基于MAtlab数字图像加减乘除 反色 均衡
改进后的同态滤波图像处理技术中的应用
(a1-a2)*(exp(-c*(D^2) / (2*(D0^2))))+a2,D0 主 要 与 照 射 分 量 和 反
射分量对应的频谱幅度对比度有关, 在 MATLAB 下获取遥 感 图 像 的
频谱分析图,得出它的频谱主要在 130~220 之间。 滤波后的图像与原
始图像相比影像清晰度有了明显的改善,道路的边界比原始图像更加
该同态滤波函数作为滤波器进行滤波后, 能够在保留低频分量 aI(u,v)
的 同 时 ,对 高 频 项 bH(u,v)R(u,v)进 行 增 强 ,从 而 使 图 像 边 缘 的 轮 廓
更加清晰,有助于表现出图像中暗处的细节。 最后,再对经过同态滤波
后的图像进行傅里叶反变换,得到:
-1
g(x,y)=F (Gg (u,v))=i′(x,y)+r′(x,y)
传统教育中教与学是脱离的,如果在项目研究过程中将一小部分 专业基础较好,分析能力较强或兴趣大的学生带入进来,将项目进行 分隔分配,一方面学生参与了项目的整个研究过程同时这些学生在学 习过程中也能够起到带头作用和协助教师完成教学工作。
当前是技术发展的高速阶段, 随着网络和微计算机技术的成熟, 新的控制技术不断涌现,做为高职院校教育工作者,尽我们所能的将 各种先进的技术教授给学生是我们的责任,希望通过不断的努力,逐步 的在高职教学中开展现场总线技术的讲授工作并取得一定效果。 科
=[a+bH(u,v)][I(u,v)+R(u,v)]
=aI(u,v)+aR(u,v)+bH(u,v)I(u,v)+bH(u,v)R(u,v) (1-3)
由 式 (1-3)可 知 :a 是 调 整 低 频 分 量 的 系 数 ,即 调 整 入 射 分 量 (调
MATLAB图像倾斜校正
图像倾斜校正_基于MATLAB目的:实现对图像的倾斜校正。
方法一:利用霍夫变换,代码如下:clear,clc,close all;I=imread('1.jpg');bw=rgb2gray(I);bw=im2bw(I,graythresh(bw));bw=double(bw);BW=edge(bw,'canny');imshow(BW);title('canny 边界图像');[H,T,R]=hough(BW);figure,imshow(H,[],'XData',T,'YData',R,'InitialMagnification','fit'); xlabel('\theta'),ylabel('\rho');axis on, axis normal,hold on;P=houghpeaks(H,4,'threshold',ceil(0.3*max(H(:))));x=T(P(:,2)); y = R(P(:,1));plot(x,y,'s','color','white');lines=houghlines(BW,T,R,P,'FillGap',50,'MinLength',7);figure,imshow(BW),title('直线标识图像');max_len = 0;hold on;for k=1:length(lines)xy=[lines(k).point1;lines(k).point2];% 标出线段plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');% 标出线段的起始和终端点plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');len=norm(lines(k).point1-lines(k).point2);Len(k)=len;if (len>max_len)max_len=len;xy_long=xy;endend% 强调最长的部分plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','blue');[L1 Index1]=max(Len(:));% 最长线段的起始和终止点x1=[lines(Index1).point1(1) lines(Index1).point2(1)];y1=[lines(Index1).point1(2) lines(Index1).point2(2)];% 求得线段的斜率K1=-(lines(Index1).point1(2)-lines(Index1).point2(2))/...(lines(Index1).point1(1)-lines(Index1).point2(1))angle=atan(K1)*180/piA = imrotate(I,-angle,'bilinear');% imrate 是逆时针的所以取一个负号figure,imshow(A);结果:方法二:由于这里的图形比较规则,可针对性地对图形进行边缘检测,求倾斜角,再根据角度进行校正。
数字图像处理实验 图像生成及取反 图像亮(灰)度变换
数字图像处理实验报告实验一图像处理入门实验:图像生成及取反1、【实验目的】了解matlab有关图像的基本操作,如图像的读写,显示等。
熟悉调试环境。
2、【实验步骤】(1)Matlab workspace中生成一幅大小为512×512像素的8位灰度图, 背景为黑色,中心有一个宽40像素高20像素的白色矩形。
(2)将这幅图像保存为文件test.bmp。
•从文件test.bmp中读出图像到变量I。
•在Matlab图形界面中显示变量I所代表的图像。
•将获得的图像的格式分别转换为“*.tif”、“*.jpg”的格式保存,检查图像文件数据量的大小。
•将图片保存或拷贝到MATLAB程序组根目录的“work”文件夹中,以便后面的实验利用。
•将test.bmp 编程取反,观察效果。
3、【实验源码】(1)图像生成B=zeros(512,512)(2) 在图像中生成宽40像素高20像素的白色矩形for i=246:266for j=246:266B(i,j)=1;endend(3)图像保存imwrite(B,'test.bmp')(4)读出图像到变量I并另存为“*.tif”、“*.jpg”的格式e=imread('test.bmp')imshow(e)imwrite(e,'test.tif')imwrite(e,'test.jpg')(5)将test.bmp 编程取反for j=1:512for k=1:512if(i(j,k)==255)i(j,k)=0;elsei(j,k)=255;end;endend4、【实验截图】查看文件大小将test.bmp 编程取反5、【实验小结】(1)通过本次实验,对Matlab软件处理图像的相关功能有了初步了解。
(2)在灰度图像的取反操作中,可以使用双重循环,对每一行每一列的象素值进行更改操作。
实验二图像亮(灰)度变换1、【实验目的】灰度变换是图像增强的一种重要手段,使图像对比度扩展,图像更加清晰,特征更加明显。
数字图像处理课程设计报告matlab
数字图像处理课程设计报告姓名:学号:班级: .net设计题目:图像处理教师:赵哲老师提交日期: 12月29日一、设计内容:主题:《图像处理》详细说明:对图像进行处理(简单滤镜,模糊,锐化,高斯模糊等),对图像进行处理(上下对称,左右对称,单双色显示,亮暗程度调整等),对图像进行特效处理(反色,实色混合,色彩平衡,浮雕效果,素描效果,雾化效果等),二、涉及知识内容:1、二值化2、各种滤波3、算法等三、设计流程图四、实例分析及截图效果:运行效果截图:第一步:读取原图,并显示close all;clear;clc;% 清楚工作窗口clc 清空变量clear 关闭打开的窗口close allI=imread('1.jpg');% 插入图片1.jpg 赋给Iimshow(I);% 输出图II1=rgb2gray(I);%图片变灰度图figure%新建窗口subplot(321);% 3行2列第一幅图imhist(I1);%输出图片title('原图直方图');%图片名称一,图像处理模糊H=fspecial('motion',40);%% 滤波算子模糊程度40 motion运动q=imfilter(I,H,'replicate');%imfilter实现线性空间滤波函数,I图经过H滤波处理,replicate反复复制q1=rgb2gray(q);imhist(q1);title('模糊图直方图');二,图像处理锐化H=fspecial('unsharp');%锐化滤波算子,unsharp不清晰的qq=imfilter(I,H,'replicate');qq1=rgb2gray(qq);imhist(qq1);title('锐化图直方图');三,图像处理浮雕(来源网络)%浮雕图l=imread('1.jpg');f0=rgb2gray(l);%变灰度图f1=imnoise(f0,'speckle',0.01);%高斯噪声加入密度为0.01的高斯乘性噪声 imnoise噪声污染图像函数 speckle斑点f1=im2double(f1);%把图像数据类型转换为双精度浮点类型h3=1/9.*[1 1 1;1 1 1;1 1 1];%采用h3对图像f2进行卷积滤波f4=conv2(f1,h3,'same');%进行sobel滤波h2=fspecial('sobel');g3=filter2(h2,f1,'same');%卷积和多项式相乘 same相同的k=mat2gray(g3);% 实现图像矩阵的归一化操作四,图像处理素描(来源网络)f=imread('1.jpg');[VG,A,PPG] = colorgrad(f);ppg = im2uint8(PPG);ppgf = 255 - ppg;[M,N] = size(ppgf);T=200;ppgf1 = zeros(M,N);for ii = 1:Mfor jj = 1:Nif ppgf(ii,jj)<Tppgf1(ii,jj)=0;elseppgf1(ii,jj)=235/(255-T)*(ppgf(ii,jj)-T);endendendppgf1 = uint8(ppgf1);H=fspecial('unsharp');Motionblur=imfilter(ppgf1,H,'replicate');figure;imshow(ppgf1);调用function [VG, A, PPG] = colorgrad(f, T)if (ndims(f)~=3) || (size(f,3)~=3)error('Input image must be RGB');endsh = fspecial('sobel');sv = sh';Rx = imfilter(double(f(:,:,1)), sh, 'replicate');Ry = imfilter(double(f(:,:,1)), sv, 'replicate');Gx = imfilter(double(f(:,:,2)), sh, 'replicate');Gy = imfilter(double(f(:,:,2)), sv, 'replicate');Bx = imfilter(double(f(:,:,3)), sh, 'replicate');By = imfilter(double(f(:,:,3)), sv, 'replicate');gxx = Rx.^2 + Gx.^2 + Bx.^2;gyy = Ry.^2 + Gy.^2 + By.^2;gxy = Rx.*Ry + Gx.*Gy + Bx.*By;A = 0.5*(atan(2*gxy./(gxx-gyy+eps)));G1 = 0.5*((gxx+gyy) + (gxx-gyy).*cos(2*A) + 2*gxy.*sin(2*A));A = A + pi/2;G2 = 0.5*((gxx+gyy) + (gxx-gyy).*cos(2*A) + 2*gxy.*sin(2*A)); G1 = G1.^0.5;G2 = G2.^0.5;VG = mat2gray(max(G1, G2));RG = sqrt(Rx.^2 + Ry.^2);GG = sqrt(Gx.^2 + Gy.^2);BG = sqrt(Bx.^2 + By.^2);PPG = mat2gray(RG + GG + BG);if nargin ==2VG = (VG>T).*VG;PPG = (PPG>T).*PPG;endf1=rgb2gray(f);imhist(f1);title('素描图直方图');五,图像处理实色混合(来源网络)%实色混合I(I<=127)=0; %对像素进行处理,若值小于等于127,置0 I(I>127)=255; %对像素进行处理,若值大于127,置255 imshow(I);title('像素图');I1=rgb2gray(f);imhist(I1);title('像素图直方图');六,图像处理反色图f=imread('1.jpg');q=255-q;imshow(q);title('反色图');imhist(q1);title('反色图直方图');七,图像处理上下对称A=imread('1.jpg');B=A;[a,b,c]=size(A);a1=floor(a/2); b1=floor(b/2); c1=floor(c/2);B(1:a1,1:b,1:c)=A(a:-1:a-a1+1,1:b,1:c);figureimshow(B)title('上下对称');A=rgb2gray(A);figureimhist(A)title('上下对称直方图');八,图像处理类左右对称C=imread('1.jpg');A=C;C(1:a,1:b1,1:c)=A(1:a,b:-1:b+1-b1,1:c);figureimshow(C)title('左右对称');A=rgb2gray(A);figureimhist(A);title('左右对称直方图');九,图像处理单双色显示a=imread('1.jpg');a1=a(:,:,1);a2=a(:,:,2); a3=a(:,:,3);aa=rgb2gray(a);a4=cat(3,a1,aa,aa); a5=cat(3,a1,a2,aa);figuresubplot(121);imshow(a4);title('单色显示');subplot(122);imshow(a5);title('双色显示');a4=rgb2gray(a4);a5=rgb2gray(a5);figuresubplot(121);imhist(a4);title('单色显示直方图');subplot(122);imhist(a5);title('双色显示直方图');十,图像处理亮暗度调整a=imread('1.jpg');a1=0.8*a;figuresubplot(121);imshow(a1);title('暗图');subplot(122);imshow(a2);title('亮图')q3=rgb2gray(a1);q4=rgb2gray(a2);figuresubplot(121);mhist(q3);title('暗图直方图') subplot(122);imhist(q4);title('亮图直方图')十一,图像处理雾化处理q=imread('1.jpg');m=size(q,1);n=size(q,2);r=q(:,:,1);g=q(:,:,2);b=q(:,:,3);for i=2:m-10for j=2:n-10k=rand(1)*10;%产生一个随机数作为半径di=i+round(mod(k,33));%得到随机横坐标dj=j+round(mod(k,33));%得到随机纵坐标r(i,j)=r(di,dj);%将原像素点用随机像素点代替 g(i,j)=g(di,dj);b(i,j)=b(di,dj);endenda(:,:,1)=r;a(:,:,2)=g;a(:,:,3)=b;imshow(a)title('雾化处理图');q=rgb2gray(a);figureimhist(q);title('雾化处理图直方图');十二,图像处理高斯滤波I = imread('1.jpg');G =fspecial('gaussian', [5 5], 2);% fspecial生成一个高斯滤波器Ig =imfilter(I,G,'same');%imfilter使用该滤波器处理图片imshow(Ig);title('高斯滤波');I1=rgb2gray(Ig);imhist(I1);title('高斯滤波直方图');十三,图像处理色彩平衡(来自网络)im=imread('1.jpg');im2=im;%存储元图像im1=rgb2ycbcr(im);%将im RGB图像转换为YCbCr空间。
基于MATLAB的彩色图像灰度化处理
目录第1章绪论............................................................................................................................ - 0 - 第2章设计原理.................................................................................................................... - 1 - 第3章彩色图像的灰度化处理............................................................................................ - 2 - 3.1加权平均法 .. (2)3.2平均值法 (2)3.3最大值法 (3)3.4举例对比 (4)3.5结果分析 (5)第4章结论.......................................................................................................................... - 7 - 参考文献.................................................................................................................................... - 7 - 附录............................................................................................................................................ - 8 -基于Matlab的彩色图像灰度化处理第1章绪论在计算机领域中,灰度数字图像是每个像素只有一个采样颜色的图像。
数字图像灰度变换技术总结
数字图像灰度变换技术总结篇一:图像的灰度变换昆明理工大学(数字图像处理)实验报告实验名称:图像的灰度变换专业:电子信息科学与技术姓名:学号:成绩:[实验目的]1、理解并掌握灰度变换的基本原理和方法。
2、编程实现图像灰度变换。
3、分析不同的灰度变换方法对最终图像效果的影响。
[实验内容]1、灰度的线性变换;2、灰度的非线性变换;3、图像的二值化;4、图像的反色处理;[实验原理]图像的灰度变换(grayscaletransformation,GST)处理是图像增强处理技术中一种非常基础、直接的空间域图像处理方法,也是图像数字化软件和图像显示软件的一个重要组成部分。
灰度变换是指根据某种目标条件按一定变换关系逐点改变原图像中每一个像素灰度值的方法。
目的是为了改善画质,使图像的显示效果更加清晰。
灰度变换有时又被称为图像的对比度增强或对比度拉伸。
从图像输入装置得到的图像数据,以浓淡表示,(:数字图像灰度变换技术总结)各个像素与某一灰度值相对应。
设原图像像素的灰度值d=f(x,y),处理后图像像素的灰度值d′=g(x,y),则灰度增强可表示为:g(x,y)=T[f(x,y)]或d′=T(d)要求d和d′都在图像的灰度范围之内。
函数T(d)称为灰度变换函数,它描述了输入灰度值和输出灰度值之间的转换关系。
灰度变换主要针对独立的像素点进行处理,通过改变原始图像数据所占据的灰度范围而使图像在视觉上得到良好的改观,没有利用像素点之间的相互空间关系。
因此,灰度变换处理方法也叫做点运算法。
点运算可以按照预定的方式改变一幅图像的灰度直方图。
除了灰度级的改变是根据某种特定的灰度变换函数进行之外,点运算可以看做是“从像素到像素”的复制操作。
根据g(x,y)=T[f(x,y)],可以将灰度变换分为线性变换和非线性变换。
1、灰度的线性变换若g(x,y)=T[f(x,y)]是一个线性或分段线性的单值函数,例如g(x,y)=T[f(x,y)]=af(x,y)+b则由它确定的灰度变换称为灰度线性变换,简称线性变换。
MATLAB 图像处理命令使用
MATLAB 图像处理命令使用1.MATLAB中图像处理的一些简单函数A、imreadimread函数用于读入各种图像文件,其一般的用法为[X,MAP]=imread(‘filename’,‘fmt’)其中,X,MAP分别为读出的图像数据和颜色表数据,fmt为图像的格式,filename为读取的图像文件(可以加上文件的路径)。
例:[X,MAP]=imread(’flowers.tif’,’tif’);比较读取二值图像,灰度图像,索引图像,彩色图像的X和MAP的特点,可以利用size 函数用来显示数组的维数,了解数据的特点。
B=size(a) 返回数组a 的维数。
B、imwriteimwrite函数用于输出图像,其语法格式为:imwrite(X,map,filename,fmt)imwrite(X,map,filename,fmt)按照fmt指定的格式将图像数据矩阵X和调色板map写入文件filename。
C、imfinfoimfinfo函数用于读取图像文件的有关信息,其语法格式为imfinfo(filename,fmt)imfinfo函数返回一个结构info,它反映了该图像的各方面信息,其主要数据包括:文件名(路径)、文件格式、文件格式版本号、文件的修改时间、文件的大小、文件的长度、文件的宽度、每个像素的位数、图像的类型等。
2.MATLAB中图像文件的显示imshowimshow函数是最常用的显示各种图像的函数,其语法如下:imshow(X,map)其中X是图像数据矩阵,map是其对应的颜色矩阵,若进行图像处理后不知道图像数据的值域可以用[]代替map。
(1)二进制(二值)图像显示方法,在MATLAB中一幅二值图像是uint8或双精度的,该矩阵仅包含0和1。
如果希望工具箱中的函数能将图像理解为二进制的,那么所有数据都要是逻辑数据,必须对其进行设置(将所有数据标志均设置on).可以对数据利用“~”取反操作实现图像逆转即黑白反色。
使用Matlab进行图像配色与调整的技巧与实例
使用Matlab进行图像配色与调整的技巧与实例一、引言图像处理是计算机视觉和图形学中的一个重要领域。
在这个数字时代,我们面临着大量的图像内容,因此需要通过技术手段对这些图像进行优化和调整,以满足用户需求。
本文将介绍如何使用Matlab对图像进行配色和调整的技巧,并通过实例进行说明。
二、Matlab在图像处理中的作用Matlab是一种功能强大的高级编程语言和交互式环境,广泛应用于科学和工程领域。
它提供了丰富的图像处理工具箱,以及各种函数和算法,可以方便地进行图像的加载、处理和保存等操作。
借助Matlab强大的功能,我们可以在图像处理中更加高效和便捷地实现我们的目标。
三、图像色彩空间的基本概念在进行图像配色和调整之前,我们首先需要了解色彩空间的基本概念。
色彩空间是描述图像颜色的一种数学模型。
常见的色彩空间有RGB、HSV、Lab等。
其中,RGB是最常用的色彩空间,它是通过红、绿、蓝三个通道的强度值来描述颜色的。
HSV色彩空间则将颜色分为色调(Hue)、饱和度(Saturation)和明度(Value)三个分量,更符合人类对颜色的感知。
Lab色彩空间则将颜色分为亮度(Lightness)、a 和b两个颜色分量,可以准确地描述颜色的特征。
四、图像配色的技巧1. 色调映射色调映射是一种常用的图像配色技巧,它可以改变图像的整体色调,从而产生不同的视觉效果。
在Matlab中,可以使用imadjust函数来实现该技巧。
通过调整色调映射函数的参数,我们可以改变图像的对比度和亮度,从而达到所需的效果。
例如,如果想要增强图像的对比度,可以使用imadjust函数提高图像的对比度参数。
2. 色彩转换色彩转换是将图像从一种色彩空间转换到另一种色彩空间的过程。
在Matlab中,可以使用rgb2hsv和hsv2rgb函数来实现RGB和HSV色彩空间之间的相互转换。
通过进行色彩转换,我们可以更加方便地对图像的色调、饱和度和明度等属性进行调整。
matlab数组做统一加减乘除变换
标题: MATLAB中数组的统一加减乘除变换简介:在MATLAB中,对数组进行统一的加减乘除变换是非常常见的操作。
这些变换能够高效地处理大量数据,为数据分析和数值计算提供了强大的支持。
本文将详细介绍如何在MATLAB中对数组进行统一的加减乘除变换,包括基本的算术运算、向量化操作以及广播机制等。
正文:在MATLAB中,数组是一种重要的数据结构,它可以存储多个相同类型的元素。
对数组进行统一的加减乘除变换,意味着对数组中的每个元素执行相同的运算操作。
1. 基本算术运算MATLAB支持基本的算术运算符,如加号+、减号-、乘号*和除号/。
这些运算符可以直接应用于数组,实现对数组中每个元素的统一变换。
例如,假设有两个数组A和B,我们对它们进行加法运算:matlabA = [1, 2, 3];B = [4, 5, 6];C = A + B; % 结果 C = [5, 7, 9]同样地,减法、乘法和除法运算也可以这样进行:matlabD = A - B; % 结果 D = [-3, -3, -3]E = A * B; % 结果 E = [4, 10, 18] (对应元素相乘)F = A ./ B; % 结果 F = [0.25, 0.4, 0.5] (对应元素相除)2. 向量化操作在MATLAB中,向量化操作是一种高效的数据处理方式。
它允许你使用简单的算术运算符对整个数组进行操作,而不需要使用循环或迭代。
例如,如果你想给数组A中的每个元素都加上一个常数k,可以直接这样做:matlabA = [1, 2, 3];k = 10;A = A + k; % 结果 A = [11, 12, 13]同样地,你可以对整个数组进行乘法、除法等操作:matlabA = [1, 2, 3];k = 2;A = A * k; % 结果 A = [2, 4, 6]A = A / k; % 结果 A = [0.5, 1, 1.5]3. 广播机制在MATLAB中,广播机制允许你对不同大小的数组进行算术运算。
Matlab技术图像变换方法
Matlab技术图像变换方法图像处理是数字信号处理的重要应用之一,而Matlab作为一款强大的数学计算软件,其在图像处理领域也有着广泛的应用。
图像变换是图像处理的重要环节,通过变换可以改变图像的表现形式,提取图像的有用信息,实现图像的增强、去噪、特征提取等目标。
本文将重点介绍Matlab中常用的图像变换方法,并探讨其原理和应用。
一、灰度图像变换灰度图像变换是图像处理中最为基础的操作之一,可以通过调整像素值的亮度、对比度等来改变图像的视觉效果。
Matlab提供了多种函数来实现灰度图像变换,如imadjust、histeq等。
imadjust函数通过调整图像的亮度和对比度来改变图像的整体视觉效果。
其基本原理是通过对原始图像的像素值进行非线性变换,将像素值映射到指定的亮度范围内。
具体而言,imadjust函数根据输入的亮度调整阈值,将图像的低灰度和高灰度值进行映射,实现对图像亮度的调整。
例如,可以通过提高亮度调整阈值,增加图像的对比度。
histeq函数通过直方图均衡化来改变图像的灰度分布,实现对图像的自适应增强。
其基本原理是通过映射原始图像的灰度直方图到一个均匀分布的形式,从而使得图像的灰度值分布更加均衡。
直方图均衡化能够增强图像的对比度,凸显图像的细节信息。
例如,可以使用histeq函数来增强图像中的暗部细节。
二、几何图像变换几何图像变换是通过对图像的坐标进行变换,改变图像的形状或尺寸。
Matlab提供了多种函数来实现几何图像变换,如imresize、imrotate等。
imresize函数通过改变图像的尺寸来实现图像的缩放。
其基本原理是通过插值算法,在输入的图像基础上生成一个新的图像。
可以通过指定缩放比例来控制图像尺寸的变化,也可以通过指定输出图像的大小来实现图像的精确缩放。
imrotate函数通过旋转图像的角度来实现图像的旋转变换。
其基本原理是通过对输入图像的每个像素位置进行变换,从而得到旋转后的图像。
数字图像处理实验报告(matlab)
学院:自动化学院班级:电081班姓名:***学号:********2011年10月实验一直方图均衡化一、实验目的:1. 熟悉图像数据在计算机中的存储方式;2. 掌握图像直方图均衡化这一基本处理过程。
二、实验条件:PC微机一台和MATLAB软件。
三、实验内容:1.读入图像数据到内存中,并显示读入的图像;2.实现直方图均衡化处理,显示处理前后图像的直方图。
3.显示并保存处理结果。
四、实验步骤:1.打开Matlab编程环境;2.获取实验用图像。
用’imread’函数将图像读入Matlab;用’imshow’函数显示读入的图像。
3.获取输入图像的直方图:用’imhist’函数处理图像。
4.均衡化处理:用’histeq’函数处理图像即可。
5.获取均衡化后的直方图并显示图像:用’imhist’和’imshow’函数。
6.保存实验结果:用’imwrite’函数处理。
五、实验程序及结果:1、实验程序subplot(6,2,1);i=imread('test1-1.jpg');imhist(i);title('test1-1 hist');subplot(6,2,2);i=im2double(i);imshow(i);title('test1-1 Ô-ͼÏñ');subplot(6,2,3);s=histeq(i);imhist(s);title('test1-1 balancedhist');subplot(6,2,4);imshow(s);title('test1-1 ¾ùºâ»¯ºóµÄͼÏñ');subplot(6,2,5);i=imread('test1-2.jpg');imhist(i);title('test1-2 hist');subplot(6,2,6);i=im2double(i);imshow(i);title('test1-2 Ô-ͼÏñ');subplot(6,2,7);s=histeq(i);imhist(s);title('test1-2 balancedhist'); subplot(6,2,8);imshow(s);title('test1-2 ¾ùºâ»¯ºóµÄͼÏñ');subplot(6,2,9);i=imread('test1-3.jpg');imhist(i);title('test1-3 hist');subplot(6,2,10);i=im2double(i);imshow(i);title('test1-3 Ô-ͼÏñ');subplot(6,2,11);s=histeq(i);imhist(s);title('test1-3 balancedhist'); subplot(6,2,12);imshow(s);title('test1-3 ¾ùºâ»¯ºóµÄͼÏñ');2、实验结果test1-1 hist050100150200250test1-1 原图像test1-1 balancedhist00.10.20.30.40.50.60.70.80.91test1-1 均衡化后的图像test1-2 hist050100150200250test1-2 原图像test1-2 balancedhist00.10.20.30.40.50.60.70.80.91test1-2 均衡化后的图像0test1-3 hist050100150200250test1-3 原图像test1-3 balancedhist00.10.20.30.40.50.60.70.80.91test1-3 均衡化后的图像六、实验思考1.数字图像直方图均衡化之后直方图为什么不是绝对平坦的?答:直方图均衡化是将一已知灰度概率密度分布的图像,经过某种变换,变成一幅具有均匀灰度概率密度分布的新图像。
matlab实验 图像的基本运算
实验四、图像的基本运算1(1)选择一幅图像lena8.jpg,设置输入/输出变换的灰度级范围,a=0.3,b=0.6,c=0.1,d=0.9 (2)设置非线性扩展函数的参数c=2(3)采用灰度倒置变换函数s=255-r进行图像变换(4)设置二值化图像的阈值,分别为level=0.4,level=0.7程序如下I=imread('C:\lena8.jpg');figure;subplot(2,3,1);imshow(I);title('原图');J=imadjust(I,[0.3;0.6],[0.1;0.9]); %设置灰度变换的范围subplot(2,3,2);imshow(J);title('线性扩展');I1=double(I); %将图像转换为double类型I2=I1/255; %归一化此图像C=2;K=C*log(1+I2); %求图像的对数变换subplot(2,3,3);imshow(K);title('非线性扩展');M=im2bw(I,0.5);M=~M;%M=255-I; %将此图像取反%Figuresubplot(2,3,4);imshow(M);title('灰度倒置');N1=im2bw(I,0.4); %将此图像二值化,阈值为0.4N2=im2bw(I,0.7); %将此图像二值化,阈值为0.7subplot(2,3,5);imshow(N1);title('二值化阈值0.4');subplot(2,3,6);imshow(N2);title('二值化阈值0.7');2 选取两幅大小一样的灰度图像hough.bmp和rice.bmp,将两幅图像进行加法运算。
程序如下I=imread('C:\hough.bmp');%I=rgb2gray(I);J=imread('C:\rice.bmp');I=im2double(I); %将图像转换成double型J=im2double(J);K=I+0.3*J; %两幅图像相加subplot(1,3,1);imshow(I);title('物图');subplot(1,3,2);imshow(J);title('背景图');subplot(1,3,3);imshow(K);title('相加后的图');imwrite(K,'C:\lena1.jpg');3 选取一幅混合图像,如相加得到的图像lenal.jpg,将混合图像与背景图像做减法运算。
MATLAB数字图像处理实验--图像基本运算
MATLAB数字图像处理实验--图像基本运算一、实验目的1.理解图像点运算、代数运算、几何运算的基本定义和常见方法;2.掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法;3.掌握在MATLAB中进行插值的方法4.运用MATLAB语言进行图像的插值缩放和插值旋转5.进一步熟悉了解MATLAB语言的应用。
二、实验设备与软件1.PC计算机系统2.MATLAB软件,包括图像处理工具箱(Image Processing Toolbox)3.实验图片三、实验内容及结果分析3.1图像的点运算选择pout.tif作为实验图像,实验原理及内容参照《MATLAB图像处理编程及应用》程序代码:I=imread('pout.tif');figure;subplot(1,3,1);imshow(I);title('原图');J=imadjust(I,[0.3;0.6],[0.1;0.9]);subplot(1,3,2);imshow(J);title('线性扩展');I1=double(I);I2=I1/255;C=2;K=C*log(1+I2);subplot(1,3,3);imshow(K);title('非线性扩展');M=255-I;figure;subplot(1,3,1);imshow(M);title('灰度倒置');N1=im2bw(I,0.4);N2=im2bw(I,0.7);subplot(1,3,2);imshow(N1);title('二值化阈值0.4');subplot(1,3,3);imshow(N2);title('二值化阈值0.7');执行结果:原图线性扩展非线性扩展灰度倒置二值化阈值0.4二值化阈值0.7实验1结果图3.2图像的代数运算选择两幅图像,一幅是原图像,一幅为背景图像,采用正确的图像代数运算方法,分别实现图像叠加、混合图像的分离和图像的局部显示效果。
图像处理灰度变换实验
一. 实验名称:空间图像增强(一)一.实验目的1.熟悉和掌握利用matlab工具进行数字图像的读、写、显示、像素处理等数字图像处理的基本步骤和流程。
2.熟练掌握各种空间域图像增强的基本原理及方法。
3.熟悉通过灰度变换方式进行图像增强的基本原理、方法和实现。
4.熟悉直方图均衡化的基本原理、方法和实现。
二.实验原理(一)数字图像的灰度变换灰度变换是图像增强的一种经典而有效的方法。
灰度变换的原理是将图像的每一个像素的灰度值通过一个函数,对应到另一个灰度值上去从而实现灰度的变换。
常见的灰度变换有线性灰度变换和非线性灰度变换,其中非线性灰度变换包括对数变换和幂律(伽马)变换等。
1、线性灰度变换1)当图像成像过程曝光不足或过度,或由于成像设备的非线性和图像记录设备动态围太窄等因素,都会产生对比度不足的弊病,使图像中的细节分辨不清,图像缺少层次。
这时,可将灰度围进行线性的扩展或压缩,这种处理过程被称为图像的线性灰度变换。
对灰度图像进行线性灰度变换能将输入图像的灰度值的动态围按线性关系公式拉伸扩展至指定围或整个动态围。
2)令原图像f(x,y)的灰度围为[a,b],线性变换后得到图像g(x,y),其灰度围为[c,d],则线性灰度变换公式可表示为a y x fb y x f a b y x fc c a y x f ab c d d y x g <≤≤>⎪⎩⎪⎨⎧+---=),(),(),(,,]),([,),( (1)由(1)式可知,对于介于原图像f (x,y )的最大和最小灰度值之间的灰度值,可通过线性变换公式,一一对应到灰度围[c,d]之间,其斜率为(d-c)/(b-a);对于小于原图像的最小灰度值或大于原图像的最大灰度值的灰度值,令其分别恒等于变换后的最小和最大灰度值。
变换示意图如图1所示。
图1 线性灰度变换示意图当斜率大于一时,变换后的灰度值围得到拉伸,图像对比度得到提高;当斜率小于一时,变换后的灰度值围被压缩,最小与最大灰度值的差变小,图像对比度降低;当斜率等于一时,相当于对图像不做变换。
加减法matlab
加减法matlab
加减法是数学中最基础的运算之一,而matlab是一种强大的数学计算软件,可以方便地进行数值计算和数据分析。
在matlab中使用加减法非常简单,本文将分步骤阐述如何进行加减法matlab运算。
Step1:打开matlab软件
首先,我们需要打开matlab软件。
Step2:输入要计算的数值
在matlab主界面的命令窗口中,输入要进行加减法运算的数值,例如:
a=3
b=2
这里我们输入了两个数值a和b,分别赋值为3和2。
Step3:进行加法运算
要进行加法运算,我们只需要在命令窗口中输入:
a+b
matlab会自动计算出a和b的和,结果会在命令窗口中显示出来。
Step4:进行减法运算
要进行减法运算,我们只需要在命令窗口中输入:
a-b
matlab会自动计算出a和b的差,结果会在命令窗口中显示出来。
Step5:查看计算结果
计算结果会在命令窗口中自动显示出来。
如果需要将结果赋值给某个变量,也可以在命令窗口中输入:
c=a+b
这样就可以将a和b的和赋值给变量c。
除了在命令窗口中直接进行加减法运算以外,matlab还提供了一些内置的函数来进行数值计算,例如sum函数可以对数组进行求和运算,diff函数可以计算数组的差分等等。
这些函数的使用方法可以在
matlab的帮助文档中查找到。
总结:
在matlab中进行加减法运算非常简单,只需要在命令窗口中输入要计算的数值即可。
matlab还提供了许多内置的函数来进行更复杂的数值计算,可以方便地应用于科学计算、数据分析、图像处理等领域。
电子科技大学数字图像处理实验报告2
电子科技大学数字图像处理实验报告实验名称彩色图像处理实验序号学生姓名学生学号指导教师提交日期摘要本实验利用MATLAB软件,对彩色图像作了一些简单处理。
通过访问数字图像RGB三个通道的对应矩阵,改变数字图像的色彩,得到了原图像的补色图像。
并编写了图像的RGB模型与HSI模型相互转换的程序,实现了两个模型之间的互相转换。
为了得到HSI模型的补色,可将HSI模型转换为RGB模型,用RGB的反色来近似HSI的反色。
然后对彩色图像加入高斯与椒盐噪声,观察了加入噪声后RGB三个通道的图像效果,并通过算术均值滤波与中值滤波分别对三个通道进行去噪,达到对整个彩色图像的去噪。
最后证明了单个通道的噪声会通过到HSI的转换扩散到所有HSI图像上。
实验原理:1、三基色原理:人的眼睛就像一个三色接收器的体系,大多数的颜色可以通过红、绿、蓝三色按照不同的比例合成产生。
同样绝大多数单色光也可以分解成红(red)绿(green)蓝(blue)三种色光。
这是色度学的最基本原理,即三基色原理。
三种基色是相互独立的,任何一种基色都不能由其它两种颜色合成。
红绿蓝是三基色,这三种颜色合成的颜色范围最为广泛。
红绿蓝三基色按照不同的比例相加合成混色称为相加混色。
人眼接收色彩的方法:加法混色。
光色(红色+绿色)=黄色(yellow)光色(红色+蓝色)=紫红(magenta)光色(蓝色+绿色)=青色(cyan)印刷四色:减法呈色颜料(黄色+青色)=白色-红色-蓝色=绿色颜料(紫红+青色)=白色-红色-绿色=蓝色颜料(黄色+紫红)=白色-绿色-蓝色=红色颜料色另外会附加一个黑色,即cyan、magenta、yellow、black四色(cmyk)。
2、彩色图像表示方法:RGB图像:一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色像素点都是在特定空间位置的彩色图像相对应的红绿蓝三个分量。
RGB图像可以看成是一个有三幅灰度图像形成的“堆”,形成一幅RGB图像的三个图像常称为红、绿或蓝分量图像。
基于matlab的彩色图像平滑处理1
目录第一章、概述 (2)1.1 图像平滑概述 (2)1.2图像平滑应用 (2)第二章、图像平滑方法 (5)2.1 空域低通滤波 (5) (5) (6)2.2 频域低通滤波 (7)第三章、图像平滑处理与调试 (10)3.1 模拟噪声图像 (10)3.2均值滤波法 (12)3.3 中值滤波法 (15)3.4 频域低通滤波法 (18)第四章、总结与体会 (20)参考文献 (21)第一章、概述1.1图像平滑概述图像平滑〔S m o o t h i n g〕的主要目的是减少图像噪声。
图像噪声来自于多方面,有来自于系统外部的干扰〔如电磁波或经电源窜进系统内部的外部噪声〕,也有来自于系统内部的干扰〔如摄像机的热噪声,电器机械运动而产生的抖动噪声内部噪声〕。
实际获得的图像都因受到干扰而有噪声,噪声产生的原因决定了噪声分布的特性及与图像信号的关系。
减少噪声的方法可以在空间域或在频率域处理。
在空间域中进展时,根本方法就是求像素的平均值或中值;在频域中那么运用低通滤波技术。
图像中的噪声往往是和信号交织在一起的,尤其是乘性噪声,假设平滑不当,就会使图像本身的细节如边缘轮廓,线条等模糊不清,从而使图像降质。
图像平滑总是要以一定的细节模糊为代价的,因此如何尽量平滑掉图像的噪声,又尽量保持图像的细节,是图像平滑研究的主要问题之一。
1.2图像平滑应用图像平滑主要是为了消除被污染图像中的噪声,这是遥感图像处理研究的最根本内容之一,被广泛应用于图像显示、传输、分析、动画制作、媒体合成等多个方面。
该技术是出于人类视觉系统的生理承受特点而设计的一种改善图像质量的方法。
处理对象是在图像生成、传输、处理、显示等过程中受到多种因素扰动形成的加噪图像。
在图像处理体系中,图像平滑是图像复原技术针对“一幅图像中唯一存在的退化是噪声〞时的特例。
1.3噪声模型1.3.1噪声来源一幅图像可能会受到各种噪声的干扰,而数字图像的本质就是光电信息,因此图像噪声主要可能来源于以下几个方面:光电传感器噪声、大气层电磁暴、闪电等引起的强脉冲干扰、相片颗粒噪声和信道传输误差引起的噪声等。
3-Matlab自带函数和自编写的函数对图像直方图均衡化对比
%函数功能,画出图像的直方图,并对图像进行直方图均衡%图像增强clear allclose allimage=imread('sea.jpg'); %读入图片tu=rgb2gray(image);% %将彩色图片转换为灰度图240*497 元素取值0-255J=histeq(tu);perGray=zeros(1,256); %设置矩阵大小原直方图各灰度级个数perGray perGrayPro=zeros(1,256); %原直方图累计灰度级个数new_perGray=zeros(1,256);new_perGrayPro=zeros(1,256);[h w]=size(tu);% 240*497new_tu=zeros(h,w);%计算原始直方图各灰度级像素个数perGrayfor x=1:hfor y=1:wperGray(1,tu(x,y))=perGray(1,tu(x,y))+1;%endend%计算原始直方图perGrayPro,原直方图各灰度级像素个数归一化perGrayPro=perGray./sum(perGray);%将原图个各灰度级的频数归一化作为频率subplot(1,2,1);plot(perGrayPro);title('原图的灰度直方图');xlabel('灰度值');ylabel('像素的概率密度');subplot(1,2,2);imhist(tu);title('hist得到的原始图像的直方图') ;axis([0 255 0 2500]);%%%计算原始累计直方图%利用累积分布函数作为映射关系,建立原图到新图的映射for i=2:256perGrayPro(1,i)=perGrayPro(1,i)+perGrayPro(1,i-1);end%计算和原始灰度对应的新的灰度t[],建立映射关系%重点步骤for i=1:256t(1,i)=floor(254*perGrayPro(1,i)+0.5); %将原图累计直方图元素化为0-255作为新图的像素值end%%%统计新直方图各灰度级像素个数new_perGrayfor i=1:256new_perGray(1,t(1,i)+1)=new_perGray(1,t(1,i)+1)+perGray(1,i);end%计算新的灰度直方图new_perGrayPronew_perGrayPro=new_perGray./sum(new_perGray);figure();subplot(1,2,1);plot(new_perGrayPro);title('均衡化后的灰度直方图');xlabel('灰度值');ylabel('像素的概率密度');subplot(1,2,2);imhist(J);title('用histeq得到的均衡化的的直方图'); axis([0 255 0 2500]); %%%计算直方图均衡后的新图new_tufor x=1:hfor y=1:wnew_tu(x,y)=t(1,tu(x,y));endend%%%输出原图和均衡后的图像figure();subplot(3,1,1);imshow(tu,[]);title('原图灰度图');subplot(3,1,2);imshow(new_tu,[]);title('直方图均衡化后的图');subplot(3,1,3);imshow(J);title('用histeq得到的均衡化的图像')。
色彩还原准确度 matlab
色彩还原准确度 matlab
色彩还原准确度在Matlab中通常是指图像处理中对于彩色图像进行处理后再恢复原始色彩的准确度。
在Matlab中,可以使用各种图像处理工具箱和算法来实现色彩还原。
准确度的评估通常涉及到比较处理后的图像与原始图像之间的色彩差异程度。
首先,可以通过Matlab中提供的色彩空间转换函数(如
rgb2hsv、rgb2lab等)将彩色图像转换到其他色彩空间进行处理。
然后,可以应用各种图像处理算法,如直方图均衡化、颜色校正、色彩增强等来对图像进行处理。
处理后,需要将图像再转换回RGB 色彩空间以进行比较。
评估色彩还原准确度时,可以使用各种图像质量评价指标,如均方误差(MSE)、峰值信噪比(PSNR)、结构相似性指标(SSIM)等来量化比较处理后图像与原始图像之间的色彩差异。
这些指标可以帮助评估色彩还原的准确度,从不同的角度提供对色彩还原效果的量化评估。
此外,还可以考虑使用主观评价方法,即邀请人类观察者对处理后的图像进行主观评价,以获取对色彩还原效果的直观感受。
这
种评价方法能够更好地反映色彩还原的真实效果,但也更加主观和个体化。
综上所述,评估Matlab中色彩还原的准确度需要综合考虑图像处理算法的效果、图像质量评价指标的量化分析以及主观评价方法的综合应用。
通过综合多种评价手段,可以全面准确地评估Matlab 中色彩还原的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实践一:图像打开和缩放
1.1实践代码:
clear all
I=imread('cat.bmp');
J=imresize(I,0.2);%图像缩小为0.2
J2=imresize(J,15,'nearest');%图像放大,最近邻插值法J3=imresize(J,15,'bilinear');%图像放大,双线性插值法J4=imresize(J,15,'bicubic');%图像放大,双立方插值法subplot(2,2,1);imshow(I);
title('原始图像');
subplot(2,2,2);imshow(J2);
title('最近邻插值法');
subplot(2,2,3);imshow(J3);
title('双线性插值法');
subplot(2,2,4);imshow(J4);
title('双立方插值法');
1.2实践结果截图:
实践二:直方图均衡化
2.1实践代码:
clear all;
I=imread('girl.bmp');
subplot(221);imshow(I);
title('原始图像');
subplot(222);imhist(I);
title('原始图像的直方图');
I1=histeq(I);
subplot(223);imshow(I1);
title('原始图像的均衡化');
subplot(224);imhist(I1);
title('均衡化图像的直方图');
2.2实践结果截图:
实践三:对比度调节
3.1实践代码:
I=imread('catwb.bmp');
J=imadjust(I,[0.3 0.7],[]);
subplot(1,2,1),imshow(I),title('实验原图')
subplot(1,2,2),imshow(J),title('对比度增强效果图') 3.2实践结果截图:
实践四:反色
4.1实践代码:
X1=imread('girl.bmp');
f1=200;
g1=256;
k=g1/f1;
[m,n]=size(X1);
X2=double(X1);
for i=1:m
for j=1:n
f=X2(i,j);
g(i,j)=0;
if(f>=0)&(f<=f1)
g(i,j)=g1-k*f;
else
g(i,j)=0;
end
end
end
subplot(121);imshow(X1);title('原始图像');
subplot(122);imshow(mat2gray(g));title('反色后的图像');
4.2实践结果截图:
实践五:图像的加减乘除法运算
5.1实践代码:
%加减乘除运算
I=imread('girl.bmp');
J=imadd(I,50);%数值与图像相加
background=imopen(I,strel('disk',15));
Ip=imsubtract(I,background);%图像相减
M=immultiply(I,0.5);%图像相乘
It=imdivide(I,background);%图像相除
subplot(231),imshow(I);
title('原始图像');
subplot(232),imshow(J);
title('图像相加效果图');
subplot(233),imshow(Ip);
title('图像相减效果图');
subplot(234),imshow(M);
title('图像相乘效果图');
subplot(236),imshow(It,[]);
title('图像相除效果图');
K=imread('couple.bmp');
H=imadd(I,K,'uint16');%两个尺寸一样的图像相加%转换数据类型相加图像数据
figure;subplot(131);imshow(I);
title('girl的原始图像');
subplot(132);imshow(K);
title('couple的原始图像');
subplot(133);imshow(H,[]);
title('两图像相加效果图');
5.2实践结果截图:。