX与SMN分别代表位移最大值和位移最小值不要被S迷惑mx(max)mn(min)7.在非线性分析中,如何根据ansys的跟踪显示来判断收敛?在ansys output windows 有 force convergence value值和 criterion 值当前者小于后者时,就完成一次收敛你自己可以查看两条线的意思分别是:FL2:不平衡力的2范数 FCRIT:不平衡力的收敛容差,如果前者大于后者说明没有收敛,要继续计算,当然如果你以弯矩M为收敛准则那么就对应 M L2 和 M CRIT希望你现在能明白8.两个单元建成公共节点,就成了刚性连接,不是接触问题了。

基于ANSYS WORKBENCH的装配体有限元分析

基于ANSYS WORKBENCH的装配体有限元分析

基于ANSYS WORKBENCH的装配体有限元分析模拟装配体的本质就是设置零件与零件之间的接触问题。

装配体的仿真所面临的问题包括:(1)模型的简化。

这一步包含的问题最多。

实际的装配体少的有十几个零件,多的有上百个零件。

这些零件有的很大,如车门板;有的体积很小,如圆柱销;有的很细长,如密封条;有的很薄且形状极不规则,如车身;有的上面钻满了孔,如连接板;有的上面有很多小突起,如玩具的外壳。

在对一个装配体进行分析时,所有的零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,是否会出现应力集中?是否可以删除小孔,如果删除,是否会刚好使得应力最大的地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合的装配体中,我们可以对杆件进行抽象吗?或者只是用实体模型?如果我们做了简化,那么这种简化对于结果造成了多大的影响,我们可以得到一个大致的误差范围吗?所有这些问题,都需要我们仔细考虑。

(2)零件之间的联接。

装配体的一个主要特征,就是零件多,而在零件之间发生了关系。

我们知道,如果零件之间不能发生相对运动,则直接可以使用绑定的方式来设置接触。

如果零件之间可以发生相对运动,则至少可以有两种选择,或者我们用运动副来建模,或者,使用接触来建模。

如果使用了运动副,那么这种建模方式对于零件的强度分析会造成多大的影响?在运动副的附近,我们所计算的应力其精确度大概有多少?什么时候需要使用接触呢?又应该使用哪一种接触形式呢?(3)材料属性的考虑。

在一个复杂的装配体中所有的零件,其材料属性多种多样。

我们在初次分析的时候,可以只考虑其线弹性属性。

但是对于高温,重载,高速情况下,材料的属性不再局限于线弹性属性。

此时我们恐怕需要了解其中的每一种材料,它是超弹性的吗?是哪一种超弹性的?它发生了塑性变形吗?该使用哪一种塑性模型?它是粘性的吗?它是脆性的吗?它的属性随着温度而改变吗?它发生了蠕变吗?是否存在应力钢化问题?如此众多的零件,对于每一个零件,我们都需要考察其各种各样的力学属性,这真是一个丰富多彩的问题。

一线工程师总结AnsysWorkbench之Mechanical应用——分析设置

一线工程师总结AnsysWorkbench之Mechanical应用——分析设置

一线工程师总结AnsysWorkbench之Mechanical应用——分析设置对于结构静力学中的简单线性问题,不需要对其进行设置,但是对于复杂的分析需要设置一些控制选项。

分析设置是在Mechanical分析树的Static Structural下的Anslysis Settings细节设置中。

本文主要对载荷步控制、求解器控制、重启控制、非线性控制、输出控制、分析数据管理进行介绍。

1 载荷步控制载荷步控制用于指定求解步数和时间。

在非线性分析时,用于控制时间步长。

载荷步控制也用于创建多载荷步,如螺栓预紧载荷。

1.1 载荷步与子步载荷步、子步和平衡迭代是控制加载求解过程的三个载荷时间历程节点。

1.1.1 载荷步在线性静力学分析或稳态分析中,可以使用不同的载荷步施加不同的载荷组合。

在瞬态分析中,可以将多个载荷步加载到同一加载历程曲线的不同时间点。

注意:载荷可以分步,约束不能分步。

实例1,固定矩形条一端,在另一端分3步加载载荷,第一步只加载100N的力,第二步只加载10000Nm的逆时针扭矩,第三步推力与扭矩共同作用,求每一步的变形。

Step1,设置零件材料,接触关系,网格划分,过程略。

Step2,分析设置,将载荷步设置为3,其余默认。

Step3,设置边界条件,如下图。

载荷默认都是渐增(斜坡)加载的,用一个载荷步将载荷从0增加到设定值。

选中分析树中的Force,在信息窗口中出现了Tabular Data表格和Graph图表,代表了Force的加载历程,在第一步中,力从0渐变到100,并在第二三步中保持。

对于静力学分析,渐增加载与恒定加载计算无区别,本例将力与扭矩都改为恒定加载,在表格第一行将数字改为设定值。

要想Force在第二步不起作用,只需要点击图表的第二步区域或表格对应行,右击选择Activate/Deactive at this step!(在此步激活/取消),此载荷便在第二步中消失。

同样设置Moment载荷,使它在第一步中不起作用。

ANSYS稳态和瞬态分析步骤简述..

ANSYS稳态和瞬态分析步骤简述..

ANSYS稳态和瞬态热模拟基本步骤基于ANSYS 9。

0一、稳态分析从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。

其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:(3-1)=0+-q q q流入生成流出在稳态分析中,任一节点的温度不随时间变化.基本步骤:(为简单起见,按照软件的菜单逐级介绍)1、选择分析类型点击Preferences菜单,出现对话框1。

对话框1我们主要针对的是热分析的模拟,所以选择Thermal.这样做的目的是为了使后面的菜单中只有热分析相关的选项.2、定义单元类型GUI:Preprocessor>Element Type〉Add/Edit/Delete 出现对话框2对话框2点击Add,出现对话框3对话框3在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。

对于三维模型,多选择SLOID87:六节点四面体单元。

3、选择温度单位默认一般都是国际单位制,温度为开尔文(K).如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units选择需要的温度单位。

4、定义材料属性对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。

GUI: Preprocessor〉Material Props> Material Models 出现对话框4对话框4一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5.对话框5若要设定材料的热导率随温度变化,主要针对半导体材料。

则需要点击对话框5中的Add Temperature选项,设置不同温度点对应的热导率,当然温度点越多,模拟结果越准确.设置完毕后,可以点击Graph按钮,软件会生成热导率随温度变化的曲线。

对话框5中,Material菜单,New Model选项,添加多种材料的热参数。

ansys计算磨损

ansys计算磨损

有限元模拟滑动摩擦磨损摘要磨损往往是影响产品寿命的一个主要因素。

因此磨损预测就成为工程的一个重要部分。

这篇论文介绍了用有限元软件ANSYS来模拟磨损的方法。

用线性磨损定律和欧拉解析积分提出了一个模型化的模拟程序。

然而,还要考虑保证模型的正确性和数学方法的收敛性。

分别用实验和有限元的方法分析了球形pin-on –disk系统在没有润滑条件下的接触问题,使用了Lim 和Ashby磨损图来区分磨损机理。

在给定几何尺寸和载荷的条件下,可以用有限元的方法模拟磨损,得到磨损率对滑动距离的对应关系。

有限元软件ANSYS非常适合解决接触问题和磨损模拟。

实际磨损率的分布范围在±40-60%的界限内会导致磨损模拟结果相当大的偏离。

因此这些结果必须在一个相对的值上进行估测,从而比较不同的设计。

关键词:磨损模拟;FEA;磨损试验;接触温度1.绪论摩擦副之间最可靠的摩擦学行为的知识可以通过做磨损实验来获得。

然而,当特别是设计改变时需要在日常的内部程序基础上进行迅速的估测。

已经进行了大量的研究工作来帮助设计者实现这一步。

已经证实一个给定系统滑动磨损的主要参数是接触载荷和相对滑动速度。

速度由机构运动来决定。

系统载荷怎么影响接触应力是很复杂的一个问题。

第一个分析两个弹性实体接触应力的人是赫兹。

他认为接触体是弹性的,接触部分为椭圆形,而且没有摩擦的。

这些假设被用在接触应力的计算中。

磨损发生在机械构件相互接触时。

一个重要的实际问题是在给定的时间里有多少的材料损失。

由于功能和加工误差等表面的形状是不同的。

而且会因为磨损和弹性变形而改变。

因此压力的分配就依赖于这些条件。

有限元的方法是一个通用的工具来解决应力应变的问题。

这篇论文使用有限元软件ANSYS5.0A分析了接触压力和磨损模拟。

2. 磨损模型磨损过程可以认为是动态的,由许多参数决定,这个过程的预测可以看作是一个初始值的问题。

从而磨损率就可以由一个总的方程来描述。

dh/ds=f( 载荷,速度,温度,材料参数,润滑,….)h为磨损深度(m),s为滑动距离(m)。

螺栓连接 ansys有限元分析

螺栓连接 ansys有限元分析

螺栓联接的有限元分析问题描述如图所示,两个长方形平板通过两个螺栓连接在一起,具体几何尺寸如下:L1=0.05m,L2=0.03,L3=0.03,L4=0.09,W=0.07,板子的厚度H=0.008m,螺母半径R1=0.008m,螺母厚度H1=0.004,两个螺栓的中心距L=0.03m,螺杆半径R2=0.05,模型采用SOLID186单元模拟板子,采用接触向导定义接触对,材料参数:板材的弹性模量为2.1E11pa,泊松比0.3,应力应变关系为双线性等向强化,其中屈服强度为400Mpa,切线模量为2E10pa,螺栓的弹性模量为 2.1E11pa,泊松比为0.32,应力-应变关系为双线性等向强化,其中屈服强度600Mpa,切线模量为2E10pa。

载荷及边界条件:螺栓连接模型承受螺栓预拉伸应力和外拉伸两种载荷,因此计算中采用两个载荷步进行加载,第一个载荷设置螺栓的预拉伸力为1000N,第二个载荷步设置板子的右端承受60Mpa的拉力固定约束在板子左端一、建立有限元模型(1)定义单元类型本实例分析的问题中涉及到大变形,故选用Solid186单元类型来建立本实例的模型。

本接触问题属于面面接触,目标面和接触面都是柔性的,将使用接触单元TARGE170和CONTA174来模拟接触面。

接触单元在分析过程中使用接触向导时可以自动添加,这里就不再添加。

下面为定义单元类型的具体操作过程。

1.选取菜单路径Main Menu | Preprocessor | Element Type | Add/Edit/Delete,将弹出Element Types (单元类型)对话框。

单击对话框中的Add按钮,将弹出Library of Element Types (单元类型库)对话框。

2.在单元类型库对话框中,靠近左边的列表中,单击“Structural Solid”一次,使其高亮度显示,指定添加的单元类型为结构实体单元。

然后,在靠近右边的列表中,单击“Brick 8node 186”一次,选定单元类型Solid186 为第一类单元。

随时间和空间变化的Ansys Workbench分析实例

随时间和空间变化的Ansys Workbench分析实例

随时间和空间变化的Ansys Workbench分析实例例如对一个长为1米,截面是50mm*50mm的梁,施加一个随时间和轴线坐标X变化的载荷其变化规律是这里的x是从左端点开始的杆件上各点的X坐标而t是时间。

因此这是一个瞬态动力学问题。

要求在此载荷规律作用下梁的变形。

下面是用ANSYS WORKBENCH计算该问题的过程。

(1)打开ANSYS WORKBENCH14.5。

(2)创建瞬态动力学项目示意图。

(3)创建几何模型。

双击geometry,打开DM,在其中创建一个长1米,截面是50mm*50mm的长方体。

其细节视图的设置是然后退出DS.(4)创建局部坐标系。

双击Model,进入到mechanical中,并把长度单位切换成米,角度单位切换成radian.然后添加一个局部坐标系,把该坐标系的坐标原点定位在长方体的上表面的左边一个顶点上。

该坐标系用于对后面施加的载荷提供坐标系,以确定方程中的X是从哪里开始定义的。

(5)划分网格。

设置单元尺寸为25mm,划分网格如下(6)设置载荷步。

对于分析设置进行如下定义即计算1秒,而只有1个载荷步,该载荷步被均分为10个载荷子步。

(7)固定左端面。

选择左边的端面进行固定。

(8)施加随时间和空间变化的分布载荷。

选择上表面,施加分布载荷。

在其细节视图的magnitude中首先选择function.说明要用函数进行定义然后在magnitude中输入表达式如下注意到此时的坐标系统切换成了上面定义的坐标系。

此时主窗口中显示如下图同时在图形窗口显示了在1秒时候的载荷曲线可见,此时的载荷曲线是抛物线。

(9)仿真并查看结果计算,然后查看位移的结果如下图。

基于AnsysWorkbench的圆柱销接触分析

基于AnsysWorkbench的圆柱销接触分析

基于AnsysWorkbench的圆柱销接触分析前面一篇基于Any经典界面的接触分析例子做完以后,不少朋友希望了解该例子在Workbench中是如何完成的。

我做了一下,与大家共享,不一定正确。

毕竟这种东西,教科书上也没有,我只是按照自己的理解在做,有错误的地方,恳请指正。

1.问题描述一个钢销插在一个钢块中的光滑销孔中。

已知钢销的半径是0.5unit,长是2.5unit,而钢块的宽是4Unit,长4Unit,高为1Unit,方块中的销孔半径为0.49unit,是一个通孔。

钢块与钢销的弹性模量均为36e6,泊松比为0.3.由于钢销的直径比销孔的直径要大,所以它们之间是过盈配合。

现在要对该问题进行两个载荷步的仿真。

(1)要得到过盈配合的应力。

(2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。

2.问题分析由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。

进行该分析,需要两个载荷步:第一个载荷步,过盈配合。

求解没有附加位移约束的问题,钢销由于它的几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。

第二个载荷步,拔出分析。

往外拉动钢销1.7unit,对于耦合节点上使用位移条件。

打开自动时间步长以保证求解收敛。

在后处理中每10个载荷子步读一个结果。

本篇只谈第一个载荷步的计算。

3.生成几何体上述问题是ANSYS自带的一个例子。

对于几何体,它已经编制了生成几何体的命令流文件。

所以,我们首先用经典界面打开该命令流文件,运行之以生成四分之一几何体;然后导出为一个IGS文件,再退出经典界面,接着再到WORKBENCH中,打开该IGS文件进行操作。

(3.1)首先打开ANSYSAPDL14.5.(3.2)然后读入已经做好的几何体。

从【工具菜单】-->【File】-->【ReadInputFrom】打开导入文件对话框找到ANSYS自带的文件\ProgramFile\AnyInc\V145\ANSYS\data\model\block.inp【OK】后四分之一几何模型被导入,结果如下图(3.3)导出几何模型从【工具菜单】】-->【File】-->【E某port】打开导出文件对话框,在该对话框中设置如下即把数据库中的几何体导出为一个block.ig文件。

ANSYS磨损分析报告

ANSYS磨损分析报告

用有限元的方法模拟滑动摩擦磨损摘要磨损往往是影响产品寿命的一个主要因素。

因此磨损预测就成为工程的一个重要部分。

这篇论文介绍了用有限元软件ANSYS来模拟磨损的方法。

用线性磨损定律和欧拉解析积分提出了一个模型化的模拟程序。

然而,还要考虑保证模型的正确性和数学方法的收敛性。

分别用实验和有限元的方法分析了球形pin-on –disk系统在没有润滑条件下的接触问题,使用了Lim 和Ashby磨损图来区分磨损机理。

在给定几何尺寸和载荷的条件下,可以用有限元的方法模拟磨损,得到磨损率对滑动距离的对应关系。

有限元软件ANSYS非常适合解决接触问题和磨损模拟。

实际磨损率的分布X围在±40-60%的界限内会导致磨损模拟结果相当大的偏离。

因此这些结果必须在一个相对的值上进行估测,从而比较不同的设计。

关键词:磨损模拟;FEA;磨损试验;接触温度1.绪论摩擦副之间最可靠的摩擦学行为的知识可以通过做磨损实验来获得。

然而,当特别是设计改变时需要在日常的内部程序基础上进行迅速的估测。

已经进行了大量的研究工作来帮助设计者实现这一步。

已经证实一个给定系统滑动磨损的主要参数是接触载荷和相对滑动速度。

速度由机构运动来决定。

系统载荷怎么影响接触应力是很复杂的一个问题。

第一个分析两个弹性实体接触应力的人是赫兹。

他认为接触体是弹性的,接触部分为椭圆形,而且没有摩擦的。

这些假设被用在接触应力的计算中。

磨损发生在机械构件相互接触时。

一个重要的实际问题是在给定的时间里有多少的材料损失。

由于功能和加工误差等表面的形状是不同的。

而且会因为磨损和弹性变形而改变。

因此压力的分配就依赖于这些条件。

有限元的方法是一个通用的工具来解决应力应变的问题。

这篇论文使用有限元软件ANSYS5.0A分析了接触压力和磨损模拟。

2. 磨损模型磨损过程可以认为是动态的,由许多参数决定,这个过程的预测可以看作是一个初始值的问题。

从而磨损率就可以由一个总的方程来描述。

ansys有限元分析基本流程

ansys有限元分析基本流程

第一章实体建模第一节基本知识建模在ANSYS 系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。

建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。

一、实体造型简介1.建立实体模型的两种途径①利用ANSYS 自带的实体建模功能创建实体建模:②利用ANSYS 与其他软件接口导入其他二维或三维软件所建立的实体模型。

2.实体建模的三种方式(1) 自底向上的实体建模由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。

(2) 自顶向下的实体建模直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。

(3) 混合法自底向上和自顶向下的实体建模可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。

自由网格划分时,实体模型的建立比较1e 单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。

二、ANSYS 的坐标系ANSYS 为用户提供了以下几种坐标系,每种都有其特定的用途。

①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。

②显示坐标系:定义了列出或显示几何对象的系统。

③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。

④单元坐标系:确定材料特性主轴和单元结果数据的方向。

1.全局坐标系全局坐标系和局部坐标系是用来定位几何体。

在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。

总体坐标系是一个绝对的参考系。

ANSYS 提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y- 柱坐标系。

4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian), 1是柱坐标系(Cyliadrical) , 2 是球坐标系(Spherical),5 是Y-柱坐标系(Y-aylindrical),如图2-1 所示。

ansys动力学瞬态分析详解

ansys动力学瞬态分析详解

§3.1瞬态动力学分析的定义瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。

可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。

载荷和时间的相关性使得惯性力和阻尼作用比较重要。

如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。

瞬态动力学的基本运动方程是:其中:[M] =质量矩阵[C] =阻尼矩阵[K] =刚度矩阵{}=节点加速度向量{}=节点速度向量{u} =节点位移向量在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和阻尼力([C]{})的静力学平衡方程。

ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。

两个连续时间点间的时间增量称为积分时间步长(integration time step)。

§3.2学习瞬态动力学的预备工作瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。

可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。

例如,可以做以下预备工作:1.首先分析一个较简单模型。

创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。

2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。

在某些场合,动力学分析中是没必要包括非线性特性的。

3.掌握结构动力学特性。

通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。

同时,固有频率对计算正确的积分时间步长十分有用。

4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。

<<高级技术分指南>>中将讲述子结构。

§3.3三种求解方法瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。

ansys载荷施加

ansys载荷施加

2.1 载荷概述有限元分析的主要目的是检查结构或构件对一定载荷条件的响应。

因此,在分析中指定合适的载荷条件是关键的一步。

在ANSYS程序中,可以用各种方式对模型加载,而且借助于载荷步选项,可以控制在求解中载荷如何使用。

2.2 什么是载荷在ANSYS术语中,载荷(loads)包括边界条件和外部或内部作用力函数,如图2-1所示。

不同学科中的载荷实例为:结构分析:位移,力,压力,温度(热应变),重力热分析:温度,热流速率,对流,内部热生成,无限表面磁场分析:磁势,磁通量,磁场段,源流密度,无限表面电场分析:电势(电压),电流,电荷,电荷密度,无限表面流体分析:速度,压力图2-1 “载荷”包括边界条件以及其它类型的载荷载荷分为六类:DOF约束,力(集中载荷),表面载荷,体积载荷、惯性力及耦合场载荷。

·DOF constraint(DOF约束)将用一已知值给定某个自由度。

例如,在结构分析中约束被指定为位移和对称边界条件;在热力分析中指定为温度和热通量平行的边界条件。

·Force(力)为施加于模型节点的集中载荷。

例如,在结构分析中被指定为力和力矩;在热力分析中为热流速率;在磁场分析中为电流段。

·Surface load(表面载荷)为施加于某个表面上的分布载荷。

例如,在结构分析中为压力;在热力分析中为对流和热通量。

·Body load(体积载荷)为体积的或场载荷。

例如,在结构分析中为温度和fluences;在热力分析中为热生成速率;在磁场分析中为流密度。

·Inertia loads(惯性载荷)由物体惯性引起的载荷,如重力加速度,角速度和角加速度。

主要在结构分析中使用。

·Coupled-field loads(耦合场载荷)为以上载荷的一种特殊情况,从一种分析得到的结果用作为另一分析的载荷。

例如,可施加磁场分析中计算出的磁力作为结构分析中的力载荷。

其它与载荷有关的术语的定义在下文中出现。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档