高效液相色谱柱基础知识

合集下载

高效液相色谱基础知识

高效液相色谱基础知识

谢谢大家!
第二节 岛津LC-10AT型 HPLC本卷须知
一、 流动相
1、流动相应选用色谱纯试剂、高纯水或双蒸水,酸碱液及 缓冲液需经过滤后使用,过滤时注意区分水系膜和油系 膜的使用范围;
2、水相流动相需经常更换〔一般不超过2天〕,防止长菌 变质;
3、使用双泵时,A、口位于混合器下方〕 放置含盐流动相,B、C〔进液口位于混合器上方〕放置 不含盐流动相; A、B、C、D四个储液器中其中一个为棕色瓶,用于存 放水相流动相。
2、 冲洗完毕后,逐步降低流速至0,关泵,进样器也应用 相应溶剂冲洗,可使用进样阀所附专用冲洗接头。
3 、关断电源,作好使用登记,内容包括日期、检品、色谱 柱、流动相、柱压,使用小时数,仪器完好状态等。
九、 清洗管路及进样口
【特殊情况】:谱流路系统,从泵、进样器、色谱柱、 到检测器通池,在分析完毕后,均应按〔5.1〕充分冲 洗,特别是用过含盐流动相的,更应注意先用水,再 用甲醇-水,充分冲洗。
四、 操作过程
〔 4 〕、注意各流动相所剩溶液的容积设定,假设设定 的容积低于最低限会自动停泵,注意洗泵溶液的体积 ,及时加液;
〔 5 〕、使用过程中要经常观察仪器工作状态,及时正 确处理各种突发事件。
四、 操作过程
2、 先以所用流动相冲洗系统一定时间〔如所用流动相为 含盐流动相,必须先用水冲洗20分钟以上再换上含盐 流动相〕,正式进样分析前30min 左右开启D灯或W灯 ,以延长灯的使用寿命;
1、采用过滤或离心方法处理样品,确保样品中不含固体颗粒;
〔1〕、翻开电源,用Harb相连接时,注意Harb电源,翻开计算机,翻开Bootp Server〔一般启动时已翻开〕;
4、 梯度设定:
4.

高效液相色谱-HPLCppt课件.ppt

高效液相色谱-HPLCppt课件.ppt

色谱法的分类
按固定相的形态分:
平面色谱 o 纸色谱
o 薄层色谱
柱色谱
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
色谱法的分类示意图
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
▪ 高压梯度洗脱(高压混合,高压进柱,2个 泵。)
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
▪安捷伦泵:小视频 ▪色谱学堂:泵
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
色谱法原理及分类
什么是色谱法 色谱法溯源 Tswett(茨维特)的实验 色谱法原理 色谱法的分类
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
什么是色谱法
色谱法是一种现代的分离分析方法 1906年正式命名(见诸文献) 20世纪30年代开始广泛研究和应用 高效液相色谱法的广泛应用始于20世纪70年代
1. 紫外—可见光度检测器:
①固定波长:254nm , 低压汞 灯。
② 可 调 波 长 : 190 ~ 800mm , 钨灯,氘灯。
UV
③光电二极管矩阵检测器: 190~700nm。
接色谱柱 石英窗 光电倍增管
废液
▪篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统

高效液相色谱(HPLC)基础知识

高效液相色谱(HPLC)基础知识

高效液相色谱(HPLC)基础知识我国药典收载高效液相色谱法项目和数量比较表:方法项目数量1985年版1990年版1995年版2000年版HPLC法鉴别9 34 150 检查12 40 160 含量测定7 60 117 387鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。

I.概论一、液相色谱理论发展简况色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。

又称为色层法、层析法。

色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。

后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。

液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。

高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。

它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法(High Pressure Liquid Chromatography,HPLC)。

又因分析速度快而称为高速液相色谱法(High Speed Liquid Chromatography,HSLP)。

也称现代液相色谱。

二、HPLC的特点和优点HPLC有以下特点:高压——压力可达150~300 Kg/cm2。

色谱柱每米降压为75 Kg/cm2以上。

高速——流速为0.1~10.0 ml/min。

液相色谱基础知识

液相色谱基础知识

液相色谱—视差折光检测器

检测器组成:光源——透镜——两 束平行光——样品池和参比池—— 光电二极管——比较两者信号差 值——输出信号 。
液相色谱—凝胶色谱
பைடு நூலகம்

凝胶渗透色谱仪(GPC仪)、体积 排阻色谱(Size Exclusion Chrom.) 。 分离原理:利用多孔物质做固定相, 按照待测组分分子尺寸大小进行分 离。测定相对分子量大小、分子量 分布。
环己烷
正丁醇 乙醇 水 异丙醇
乙酸正丙酯
丙酸甲酯 四氯化碳 N,N-二甲基 甲酰胺 苯
260
260 265 270 280
碘甲烷
二硫化碳 硝基甲烷 硝基乙烷 2-硝基丙烷
350
380 380 380 380
甲醇
甲苯
285
液相色谱—荧光检测器


荧光检测器:样品中物质分子能在 特定波长的光激发后跃迁到高能级 状态,在返回到基态的过程中,会 发出波长较长的光,称做荧光。 荧光强度F=I0Φabc I0——激发光强度 Φ——荧光量子产率
Refractive Index Detector



A valve is opened and pure solvent passes into one half of a cell. The eluate flows through the other half of the cell. The two halves are separated by a glass plate mounted at an angle such that bending of the incident beam occurs if the two solutions differ in refractive index.

液相色谱法和高效液相色谱法

液相色谱法和高效液相色谱法

溶剂等级
➢ 不管采用何种途径,配制流动相应用新鲜水,放置 时间越短,水质越高。
➢ 理想的HPLC用水应为18.2MΩ的超纯水,并通过 0.22um的滤膜,除去热源、有机物、无机离子及空 气等。
溶剂等级
有机溶剂的等级 HPLC级 优级纯 分析纯
都经过蒸馏和0.45µm的过滤(除纤维毛,未溶解的机械颗粒) 优级纯的纯度比分析纯大,但里面含有防腐剂和抗氧化剂 HPLC级经过0.2µm的过滤,且除去有紫外吸收的杂质
《仪器分析》
液相色谱法
高效液相色谱法
High Performance Liquid Chromatography
For Short:HPLC
色谱基础知识
主要内容
液相色谱法基础知识 液相色谱仪的主要部件
液相色谱仪的维护
色谱基础知识
色谱起源
1903年俄国植物学家 M. S. Tswett 提出经典液相色谱
C18柱的使用注意点
柱压应低于柱子的承受压力 柱温在40℃左右,最高使用温度为50℃ 缓冲液pH使用范围为2~7
硅胶在PH为3~4时稳定性最好 碱浓度越低,流动相含水量越低,硅胶越稳定。
检测器 进样器
储液瓶 高压输液系统
输液泵
数据处理系统
柱温箱
常用检测器
紫外检测器(UV) 二极管阵列检测器(PDA) 荧光检测器(FL) 示差折光检测器 蒸发光散射检测器
溶剂等级
分析纯级(实线)和 HPLC 级溶剂(虚线)的吸光度比较
甲醇
乙睛
正己烷
溶剂等级
缓冲盐的使用:
使用前必须过滤 使用后一定要对柱子进行清洗 ,以免造成腐蚀、磨
损及阻塞:首先用纯水冲洗10-30min,再用甲醇冲 洗30min(0.5-1ml/min)

关于HPLC的基础知识(中文)

关于HPLC的基础知识(中文)
HPLC,即高效液相色谱,是一种使用色谱柱进行液态样品分析分离的高效技术。其基础构成包括脱气装置、泵、进样器、柱温箱、检测器及数据处理装置。脱气装置负责去除洗脱液中的氧气等气体,以确保泵的正常工作和检测器的灵敏度。泵是系统中的送液装置,能在高压下以恒定流速将洗脱液压送至色谱柱。进样器则将分析对象/样品导入色谱柱。柱温箱使色谱柱保持一定温度,以降低洗脱液粘度并稳定分离时间。检测器用于检测经柱分离后的各组分,根据样品性质可选择不同类型的检测器如紫外可见光检测器、差检测器等。最后,数据处理装置对检测器检测出的电信号进行计算和处理,生成色谱谱图供分析使用。

高效液相色谱基础知识总结

高效液相色谱基础知识总结
高效液相色谱基础知识总结
(LC-MS),有效的弥补了色谱法定性分析特征性差的弱 点,成为最重要的分离分析方法之一, LC-MS在选择性、 灵敏度、分子量测定和提供结构信息方面具有明显的优 势,能够同时获得可靠的定性定量结果,因而被广泛应 用于药物的质量控制(杂质、副产物、降解产物等的鉴 定和测定)、药物在生物体内的吸收、分布和代谢研究 (包括代谢物的结构确定及定量)和临床医学研究(如 蛋白异常的研究)。 LC-MS已成为新药研究必不可少的 手段。20世纪70年代,高效液相色谱法崛起克服了
高效液相色谱基础知识总结
二、基本概念和术语
一、色谱图和峰参数 1、色谱图(chromatogram)--样品流经色谱柱和检测器, 所得到的信号-时间曲线,又称色谱流出曲线(elution profile)。 2、基线(base line)--经流动相冲洗,柱与流动相达到 平衡后,检测器测出一段时间的流出曲线。一般应平行 于时间轴。基线反映仪器及操作条件的恒定程度,主要 由流动相中的杂质等因素决定。
键合相色谱法是将类似于气相色谱中的固定液的液 体,通过化学反应键合到硅胶表面,从而形成固定相。
高效液相色谱基础知识总结
采用化学键合固定相的色谱法称为键合相色谱。若采用 极性键合相、非极性流动相,则称为正相色谱;采用非 极性键合相、极性流动相,则称为反相色谱。这种分离 的保留值大小,主要决定于组分分子与键合固定液分子 间作用力的大小。
高效液相色谱基础知识总结
气相色谱法不能直接用于分析难挥发、热不稳定及高分 子化合物等的弱点,大大扩大了色谱法的应用范围,把 色谱法推进到一个新水平。
高效液相色谱(high performance liquid chromatography, HPLC)是一种高效、快速的分离分析 技术,具有灵敏度高、选择性好的特点。HPLC具有的同 时分离和分析的功能对于体内药物分析和体内内源性物 质的分析及成分复杂的中药分析尤其重要。 HPLC的分离 功能还广泛用于药物的纯化和制备,如用制备色谱分离

(干货)液相色谱基础知识大全

(干货)液相色谱基础知识大全

一、基本原理高效液相色谱(HPLC)法是以高压下的液体为流动相,并采用颗粒极细的高效固定相的柱色谱分离技术。

高效液相色谱对样品的适用性广,不受分析对象挥发性和热稳定性的限制,因而弥补了气相色谱法的不足。

在目前已知的有机化合物中,可用气相色谱分析的约占20%,而80%则需用高效液相色谱来分析。

高效液相色谱和气相色谱在基本理论方面没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质的差别。

二、高效液相色谱分析原理(1)、高效液相色谱分析的流程:由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。

被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。

废液流入废液瓶。

遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。

这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。

(2)、高效液相色谱的分离过程:同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。

它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分离。

开始样品加在柱头上,假设样品中含有3个组分,A、B和C,随流动相一起进入色谱柱,开始在固定相和流动相之间进行分配。

分配系数小的组分A不易被固定相阻留,较早地流出色谱柱。

分配系数大的组分C在固定相上滞留时间长,较晚流出色谱柱。

组分B的分配系数介于A,C之间,第二个流出色谱柱。

若一个含有多个组分的混合物进入系统,则混合物中各组分按其在两相间分配系数的不同先后流出色谱柱,达到分离之目的。

不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。

其次,当不同组分在色谱柱中运动时,谱带随柱长展宽,分离情况与两相之间的扩散系数、固定相粒度的大小、柱的填充情况以及流动相的流速等有关。

高效液相色谱柱

高效液相色谱柱

高效液相色谱柱高效液相色谱柱是一种在分析化学领域中广泛使用的技术。

它的原理是通过溶液在色谱柱中的流动过程中,对溶质进行分离和纯化。

高效液相色谱柱的优点是分析速度快、分离效果好、操作简便等。

本文将介绍高效液相色谱柱的原理、种类、应用以及未来的发展趋势等内容。

高效液相色谱柱的原理主要包括固定相和移动相两个基本要素。

固定相负责分离溶质,常用的固定相有疏水相、离子相、亲合相等。

移动相则是将溶质带动在柱子中流动的溶剂,通常是有机溶剂和水的混合物。

这样,在溶液在色谱柱中流动过程中,不同溶质会在固定相的作用下发生分离,从而实现对混合物的分析和纯化。

高效液相色谱柱根据固定相的不同可以分为几种不同的类型。

例如,疏水相色谱柱广泛应用于有机物的分离和分析,它的固定相表面通常具有疏水性,可以对有机物进行选择性的吸附和分离。

离子相色谱柱则适用于进行离子化合物的分离和分析,例如酸和碱等。

亲合相色谱柱主要是基于生物大分子与其他化合物之间的生物亲和性进行分析。

高效液相色谱柱在实际应用中有着广泛的用途。

在生命科学研究领域,高效液相色谱柱可以用于对蛋白质、核酸等生物大分子的分离和纯化。

在药物分析领域,高效液相色谱柱经常被用于药物的纯化和质量控制。

在环境监测方面,高效液相色谱柱可以用于对环境污染物的检测和分析。

此外,高效液相色谱柱还被广泛应用于食品安全、农药残留检测、天然产物分析等领域。

随着科学技术的不断进步,高效液相色谱柱也在不断发展和完善。

目前,研究人员正在努力提高高效液相色谱柱的分离效率和分离速度,使其更加适用于复杂物质的分离和分析。

同时,也在研发新的固定相和移动相,以满足不同类型化合物的分析需求。

此外,一些新的检测技术和装置也被引入到高效液相色谱柱中,提高对溶质的灵敏度和准确性。

总之,高效液相色谱柱是一种重要的分析技术,具有广泛的应用前景和发展空间。

它在生命科学、药物分析、环境监测等领域都有着重要的作用。

随着科学技术的不断进步,相信高效液相色谱柱在未来会发展出更多的新技术和新应用,为我们的科研和生产提供更多的支持和帮助。

色谱柱基础知识简介

色谱柱基础知识简介
• 色谱柱两端的柱接头内装有筛 板,是烧结不锈钢或钦合金, 孔径0.2一20µm(5一10µm),取 决于填料粒度,目的是防止填 料漏出
2020/5/12
5
色谱柱的分类
• 通常使用填充柱和毛细管柱两类
两类色谱柱的区别
项目
填充柱
毛细管柱
柱材料
柱长 柱内径 柱流速
铜、不锈钢、硅酸硼玻 常用熔凝硅玻璃 璃
2020/5/12
3
• 国外比较知名的品牌有: • 安捷伦公司的Zorbax系列填料柱, • Water公司的μBondapak系列填料柱, • 美国Supelco公司的Supelco柱, • 瑞典AkzoNobel公司的Kroma-sil填料柱, • 迪马公司的Diamonsil柱以及部分日本岛津公司的
0.5~10米 2~4mm
大,通常10~50ml/min
10~150米
0.25mm、0.38mm、 0.50mm 小,通常0.5~5ml/min
样品容量
2020/5/12
大,可加大进样量
小,通常需要分流进样 口
6
填充柱(铜&不锈钢材料)
2020/5/12
7
填充柱(玻璃材料)
Байду номын сангаас2020/5/12
8
毛细管柱
2020/5/12
9
色谱柱按用途可分为分析型和制备型
常用的色谱柱及其尺寸:
• (1)常规分析柱(常量柱),内径2—smm(常用4.6mm,国内 有4mm和5mm),柱长10—30cm;
• (2)窄径柱,又称细管径柱、半微柱,内径1—2mm,柱长 10—20cm;
• (3)毛细管柱(又称微柱),内径0.2—0.5mm; • (4)半制备柱,内径>5mm; • (5)实验室制备柱,内径20—40mm,柱长10—30cm; • (6)生产制备柱内径可达几十厘米。柱内径一般是根据柱长、

HPLC(液相色谱)常识及疑难详解(附实际操作图解)

HPLC(液相色谱)常识及疑难详解(附实际操作图解)

1 液相色谱基础知识1.1 液相色谱名词术语Mobile phase:流动相,在色谱柱中存在着相对运动的两相,一相为固定相,一相为流动相。

流动相是指在色谱过程中载带样品(组分)向前移动的那一相。

Stationary phase:固定相,柱色谱或平板色谱中既起分离作用又不移动的那一相。

Gradient elution: 梯度洗脱,一个分析周期中,按一定程序不断改变流动相的浓度配比, 使一个复杂样品中的性质差异较大的组分能按各自适宜的容量因子k达到良好的分离目的。

Detection wavelength:检测波长,retention time:保留时间,被分离样品组分从进样开始到柱后出现该组分浓度极大值时的时间Peak:峰Peak Base:峰基线,经流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。

一般应平行于时间轴Peak Height:峰高,色谱峰顶点至峰底的距离。

Peak Width:峰宽,色谱峰两侧拐点处所作切线与峰底相交两点间的距离Peak Width at Half Height:半峰高宽Peak Area:峰面积Tailing Peak: 后沿较前沿平缓的不对称峰Leading Peak:前沿较后沿平缓的不对称峰Ghost Peak: 假峰,并非由试样所产生的峰Baseline Drift:基线漂移Baseline Noise:基线噪音Band Broadening:组分在色谱柱内移动过程中谱带宽度增加的现象. 1.2 流动相1.2.1 流动相类型正相液相色谱流动相:一般正相色谱固定相极性大于流动相极性,采用极性固定相(如聚乙二醇、氨基与腈基键合相);流动相为相对非极性的疏水性溶剂(烷烃类如正已烷、环已烷),常加入乙醇、异丙醇、四氢呋喃、三氯甲烷等以调节组分的保留时间。

常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等),极性小的组分先出柱。

反相液相色谱流动相:一般用非极性固定相(如C18、C8);流动相为水或缓冲液,常加入甲醇、乙腈、异丙醇、丙酮、四氢呋喃等与水互溶的有机溶剂以调节保留时间。

液相色谱基础知识(waters)

液相色谱基础知识(waters)

H 3 C H 3 C
C H 2
C H 2
C H 2 C H 2
H 2 C
H 2 C
H 2 C H 2 C
C H 2
C H 2
C H 2 C H 2
H 2 C
H 2 C
H 2 C H 2 C
C H 2 H 2 C
H 2 C C H 2 H 2 C C H 2 H 2 C C H 2
H H 3 C S C i H 2 C H 3 H H 3 C S C i H 3 C H 3 H H 3 C S C i H 2 C H 3 H H 3 C S C i H 2 C H 3 H H 3 C S C i H 2 C H 3 H H 3 C S C i H 3 C H 3 O S O iO O S O iO O S O iO O S O iO O S O iO O S O iO O S O iO O S O iO O S O iO O S i O O O S O iO H O S O iO
离子交换柱(钙基/Ca)
用于单糖、双糖及糖醇等低分子量的糖、及乙醇等的分析。 主要用于药厂维生素C的原料分析(sorbitol/mannitol-山梨 醇/甘露醇),酒厂(葡萄酒、啤酒等)的糖及乙醇含量的分析。
柱温~90℃,要求有柱温箱。对流动相(水)的要求较高,要求 用户另置超纯水系统。
T = 1.58 峰面积回收率
97.8 % 95.3 % 92.3 %
Waters 21,379
超越极限:全新Xterra色谱柱
集硅胶与聚合物基质填料的优点为一体,突破常规 高效色谱柱的极限 高效、高速分离
不仅能够使用极小粒径的填料以进行高分辨及快 速分析,而且允许在高温下进行分离

高效液相色谱柱基础知识

高效液相色谱柱基础知识
烷化技术键合上各种配基,制成正相、反相、离 子交换、分子排阻色谱用填料。 适用于广泛的极性和非极性溶剂。 缺点是在碱性水溶性流动相中不稳定,易溶解。
色谱柱的种类
➢ 高分子聚合物 • 常用的是以高交联度的苯乙烯-二乙烯苯或聚甲基丙
烯酸酯为基质的球形填料。 • 压力限度比无机填料低; • 在整个pH范围内稳定,可以用NaOH或强碱来清洗
分离有机酸、碱、盐这些离子型化合物。 ➢ 样品容量随烷基链长增加而增大,且长链烷基可
使溶质的保留值增大,并常常可改善分离的选择 性;短链烷基键合相具有较高的覆盖度,分离极 性化合物时可得到对称性较好的色谱峰。苯基键 合相与短链烷基键合相的性质相似。
反相键合相色谱
流动相为极性的水或缓冲液,常加入甲醇、 乙腈、异丙醇、丙酮、四氢呋喃等与水互溶 的有机溶剂以调节保留时间。
ZORBAX Extend-C18,pH9~12, ➢ 基质的颗粒度 颗粒度越小:柱效越高(传质好,涡流扩散小),分离度越好,柱压
越高(渗透性差),常用5μ。 ➢ 基质的颗粒分布 颗粒分布越宽:柱效低(渗透性差) ➢ 基质的颗粒形状 球型:柱效高、重现性好、柱床结构均匀 无定型(不规则形状):柱床结构不均匀,流动相线性速度不均匀,
色谱柱 ; • 聚合物基质在流动相发生变化时会出现膨胀或收缩,
对于小分子化合物柱效低; • 主要用于大分子化合物,常制成凝胶柱或离子交换
柱。
化学键合相色谱柱
➢ 定义:将有机官能团通过化学反应共价键合到硅胶 表面的游离羟基上而形成的固定相称为化学键合相。
➢ 种类 非极性键合相(反相):键合相表面基团为非极性
高效液相色谱柱基础知识
张润平
色谱柱的构造
✓ 色谱柱由柱管、填料压帽、卡套(密封环)、筛板(滤片)、 于70 kg/cm2 时,也可采用 厚壁玻璃或石英管。为提高柱效,减小管壁效应,管内壁要求 有很高的光洁度,不锈钢柱内壁多经过抛光。

液相色谱柱基础知识

液相色谱柱基础知识

球形(Spherical)
– 目前流行的分析填料 – 更好的性能,重现性
©2004 Waters Corporation
对色谱柱填料的了解(二)
键合相化学 –影响化合物的分离度:α –不同键合相对不同种类的化合物分离不同 –可能导致色谱的分离机理不同 –如:C18、C8、CN
©2004 Waters Corporation
©2004 Waters Corporation
对色谱柱填料的了解(六)
硅胶的活性 –主要影响碱性化合物的保留行为:k' –生产硅胶时处理温度不同,硅胶活性也不同 –是选择性差异的主要来源 硅胶的杂质含量 –重金属含量低,硅羟基活性小,拖尾减小 –是色谱柱质量好坏的重要标志
©2004 Waters Corporation
– 不锈钢(普通/可换柱芯) – 玻璃 – 聚合物(径向加压)、PEEK
©2004 Waters Corporation
色谱柱的规格
内径
– 检测的灵敏度 – 样品的容量
长度
– 分离度,理论塔板数 – 速度 – 样品的容量 – 检测的灵敏度
©2004 Waters Corporation
Waters色谱柱的内径
填料的热稳定性 –普通硅胶填料
柱温:≤60℃
–聚合物填料(高温GPC)
柱温:≤150℃
–杂化硅胶填料(XTerra)
柱温:≤90℃
©2004 Waters Corporation
色谱填料的热稳定性
温度
pH
©2004 Waters Corporation
填料基质物理性质的影响
填料基质的物理性质对色谱柱的影响
液相色谱填料的合成(2)

液相色谱基础知识

液相色谱基础知识

紫外可见检测器
紫外可见检测器
原理:基于被分析组分对特定波长紫外光的选择性吸收 定量基础:Lambert-Beer定律,A=KCL 优点:1)对温度和流速变化不敏感
2)可用于梯度分析 缺点:仅适用于测定有紫外吸收的物质
紫外可见检测器
光栅
l
样品池
Ein
Eout
光电管
D2 / W 灯
Ein
Ein
参比池
返回
流动相注意点
离子对试剂的使用 具有缓冲盐流动相的使用 分析结束及开
始 流动相平衡 加快平衡时间 异丙醇的使用
LC检测器
紫外可见检测器(UV/VIS) 二极管阵列检测器(PDA) 示差检测器(RID) 电导检测器(CDD) 荧光检测器(RF) 电化学检测器(L-ECD) 质谱检测器(MS) 蒸发光散射检测器(ELSD)
返回
流路中形成气泡引起的问题
改变保留时间和峰面积
流动相中形成气泡对液流的不良影响 泵中形成气泡使液流波动
峰变形
柱中气泡形成和累积使流动相绕流
尖峰或锯齿状噪声
检测池中气泡形成和累积产生基线噪声
输液泵
输液泵类型: 注射泵 柱塞往复泵 隔膜泵
输液泵控制方式:
恒流控制 恒压控制
柱塞往复泵
马达和凸轮
液相色谱基础知识
一、色谱起源
石油醚
色素
碳酸钙颗粒
色谱
组分
HPLC的分离类型
正相色谱 (NP-HPLC) 反相色谱 (RP-HPLC) 反相离子对色谱 (RPIC) 离子交换色谱 (IEC) 空间排阻色谱 (SEC) 手性化合物分离模式(Chiral separation
mode)

高效液相色谱法(HPLC)的概述

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC主要内容包括:1.高效液相色谱法(HPLC)的概述2. 高效液相色谱基础知识介绍(1——13楼)3. 高压液相色谱HPLC发展概况、特点与分类4. 液相色谱的适用性5.应用高效液相色谱法(HPLC)的概述以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。

其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。

由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用X围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有50种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。

高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。

目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。

将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。

C18(ODS)为最常使用的化学键合相。

根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。

在中药制剂分析中,大多采用反相键合相色谱法。

系统组成:(一)高压输液系统由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。

1.贮液罐由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。

贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。

高效液相色谱法培训PPT课件

高效液相色谱法培训PPT课件

注意事项与常见问题解答
样品处理注意事项
01
避免样品污染、损失或变质,确保处理过程的准确性和可重复
性。
常见问题及解决方法
02
针对样品处理过程中可能出现的问题,如回收率低、干扰物质
多等,提供相应的解决方法。
安全与防护
03
注意有毒有害试剂的使用安全,做好个人防护和环境保护工作。
04 方法开发与优化策略
梯度洗脱程序设计思路
初始比例确定
根据待测组分的极性差异,选 择合适的初始流动相比例。
梯度斜率设置
根据组分的分离情况,调整梯 度斜率,使各组分在合适的保 留时间内洗脱出来。
梯度时间设置
确保梯度洗脱过程中,各组分 能够充分分离,同时避免过长 的分析时间。
梯度曲线类型
根据实际需求选择合适的梯度 曲线类型,如线性梯度、凹形
梯度或凸形梯度等。
方法验证内容及标准
精密度
准确度
通过添加回收率试验,验证方法 的准确度,确保测定结果可靠。
考察方法的重复性和中间精密度, 确保测定结果的稳定性。
线性范围
确定方法的线性范围,确保待测 组分浓度在该范围内时,测定结 果准确可靠。
专属性
考察方法对待测组分的选择性, 确保其他共存物质不干扰测定。
长期稳定性
考察样品在规定的储存条件下放置一定时间后的稳定性,以确定 样品的保质期和储存条件。
方法学考察
对分析方法本身进行稳定性考察,包括方法的耐用性、重复性和 中间精密度等指标的评估。
质量控制图绘制和应用
质量控制图绘制
根据长期稳定性考察数据,绘制质量控 制图,包括平均值、标准差和控制限等 指标。
VS
发展历程及应用领域
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反相键合相色谱
流动相为极性的水或缓冲液,常加入甲醇、 乙腈、异丙醇、丙酮、四氢呋喃等与水互溶 的有机溶剂以调节保留时间。 极性大的保留时间小,先洗脱。 分离机制:疏溶剂理论
正相键合相色谱
适用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类 及氨基酸类等)。 氰基键合相对双键异构体或含双键数不等的环状化合物的分离有较 好的选择性。氰基键合相分离选择性与硅胶相似,极性小于硅胶, 在相同条件下,同一组分的保留时间小于硅胶。
色谱柱的种类
按分离机制分类 吸附型色谱柱 化学键合相色谱柱(分配型) 正相键合相色谱柱 反相键合相色谱柱 离子交换色谱柱 凝胶色谱柱 亲合色谱柱 手性色谱柱
色谱柱的种类
按填料基质分类 硅胶 是HPLC填料中最普遍的基质。 具有高强度,不会在溶剂中收缩或膨胀。 能提供一个含有游离硅羟基的表面,可以通过硅 烷化技术键合上各种配基,制成正相、反相、离 子交换、分子排阻色谱用填料。 适用于广泛的极性和非极性溶剂。 缺点是在碱性水溶性流动相中不稳定,易溶解。
正相色谱法与反相色谱法比较表
正相色谱法 固定相极性
流动相极性 组分洗脱次序
反相色谱法 中~低
中~高 极性大先洗出
高~中
低~中 极性小先洗出
化学键合相色谱柱的性质
基质的平均孔径/孔 体积
平均孔径与被测物分子量的关系
化学键合相色谱柱的性质
含碳量 含碳量越高,保留时间越长 高含碳量 –有利于不易保留的化合物的分离 –水解稳定性好,重现性好 –有利于极性化合物的拖尾改善 低含碳量 –有利于分析中性及碱性化合物 –降低溶剂损耗
化学键合相色谱柱的性质
硅胶的活性 —主要影响碱性化合物的保留行为,活性高,保留时间长 —生产硅胶时处理温度不同,硅胶活性也不同 —是选择性差异的主要来源 硅胶的杂质含量 —重金属含量低,硅羟基活性小,拖尾减小 —是色谱柱质量好坏的重要标志 端基封口 —未封口会使碱性化合物拖尾
备注:流动相中加入有机胺可以减弱碱性溶质与残余硅醇基的强相互作 用,减轻或消除峰拖尾现象。所以有机胺(如三乙胺)又称为减尾剂。
色谱柱的种类
高分子聚合物 • 常用的是以高交联度的苯乙烯-二乙烯苯或聚甲基丙 烯酸酯为基质的球形填料。 • 压力限度比无机填料低; • 在整个pH范围内稳定,可以用NaOH或强碱来清洗 色谱柱 ; • 聚合物基质在流动相发生变化时会出现膨胀或收缩, 对于小分子化合物柱效低; • 主要用于大分子化合物,常制成凝胶柱或离子交换 柱。
色谱柱的种类
按用途分类 分析型 常规分析柱,内径2~5mm(常用4.6mm,国内有4mm和 5mm),柱长10~30cm,粒径3.5或5μm,; 窄径柱(又称半微柱semi-microcolumn),内径1~2mm, 柱长10~20cm; 毛细管柱(又称微柱microcolumn),内径0.2~0.5mm; 制备型 半制备柱,内径>5mm; 实验室制备柱,内径20~40mm,柱长10~30cm; 生产制备柱,内径可达几十厘米。
化学键合相色谱柱
定义:将有机官能团通过化学反应共价键合到硅胶 表面的游离羟基上而形成的固定相称为化学键合相。 种类 非极性键合相(反相):键合相表面基团为非极性 羟基,如C18、C8、C3、乙基、甲基与苯基。 中等极性键合相:常见的为醚基和二羟基键合相, 既可做正相又可做反相色谱的固定相,视流动相极 性而定。 极性键合相(正相):常用的为氨基、氰基、二醇 基键合相。
化学键合相色谱柱的性质
键合相的性质 -键合相的极性:非极性、中等极性、极性 -键合相的烷基链长 • 非极性键合相的烷基链长对样品容量、溶质的保留值和分离 选择性都有影响, • 样品容量随烷基链长增加而增大,且长链烷基可使溶质的保 留值增大,并常常可改善分离的选择性; • 短链烷基键合相具有较高的覆盖度,分离极性化合物时可得 到对称性较好的色谱峰。 • 苯基键合相与短链烷基键合相的性质相似。 • 长的烷基链保护了硅胶基质,C18柱稳定性较高; • C18基团空间体积较大,使有效孔径变小,分离大分子化合 物时柱效较低。
化学键合相色谱柱的性质
键合相的性质 -内嵌极性基团键合相(SymmetryShield™ RP、BonusRP)
•降低碱性物质的保留
•减少了拖尾 •改善与水的浸润性 •无疏水塌陷,使用高比 例水流动相时性能稳定
屏蔽了带电的硅羟基
反相键合相色谱
适用于分离非极性至中等极性的分子型化合物。 派生的反相离子对色谱以及离子抑制色谱,可以 分离有机酸、碱、盐这些离子型化合物。 样品容量随烷基链长增加而增大,且长链烷基可 使溶质的保留值增大,并常常可改善分离的选择 性;短链烷基键合相具有较高的覆盖度,分离极 性化合物时可得到对称性较好的色谱峰。苯基键 合相与短链烷基键合相的性质相似。
化学键合相色谱柱的合成
端基封口:为尽量减少残余硅醇基,一般在键合 反应后,要用三甲基氯硅烷(TMCS)等进行钝化 处理,称端基封口,以提高键合相的稳定性,改 善脱尾。 键合相的键合量常用含碳量(C%)或覆盖度来表 示。覆盖度:指参与反应的硅羟基数目占硅胶表 面硅羟基总数的比例。 除硅-碳杂化硅胶外,一般硅胶基质的pH适用 范围为pH2~8,低pH引起键合相水解脱落,高 pH引起硅胶溶解。
高效液相色谱柱基础知识
张润平
色谱柱的构造
色谱柱由柱管、填料压帽、卡套(密封环)、筛板(滤片)、 接头、螺丝等组成。 柱管多用不锈钢制成,压力不高于70 kg/cm2 时,也可采用 厚壁玻璃或石英管。为提高柱效,减小管壁效应,管内壁要求 有很高的光洁度,不锈钢柱内壁多经过抛光。 色谱柱两端的柱接头内装有筛板,是烧结不锈钢或钛合金,孔 径0.2~料 漏出。

氨基键合相具有较强的氢键结合能力,对某些多官能团化合物如甾 体、强心甙等有较好的分离能力;氨基键合相上的氨基能与糖类分 子中的羟基产生选择性相互作用,故被广泛用于糖类的分析,但它 不能用于分离羰基化合物,如甾酮、还原糖等,因为它们之间会发 生反应生成Schiff 碱。
二醇基键合相适用于分离有机酸、甾体和蛋白质。
化学键合相色谱柱的合成
化学键合相色谱柱的合成
化学键合相一般采用微粒多孔硅胶为基体,用烷 烃二甲基氯硅烷或烷烃氯硅烷与硅胶表面的游离 硅羟基反应,形成Si-O-Si-C键形的单分子膜而 制得。 由于空间位阻效应和其它因素的影响,使得大约 有40~50%的硅醇基未反应。残留硅羟基可以 减小非极性键合相表面的疏水性,对极性溶质 (特别是碱性化合物)产生次级化学吸附,从而 使保留机制复杂化,使碱性组分的峰形拖尾。
化学键合相色谱柱的性质


基质的性质 普通硅胶填料:pH2~8,柱温≤60℃ 聚合物填料:pH2~12,柱温≤150℃ 杂化硅胶填料(XTerra,XBridge):pH2~12,柱温≤90℃ Agilent柱:Ecilpse或StableBond ,pH1~3 ZORBAX Extend-C18,pH9~12, 基质的颗粒度 颗粒度越小:柱效越高(传质好,涡流扩散小),分离度越好,柱压 越高(渗透性差),常用5μ。 基质的颗粒分布 颗粒分布越宽:柱效低(渗透性差) 基质的颗粒形状 球型:柱效高、重现性好、柱床结构均匀 无定型(不规则形状):柱床结构不均匀,流动相线性速度不均匀, 谱带扩展。

正相键合相色谱
流动相为相对非极性的疏水性溶剂(烷烃类 如正已烷、环已烷),常加入乙醇、异丙醇、 四氢呋喃、三氯甲烷等以调节组分的保留时 间。 在正相色谱中,溶剂的洗脱强度随极性的增 强而增加; 极性小的样品保留时间小,先洗脱。 分离机制:范德华作用力,主要是氢键作用 力。
化学键合相色谱
相关文档
最新文档