PUSHOVER分析方法全攻略
midas关于Pushover分析总结
M i das进行P ushover分析的总结 1.1版-----完全是个人体会,有所错误在所难免一.不得不说的基本概念1.P ushover是什么和前提条件P ushover也叫推倒分析,是一种静力弹塑性分析方法,或者叫非线性静力分析方法,在特定前提下,可以近似分析结构在地震作用下的性能变化情况。
给桥梁用某种方式,比如墩顶集中力方式,施加单调增加的荷载,相应的荷载位移关系就会呈现明显的非线性特征。
这里可以认为IO是处在正常使用状态,LS为承载能力极限状态,CP是完全倒塌破坏。
从IO开始结构开始进入弹塑性状态,在LS前结构的损伤尚可修复,且结构整体是安全的,而越过LS 损伤就难以修复了,但是CP前还不至于倒塌。
设计中对于不同构件或部位,在特定地震作用下,其性能要求是不一样的。
而特定的前提很明确,就是在整个地震反应时程中,结构反应由单一振型控制,在《公路桥梁抗震细则》(以下简称《细则》)中,认为常规桥梁中的规则桥梁都满足这一条件(条文说明 6.3.4),因此E1地震可以采用简化反应谱方法,也可用一般的多振型反应谱方法,E2则用Pus hover。
2.P ushover的分析目的在E2地震作用下,《细则》要求:可见,对于规则桥梁,只需要检算墩顶位移就可以了。
对于单柱墩,容许位移可按7.4.7条推荐的公式进行计算,而双柱墩按7.4.8条要求进行Pus hover分析根据塑性铰的最大容许转角(7.4.3)得到。
而无论是7.4.3还是7.4.7都要用到Φy和Φu,对于圆形或者矩形截面可按附录B计算,而特殊的截面,可按7.4.4和7.4.5的要求计算。
计算方法可以自己编程实现,也可用现成的软件如R es ponse2000等来作为工具。
而对于在特定的E2地震作用下,墩顶的位移,都需要用P ushover的能力谱法得到。
所以Pus hover的目的一个是画出荷载位移曲线后,找到塑性铰达到最大容许转角时的曲线点,计算出墩顶容许位移,第2个目的是应用能力谱法,找到性能点,得到E2地震作用下,墩顶的位移。
PUSHOVER分析
提要:本文首先介绍采用Midas/Gen进行Pushover分析的主要方法及使用心得,然后结合工程实例进行具体说明,其结果反映出此类结构在大震下表现的一些特点,可供类似设计参考。
关键词:Pushover 剪力墙结构超限高层 Midas/Gen静力弹塑性分析(Pushover)方法是对结构在罕遇地震作用下进行弹塑性变形分析的一种简化方法,本质上是一种静力分析方法。
具体地说,就是在结构计算模型上施加按某种规则分布的水平侧向力,单调加荷载并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到结构达到预定的状态(成为机构、位移超限或达到目标位移),得到结构能力曲线,并判断是否出现性能点,从而判断是否达到相应的抗震性能目标[1]。
Pushover方法可分为两个部分,第一步建立结构能力谱曲线,第二步评估结构的抗震性能。
对剪力墙结构体系的超限高层而言,选取Pushover计算程序的关键是程序对墙单元的设定。
SAP2000、ETABS软件没有提供剪力墙塑性铰,对框-剪结构可将剪力墙人工转换为模拟支撑框架进行分析;对剪力墙结构来说,进行转换不可行。
而Midas/Gen程序提供了剪力墙Pushover单元(类似薄壁柱单元,详见用户手册),对剪力墙能够设置轴力-弯矩铰以及剪切铰。
下面将详细介绍如何在Midas/Gen中进行Pushover分析的步骤(以Midas/Gen 6.9.1为例):一 Pushover分析步骤1. 结构建模并完成静力分析和构件设计直接在Midas/Gen中建模比较繁琐,可以用接口转换程序从SATWE(或其他程序如SAP2000)中导入。
SATWE转换程序由Midas/Gen提供,会根据PKPM的升级而更新。
转换仅需要SATWE中的Stru.sat 和Load.sat文件。
转换时需要注意的是,用转换程序导入SATWE的模型文件后,形成的是Midas/Gen的Stru.mgt文件,是模型的文本文件形式,需要在Midas/Gen中导入此文件,导入后还应该注意以下几个问题:1) 风荷载及反应谱荷载没有导进来,需要在Midas/Gen中重新定义;2) 需要定义自重、质量;3) 需要定义层信息,以及墙编号;此外,还应注意比较SATWE的质量与Midas/Gen的质量,并比较两者计算的周期结果实否一致。
Pushover的侧向荷载及分析工况
Pushover 的侧向荷载及分析工况一般需要多个分析工况。
一个典型的Pushover 工况可能由3个以上工况构成:第一个将施加重力荷载给结构,第二个和第三个可施加不同的侧向荷载。
Pushover 分析是非线性的,所以将分析结果和其他线性和非线性分析叠加是不合理的。
侧向荷载的分布方式,即应反映出地震作用下各结构层惯性力的分布特征,又应使所求得位移,能大体真实地反映地震作用下结构的位移状况。
事实上,由于任何一种荷载分布方式都不可能反映结构全部的变形及受力要求,因为不论用何种分布方式,都将使得和该加载方式相似的振型作用得到加强,而其他振型的作用则被削弱。
而且,在强地震作用下,结构进入弹塑性状态,结构的自振周期和惯性力大小及分布方式也因之变化,楼层惯性力的分布不可能用一种分布方式来反映。
因此,最少用两种以上的荷载分布方式进行Pushover 分析。
结构目标位移的确定和水平荷载模式的选择,将直接影响对结构抗震性能的评估结果。
Pushover 分析尚存的某些缺陷也主要反映在这两个方面。
其中,后者又直接决定了结构塑性铰开展过程。
FEMA - 273 推荐三种形式水平荷载加载模式:为表述方便,首先定义第i 层的水平加载系数为i 层的水平荷载增量与加载底部总剪力增量的比值。
1) 均匀分布:各楼层侧向力可取所在楼层质量;结构各层水平荷载与该层重力荷载代表值成正比,结构在第i 层的水平加载系数i δ为:1/Ni i i i G G δ==∑其中,i G 为结构第i 层的重力荷载代表值;N 为结构总层数。
2) 倒三角形分布:结构振动以基本振型为主时的惯性力的分布形式,类似于我国规范中用底部剪力法确定的侧向力分布;1/Ni i i i i i G H G H δ==∑其中,i H 为结构第i 层距地面的高度。
3) SRSS 分布:反应谱振型组合得到的惯性力分布。
这种加载模式更接近于真实的水平地震荷载分布情况,结构在第i 层的水平加载系数i δ为:i V =1i i i F V V +=− 1/i i F V δ=其中,j α为j 周期对应的地震影响系数;mj X 为j 振型m 层的水平相对位移;j γ为j振型参与系数;n 为考虑的振型个数;i V 和i F 分别为i 层的地震剪力和地震作用。
建筑弹塑性分析PUSHOVER
2.需求谱法
结构抗震性能需求谱是在给定地震作用下, 不同周期结构的承载力和位移响应的需求 值。
先将能力曲线转化为A-D格式,能力谱曲线
将不同的周期结构的加速度响应需求Sa和位
移响应需求Sd也在A-D坐标系下给出,由此得
到的Sa-Sd关系曲线即为需求谱。对于弹性结
构,弹性谱加速度需求Sa可以采用地震弹性
其中 Dntqnt/,n D表n 示t 一个对应原结构
第n阶振型的单自由度体系在地震作用 下u g ( t ) 的位移响应,圆频率和阻尼比分别为 和 n 。
从而可n 求得结构第n阶振型的位移,内力,层
间位移等。
对前N阶振型都采用上述方法求算其最大响应 量,并采用某种方法进行组合(SASS法或 CQC法)—振型分解反应谱法。
Fass
T
ass
fs(D,signD)
aTssm ;对于地震响应由结构振型
向 量量成正控a s 比s制a s的s的荷弹载塑进性行结推构覆,,仍即采:用振型sa向ss mass
得到
Fass
Vb Mass
uroof
,DБайду номын сангаасass
roof ass
u u V
V
b
基底剪力, r o o顶f 点位移。 — r o 的o f 关系曲线称为
b
“结构的能力曲线”。或“推覆曲线”
为便于评价结构抗震性能是否达到要求,还
可以按照单阶振型反应谱法将推覆曲线上
各店的承载力和位移转化为谱加速度与谱 位移的关系曲线,得到结构的能力谱曲线,
即 S a S格d 式能力谱曲线。
Sa
Vb M
,
Sd
uroof
roof
MIDASGen 中做Pushover 分析的步骤
问: 在MIDAS/Gen中做Pushover分析的步骤?
答: Pushover Analysis 中文又称为静力弹塑性分析或推倒分析。
在MIDAS/Gen中混凝土结构和钢结构的静力弹塑性分析的步骤不尽相同。
混凝土结构的静力弹塑性分析步骤为分析->设计->静力弹塑性分析。
钢结构的静力弹塑性分析步骤为分析分析->静力弹塑性分析。
即混凝土结构必须经过配筋设计之后才能够做静力弹塑性分析,因为塑性铰的特性与配筋有关。
设计结束后,静力弹塑性分析的步骤如下:
1. 在静力弹塑性分析控制对话框中输入迭代计算的控制数据。
2. 定义静力弹塑性分析的荷载工况。
在此对话框中可选择初始荷载、位移控制量、是否考虑重力二阶效应和大位移、荷载的分布形式(推荐使用模态形式)。
3.定义铰类型(提供标准类型,用户也可以自定义)
4.分配塑性铰。
用户可以全选以后,按"适用"键。
5. 运行静力弹塑性分析。
6. 查看分析曲线。
PUSHOVER分析方法全攻略
PUSHOVER分析方法全攻略作为一种常用的风险评估方法,PUSHOVER分析(Pushover Analysis)是一种基于位移的结构性能评估方法,可用于评估结构在地震等外部力作用下的破坏性能。
PUSHOVER分析的基本原理是通过对结构进行逐步加载,计算结构的位移响应,并在每个加载级别上评估结构的非弹性变形。
其中,位移响应与荷载之间的关系被表示为荷载位移曲线(Load-displacement Curve),曲线上的各点对应于结构在不同荷载水平上的位移响应。
为了进行PUSHOVER分析,以下是一些主要步骤和技术,供参考:1.结构模型准备首先,需要准备一个精确的结构模型,包括准确的几何形状、结构材料性质以及荷载。
模型可以通过各种建模软件进行创建,如ETABS、SAP2000等。
2.定义截面性能曲线对于每个结构构件,需要定义其截面的性能曲线。
这些曲线一般采用双切模型(Bi-linear Model)或多切模型(Multi-linear Model)来表示构件的力-位移响应。
3.建立非线性弹簧模型根据结构的截面性能曲线,需要建立每个构件的非线性弹簧模型。
这些弹簧模型可以通过弹簧刚度系数和屈服强度等参数来表示。
4.定义加载方式定义结构的加载方式,包括单项或多项加载。
在推进分析中,通常采用单项加载,即逐步增加水平荷载。
5.设定分析参数根据需要,设定分析的参数,包括推进步长、最大推进步数以及各构件的水平刚度。
6.进行PUSHOVER分析根据设定的加载方式和分析参数,进行PUSHOVER分析。
在每个加载步骤中,计算结构的位移响应,并绘制荷载位移曲线。
7.评估结构性能根据荷载位移曲线,评估结构的性能,包括塑性铰的形成、破坏模式以及结构的侧向刚度退化等。
8.修正分析结果在分析过程中,根据实际情况对模型进行修正。
例如,在形成塑性铰后,可以调整结构的刚度或强度参数。
9.分析结果报告最后,将分析结果整理成报告,包括结构的性能评估、塑性铰的位置和破坏模式等信息。
PUSHOVER分析方法全攻略
4、操作流程详解-分析与结果查看
第37页/共50页
结果图形——层-剪力曲线
4、操作流程详解-分析与结果查看
第38页/共50页
最大弹塑性层间位移角,判断是否满足《建筑抗震设计规范条或高规条要求
结果图形——层-层间位移角曲线
4、操作流程详解-分析与结果查看
第39页/共50页
4、操作流程详解-分析与结果查看
各步骤铰状态图形结果
第40页/共50页
各步骤铰状态结果
4、操作流程详解-分析与结果查看
第41页/共50页
ATC-40将房屋遭受地震后,可能出现的状态主要分为:IO(ImmediateOccupancy) -立即居住DC(DamageControl) -损坏控制LS(LifeSafety) -生命安全SS(StructuralStability)-结构稳定 ATC-40给出了梁、柱、墙等构件在上述几种相应状态下的塑性限值,无论何种类型铰,都可以用图表示,纵轴表示轴力、弯矩、剪力等,横轴表示轴向变形、曲率、转角等,其中B、IO、LS、CP(CollapsePrevention)、C为性能点,其中B点出现塑性铰,C点为倒塌点,CP为预防倒塌点,各性能点所对应的横坐标为相应的弹塑性位移限值。
4、操作流程详解-定义推覆工况
加载方式
第21页/共50页
4、操作流程详解-定义推覆工况
第22页/共50页
最大位移一般为 总高度×弹塑性层间位移角限值,参见《建筑抗震设计规范 条
选择基本模态作为Pushover荷载的分布模式 。X向推覆,取x向平动的模态号,y向推覆,取y向平动的模态号。
4、操作流程详解-定义推覆工况
第18页/共50页
荷载增量很难获得稳定解
Pushover分析(弹塑性分析)
Pushover曲线 能力谱加速度Sa 基底剪力Vb
能力谱曲线
V Sa G1
(Sdt,sat)
Sd
top
1 X top ,1
顶点位移Dt
能力谱位移Sd
有效质量比
1
[ (Gi X i1 ) / g ]2
i 1
n
Sd T 2 Sa G
Gi 为结构第i楼层重量
[ Gi / g ][ (Gi X i2 1) / g]
Push-over的基本问题可以概括为三个方面:
如何求得结构的能力曲线? 如何确定结构的目标位移? 如何对计算结果进行评价?
结构能力曲线的计算包括两个方面的主要内容 一 计算模型的建立 二 侧向力的分布形式
结构计算模型—纤维模型
基于平截面假定,将梁柱的内力-变形关系转化成混凝土与钢 筋的单轴应力-应变关系。
为阻尼修正系数,取0.3~1.0
ED为阻尼所消耗的能量(图中虚线部分平行四边形的面积) EE为最大应变能(图中斜线阴影部分的三角形的面积)
Sa A1 A2 T 能力谱曲线 Sa api ay T 能力谱曲线 P EE
P
dy Sd ED
dpi
Sd
用双线型代替能力谱曲线的条件:A1=A2
Teq
T 1
T 2 Sdp Sd ( ) Sa R R 2
R表示由于结构的非弹性变 形对弹性地震力的折减系数
R ( 1) T 1 T T0 T0
R T T0
T0 0.65 0.3Tg Tg
采用Push-over方法对 抗震性能进行评估
最简单的方法是直接得到目标位移点(性能点)与结构的能力曲线。 得到性能点后,经过转化可以得到能力曲线上相应的点,能力曲线上的每 一个点都对应着结构的一个变形状态。根据性能点对应的变形,可以对结 构进行以下方面的评价:顶点侧移和层间位移角是否满足抗震规范规定的 位移限值;构件的局部变形(指梁、柱等构件的塑性铰变形),检验他是 否超过建筑某一性能水平下的允许变形;结构构件的塑性铰分布是否构成 倒塌机构。
SAP2000之Pushover分析
Pushover分析:基本概念静力非线性分析方法(Nonlinear Static Procedure),也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种方法。
静力非线性分析是结构分析模型在一个沿结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构模型控制点达到目标位移或结构倾覆为止。
控制点一般指建筑物顶层的形心位置;目标位移为建筑物在设计地震力作用下的最大变形。
Pushover方法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。
从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。
正因为如此,随着90年代以后基于位移的抗震设计(Diaplacement-Based Seismic Design,DBSD)和基于性能(功能)的抗震设计(Performance-Based Seismic Design. PBSD)等概念的提出和广为接受,使这种方法作为实现DBSD和PBSD的重要工具,得到了重视和发展。
这种方法本身主要包含两方面的内容:计算结构的能力曲线(静力弹塑性分析)、计算结构的目标位移及结果的评价。
第一方面内容的中心问题是静力弹塑性分析中采用的结构模型和加载方式;第二方面内容的中心问题则是如何确定结构在预定地震水平下的反应,目前可分为以ATC-40为代表的CSM和以FEMA356为代表的NSP (Nonlinear Static Procedure,非线性静力方法),CSM的表现形式是对弹性反应谱进行修正,而NSP则直接利用各种系数对弹性反应谱的计算位移值进行调整。
两者在理论上是一致的。
在一些文献中将第一方面的内容称为Pushover,不包括计算目标位移和结果评价的内容。
PUSHOVER方法总结
PUSHOVER方法1.介绍PushOVER计算是属于非线性静力计算,可以考虑多种非线性:材料非线性(在连接/支座单元内的多种类型的非线性属性;框架单元内的拉和/或压极限;框架单元内的塑性铰);几何非线性(P-delta 效应;大位移效应);阶段施工(结构改变;龄期、徐变、收缩)。
所有在模型中定义的材料非线性将在非线性静力分析工况中考虑。
用户可选择考虑几何非线性的类型: 无 P-delta 效应 大位移效应。
阶段施工可作为一个选项。
即使独立的阶段是线性的,结构从一个阶段到下一阶段被考虑为非线性。
2 加载用户可施加任意荷载工况组合、加速度荷载和模态荷载。
其中模态荷载是用于pushover分析的特定类型的荷载。
它是在节点的力的模式,与特定振型形状、圆频率平方(ω2)、分配至节点质量的乘积成正比。
指定的荷载组合同时施加。
一般地,荷载从零增加至完全指定的量。
对于特殊目的(如pushover 或snap-though 屈曲),用户可选择使用监控结构所产生的位移来控制加载。
当用户知道所施加的荷载量,且期望结构能够承担此荷载时,选择荷载控制。
例如,施加重力荷载。
在荷载控制下,所有荷载从零增加至完全指定的量。
当用户知道所期望的结构位移,但不知道施加多少荷载时,选择位移控制。
这对于在分析过程中可能失去承载力而失稳的结构,是十分有用的。
标准的应用包括静力pushover 或snap-though 屈曲分析。
用户必须选择一个位移分量来监控,可以是节点的单个自由度,或一个用户以前定义的广义位移。
用户必须指定分析中的目标位移。
程序将试图施加达到此位移的荷载。
荷载量在分析中可被增加或减少。
确认选择一个在加载过程中单调增加的位移分量。
若这不可能,则用户必须将分析分割至两个或更多的顺序工况,在不同的工况中改变所监控的位移。
注意使用位移控制和在结构施加位移荷载是不同的!位移控制只用来计量从所施加荷载产生的位移,来调整荷载量,以试图达到某种计量的位移值。
midas高层建筑的PUSHOVER分析
9:主菜单选择 设计>一般设计参数>地震作用放大系数:
考虑时由设计者直接输入放大系数。
10:主菜单选择 设计>一般设计参数>编辑构件类型:
定义框架梁、框架柱、墙。
选项:添加/替换 构件类型:梁 梁:框架梁
在模型窗口利用过滤器
2.主菜单选择 设计>静力弹塑性分析>PUSHOVER 荷载工况:添加
静力弹塑性分析的荷载工况:push-y 控制选项:一般控制 最大平移:0.2m 勾选 使用初始荷载 荷载分布形式:模态 振型:1 放大系数:1
按
即可
图 12 静力弹塑性分析荷载工况
3.主菜单选择 设计>静力弹塑性分析>PUSHOVER 荷载工况:
高层建筑的pushover分析14图21塑性铰产生的状态y方向图22塑性铰产生的状态x方向高层建筑的pushover分析15pushover计算书1结构分析计算11结构分析采用程序结构分析采用midasgengeneralstructuredesignandanalysissystem该软件由世界最大的钢铁集团韩国的浦项制铁posco集团开发是将通用的有限元分析内核与土木结构的专业性要求有机地结合的通用建筑结构有限元分析与设计软件
1、结构分析计算 ·········································································································15 2、计算结果·················································································································17 3、计算结果的工程判断······························································································21
pushover性能点A和B方法能力谱等原理
pushover性能点A和B方法能力谱等原理桂满树下面针对Pushover分析和动力弹塑性分析中的输出结果解答三个问题:1.Pushover分析中计算性能点的A方法和B方法关于这两个方法过去我给大家发过email,这次的结构大师的非线性分析手册中也有介绍。
下面做一下进一步解释。
-A方法是通过有效阻尼计算性能点的(见手册124页)。
手册中对A方法介绍还算详细比较容易理解,这里不再说明。
-B方法是通过有效周期计算性能点的(见手册125页)。
对B方法的介绍需要一定的理解能力,下面进一步说明一下。
(1)假设一个延性比(D/Dy),并利用该延性比计算有效周期(公式见手册)。
(2)计算该延性比对应的有效阻尼(因为Dy已知,通过假设的延性比可以得到D,在能力谱上找到D点按照手册的方法就能计算有效阻尼)(3)利用该有效阻尼获得弹塑性需求谱(4)求有效周期线和弹塑性需求谱的交点。
在需求谱坐标系上有效周期是一条通过原点的斜线。
(5)再假设一个延性比(稍微加大延性比),重复前面(2)~(4)步骤。
(6)连接一连串的交点的线与能力谱的交点就是性能点。
-B方法较容易得到性能点的原点是程序内部事先已经设定好了不同有效阻尼对应的弹塑性需求谱。
2.能力曲线和能力谱的差别-能力曲线是结构分析得到的荷载-位移曲线-能力谱是通过荷载-位移曲线获得的单自由度体系(一般为第一振型)的加速度-位移关系曲线-怎么通过结构的能力曲线获得单自由度体系的能力谱呢?就是通过振型参与系数和振型参与质量计算的。
通俗的讲就是10个人总共做了100个零件(结构结果-能力曲线),我们知道每个人的贡献度(参与系数和参与质量),我们就能计算出每个人做了多少(单自由度体系结果-能力谱)。
-性能点是能力谱(不是能力曲线)与弹塑性需求谱的交点。
3.动力弹塑性分析输出结果中的滞回曲线-输出的滞回曲线一般都对应定义的铰的类型和非线性特性。
例如-当使用弯矩-曲率关系的非线性单元时,输出的M-Ry就是弯矩曲率关系曲线,而不是弯矩转角关系曲线-当使用弯矩-转角关系的非线性单元时,输出的M-Ry就是弯矩转角关系曲线,而不是弯矩曲率关系曲线-剪力和变形的滞回曲线Fy-Dy,注意输出的Dy值不是节点的位移,而是剪切应变!所以柱构件上端的F-D滞回曲线输出的Dy值不存在包含了下部节点位移的问题。
PUSHOVER分析方法
■静力弹塑性分析方法( PUSHOVER 分析方法)简介静力弹塑性分析也称PUSHOVER 分析方法,是指在结构上施加竖向荷载并保持不变,同时施加某种分布的水平荷载,该水平荷载单调增加,构件逐步屈服,从而得到结构在横向静力作用下的弹塑性性能。
主要步骤为:(1)按通常做法建立结构模型,包括几何尺寸、物理参数等;(2)根据单元种类(梁、柱、支撑、剪力墙等)和材料类型(钢、钢筋混凝土),确定各单元塑性铰性质(恢复力模型),根据受力形式可分为轴压、弯曲、剪切、压弯铰。
一般程序将塑性铰集中在杆件两端,并不考虑沿杆长的分布,轴压铰集中在杆件中央;(3)施加全部竖向荷载;(4)确定结构的目标位移;(5)选择合适的水平加载模式,施加在结构上,逐渐增加水平荷载,结构构件相继屈服,随之修改其刚度(程序自动完成),直到达到结构目标位移,对结构性能进行评判。
■静力弹塑性分析的原理MIDAS 程序提供的pushover 的分析方法,主要基于两本手册,一本是由美国应用技术委员会编制的《混凝土建筑抗震评估和修复》(ATC —40),另一本是由美国联邦紧急管理厅出版的《房屋抗震加固指南》(FEMA273/274)。
程序中FEMA 较本构关系和性能指标就来自于(FEMA273/274),而pushover 方法的主干部分,即分析部分采用的是能力谱法CSM ,来自于ATC 一40 (1996)和FEMA-273(1997)。
其主要步骤如下:(1)用单调增加水平荷载作用下的静力弹塑性分析,计算结构的基底剪力b V 一顶点位移n u 曲线(图1(a ))。
(2)建立能力谱曲线:对不很高的建筑结构,地震反应以第一振型为主,可用等效单自由度体系代替原结构。
因此,可以将b V —n u 曲线转换为谱加速度aS 一谱位移d S 曲线,即能力谱曲线(图l (b ))。
图1 pushover 曲线和能力谱之间的转换(3)建立需求谱曲线需求谱曲线分为弹性和弹塑性两种需求谱。
Pushover分析(同济大学翁大根)
基本安全指标 建筑性能水平
小震
地震地面运动
中震
小震
可用 (Operational)
立即居住 (Immediate Occupation)
生命安全 (Life Safety)
√
大震 大震
中震
√ √
√
注:基本安全指标如上表所示,是达到3-C(生命安全水准)及5-E(结构稳定水准)的双水准性能指标。
非线性静力分析(1)
速评估方法。
从形式上看,这是一种将静力弹塑性分析与反应谱相结
合、进行图解的快捷计算方法,它的结果具有直观、信息
丰富的特点。
非线性静力分析(3)
(Nonlinear Static Procedure)
Pushover方法是90年代以后出现的基于位移的抗震设计
(Displacement-Based Seismic Design)和基于性能(功能) 的抗震设计(Performance-Based Seismic Design, PBSD) 方法得于实现的重要工具。
退化;或者是某一构件(或一组构件)的侧向变形达到某一数值时, 导致结构失去重力承载能力。
11、精确模拟整体的强度退化。如果结构在第10步达到了侧向变形极
限,便停止加载,此时会有一个或者一组构件已经无法继续承担大部分或 所有的荷载,即其强度已明显退化,然后这根(批)构件的刚度会减少, 或者消失。从第3步开始再建立新的能力曲线。建立尽可能多的 Pushover曲线,可以更充分地表现强度丧失的全过程。图8.2中以三条不 同的能力曲线为例子表现这个过程。
(Nonlinear Static Procedure)
Pushover方法从本质上说是一种静力分析方法,对结构
pushover分析的一般步骤:
pushover分析的一般步骤:(1)建立结构计算模型,包括质量分布、强度、刚度以及各个方向的变形能力。
(2)根据实际情况将地震荷载作用转化为某侧向水平荷载模式,并将其作用在结构的计算模型上。
(3)应用逐步增量法进行结构的非线性静力分析,直到结构顶点位移达到目标位移值。
(4)在推覆过程中及时找到塑性铰并不断修改总刚矩阵。
(5)达到目标位移时的结构内力和变形可作为结构的变形要求,依次求出构件的变形要求并与容许值比较,从而评估结构的抗震性能。
1.能力谱法的基本假定(1)假定结构的地震响应与结构某一等效单自由度体系相关,也即结构地震响应仅由结构第一振型控制:(2)结构沿高度的变形由形状向量{由)表示,在整个地震反应过程中,不管结构变形大小,形状向量{巾)保持不变。
可以看出,上述两个假定并不是完全正确,但是已有研究表明,这些假定能够很好的预测多自由度体系的地震反应,并且这些地震反应确实是有第一振型控制的。
对于层数不太多或者自振周期不太长的结构,能力谱方法不失为一种可行的分析方法。
2.能力谱方法的步骤(1)建立能力谱曲线能力谱曲线,是用加速度——位移反应谱(ADRS)表示的能力曲线。
用单调增加的侧向荷载作用于结构,计算得到结构的基底剪力.位移曲线,如图2.1所示。
对于低层建筑结构,地震反应以第一振型为主,可用等效单自由体系代替原结构,因此可将基底剪力.位移曲线采用公式(2.1)转换为ADRS模式.(2)建立需求谱曲线需求谱曲线分为弹性和弹塑性需求谱曲线。
建立弹性需求谱曲线采用规范的加速度反应谱,根据弹性单自由度体系在地震下的运动方程可知,Sa和Sd之间存在下面关系式:’So=等& (2-3)从而得到Sa和Sd之问的关系曲线,即AD格式的需求谱。
对于弹塑性阶段需求谱,一般在典型的弹性需求谱基础上,通过考虑等效阻尼比和延一陀比的折减影响,求得弹塑性需求谱。
ATC.40用等效阻尼比如由最大位移反应的一个周期内的滞回耗能来确定,按下式(2.4)计算:。
PUSHOVER方法
PUSHOVER方法PUSHOVER方法(PUSHOVER method)是一种简单、经济、直观且有效的方法,用于对结构的强度和刚度进行初步评估。
它是结构工程师在设计过程中常用的一种方法,特别适用于预制结构、短周期结构和轻型结构等。
PUSHOVER方法基于弹塑性分析原理,通过分析结构在地震荷载下的非线性行为,直观地展示结构在不同荷载水平下的变形和受力情况。
在PUSHOVER方法中,结构被简化为一维弹塑性模型,并进行单方向的静力分析。
结构的非线性行为通过增量形式的弹塑性模型来表示,荷载由小到大逐步增加,直至结构达到破坏。
1.确定结构模型:首先,需要将结构转化为一维、双向的框架模型,包括主要的水平和垂直支撑、梁和柱等。
通常,无溶接链接使用简化的接头,而有溶接链接使用精确的模型。
2.选择地震荷载曲线:根据结构所在地区的地震参数和设计要求,选择适当的地震荷载曲线。
常用的荷载曲线包括线性弹性荷载、等效静力荷载和增量动力荷载等。
3.设定分析参数:确定分析所需的参数,如荷载递增步长、分析区间和结构材料的损伤模型等。
4.进行弹塑性分析:根据设定的荷载递增步长,以及结构的初始状态,进行弹塑性分析。
在每个荷载步骤中,根据结构的初始刚度和荷载作用,计算结构的变形、内力和屈服状态。
5.绘制PUSHOVER曲线:根据分析结果,绘制PUSHOVER曲线。
PUSHOVER曲线是结构侧向位移与结构侧向剪力的函数关系图。
它直观地展示了结构在不同荷载水平下的响应。
通过PUSHOVER曲线,结构工程师可以评估结构的强度储备和抗震性能,并确定结构在不同限额位移水平下的塌陷载荷。
这对于设计抗震设防和结构强度调整具有重要意义。
PUSHOVER方法的优点在于其简单性、经济性和直观性。
相对于复杂的动力分析方法,PUSHOVER方法可以在较短的时间内得到合理的结果。
另外,PUSHOVER方法还可以用于实际结构的性能评估和性能矫正,使结构工程师可以方便地进行结构设计和优化。
抗震(pushover及横向允许位移计算)
1.各输入参数的取值
2.观察详细计算结果理解各参数的含义
一、为什么要进行pushover分析
1 Pushover的分析目的
一、为什么要进行pushover分析
1 Pushover的分析目的
从单柱墩的推到公式不难看出 如下特点: (1)整个公式的推到是以悬臂 墩为力学模型的。 (2)屈服时的位移仅与墩高有 关,为根据(a)图积分所得。 (3)塑性位移为计算至塑性铰 中心所得墩顶塑性位移。 (4)显然多柱墩纵桥向同样满 足悬臂墩特性,故多柱墩纵桥向 以及单柱墩均可用此公式计算 E2作用下的允许位移。
本次培训主要解决问题
1.通过静力弹塑性分析(pushover)得到多柱墩横向允许位移 2. RC设计验算E2作用下多柱墩位移验算输入各参数的目的及具体输入方式
目录
目录
一、为什么要进行pushover分析 二、pushover分析介绍 1.Pushover的分析目的 2. Pushover的总体思路 3.迭代计算的详细过程 三、利用RC设计验算E2作用下桥墩位移
抗震分析中的两种分析方法—反应谱分析
3.迭代计算的详细过程
(1)基本模型
注意: (1)直接在全桥模型中删除多 余部分,保留材料本构。 (2)荷载归类为两种: 与自重相关的上下部荷载 Pushover所需的水平力 (3)水平力大小无所谓,后期 采用位移控制即可。 (4)通过结果表格弹性连接可 以查看整体模型支座反力。
次加载的结果。
抗震分析中的两种分析方法—反应谱分析
(2)定义pushover荷载工况 计算步骤数:决定了0.05m等分步长。 位移控制:pushover的分析目的 主控点:pushover的关注位置。 方向:直至62节点X方向位移达到0.05m为止。 荷载模式:按指定荷载工况加载(推倒)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京迈达斯技术有限公司
CCooppyyriigghht tⓒⓒ20200-0200-0270M0ID3 AMSIIDnAfoSrmIantfionrmTaetcihonnoloTgeycChnoo.,lLotdg.y
内容目录
• 1 大震分析程序简介 • 2、MIDAS/Gen适用范围 • 3、 pushover分析原理 • 4、操作流程详解 • 5、 常见问题与解答
可以做墙元。——操作便利,但 人为可干预性较弱。
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
2、MIDAS/Gen适用范围
高层结构 空间结构 体育场
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
分析目的: Pushover分析前要经过一般设计方法先进行耐震设计使结构满足小震不
坏、中震可修的规范要求,然后再通过pushover分析评价结构在大震作用下 是否满足预先设定的目标性能。如:
1、通过pushover分析得到结构能力曲线。与需求谱曲线比较,判断结 构是否能够找到性能点,从整体上满足设定的大震需求性能目标。
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
1、主要大震分析程序
方法
优缺点
应用程序 主要特点
1、优点:方法简单,便于理解。与动力时
静力弹塑性 程分析法相比,Pushover方法概念清晰, 实施相对简单,能使设计人员在一定程度
分析
性能点处基底剪力、控制点的位移。可与小震下基底剪力及控制点位移 比较,判断大震pushover分析结果的合理性。一般为3~4倍。
领域,方法还不够成熟。因为以上原因,
不容易得到稳定和满意的结果,因此目前 也只能作为参考。
ABAQUS
采用纤维墙元模型——程序复杂, 价格昂贵,需组建专业团队。
MIDAS/Gen
适用于杆系结构——大跨场馆、 框架等,采用先进的纤维模型。
Perform 3D PKPM系列
采用纤维墙元模型——全英文、 手动命令输入,对操作者要求高, 适用于科研院校等。
转换为加速度-位移关系 能力谱曲线
3、pushover分析原理
需求谱曲线:地震作用的响应谱转换为用ADRS(Acceleration-Displacement Response Spectrum)方式表现的需求谱(demand spectrum)。
Sa
Sa
Tn,1
Sd
Tn2 42
Sa
transform
上了解结构在强震作用下的反应,迅速找 到结构的薄弱环节,从而完善抗震设计。
(push-over) 2、不足:和实际结构的动力大震反应有一
定差异,只能定性进行计算和整体把握,
作为大震设计的参考。
MIDAS/Gen
能直接做剪力墙结构——实现便 利,结果稳定,易于掌控。
SAP2000、ETABS
适用于杆系结构——墙需用支撑 框架代替,实现起来较复杂。
2、性能点状态下结构的最大层间位移角是否满足规范“层间弹塑性位 移角限值”的要求。(框架1/50,框剪1/100,纯剪1/120,框支层1/120)
3、是否在模拟结构地震反应不断加大的过程中,构件的破坏顺序(塑 性铰开展)和概念设计预期相符, 梁、柱、墙等构件的变形, 是否超过构件 某一性能水准下的允许变形。
Tn,2
Tn
Response Spectrum
Demand Spectrum Sd
性能点:通过比较两个谱曲线,得到一个交点——性能点(performance Point)。 性能点的状况,决定着结构的性能水平(performance level)。
5% Elastic
Sa Spectrum
Performance Point Demand Spectrum
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
3、pushover分析原理
能力谱曲线与需求谱曲线
能力(谱)曲线:Pushover分析通过逐渐加大预先设定的荷载直到最大性能控制点 位置,获得荷载-位移能力曲线(capacity curve)。多自由度的荷载-位移关系转换为 使用单自由度体系的加速度-位移方式表现的能力谱(capacity spectrum)。
3、pushover分析原理
方法原理: Pushover分析通过考虑构件的材料非线性特点,评估构件进入弹塑性状
态直至到达极限状态时结构性能的方法。 Pushover分析是最近在地震研究及耐震设计中经常采用的基于性能的耐
震设计(Performance-Based Seismic Design, PBSD)方法中最具代表性的分 析方法。所谓基于性能的耐震设计就是由用户及设计人员设定结构的目标性 能(target performance),并使结构ity Curve
F
Vbase
Capacity Spectrum
Sa
Pushover Analysis
Vbase
transform
roof MDOF System
Sd SDOF System
分析得到的荷载-位移关系 能力曲线
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
PKPM系列 能直接做剪力墙结构
动力弹塑性 分析
1、优点:能较真实地反映结构在时程地 震波下的耗能状况,从而判断结构的抗震 性能。
2、不足:A、对软硬件要求比较高,计算 时间很长,结果不便于整理。B、对使用 人员技术水平要求高。操作和学习时间长 (一般高级软件要半年以上)。C、动力 弹塑性分析目前还是世界各国正在研究的
Amax
Capacity Spectrum
Dmax
Sd
Copyright ⓒ2000-2007MIDAS Information Technology Co., Ltd.
3、pushover分析原理
结构性能状况判断
性能点
Pushover分析工况
设定需求谱
参考阻尼线(图中 红色线)
参考周期线(图中 白色射线)