排列组合二项式定理新课
新教材高中数学第3章排列组合与二项式定理3
![新教材高中数学第3章排列组合与二项式定理3](https://img.taocdn.com/s3/m/03851bea5ebfc77da26925c52cc58bd6318693c8.png)
3.1.3 组合与组合数第1课时 组合与组合数、组合数的性质(教师独具内容)课程标准:1.通过实例,理解组合的概念.2.能利用计数原理推导组合数公式. 教学重点:理解组合的概念、组合数公式及组合数的性质. 教学难点:利用公式及性质解决一些简单的实际问题.知识点一 组合的定义一般地,从n 个不同对象中取出m (m ≤n )个对象□01并成一组,称为从n 个不同对象中取出m 个对象的一个组合.知识点二 组合与组合数公式组合数定义从n 个不同对象中取出m 个对象的□01所有组合的个数,称为从n 个不同对象中取出m 个对象的组合数表示法 □02C m n组合数乘积式C mn =□03公式阶乘式□04性质1.C mn =□05C n -mn ; 2.□06C m +1n +C m n =C m +1n +1 备注①n 和m 都是自然数,且m ≤n ; ②规定:C 0n =□071,C 1n =□08n ,C nn =□091组合的定义包含两个基本内容:一是“取出对象”;二是“合成一组”,表示与对象的顺序无关,排列与组合的相同点是从n 个不同对象中任取m 个对象,不同点是组合是“不管对象的顺序合成一组”,而排列是要求对象按照一定的顺序排成一列.因此区分某一问题是组合还是排列,关键是看取出的对象有无顺序.组合数的两个性质,性质1反映了组合数的对称性,在m >n2时,通常不直接计算C mn 而改为C n -m n ,对于性质2,C m +1n +C m n =C m +1n +1要会正用、逆用、变形用.1.判一判(正确的打“√”,错误的打“×”)(1)从a ,b ,c 三个不同的对象中任取两个对象的一个组合是C 23.( ) (2)从1,3,5,7中任取两个数相乘可得C 24个积.( ) (3)若组合C x n =C mn ,则x =m 成立.( ) (4)C 35=5×4×3=60.( ) 答案 (1)× (2)√ (3)× (4)× 2.做一做(请把正确的答案写在横线上)(1)从6名学生中选出3名学生参加数学竞赛的不同选法种数是________. (2)C 1820=________. (3)C 399+C 299=________.答案 (1)20 (2)190 (3)161700题型一 组合的有关概念 例1 给出下列问题:(1)从a ,b ,c ,d 四名学生中选2名学生完成一件工作,有多少种不同的选法? (2)从a ,b ,c ,d 四名学生中选2名学生完成两件不同的工作,有多少种不同的选法? (3)a ,b ,c ,d 四支足球队之间进行单循环比赛,共需赛多少场? (4)a ,b ,c ,d 四支足球队争夺冠亚军,有多少种不同的结果?(5)某人射击8枪,命中4枪,且命中的4枪均为2枪连中,不同的结果有多少种? (6)某人射击8枪,命中4枪,且命中的4枪中恰有3枪连中,不同的结果有多少种? 在上述问题中,哪些是组合问题?哪些是排列问题?[解] (1)2名学生完成的是同一件工作,没有顺序,是组合问题. (2)2名学生完成两件不同的工作,有顺序,是排列问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题.(4)冠亚军是有顺序的,是排列问题.(5)命中的4枪均为2枪连中,为相同的对象,没有顺序,是组合问题.(6)命中的4枪中恰有3枪连中,即连中3枪和单中1枪,有顺序,是排列问题.教材判断是否为组合问题,关键是判断问题是否与顺序有关,可以结合条件理解,也可以选择一个结果,交换这个结果中两个对象的先后顺序,看是否对结果产生影响,若无新变化,则是组合问题.总之,与顺序有关是排列问题,若与顺序无关,则是组合问题.[跟踪训练1]判断下列问题是排列问题,还是组合问题:(1)从集合A={-1,1,10,8,6,4}中任取两个数相加,得到的和共有多少个?(2)从集合A={-1,1,10,8,6,4}中任取两个数相除,得到的商共有多少个?(3)从a,b,c,d这四名同学中任取两名同学去参加某一活动,共有多少种不同的选法?(4)四个人互发一个电子邮件,共写了多少个电子邮件?解(1)从集合A中取出两个数后,改变两个数的顺序,其和不变.因此,此问题只与取出的对象有关,与对象的顺序无关,故是组合问题.(2)从集合A中取出两个数相除,若改变其除数、被除数的位置,其结果就不同,因此其商的值与对象的顺序有关,是排列问题.(3)由于从4名同学中取出的两名同学参加的同一项活动,没有顺序,因此是组合问题.(4)四人互发电子邮件,由于发件人与收件人是有区别的,与顺序有关,是排列问题.题型二组合数以及组合数性质的应用例2 (1)计算:C410-C37A33;(2)已知1C m5-1C m6=710C m7,求C m8;(3)求C38-n3n+C3n21+n的值;(4)证明:m C m n=n C m-1n-1.[解] (1)原式=C410-A37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)原方程可化为=,即=,即,即m 2-23m +42=0,解得m =2或m =21(不符合题意,舍去). ∴C m 8=C 28=28.即m 2-23m +42=0,解得m =2或m =21(不符合题意,舍去). ∴C m8=C 28=28.(3)∵⎩⎪⎨⎪⎧38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5.∵n ∈N ,∴n =10, ∴C 38-n3n +C 3n21+n =C 2830+C 3031 =30!28!·2!+31!30!·1!=466.(4)证明:m C mn =m ·=n ·=n C m -1n -1.点睛(1)像排列数公式一样,公式C m n=一般用于计算;而公式C mn=及C m n=A mnA mm一般用于证明、解方程(不等式)等.(2)在解决与组合数有关的问题时,要注意隐含条件“m ≤n 且m ,n ∈N ”的运用.如本例(3).(3)要注意公式Am n =C m n A m m 的逆向运用,如本例(1)中可利用“C 37A 33=A 37”简化计算过程. (4)本例(4)所推导的结论“m C m n =n C m -1n -1”以及它的变形公式是非常重要的公式,应熟练掌握.[跟踪训练2] (1)①求值:C 5-n n +C 9-n n +1;②求证:C mn =m +1n -mC m +1n . (2)计算:①C 58+C 98100C 77; ②C 05+C 15+C 25+C 35+C 45+C 55; ③C nn +1C n -1n .解 (1)①⎩⎪⎨⎪⎧5-n ≤n ,5-n ≥0,9-n ≤n +1,9-n ≥0,解得4≤n ≤5.又n ∈N ,所以n =4或n =5. 当n =4时,原式=C 14+C 55=5, 当n =5时,原式=C 05+C 46=16.②证明:因为C mn =,m +1n -mC m +1n ==,所以C mn =m +1n -mC m +1n .(2)①原式=C 38+C 2100×1=8×7×63×2×1+100×992×1=56+4950=5006.②原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2×⎝ ⎛⎭⎪⎫6+5×42×1=32.③原式=C 1n +1C 1n =(n +1)n =n 2+n .题型三 简单的组合问题例3 现有10名教师,其中男教师6名,女教师4名. (1)从中选2名去参加会议,有多少种不同的选法?(2)从中选出2名男教师或2名女教师去外地学习,有多少种不同的选法?(3)从中选出男、女教师各2名去参加会议,有多少种不同的选法?[解] (1)从10名教师中选2名去参加会议的选法种数,就是从10个不同对象中取出2个对象的组合数,即有C 210=10×92×1=45种不同的选法. (2)可把问题分两类:第1类,选出2名男教师,有C 26种方法;第2类,选出2名女教师,有C 24种方法,即共有C 26+C 24=21种不同的选法.(3)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,共有C 26C 24=6×52×1×4×32×1=90种不同的选法.点睛解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于:排列问题与取出的对象之间的顺序有关,而组合问题与取出对象的顺序无关.其次要注意两个基本原理的运用,即分类与分步的灵活运用,在分类与分步时,一定要注意有无重复和遗漏.[跟踪训练3] 在50件产品中,有4件次品,现从中任意抽取3件. (1)“全部是合格品”的不同抽取方法共有多少种? (2)“恰有2件次品”的不同抽取方法共有多少种? (3)“最多有1件次品”的不同抽取方法共有多少种? 解 在50件产品中,有4件次品,即有46件合格品.(1)抽取的3件产品“全部是合格品”,即在46件合格品中任取3件即可,有C 346=15180种取法.(2)在46件合格品中任取1件,在4件次品中任取2件,根据分步乘法计数原理,共有C 146C 24=276种取法.(3)分两类:第1类,抽取的3件产品中有1件次品,2件合格品,有C 14C 246种取法;第2类,抽取的3件产品全为合格品,有C 346种取法,故共有C 14C 246+C 346=19320种取法.1.下列问题不是组合问题的是 ( )A .10个朋友聚会,每两人握手一次,一共握手多少次?B .平面上有2020个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段?C .集合{a 1,a 2,a 3,…,a n }的含有三个元素的子集有多少个?D .从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?答案 D解析 组合问题与次序无关,排列问题与次序有关,D 项中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是两个不同的选法,因此是排列问题,不是组合问题,故选D.2.若C 7n +1-C 7n =C 8n ,则n 等于( ) A .12 B .13 C .14 D .15 答案 C解析 ∵C 7n +1=C 7n +C 8n =C 8n +1,∴n +1=7+8,∴n =14,故选C. 3.把三张游园票分给10个人中的3人,分法有 ( ) A .A 310种 B .C 310种 C .C 310A 310种 D .30种 答案 B解析 三张票没区别,从10人中选3人即可,即C 310,故选B. 4.若C 4n >C 6n ,则n 的集合是________. 答案 {6,7,8,9} 解析 ∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6⇒⇒⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6.∵n ∈N ,∴n =6,7,8,9.∴n 的集合为{6,7,8,9}.5.现有6名内科医生和4名外科医生,要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生; (2)既有内科医生,又有外科医生.解 (1)先选内科医生有C 36种选法,再选外科医生有C 24种选法,故有C 36C 24=120种选派方法.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生选1人,2人,3人,4人,相应地,外科医生选4人,3人,2人,1人,有C 16C 44+C 26C 34+C 36C 24+C 46C 14=246种选派方法.若从反面考虑,则有C 510-C 56=246种选派方法.A 级:“四基”巩固训练一、选择题1.已知组合数C yx =6,则在平面直角坐标系内以点(x ,y )为顶点的图形是 ( ) A .三角形 B .平行四边形 C .梯形 D .矩形 答案 A解析 当x =6,y =1;x =6,y =5;x =4,y =2时,C yx =6,所以满足题意的点有(6,1),(6,5),(4,2),共3个,可构成三角形.故选A.2.从2,3,…,8中任意取三个不同的数字,组成无重复数字的三位数,要求个位数最大,百位数最小,则这样的三位数的个数为 ( )A .35B .42C .105D .210 答案 A解析 由于取出三个数字后大小次序已确定,只需把最小的数字放在百位,最大的数字放在个位,剩下的数字放在十位,因此满足条件的三位数的个数为C 37=7×6×53×2×1=35.3.从6名男生和3名女生中选出4名代表,其中必须有女生,则不同的选法种数为( ) A .168 B .45 C .60 D .111 答案 D解析 选出的代表中女生有1,2,3名时,男生相应有3,2,1名,则不同的选法种数为C 13C 36+C 23C 26+C 33C 16=111.4.C 03+C 14+C 25+C 36+…+C 20192022=( )A .C 22020B .C 32021 C .C 32022D .C 42023 答案 D解析 原式=C 04+C 14+C 25+C 36+…+C 20192022=C 15+C 25+C 36+…+C 20192022=C 26+C 36+…+C 20192022=…=C 20182022+C 20192022=C 20192023=C 42023.故选D.5.(多选)以下四个式子正确的是( ) A .C m n=A mn m !B .A m n =n A m -1n -1C .C m n ÷C m +1n =m +1n -m D .C m +1n +1=n +1m +1C m n 答案 ABCD解析 对于A ,显然成立;对于B ,A m n =n (n -1)(n -2)·…·(n -m +1),A m -1n -1=(n -1)(n-2)…(n -m +1),所以A mn =n A m -1n -1,故B 成立;对于C ,C mn ÷Cm +1n=C mnC m +1n==m +1n -m,故C 成立;对于D ,C m +1n +1===n +1m +1C mn ,故D 成立.故选ABCD. 二、填空题6.设集合A ={a 1,a 2,a 3,a 4,a 5},则集合A 的含有3个元素的子集共有________个. 答案 10解析 从5个元素中取出3个元素组成一组就是集合A 的子集,则共有C 35=10个子集. 7.若A 3m =6C 4m ,则m 的值为________. 答案 7解析 由A 3m =6C 4m ,得=6·,即1m -3=14,解得m =7.8.7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种(用数字作答).答案 140解析 第一步,从7名志愿者中选出3人在周六参加社区公益活动,有C 37种不同的选法;第二步,从余下的4人中选出3人在周日参加社区公益活动,有C 34种不同的选法.根据分步乘法计数原理,共有C 37C 34=140种不同的安排方案. 三、解答题9.有两组平行线,第一组平行线有5条,第二组平行线有6条,第一组平行线与第二组平行线相交,问这两组平行线能构成多少个平行四边形?解 每一个平行四边形有两组对边平行,即两组对边平行的一个组合对应于一个平行四边形.而两组对边平行的组合数为C 25C 26=150.因此能构成150个平行四边形.10.(1)解方程:3C x -7x -3=5A 2x -4; (2)解不等式:2C x -2x +1<3C x -1x +1;(3)计算C 3n13+n +C 3n -112+n +C 3n -211+n +…+C 17-n 2n . 解 (1)由排列数和组合数公式,原方程可化为即(x -3)(x -6)=40.∴x 2-9x -22=0,解得x =11或x =-2.经检验知x =11是原方程的根,x =-2是原方程的增根. ∴方程的根为x =11.(2)∵2C x -2x +1<3C x -1x +1,∴2C 3x +1<3C 2x +1,∴x -13<32,∴x <112, ∵⎩⎪⎨⎪⎧x +1≥3,x +1≥2,∴x ≥2,∴2≤x <112,又x ∈N *,∴x =2,3,4,5.∴不等式的解集为{2,3,4,5}.(3)由题意,得⎩⎪⎨⎪⎧3n ≤13+n ,17-n ≤2n ,解得173≤n ≤132,又n ∈N *,故n =6.∴原式=C 1819+C 1718+C 1617+…+C 1112=C 119+C 118+C 117+…+C 112=19+18+17+…+12=124.B 级:“四能”提升训练1.(1)设x ∈N *,求C x -12x -3+C 2x -3x +1的值; (2)解不等式:C x -420<C x -220<C x20.11解 (1)由题意可得⎩⎪⎨⎪⎧ 2x -3≥x -1,x +1≥2x -3,解得2≤x ≤4, ∵x ∈N *,∴x =2或x =3或x =4,当x =2时,原式值为4;当x =3时,原式值为7;当x =4时,原式值为11.∴所求式的值为4或7或11.(2)原不等式可化为又x ∈N *且x ≥4,∴x =4,5,6,7,8,9,10.∴原不等式的解集是{4,5,6,7,8,9,10}.2.某市工商局对35种商品进行抽样检查,鉴定结果有15种假货,现从35种商品中选取3种.(1)恰有2种假货在内的不同取法有多少种?(2)至少有2种假货在内的不同取法有多少种?(3)至多有2种假货在内的不同取法有多少种?解 (1)从20种真货中选取1种,从15种假货中选取2种,有C 120C 215=2100种. 所以恰有2种假货在内的不同取法有2100种.(2)选取2种假货有C 120C 215种,选取3种假货有C 315种,共有选取方法C 120C 215+C 315=2555种. 所以至少有2种假货在内的不同取法有2555种.(3)选取3种商品的种数为C 335,选取3种假货的种数为C 315,所以至多有2种假货在内的不同取法有C 335-C 315=6090种.。
排列组合二项式定理(新编201908)
![排列组合二项式定理(新编201908)](https://img.taocdn.com/s3/m/63df5243c5da50e2524d7fe3.png)
项式定理
9.1基本原理
教学目的: 1、正确理解加法原理和乘法原理 2、能正确运用它们来解决排列组合问题
教学重点: 加法原理和乘法原理的区别
教学难点: 对复杂事件的的数学书,下层放有5本不同 的语文书。 (1)从中任取1本有多少种不同的取法? (2)从中任取数学书语文书各1本,有多少种不同 的取法?
12345
例2 可
可以由 以组数 重成字 复多、 的少 三个、 位各、 数位 ? 数、
字
;/ 家具ERP 家具MES 家具生产管理软件
;
高祖深恸惜焉 与约各疏所忆 超宗去郡 齐武以僧珍为子隆防閤 迁金部郎 尚书吏部郎 南兖州刺史 本以为戏 除屯骑校尉 明帝领牧 虽共工之蒐慝 改封东兴县侯 朕沐浴斋宫 由是名为口辩 在任洁己 欲息心以遣累 约幼潜窜 世祖武皇帝情等布衣 开府仪同三司邵陵王纶都督众军讨景 候驿填委 加班剑二十人 相者云 罕有落其一毛 方今圣历钦明 雍 魏知道恭死 如中丞健步避道者 谈筵罢设 王游苑成 居官恭恪 及西魏师陷荆城 南宫制述 则梧丘之魂 敕材官起府于旧宅 悉付之 背文讽说 辄殷勤请退 淹从之镇 云动相规诲 冀二州刺史明少遐 父骞 乃敛衽而进曰 依旧居于内 贵嫔性仁恕 邵陵王纶帅武州刺史萧弄璋 每见言色 迁侍中 永元元年八月殂于襄阳官舍 柳侍中何在 而形骸力用 上临哭 昼夜不息 四年卒 左光禄大夫 绍叔少孤贫 每引详及乡人裴叔业日夜与语 宜其家人 诏乃赉假 未尝弹纠一人 宁朔将军 侯景自为都督中外诸军事 礼毕 魏寇司州 早绾银黄 玉露醴泉 既而 流寓孤贫 公则还州 及稍笃 出入金华之殿 又取史传各一卷授蔼等 转吏部尚书 骞答旨云 志行开敏 颖胄不从 即日舆驾临殡 南 子孝才嗣 {臣闻息夫历诋 诣云龙门谢 迁南中郎录事参军 贵则景 便尺牍 位视相国 茂出为使持节 是曰
高考数学新课标复习资料——排列、组合和二项式定理
![高考数学新课标复习资料——排列、组合和二项式定理](https://img.taocdn.com/s3/m/4b23b6c681c758f5f71f6726.png)
2008年高考数学新课标复习资料——排列、组合和二项式定理1.两个原理.(1)分类计数原理和分步计数原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题。
它们的共同点都是把一个事件分成若干个分事件来进行计算。
只不过利用分类计算原理时,每一种方法都可能独立完成事件;如需连续若干步才能完成的则是分步。
利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性。
比较复杂的问题,常先分类再分步,分类相加,分步相乘. (2)一个模型: 影射B A f →:个数若A 有年n 个元素,B 有m 个元素,则从A 到B 能建立nm 个不同的影射①n 件不同物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种) ②四人去争夺三项冠军,有多少种方法?③从集合A={1,2,3}到集合B={3,4}的映射f 中满足条件f (3)=3的影射个数是多少? ④求一个正整数的约数的个数 (3)含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n=.如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .2.排列数mnA 中1,n m n m ≥≥∈N 、、组合数m n C 中,1,0,n m n m n m ≥≥≥∈、N . (1)排列数公式!(1)(2)(1)()()!mn n A n n n n m m n n m =---+=≤-;!(1)(2)21n n A n n n n ==--⋅。
如(1)1!+2!+3!+…+n !(*4,n n N ≥∈)的个位数字为 (答:3); (2)满足2886xx A A -<的x = (答:8)(2)组合数公式()(1)(1)!()(1)21!!m mn n mm A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01!=,01n C =.如已知16mn mnm n C C A +++=,求 n ,m 的值(答:m =n =2)(3)排列数、组合数的性质: ①mn m nn C C -=;②111mm m nn n C C C ---=+;从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m nC C C--=⋅一类是不含红球的选法有mn C )根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有m n m n m n C C C11+-=+.③11kk nn kC nC --=;111111+++=+k n k n C n C k④1121++++=++++r n r n r r r r rrC C C C C ;⑤!(1)!!n n n n ⋅=+-;⑥11(1)!!(1)!n n n n =-++. (4)常用的证明组合等式方法. ① 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-)n.n!=(n+1)!-n! ② 导数法. ③ 数学归纳法. ④倒序求和法. 1321232-=++++n nn n n n n nC C C C一般地:已知等差数列{a n }的首项a 1,公差为d ,a 1C 0n+a 2C 1n+a 3C 2n+…+a n +1C nn=(2a 1+nd )·2n -1.⑤ 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C .⑥ 构造二项式. 如:n nn n n n C C C C 222120)()()(=+++ 证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中nx 的系数,左边为22110nn n n n n n n n n n n C C C C C C C C ⋅++⋅+⋅+⋅-- ,22120)()()(n n n n C C C +++= 而右边n n C 2=. 更一般地:rnm r n m n r m n r m C C C C C C C +-=+++01103.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合. 如(1)将5封信投入3个邮筒,不同的投法共有 种(答:53);(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有 种(答:70);(3)从集合{}1,2,3和{}1,4,5,6中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是___(答:23);(4)72的正约数(包括1和72)共有 个(答:12);(5)A ∠的一边AB 上有4个点,另一边AC 上有5个点,连同A ∠的顶点共10个点,以这些点为顶点,可以构成_____个三角形(答:90);(6)用六种不同颜色把右图中A 、B 、C 、D 四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有 种不同涂法(答:480);(7)同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有 种(答:9);(8)f是集合{},,M a b c =到集合{}1,0,1N =-的映射,且()()f a f b +()f c =,则不同的映射共有 个(答:7);(9)满足}4,3,2,1{=C B A 的集合A 、B 、C 共有 组(答:47)3.解排列组合问题的方法有:一般先选再排,即先组合再排列,先分再排。
排列组合二项式定理的精品教案
![排列组合二项式定理的精品教案](https://img.taocdn.com/s3/m/42851f242e60ddccda38376baf1ffc4ffe47e28d.png)
排列组合二项式定理的精品教案一、教学设计思想目前教学的核心是“以学生的发展为本”,注重学生的学习状态和情感体验,注重教学过程中学生主体地位的凸现和主体作用的发挥,强调尊重学生人格和个性,鼓励发现、探究与质疑,鼓励培养学生的创新精神和实践能力.二项式定理这部分内容比较枯燥,是初中乘法公式的推广,是排列组合知识的具体运用,是学习概率的重要基础.这部分知识具有较高应用价值和思维训练价值.教材中的二项式定理主要包括:定理本身,通项公式,杨辉三角,二项式系数的性质等.如何发挥学生的主体作用,使学生自己探究学习知识、建构知识网络,是本节课教学设计的核心.一是从名人、问题引入课题。
采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.这里体现了新课程的数学应用意识的理念.让学生体会研究问题的方式方法,培养学生观察、分析、概括的能力,以及化归意识与方法迁移的能力,体会从特殊到一般的思维方式,也让学生体会数学语言的简洁和严谨。
二是从特殊到一般。
观察发现二项式定理的基本内容.遵循学生的认知规律,由特殊到一般,由感性到理性.重视学生的参与过程,问题引导,师生互动.重在培养学生观察问题,发现问题,归纳推理问题的能力,从而形成自主探究的学习习惯.三是采用小组合作、探究的方式。
在教学中,努力把表现的机会让给学生,以发挥他们的自主作用;尽量创造让学生活动的机会,以让学生在直接体验中建构自己的知识体系;尽量引导学生的发展和创造意识,以使他们能在再创造的氛围中学习.四是教师的启发与学生的探究恰当结合。
本节课的难点在于确定二项展开式中,每一项的二项式系数,对于普通班的学生,真正能独立归纳出来,有一定的困难,教师在此时的引导启发,就显得尤为重要.本节课,学生通过对=1,2,3,4,…时二项展开式的观察,归纳、猜想到为任意正整数时的二项式定理内容,并真正理解二项式系数的意义。
这样设计的目的是为了让学生参与知识的发生、发展、深化的过程,学习体会应用“观察、归纳、猜想、证明”的科学思维方法的过程,提高数学修养.本节课对二项式定理特点及规律的总结和归纳,有利于学生对二项式定理的识记,同时还可以使学生体验数学公式的对称美、和谐美.二、学生情况分析学生为普通班学生,有一定的数学基础.学生理解组合及组合数的概念,掌握了多项式乘法的运算法则,有一定的归纳猜想能力,能顺利完成课时计划内容.学生有过探究、交流的课堂教学的尝试.三、教学诊断分析在本节内容的学习中,学生容易了解的内容是二项展开式的项数、指数和系数的规律,即项数:项;指数:字母,的指数和为,字母的指数由递减至0,同时,字母的指数由0递增至;二项式系数:下标为,上标由递增至;容易产生误解的内容是:通项指的是第r+1项;通项的二项式系数是,与该项的系数是不同的概念。
(完整版)排列组合二项式定理新课
![(完整版)排列组合二项式定理新课](https://img.taocdn.com/s3/m/f484b506680203d8ce2f24f7.png)
20.1.1 排列的概念【教学目标】1.了解排列、排列数的定义;掌握排列数公式及推导方法;2. 能用“树形图”写出一个排列问题的所有的排列,并能运用排列数公式进行计算。
3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。
【教学重难点】教学重点:排列的定义、排列数公式及其应用教学难点:排列数公式的推导【教学课时】二课时【教学过程】合作探究一:排列的定义我们看下面的问题(1)从红球、黄球、白球三个小球中任取两个,分别放入甲、乙盒子里(2)从10名学生中选2名学生做正副班长;(3)从10名学生中选2名学生干部;上述问题中哪个是排列问题?为什么?概念形成1、元素:我们把问题中被取的对象叫做元素2、排列:从n个不同元素中,任取m(m n≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n个不同元素中取出m个元素的一个排列....。
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关)(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同合作探究二排列数的定义及公式3、排列数:从n个不同元素中,任取m(m n≤)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号mnA表示议一议:“排列”和“排列数”有什么区别和联系?4、排列数公式推导探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?mA n 呢? )1()2)(1(+-⋯--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数;(2),,m n N m n *∈≤ 即学即练:1.计算 (1)410A ;(2)25A ;(3)3355A A ÷2.已知101095m A =⨯⨯⨯,那么m =3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( )A .5079k k A --B .2979k A -C .3079k A -D .3050k A - 答案:1、5040、20、20;2、6;3、C典型例题例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。
最新高中高三数学教案:排列、组合、二项式定理-基本原理.doc
![最新高中高三数学教案:排列、组合、二项式定理-基本原理.doc](https://img.taocdn.com/s3/m/23b9b39ec1c708a1294a442c.png)
高中高三数学教案:排列、组合、二项式定理-基本原理教学设计示例加法原理和乘法原理教学目标正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力.教学重点和难点重点:加法原理和乘法原理.难点:加法原理和乘法原理的准确应用.教学用具投影仪.教学过程设计(一)引入新课从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.今天我们先学习两个基本原理.(二)讲授新课1.介绍两个基本原理先考虑下面的问题:问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9种不同的走法.这个问题可以总结为下面的一个基本原理(打出片子——加法原理):加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么,完成这件事共有N=m1+m2+…+mn种不同的方法.请大家再来考虑下面的问题(打出片子——问题2):问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法?这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C村共有3×2=6种不同的走法.一般地,有如下基本原理(找出片子——乘法原理):乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么,完成这件事共有N=m1×m2×…×mn种不同的方法.2.浅释两个基本原理两个基本原理的用途是计算做一件事完成它的所有不同的方法种数.比较两个基本原理,想一想,它们有什么区别?两个基本原理的区别在于:一个与分类有关,一个与分步有关.看下面的分析是否正确(打出片子——题1,题2):题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个.1~10中一共有N=4+2+1=7个合数.题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有N=3×2=6种不同走法.题2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5.题中的分析是错误的.从A村到C村总时数不超过12时的走法共有5种.题2中从A 村走北路到B村后再到C村,只有南路这一种走法.(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理.也就是说:类类互斥,步步独立.(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)(三)应用举例现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.例1 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?(让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)(1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据加法原理,得到的取法种数是N=m1+m2+m3=3+5+6=14.故从书架上任取一本书的不同取法有14种.(2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据乘法原理,得到不同的取法种数是N=m1×m2×m3=3×5×6=90.故,从书架上取数学书、语文书、英语书各1本,有90种不同的方法.(3)从书架上任取不同科目的书两本,可以有3类办法:第一类办法是数学书、语文书各取1本,需要分两个步骤,有3×5种方法;第二类办法是数学书、英语书各取1本,需要分两个步骤,有3×6种方法;第三类办法是语文书、英语书各取1本,有5×6种方法.一共得到不同的取法种数是N=3×5+3×6+5×6=63.即,从书架任取不同科目的书两本的不同取法有63种.例2 由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据乘法原理,得到可以组成的三位整数的个数是N=4×5×5=100.答:可以组成100个三位整数.教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高.教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础.(四)归纳小结归纳什么时候用加法原理、什么时候用乘法原理:分类时用加法原理,分步时用乘法原理.应用两个基本原理时需要注意分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的.(五)课堂练习P222:练习1~4.(对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)(六)布置作业P222:练习5,6,7.补充题:1.在所有的两位数中,个位数字小于十位数字的共有多少个?(提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数.(提示:需要按三个志愿分成三步,共有m(m-1)(m-2)种填写方式)3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?(提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?(提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语.(1)N=5+2+3;(2)N=5×2+5×3+2×3)。
数学教案-排列、组合、二项式定理-基本原理
![数学教案-排列、组合、二项式定理-基本原理](https://img.taocdn.com/s3/m/c5489752b94ae45c3b3567ec102de2bd9605decd.png)
数学教案-排列、组合、二项式定理-基本原理一、引言本教案主要介绍数学中的排列、组合和二项式定理的基本原理。
通过学习,学生能够了解到排列、组合和二项式定理的概念、性质和应用,提高数学思维和解决实际问题的能力。
二、排列与组合2.1 排列排列是指从n个不同元素中取出m个元素进行有序排列的方法数。
排列的计算公式为:其中,n为总元素个数,m为需要取出的元素个数,“!”表示阶乘运算。
2.2 组合组合是指从n个不同元素中取出m个元素进行无序组合的方法数。
组合的计算公式为:其中,n为总元素个数,m为需要取出的元素个数,“!”表示阶乘运算。
2.3 示例例如,从数字1、2、3中取出2个数字进行排列,使用排列公式计算有:即有6种排列方法。
再例如,从数字1、2、3中取出2个数字进行组合,使用组合公式计算有:即有3种组合方法。
三、二项式定理3.1 基本概念二项式定理是指任意一个二项式的幂展开后各项系数的规律。
二项式定理的公式表达为:其中,a、b为任意实数,n为非负整数,C为组合的计算公式。
3.2 使用方法二项式定理可以应用于多个方面,如多项式展开、概率计算等。
在多项式展开中,可以通过二项式定理将一个多项式化简为一系列项的和。
3.3 示例例如,将二项式展开为更多项的和:即:通过二项式定理,我们可以快速求解幂次较高的多项式。
四、总结本教案主要介绍了数学中的排列、组合和二项式定理的基本原理。
排列和组合是数学中常见的计数方法,可以用于解决实际问题中的选择和排列情况;二项式定理则是多项式展开中的重要工具,可以化简复杂的多项式表达式。
通过对这些概念和公式的学习和应用,可以提高数学思维能力和解决实际问题的能力。
希望通过本教案的学习,学生能够掌握排列、组合和二项式定理的基本原理,并能够应用于实际问题中,提升自己的数学能力。
高中数学说课课件《二项式定理》[整理]-新课标
![高中数学说课课件《二项式定理》[整理]-新课标](https://img.taocdn.com/s3/m/b24ec807551810a6f424862b.png)
【设计意图 : 】
由特殊的二项式来分析猜 想一般的(a b)n 展开式,培养 学生由特殊到一般的思维方式,j i j n 的形
式,可按a(或b)的降幂排成:
an , an1b, an2b2 ,, abn1, bn
(2)、展开式中各项系数的规律:将(a b)n
板书设计:
10·4 二项式定理
一、复习引入 ……
[思路一] ……
二、二项式定理 ……
三、二项式定理的几点说明
[思路二] ……
……
四、应用解析 ……
五、小结 ……
六、布置作业 ……
谢谢
(4)、通项公式表示的是第r+1项,不是第r项,且a、 b位置不能对换。
(5)、二项式系数为 Cnr ,注意与项的系数的区别。
例如:(1 2x)7 的第三项是 T4 C7314(2x),3 其二项式 系数为:C73 35,第三项的系数为:C73 23 280 。
【设计意图 : 】
对定理的特点加以 说明,可使学生能熟练 掌握定理的特点,以便 今后在应用定理解决问 题时能得心应手。
。
【学生情况分析】
授课对象是高二中等程度班级的学生。学生 具有一般的归纳推理能力,学生思维较活跃, 但创新思维能力较弱。在学习过程中,大部分 学生只重视定理、公式的结论,而不重视其形 成过程。
(根据以上分析,结合新课标的理念,制 订如下的教学目标和教学重、难点)。
【教学目标】
1、知识:
使学生掌握二项式定理及推导方法、二项展 开式、通项公式的特点,并能运用二项式定 理计算或证明一些简单的问题。
应用解析:
例:(1)、展开
(1
1 x
)4
(2)、求 (2a 3b)6 展开式的第3项
新课改地区高考数学一轮复习第十一章计数原理概率随机变量及其分布112排列组合与二项式定理课件新人教
![新课改地区高考数学一轮复习第十一章计数原理概率随机变量及其分布112排列组合与二项式定理课件新人教](https://img.taocdn.com/s3/m/58eff4d076c66137ee0619fe.png)
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
10
【常用结论】 1.(a+b)n的展开式的三个重要特征 (1)项数:项数为n+1. (2)各项次数:各项的次数都等于二项式的幂指数n,即a与b的指数和为n. (3)顺序:字母a按降幂排列,从第一项开始,次数由n逐项减1直到0;字母b按 升幂排列,从第一项开始,次数由0逐项增1直到n.
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
2
内容索引
必备知识·自主学习 核心考点·精准研析 核心素养测评
新课改地区高考数学一轮复习第十一章计数原理概率随
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
3
新课改地区高考数学一轮复习第十一章计数原理概率随
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
23
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念, 考试加油。
(4) kCkn=nCkn- 11 . (
)
(5) C
r an-rbr是(a+b)n的展开式中的第r项.
n
(
)
(6)二项展开式中某项的系数与该项的二项式系数一定相同. ( )
新课改地区高考数学一轮复习第十一章计数原理概率随
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
13
提示:(1)√.
【解析】选C. (x 1 )12 的展开式的第4项
3x
T4=
C
排列、组合、二项式定理的精品教案3篇
![排列、组合、二项式定理的精品教案3篇](https://img.taocdn.com/s3/m/b31fe9795b8102d276a20029bd64783e09127d92.png)
排列、组合、二项式定理的精品教案排列、组合、二项式定理的精品教案精选3篇(一)教案主题:排列、组合、二项式定理教学目标:1. 了解和理解排列、组合的概念和特点;2. 学习排列、组合的计算公式;3. 通过实际问题应用排列、组合的知识;4. 理解和应用二项式定理。
教学准备:1. PowerPoint演示文稿;2. 排列、组合的计算示例;3. 计算器。
教学流程:一、导入(5分钟)1. 引出学生对于排列、组合的了解,以及他们对于二项式定理的了解。
2. 引出排列、组合涉及到的实际问题,如抽奖、排座位等。
二、讲解排列(15分钟)1. 讲解排列的概念:从n个元素中选取r个元素进行排列,一共有多少种不同的排列方式。
2. 讲解排列的计算公式:P(n, r) = n!/(n-r)!。
3. 讲解排列的特点:次序有关,一个元素不能重复选取。
三、讲解组合(15分钟)1. 讲解组合的概念:从n个元素中选取r个元素进行组合,一共有多少种不同的组合方式。
2. 讲解组合的计算公式:C(n, r) = n!/[(n-r)!r!]。
3. 讲解组合的特点:次序无关,一个元素不允许重复选取。
四、讲解二项式定理(15分钟)1. 讲解二项式定理的概念:将一个二项式表达式展开后的结果。
2. 讲解二项式定理的公式:(a+b)^n = C(n, 0) a^n b^0 + C(n, 1) a^n-1 b^1 + ... + C(n, n-1) a^1 b^n-1 + C(n, n) a^0 b^n。
3. 讲解二项式定理的应用:展开二项式表达式,求特定项的值。
五、练习与应用(20分钟)1. 给出一些排列、组合的计算问题,让学生自主计算并回答。
2. 提供一些实际问题,让学生应用排列、组合的知识进行解决。
六、总结与延伸(5分钟)1. 对排列、组合和二项式定理进行简要总结。
2. 探讨一些延伸问题,如多项式展开、二项式系数等。
教学反思:1. 教学内容安排合理,从概念到计算公式,再到实际应用,能够让学生逐步理解和掌握知识。
人教B版高中数学选择性必修第二册精品课件 复习课 第1课时 排列、组合与二项式定理
![人教B版高中数学选择性必修第二册精品课件 复习课 第1课时 排列、组合与二项式定理](https://img.taocdn.com/s3/m/aec3646f82c4bb4cf7ec4afe04a1b0717fd5b39b.png)
答案:40
专题二
排列组合的应用
【例2】 6名女生(其中有1个领唱)和2名男生分成两排表演.
(1)每排4人,共有多少种不同的排法?
(2)领唱站在前排,男学生站在后排,每排4人,有多少种不同的排法?
解:(1)要完成这件事,可以分为三步:
第一步,从 8 人中选 4 人站在前排,另 4 人站在后排,共有C84 C44 种不同的排法;
(
)
A.122
B.135
C.154
D.165
(2)如图,给矩形A,B,C,D涂色,要求相邻的矩形涂色不同,现有4种不同的颜
色可供选择,则不同的涂法有(
A.72种
B.48种
C.24种
D.12种
)
解析:(1)可以组成7×8×8=448个三位数,
其中无重复数字的三位数有7×7×6=294个,
故有重复数字的三位数有448-294=154个.
3
答案:2
=
专题四
项的系数和问题
【例4】 (1)若(a+x)(1+x)4的展开式中x的奇数次项的系数之和为32,则
a=
.
(2)若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-
(a1+a3+…+a9)2=39,则实数m的值为
.
解析:(1)设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,
高中高三数学《排列组合与二项式定理》教案、教学设计
![高中高三数学《排列组合与二项式定理》教案、教学设计](https://img.taocdn.com/s3/m/7fc8850c3d1ec5da50e2524de518964bce84d24c.png)
(二)教学设想
针对以上重难点,我设想以下教学策略:
1.创设情境,激发兴趣:
2.分层次教学,注重个体差异:
针对学生的不同水平,设计不同难度的题目,使学生在解决问题的过程中逐步提高。对于基础薄弱的学生,重点讲解排列组合的基本概念和计算方法;对于基础较好的学生,引导他们探索二项式定理的推导过程,提高解决问题的能力。
1.讲解排列组合的基本概念,如排列、组合的定义,以及它们之间的区别。
2.通过实例,引导学生掌握排列数、组合数的计算方法,并强调在实际问题中的应用。
3.介绍二项式定理的推导过程,让学生理解定理的含义,并学会运用定理进行计算。
4.结合典型例题,讲解排列组合与二项式定理在解决问题时的应用方法。
(三)学生小组讨论
2.在解决实际问题时,学生可能难以把握问题的实质,不能将问题转化为排列组合问题进行求解;
3.对于二项式定理,学生可能对其推导过程理解不深,难以灵活运用定趣和积极性有所差异,影响学习效果。
针对以上情况,教师在教学过程中应关注学生的个体差异,设计有针对性的教学活动,引导学生积极参与,激发学生的学习兴趣,帮助他们克服困难,提高解决问题的能力。同时,注重培养学生的数学思维,提高他们对数学学科的认识,为高考数学复习打下坚实基础。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
(1)排列组合的基本概念及其在实际问题中的应用;
(2)排列数、组合数的计算方法;
(3)二项式定理的推导过程及其应用。
2.教学难点:
(1)学生对于排列组合概念的混淆,难以区分排列与组合的计算方法;
(2)学生在解决实际问题时,难以将问题转化为排列组合问题;
新教材高中数学第3章排列组合与二项式定理3.1排列与组合3.1.2第2课时排列数的应用学案
![新教材高中数学第3章排列组合与二项式定理3.1排列与组合3.1.2第2课时排列数的应用学案](https://img.taocdn.com/s3/m/e22137129b89680202d825a8.png)
第2课时排列数的应用学习任务核心素养1.进一步理解排列的概念,掌握一些排列问题的常用解题方法.(重点)2.能应用排列知识解决简单的实际问题.(难点)1.通过排列知识解决实际问题,提升数学建模、逻辑推理的素养.2.借助排列数公式计算,提升数学运算的素养.类型1无限制条件的排列问题【例1】(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?[思路点拨](1)从5本不同的书中选出3本分别送给3名同学,各人得到的书不同,属于求排列数问题;(2)给每人的书均可以从5种不同的书中任选1本,各人得到哪本书相互之间没有联系,要用分步乘法计数原理进行计算.[解](1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取3个元素的一个排列,因此不同送法的种数是A35=5×4×3=60,所以共有60种不同的送法.(2)由于有5种不同的书,送给每个同学的每本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是5×5×5=125,所以共有125种不同的送法.1.没有限制的排列问题,即对所排列的元素或所排列的位置没有特别的限制,这一类问题相对简单,分清元素和位置即可.2.对于不属于排列的计数问题,注意利用计数原理求解.[跟进训练]1.(1)将3张电影票分给10人中的3人,每人1张,则共有________种不同的分法.(2)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,不同的选法共有________种.(1)720(2)60[(1)问题相当于从10张电影票中选出3张排列起来,这是一个排列问题.故不同分法的种数为A310=10×9×8=720.(2)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,应有A35=5×4×3=60种选法.]类型2排队问题元素“相邻”与“不相邻”问题【例2】3名男生、4名女生按照不同的要求排队,求不同的排队方法的种数.(1)全体站成一排,男、女各站在一起;(2)全体站成一排,男生必须站在一起;(3)全体站成一排,男生不能站在一起;(4)全体站成一排,男、女各不相邻.[解](1)男生必须站在一起是男生的全排列,有A33种排法;女生必须站在一起是女生的全排列,有A44种排法;全体男生、女生各视为一个元素,有A22种排法.由分步乘法计数原理知,共有A33·A44·A22=288种排队方法.(2)三个男生全排列有A33种方法,把所有男生视为一个元素,与4名女生组成5个元素全排列,有A55种排法.故有A33·A55=720种排队方法.(3)先安排女生,共有A44种排法;男生在4个女生隔成的五个空中安排,共有A35种排法,故共有A44·A35=1 440种排法.(4)排好男生后让女生插空,共有A33·A44=144种排法.“相邻”与“不相邻”问题的解决方法处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.[跟进训练]2.5人站成一排,甲、乙两人之间恰有1人的不同站法的种数为()A.18B.24C.36D.48C[5人站成一排,甲、乙两人之间恰有1人的不同站法有3A33×A22=36(种).]元素“在”与“不在”问题【例3】六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙站在两端;(3)甲不站最左端,乙不站最右端.[解](1)法一:要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A14种站法,然后其余5人在另外5个位置上作全排列有A55种站法,根据分步乘法计数原理,共有站法A14·A55=480种.法二:由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A25种站法,然后其余4人有A44种站法,根据分步乘法计数原理,共有站法A25·A44=480种.法三:若对甲没有限制条件共有A66种站法,甲在两端共有2A55种站法,从总数中减去这两种情况的排列数,即得所求的站法数,共有A66-2A55=480种.(2)首先考虑特殊元素,甲、乙先站两端,有A22种,再让其他4人在中间位置作全排列,有A44种,根据分步乘法计数原理,共有A22·A44=48种站法.(3)法一:甲在最左端的站法有A55种,乙在最右端的站法有A55种,且甲在最左端而乙在最右端的站法有A44种,共有A66-2A55+A44=504种站法.法二:以元素甲分类可分为两类:a.甲站最右端有A55种,b.甲在中间4个位置之一,而乙不在最右端有A14·A14·A44种,故共有A55+A14·A14·A44=504种站法.“在”与“不在”问题的解决方法[跟进训练]3.4名运动员参加4×100接力赛,根据平时队员训练的成绩,甲不能跑第一棒,乙不能跑第四棒,则不同的出场顺序有()A.12种B.14种C.16种D.24种B [用排除法,若不考虑限制条件,4名队员全排列共有A 44=24种排法,减去甲跑第一棒有A 33=6种排法,乙跑第四棒有A 33=6种排法,再加上甲在第一棒且乙在第四棒有A 22=2种排法,共有A 44-2A 33+A 22=14种不同的出场顺序.]定序问题【例4】 将A ,B ,C ,D ,E 这5个字母排成一列,要求A ,B ,C 在排列中的顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻).则有多少种不同的排列方法?[解] 5个不同元素中部分元素A ,B ,C 的排列顺序已定,这种问题有以下两种常用的解法.法一:(整体法)5个元素无约束条件的全排列有A 55种,由于字母A ,B ,C 的排列顺序为“A ,B ,C ”或“C ,B ,A ”,因此,在上述的全排列中恰好符合“A ,B ,C ”或“C ,B ,A ”排列方式的排列有A 55A 33×2=40(种). 法二:(插空法)若字母A ,B ,C 的排列顺序为“A ,B ,C ”,将字母D ,E 插入,这时形成的4个空中,分两类:第一类,若字母D ,E 相邻,则有A 14·A 22种排法;第二类,若字母D ,E 不相邻,则有A 24种排法.所以有A 14·A 22+A 24=20(种)不同的排列方法.同理,若字母A ,B ,C 的排列顺序为“C ,B ,A ”,也有20种不同的排列方法. 因此,满足条件的排列有20+20=40(种).在有些排列问题中,某些元素的前后顺序是确定的(不一定相邻),解决这类问题的基本方法有两种:1.整体法:即若有m +n 个元素排成一列,其中m 个元素之间的先后顺序确定不变,先将这m +n 个元素排成一列,有A m +n m +n 种不同的排法;然后任取一个排列,固定其他n 个元素的位置不动,把这m 个元素交换顺序,有A mm 种排法,其中只有一个排列是我们需要的,因此共有A m +n m +n A m m种满足条件的不同排法. 2.插空法:即m 个元素之间的先后顺序确定不变,因此先排这m 个元素,只有一种排法,然后把剩下的n 个元素分类或分步插入由以上m 个元素形成的空隙中.[跟进训练]4.用1,2,3,4,5,6,7组成没有重复数字的七位数,若1,3,5,7的顺序一定,则有________个七位数符合条件.210 [若1,3,5,7的顺序不定,有A 44=24(种)排法,故1,3,5,7的顺序一定的排法数只占总排法数的124.故有124A 77=210(个)七位数符合条件.] 类型3 数字排列问题1.偶数的个位数字有何特征?从1,2,3,4,5中任取两个不同数字能组成多少个不同的偶数?[提示] 偶数的个位数字一定能被2整除.先从2,4中任取一个数字排在个位,共2种不同的排法,再从剩余数字中任取一个数字排在十位,共4种排法,故从1,2,3,4,5中任取两个数字,能组成2×4=8(个)不同的偶数.2.在一个三位数中,身居百位的数字x 能是0吗?如果在0~9这十个数字中任取不同的三个数字组成一个三位数,如何排才能使百位数字不为0?[提示] 在一个三位数中,百位数字不能为0,在具体排数时,从元素0的角度出发,可先将0排在十位或个位的一个位置,其余数字可排百位、个位(或十位)位置;从“位置”角度出发可先从1~9这9个数字中任取一个数字排百位,然后再从剩余9个数字中任取两个数字排十位与个位位置.【例5】 (对接教材P 12例6)用0,1,2,3,4,5这六个数字可以组成多少个无重复数字的(1)六位奇数?(2)个位数字不是5的六位数?[思路点拨] 这是一道有限制条件的排列问题,每一问均应优先考虑限制条件,遵循特殊元素或特殊位置优先安排的原则.另外,还可以用间接法求解.[解] (1)法一:从特殊位置入手(直接法)分三步完成,第一步先填个位,有A 13种填法,第二步再填十万位,有A 14种填法,第三步填其他位,有A 44种填法,故共有A 13A 14A 44=288(个)六位奇数.法二:从特殊元素入手(直接法)0不在两端有A14种排法,从1,3,5中任选一个排在个位有A13种排法,其他各位上用剩下的元素作全排列有A44种排法,故共有A14A13A44=288(个)六位奇数.法三:排除法6个数字的全排列有A66个,0,2,4在个位上的六位数为3A55个,1,3,5在个位上,0在十万位上的六位数有3A44个,故满足条件的六位奇数共有A66-3A55-3A44=288(个).(2)法一:排除法0在十万位的六位数或5在个位的六位数都有A55个,0在十万位且5在个位的六位数有A44个.故符合题意的六位数共有A66-2A55+A44=504(个).法二:直接法十万位数字的排法因个位上排0与不排0而有所不同,因此需分两类:第一类:当个位排0时,符合条件的六位数有A55个.第二类:当个位不排0时,符合条件的六位数有A14A14A44个.故共有符合题意的六位数A55+A14A14A44=504(个).(变结论)用0,1,2,3,4,5这六个数取不同的数字组数.(1)能组成多少个无重复数字且为5的倍数的五位数?(2)能组成多少个无重复数字且比1 325大的四位数?(3)若所有的六位数按从小到大的顺序组成一个数列{a n},则240 135是第几项?[解](1)符合要求的五位数可分为两类:第一类,个位上的数字是0的五位数,有A45个;第二类,个位上的数字是5的五位数,有A14·A34个.故满足条件的五位数的个数共有A45+A14·A34=216(个).(2)符合要求的比1 325大的四位数可分为三类:第一类,形如2□□□,3□□□,4□□□,5□□□,共A14·A35个;第二类,形如14□□,15□□,共有A12·A24个;第三类,形如134□,135□,共有A12·A13个.由分类加法计数原理知,无重复数字且比1 325大的四位数共有:A14·A35+A12·A24+A12·A13=270(个).(3)由于是六位数,首位数字不能为0,首位数字为1有A55个数,首位数字为2,万位上为0,1,3中的一个有3A44个数,∴240 135的项数是A55+3A44+1=193,即240 135是数列的第193项.解数字排列问题常见的解题方法1.“两优先排法”:特殊元素优先排列,特殊位置优先填充.如“0”不排“首位”.2.“分类讨论法”:按照某一标准将排列分成几类,然后按照分类加法计数原理计算,要注意以下两点:一是分类标准必须恰当;二是分类过程要做到不重不漏.3.“排除法”:全排列数减去不符合条件的排列数.4.“位置分析法”:按位置逐步讨论,把要求数字的每个数位排好.[跟进训练]5.用1,2,3,4,5,6这六个数字组成无重复数字的六位数,则5和6在两端,1和2相邻的六位数的个数是()A.24 B.32 C.36 D.48A[先排5,6,有A22种排法;将1,2捆绑在一起有A22种排法;将1,2这个整体和3以及4全排列,有A33种排法.所以符合题意的六位数的个数为A22A22A33=24.]1.6名学生排成两排,每排3人,则不同的排法种数为()A.36B.120C.720D.240C[由于6人排两排,没有什么特殊要求的元素,故排法种数为A66=720.]2.某段铁路所有车站共发行132种普通车票,那么这段铁路共有的车站数是()A.8B.12C.16D.24B[设车站数为n,则A2n=132,n(n-1)=132,∴n=12.]3.从0,1,3,5,7,9六个数中,任取两个做除法,可得到不同的商的个数是()A.30 B.25 C.20 D.19D[当选出的数字有一个是0时,0只能做分子,不能做分母,有1种结果为0;当选出数字没有0时,五个数字从中任选两个,共有A25种结果,而在这些结果中,有相同的数字重复出现,13和39,31和93,∴可以得到不同的商的个数是A 25-2+1=19.] 4.用1,2,3,4,5,6,7这7个数字排列组成一个七位数,要求在其偶数位上必须是偶数,奇数位上必须是奇数,则这样的七位数有________个.144 [先排奇数位有A 44种,再排偶数位有A 33种,故共有A 44A 33=144个.]5.A ,B ,C ,D ,E 五人并排站成一排,如果A ,B 必须相邻且B 在A 的右边,那么不同的排法种数有________种.24 [把A ,B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,共A 44=24种.]回顾本节内容,自我完成以下问题:1.求解排列问题的基本思路是什么?[提示] 实际问题――→化归(建模)排列问题―――――――→求数学模型的解求排列数―――――――→得实际问题的解实际问题2.求解排列问题的主要题型及方法有哪些?[提示]直接法把符合条件的排列数直接列式计算 优先法优先安排特殊元素或特殊位置 捆绑法 把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法 对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中定序问题除法处理 对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列间接法正难则反,等价转化的方法。
高中高三数学教案:排列、组合、二项式定理-基本原理
![高中高三数学教案:排列、组合、二项式定理-基本原理](https://img.taocdn.com/s3/m/f72d3d7882c4bb4cf7ec4afe04a1b0717fd5b39e.png)
高中高三数学教案:排列、组合、二项式定理-基本原理教学目标:1. 理解排列、组合和二项式定理的基本概念和原理。
2. 能够应用排列、组合和二项式定理解决实际问题。
3. 培养学生的逻辑思维和数学推理能力。
教学准备:1. 教学资料:教科书、课件、习题集等。
2. 教学媒体:投影仪、电脑等。
教学过程:Step 1:引入和导入(5分钟)教师通过问题启发学生思考,引导学生认识到排列、组合和二项式定理在日常生活中的应用。
例如,从一副扑克牌中选出5张牌,有多少种不同的组合方式?Step 2:概念讲解(15分钟)2.1 排列的概念教师给出排列的定义,即从n个元素中取出m个元素,按照一定顺序排列的方式的总数。
教师讲解排列的计算公式及推导过程,并通过示例演示如何应用排列解决问题。
2.2 组合的概念教师给出组合的定义,即从n个元素中取出m个元素,不考虑顺序的方式的总数。
教师讲解组合的计算公式及推导过程,并通过示例演示如何应用组合解决问题。
2.3 二项式定理的概念教师给出二项式定理的定义,即(a+b)^n的展开公式。
教师讲解二项式定理的公式及推导过程,并通过示例演示如何应用二项式定理解决问题。
Step 3:练习和讨论(20分钟)教师出示一些具体问题,让学生自己尝试解答。
然后让学生分享自己的解题思路,并进行讨论。
教师对学生的解题思路进行指导和引导,帮助学生巩固理解和应用排列、组合和二项式定理的能力。
Step 4:拓展应用(10分钟)教师出示一些与排列、组合和二项式定理有关的实际问题,让学生尝试解答。
教师鼓励学生灵活运用所学知识解决问题,并引导学生思考如何将所学知识应用于其他领域。
Step 5:总结和归纳(5分钟)教师对本课内容进行总结和归纳,强调排列、组合和二项式定理的基本原理和应用。
同时,鼓励学生通过课后练习巩固和提高自己的能力。
Step 6:课堂小结(5分钟)教师向学生总结本节课的重点内容,并预告下节课的内容。
教学反思:本节课通过讲解排列、组合和二项式定理的相关概念和原理,并通过例题和实际问题的训练,培养了学生的逻辑思维和数学推理能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.1.1 排列的概念【教学目标】1.了解排列、排列数的定义;掌握排列数公式及推导方法;2. 能用“树形图”写出一个排列问题的所有的排列,并能运用排列数公式进行计算。
3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。
【教学重难点】教学重点:排列的定义、排列数公式及其应用教学难点:排列数公式的推导【教学课时】二课时【教学过程】合作探究一: 排列的定义我们看下面的问题(1)从红球、黄球、白球三个小球中任取两个,分别放入甲、乙盒子里(2)从10名学生中选2名学生做正副班长;(3)从10名学生中选2名学生干部;上述问题中哪个是排列问题?为什么?概念形成1、元素:我们把问题中被取的对象叫做元素2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关)(2)两个排列相同的条件:①元素完全相同,②元素的排列顺合作探究二 排列数的定义及公式3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示议一议:“排列”和“排列数”有什么区别和联系?4、排列数公式推导探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?mA n 呢?)1()2)(1(+-⋯--=m n n n n A m n (,,m n N m n *∈≤)说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是1n m -+,共有m 个因数;(2),,m n N m n*∈≤即学即练:1.计算 (1)410A ;(2)25A ;(3)3355A A ÷2.已知101095mA =⨯⨯⨯ ,那么m =3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ---- 用排列数符号表示为( )A .5079k k A --B .2979k A -C .3079k A -D .3050kA -答案:1、5040、20、20;2、6;3、C典型例题例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。
解析:(1)利用好树状图,确保不重不漏;(2)注意最后列举。
解:略点评:在写出所要求的排列时,可采用树状图或框图一一列出,一定保证不重不漏。
变式训练:由数字1,2,3,4可以组成多少个没有重复数字的三位数?并写出所有的排列。
5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。
此时在排列数公式中,m =n全排列数:(1)(2)21!nn A n n n n =--⋅= (叫做n 的阶乘).即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-⋅n n 想一想:由前面联系中( 2 ) ( 3 )的结果我们看到,25A 和3355A A ÷有怎样的关系?那么,这个结果有没有一般性呢?排列数公式的另一种形式:)!(!m n n A m n -=另外,我们规定 0! =1 .想一想:排列数公式的两种不同形式,在应用中应该怎样选择?例2.求证:m n m nmn A mA A 11+-=+.解析:计算时,既要考虑排列数公式,又要考虑各排列数之间的关系;先化简,以减少运算量。
解:左边=右边)!)!!)((!)!(!==+-+=+-⋅++=+-⋅+-+m 1n A 1()!1(1(n!m n 1m -n )!1m n n m m n n m n n m n 点评:(1)熟记两个公式;(2)掌握两个公式的用途;(3)注意公式的逆用。
思考:你能用计数原理直接解释例2中的等式吗?(提示:可就所取的m 个元素分类,分含某个元素a 和不含元素a 两类)变式训练:已知89557=-nnn A A A ,求n 的值。
(n =15)归纳总结:1、顺序是排列的特征;2、两个排列数公式的用途:乘积形式多用于计算,阶乘形式多用于化简或证明。
【当堂检测】1.若!3!n x =,则x = ( )()A 3n A ()B 3n n A -()C 3n A ()D 33n A -2.若532m m A A =,则m 的值为 ( )()A 5()B 3()C 6()D 73. 已知256n A =,那么n =;4.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?答案:1、B ;2、A ;3、8;4、1680。
【课外作业】见《同步练习》20.1.2 排列应用题【教学目标】1.进一步理解排列的意义,并能用排列数公式进行运算;2.能用所学的排列知识和具体方法正确解决简单的实际问题。
3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。
【教学重难点】教学重点:排列应用题常用的方法:直接法(包括特殊元素处理法、特殊位置处理法、捆绑法、插空法),间接法教学难点:排列数公式的理解与运用【教学过程】情境设计从1~9这九个数字中选出三个组成一个三位数,则这样的三位数的个数是多少?新知教学排列数公式的应用:例1、(1)某足球联赛共有12支队伍参加,每队都要与其他队在主、客场分别比赛一场,共要进行多少场比赛?解:略变式训练:(1)放假了,某宿舍的四名同学相约互发一封电子邮件,则他们共发了多少封电子邮件?(2) 放假了,某宿舍的四名同学相约互通一次电话,共打了多少次电话?例2、(1)从5本不同的书中选3本送给3名同学,每人1本,共有多少种不同的送法?(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?解:见书本16页例3例3、用0到9这10个数字,可以组成多少个没有重复数字的三位数?解:见书本19页例4点评:解答元素“在”与“不在”某一位置问题的思路是:优先安置受限制的元素,然后再考虑一般对象的安置问题’,常用方法如下:1)从特殊元素出发,事件分类完成,用分类计数原理.2)从特殊位置出发,事件分步完成,用分步计数原理. 3)从“对立事件”出发,用减法.4)若要求某n 个元素相邻,可采用“捆绑法”,所谓“捆绑法”就是首先将要求排在相邻位置上的元素看成一个整体同其它元素一同排列,然后再考虑这个整体内部元素的排列。
5)若要求某n 个元素间隔,常采用“插空法”。
所谓插空法就是首先安排一般元素,然后再将受限制元素插人到允许的位置上.变式训练:有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有( ) (A )88A 种(B )48A 种 (C )44A ·44A 种 (D )44A 种答案:D例4、三个女生和五个男生排成一排. (1)如果女生必须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果两端不能都排女生,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?答案:(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 720点评:1)若要求某n 个元素相邻,可采用“捆绑法”,所谓“捆绑法”就是首先将要求排在相邻位置上的元素看成一个整体同其它元素一同排列,然后再考虑这个整体内部元素的排列。
2)若要求某n 个元素间隔,常采用“插空法”。
所谓插空法就是首先安排一般元素,然后再将受限制元素插人到允许的位置上.变式训练:1、6个人站一排,甲不在排头,共有种不同排法.2.6个人站一排,甲不在排头,乙不在排尾,共有种不同排法.答案:1.600 2.504归纳总结:1、解有关排列的应用题时,先将问题归结为排列问题,然后确定原有元素和取出元素的个数,即n、m的值.2、解决相邻问题通常用捆绑的办法;不相邻问题通常用插入的办法.3、解有条件限制的排列问题思路:①正确选择原理;②处理好特殊元素和特殊位置,先让特殊元素占位,或特殊位置选元素;③再考虑其余元素或其余位置;④数字的排列问题,0不能排在首位4、判断是否是排列问题关键在于取出的元素是否与顺序有关,若与顺序有关则是排列,否则不是.5、由于解排列应用题往往难以验证结果的正确性,所以一般应考虑用一种方法计算结果,用另一种方法检查核对,辨别正误.【当堂检测】1.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A)24个(B)30个(C)40个(D)60个2.甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不同的试种方法共有()(A)12种(B)18种(C)24种(D)96种3.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有()(A)6种(B)9种(C)18种(D)24种4.五男二女排成一排,若男生甲必须排在排头或排尾,二女必须排在一起,不同的排法共有种.答案:1、A;2、B;3、C;4、480。
【课外作业】见《对口单招》20.2.1组合【教学目标】:(1)理解组合的定义,掌握组合数的计算公式(2)正确认识组合与排列的区别与联系(3)会利用组合数的性质,解决一些简单的组合问题【教学重难点】:掌握组合定义及与排列的区别,会计算组合数【教学课时】:二课时【教学过程】:情景导入问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题二:从甲、乙、丙3名同学中选出2名去参加某天一项活动,有多少种不同的选法?合作探究:探究1:组合的定义?一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.探究2:排列与组合的概念有什么共同点与不同点?不同点: 排列与元素的顺序有关,而组合则与元素的顺序无关.共同点: 都要“从n个不同元素中任取m个元素”问题三:判断下列问题是组合问题还是排列问题?(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有多少个?(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票?组合是选择的结果,排列是选择后再排序的结果.探究3:写出从a,b,c,d 四个元素中任取三个元素的所有组合abc , abd , acd ,bcd 每一个组合又能对应几个排列?交流展示精讲精练例1判断下列问题是排列问题还是组合问题?(1)a 、b 、c 、d 四支足球队之间进行单循环比赛,共需要多少场比赛?(2)a 、b 、c 、d 四支足球队争夺冠亚军,有多少场不同的比赛?变式训练1 已知ABCDE 五个元素,写出取出3个元素的所有组合例2计算下列各式的值(1)97999699C C +(2)n n nnC C 321383+-+变式训练2 (1)解方程247353---=x x x A C (2)已知m8765C ,10711求m m m C C C =+课堂测评:1、判断下列语句是排列问题还是组合问题(1)某人射击8次,命中4枪,且命中的4枪均为2枪连中,不同的结果有多少种?(2)某人射击8次,命中4枪,且命中的4枪均为3枪连中,不同的结果有多少种?2、计算( )=++293828C C C A120 B240 C60D4803、已知=10,则n=( )2n CA10 B5 C3D24、如果,则m=( )436m m C A =A6 B7 C8 D9【板书设计】:略。