空间向量与立体几何解答题答案

合集下载

空间向量在立体几何中的应用和习题(含答案)[1]

空间向量在立体几何中的应用和习题(含答案)[1]

空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题: 1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B )2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B )32 (C)33 (D )32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D )θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。

空间向量与立体几何练习题(带答案)

空间向量与立体几何练习题(带答案)

空间向量与立体几何练习题(带答案)一、选择题1.若空间向量a与b不相等,则a与b一定()A.有不同的方向B.有不相等的模C.不可能是平行向量D.不可能都是零向量【解析】若a=0,b=0,则a=b,这与已知矛盾,故选D.【答案】D图2-1-72.如图2-1-7所示,已知平行六面体ABCD-A1B1C1D1,在下列选项中,CD→的相反向量是()A.BA→B.A1C1→C.A1B1→D.AA1→【解析】由相反向量的定义可知,A1B1→是CD→的相反向量.【答案】C图2-1-83.在如图2-1-8所示的正三棱柱中,与〈AB→,AC→〉相等的是() A.〈AB→,BC→〉B.〈BC→,CA→〉C.〈C1B1→,AC→〉D.〈BC→,B1A1→〉【解析】∵B1A1→=BA→,∴〈BA→,BC→〉=〈AB→,AC→〉=〈BC→,B1A1→〉=60°,故选D.【答案】D4.在正三棱锥A-BCD中,E、F分别为棱AB,CD的中点,设〈EF→,AC→〉=α,〈EF→,BD→〉=β,则α+β等于()A.π6B.π4C.π3D.π2【解析】如图,取BC的中点G,连接EG、FG,则EG∥AC,FG∥BD,故∠FEG=α,∠EFG=β.∵A-BCD是正三棱锥,∴AC⊥BD.∴EG⊥FG,即∠EGF=π2.∴α+β=∠FEG+∠EFG=π2.【答案】D5.如图2-1-9所示,正方体ABCD-A1B1C1D1中,以顶点为向量端点的所有向量中,直线AB的方向向量有()图2-1-9A.8个B.7个C.6个D.5个【解析】与向量AB→平行的向量就是直线AB的方向向量,有AB→,BA→,A1B1→,B1A1→,C1D1→,D1C1→,CD→,DC→,共8个,故选A.【答案】A二、填空题6.在正方体ABCD-A1B1C1D1中,若E为A1C1的中点,则向量CE→和BD→的夹角为________.【解析】∵BD→为平面ACC1A1的法向量,而CE在平面ACC1A1中,∴BD→⊥CE→.∴〈BD→,CE→〉=90°.【答案】90°7.下列命题正确的序号是________.①若a∥b,〈b,c〉=π4,则〈a,c〉=π4.②若a,b是同一个平面的两个法向量,则a=B.③若空间向量a,b,c满足a∥b,b∥c,则a∥c.【解析】①〈a,c〉=π4或3π4,①错;②a∥b;②错;③当c=0时,推不出a∥c,③错;④由于异面直线既不平行也不重合,所以它们的方向向量不共线,④对.【答案】④8.在棱长为1的正方体中,S表示所有顶点的集合,向量的集合P={a|a =P1P2→,P1,P2∈S},则在集合P中模为3的向量的个数为________.【解析】由棱长为1的正方体的四条体对角线长均为3知:在集合P 中模为3的向量的个数为8.【答案】8三、解答题图2-1-109.如图2-1-10所示,在长、宽、高分别为AB=3、AD=2、AA1=1的长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)单位向量共有多少个?(2)试写出模为5的所有向量;(3)试写出与AB→相等的所有向量.【解】(1)由于长方体的高为1,所以长方体4条高所对应的AA1→,A1A→,BB1→,B1B→,CC1→,C1C→,DD1→,D1D→这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左右两侧的对角线长均为5,故模为5的向量有AD1→,D1A→,A1D→,DA1→,BC1→,C1B→,B1C→,CB1→共8个.(3)与向量AB→相等的所有向量(除它自身之外)共有A1B1→,DC→及D1C1→3个.图2-1-1110.如图2-1-11所示,正四棱锥S-ABCD中,O为底面中心,求平面SBD的法向量与AD→的夹角.【解】∵正四棱锥底面为正方形,∴BD⊥AC,SO⊥AC又∵BD∩SO=O∴AC⊥平面SBD.∴AC→为平面SBD的一个法向量.∴〈AC→,AD→〉=45°.图2-1-1211.如图2-1-12,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD 为正方形且PD=AD,E、F分别是PC、PB的中点.(1)试以F为起点作直线DE的一个方向向量;(2)试以F为起点作平面PBC的一个法向量.【解】(1)取AD的中点M,连接MF,连接EF,∵E、F分别是PC、PB的中点,∴EF綊12BC,又BC綊AD,∴EF綊12AD,则由EF綊DM知四边形DEFM是平行四边形,∴MF∥DE,∴FM→就是直线DE的一个方向向量.(2)∵PD⊥平面ABCD,∴PD⊥BC,又BC⊥CD,∴BC⊥平面PCD,∵平面PCD,∴DE⊥BC,又PD=CD,E为PC中点,∴DE⊥PC,从而DE⊥平面PBC,∴DE→是平面PBC的一个法向量,由(1)可知FM→=ED→,∴FM→就是平面PBC的一个法向量.。

高二数学空间向量与立体几何试题答案及解析

高二数学空间向量与立体几何试题答案及解析

高二数学空间向量与立体几何试题答案及解析1.长方体中,,,,则与所成角的余弦值为.【答案】【解析】以D为空间原点,DA为x轴,D为z轴,DC为y轴,建立空间直角坐标系则=(-1,2,0),=(-1,-2,3)||=,|'|=,·=-3cos<,>==,即为所求。

【考点】本题主要考查空间向量的应用,向量的数量积,向量的坐标运算。

点评:简单题,通过建立空间直角坐标系,将求异面直线的夹角余弦问题,转化成向量的坐标运算。

2.正方体的棱长为1,是底面的中心,则到平面的距离为.【答案】【解析】因为O是A1C1的中点,求O到平面ABC1D1的距离,就是A1到平面ABC1D1的距离的一半,就是A1到AD1的距离的一半.所以,连接A1D与AD1的交点为P,则A1P的距离是:O到平面ABC1D1的距离的2倍O到平面ABC1D1的距离【考点】本题主要考查空间距离的计算。

点评:本题也可以通过建立空间直角坐标系,将求角、求距离问题,转化成向量的坐标运算,是高考典型题目。

3.已知={-4,3,0},则与垂直的单位向量为= .【答案】(,,0)【解析】设与垂直的向量与垂直的向量=(x,y,0),则-4x+3y=0,,解得x= ,y=,所以=(,,0)。

【考点】本题主要考查向量的坐标运算、向量垂直的充要条件、单位向量的概念。

点评:利用向量垂直的充要条件及单位向量的概念。

4.已知向量与向量平行,则()A.B.C.D.【答案】C【解析】因为向量与向量平行,所以,,故选C。

【考点】本题主要考查平行向量及向量的坐标运算。

点评:简单题,按向量平行的充要条件计算。

5.已知点,为线段上一点,且,则的坐标为()A.B.C.D.【答案】C【解析】设C的坐标为(x,y,z)则向量=(x-4,y-1,z-3)向量=(-2,-6,-2),而即=所以x-4=-,y-1=-2,Z-3=-所以x=,y=-1,z=,C的坐标为,选C。

十年(2013-2022)高考数学真题分类汇编解析12 立体几何与空间向量(大题)

十年(2013-2022)高考数学真题分类汇编解析12 立体几何与空间向量(大题)

由(1)得 则 则
,所以 ,
设平面 的一个法向量
可取

设平面 的一个法向量

,所以

,所以 的中点

,
,则

,则

6 / 56
可取 则
, ,
所以二面角
的正弦值为
.
4.【2022 年新高考 2 卷 20】如图, 是三棱锥
的高,

,E
是 的中点.
(1)证明: 平面 ;
(2)若


,求二面角
【答案】(1)证明见解析
(1)证明:平面 (2)求二面角
平面

的平面角的余弦值.
【答案】(1)证明见解析;(2) .
(1)取 的中点为 ,连接
.
因为

,则


,故
.
在正方形
中,因为
,故
,故

因为
,故
,故
为直角三角形且

14 / 56
因为
,故 平面

因为 平面 ,故平面
平面
.
(2)在平面
内,过 作
,交 于 ,则

结合(1)中的 平面
(2)作 EF⊥BD 于 F, 作 FM⊥BC 于 M,连 FM
因为 AO⊥平面 BCD,所以 AO⊥BD, AO⊥CD
所以 EF⊥BD, EF⊥CD,
,因此 EF⊥平面 BCD,即 EF⊥BC
11 / 56
因为 FM⊥BC,
,所以 BC⊥平面 EFM,即 BC⊥MF

为二面角 E-BC-D 的平面角,
,所以

空间向量与立体几何知识点和知识题(含答案解析)

空间向量与立体几何知识点和知识题(含答案解析)

§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。

第01章 空间向量与立体几何(A卷基础卷)(解析版)

第01章 空间向量与立体几何(A卷基础卷)(解析版)

第一章空间向量与立体几何(A卷基础卷)一.选择题(共8小题)1.(2020春•和平区期中)已知空间向量(3,1,3),(﹣1,λ,﹣1),且∥,则实数λ=()A.B.﹣3 C.D.6【解答】解:∵∥,∴可设k,∴,解得λ=k.故选:A.2.(2020春•点军区校级月考)在正四面体P﹣ABC中,棱长为2,且E是棱AB中点,则的值为()A.﹣1 B.1 C.D.【解答】解:如图,P﹣ABC为正四面体,则∠APC=∠BPC=∠APB=60°,E是棱AB中点,所以,,所以•()1﹣2=﹣1,故选:A.3.(2020春•点军区校级月考)设x,y∈R,向量(x,1,1),(1,y,1),(2,﹣4,2),且⊥,∥,则||=()A.B.C.3 D.4【解答】解:设x,y∈R,向量(x,1,1),(1,y,1),(2,﹣4,2),且⊥,∥,∴,解得x=1,y=﹣2,∴(1,1,1)+(1,﹣2,1)=(2,﹣1,2),∴||.故选:C.4.(2019秋•焦作期末)在△ABC中,D是线段AB上靠近B的三等分点,E是线段AC的中点,BE与CD 交于F点,若,则a,b的值分别为()A.B.C.D.【解答】解:取AD的中点为G,连接GE.由已知得GE∥CD,所以DF∥EG,又因为D是GB的中点,所以F是BE的中点,所以.∴a,b.故选:A.5.(2019秋•榆树市期末)若向量,且与的夹角余弦为,则λ等于()A.B.C.或D.2【解答】解:∵向量,与的夹角余弦为,∴cos,解得λ.故选:A.6.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A 处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°【解答】解:可设A所在的纬线圈的圆心为O',OO'垂直于纬线所在的圆面,由图可得∠OHA为晷针与点A处的水平面所成角,又∠OAO'为40°且OA⊥AH,在Rt△OHA中,O'A⊥OH,∴∠OHA=∠OAO'=40°,故选:B.7.(2019秋•龙岩期末)如图所示,在平行六面体ABCD﹣A1B1C1D1中,,,,M是D1D的中点,点N是AC1上的点,且,用表示向量的结果是()A.B.C.D.【解答】解:∵M是D1D的中点,∴.故选:D.8.(2020•茂名二模)已知六棱锥P﹣ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB.则下列命题中正确的有()①平面P AB⊥平面P AE;②PB⊥AD;③直线CD与PF所成角的余弦值为;④直线PD与平面ABC所成的角为45°;⑤CD∥平面P AE.A.①④B.①③④C.②③⑤D.①②④⑤【解答】解:∵P A⊥平面ABC,∴P A⊥AB,在正六边形ABCDEF中,AB⊥AE,P A∩AE=A,∴AB⊥平面P AE,且AB⊂面P AB,∴平面P AB⊥平面P AE,故①成立;∵AD与PB在平面的射影AB不垂直,∴②不成立;∵CD∥AF,直线CD与PF所成角为∠PF A,在Rt△P AF中,P A=2AF,∴cos∠PF A,∴③成立.在Rt△P AD中,P A=AD=2AB,∴∠PDA=45°,故④成立.∵CD∥AF∥平面P AF,平面P AF∩平面P AE=P A,∴直线CD∥平面P AE也不成立,即⑤不成立.故选:B.二.多选题(共4小题)9.(2019秋•连云港期末)已知点P是△ABC所在的平面外一点,若(﹣2,1,4),(1,﹣2,1),(4,2,0),则()A.AP⊥AB B.AP⊥BP C.BC D.AP∥BC【解答】解;A.•2﹣2+4=0,∴⊥.因此正确.B.(2,﹣1,﹣4)+(1,﹣2,1)=(3,﹣3,﹣3),•3+6﹣3=6≠0,∴AP与BP不垂直,因此不正确.C.(4,2,0)﹣(﹣2,1,4)=(6,1,﹣4),∴||,因此正确.D.假设k,则,无解,因此假设不正确,因此AP与BC不可能平行,因此不正确.故选:AC.10.(2019秋•南通期末)设,,是空间一个基底()A.若⊥,⊥,则⊥B.则,,两两共面,但,,不可能共面C.对空间任一向量,总存在有序实数组(x,y,z),使D.则,,一定能构成空间的一个基底【解答】解:由,,是空间一个基底,知:在A中,若⊥,⊥,则与相交或平行,故A错误;在B中,,,两两共面,但,,不可能共面,故B正确;在C中,对空间任一向量,总存在有序实数组(x,y,z),使,故C正确;在D中,,,一定能构成空间的一个基底,故D正确.故选:BCD.11.(2019秋•建邺区校级期中)已知点P是平行四边形ABCD所在的平面外一点,如果(2,﹣1,﹣4),(4,2,0),(﹣1,2,﹣1).下列结论正确的有()A.AP⊥ABB.AP⊥ADC.是平面ABCD的一个法向量D.∥【解答】解:对于A,•2×(﹣1)+(﹣1)×2+(﹣4)×(﹣1)=0,∴⊥,即AP⊥AB,A正确;对于B,•(﹣1)×4+2×2+(﹣1)×0=0,∴⊥,即AP⊥AD,B正确;对于C,由⊥,且⊥,得出是平面ABCD的一个法向量,C正确;对于D,由是平面ABCD的法向量,得出⊥,则D错误.故选:ABC.12.(2019秋•菏泽期末)如图,在四棱锥P﹣ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,P A⊥底面ABCD,且P A=AD=AB=2BC,M、N分别为PC、PB的中点.则()A.CD⊥ANB.BD⊥PCC.PB⊥平面ANMDD.BD与平面ANMD所在的角为30°【解答】解:A显然错误;若BD⊥PC,由BD⊥P A,则BD⊥平面P AC,则BD⊥AC,显然不成立;C、PB⊥AN,又PB⊥NM,可得到C成立;D、连接DN,因为PB⊥平面ADMN,所以∠BDN是BD与平面ADMN所成的角在Rt△BDN中,,所以BD与平面ADMN所成的角为30°成立;故选:CD.三.填空题(共4小题)13.(2019秋•房山区期末)设θ是直线与平面所成的角,则角θ的取值范围是[0,].【解答】解:θ是直线与平面所成的角,当直线在平面内或直线平行于平面时,θ取最小值0,当直线与平面垂直时,θ取最大值,∴角θ的取值范围是[0,].故答案为:[0,].14.(2019秋•温州期末)在平面直角坐标系中,点A(﹣1,2)关于x轴的对称点为A'(﹣1,﹣2),那么,在空间直角坐标系中,B(﹣1,2,3)关于x轴的对称轴点B'坐标为(﹣1,﹣2,﹣3),若点C (1,﹣1,2)关于xOy平面的对称点为点C',则|B'C'|=.【解答】解:在空间直角坐标系中,B(﹣1,2,3)关于x轴的对称轴点B'坐标为(﹣1,﹣2,﹣3),若点C(1,﹣1,2)关于xOy平面的对称点为点C',则C′(1,﹣1,﹣2),∴|B'C'|.故答案为:(﹣1,﹣2,﹣3),.15.(2020•杨浦区一模)已知圆锥的底面半径为lcm,侧面积为2πcm2,则母线与底面所成角的大小为.【解答】解:由圆锥侧面积公式S=πrl=π•1•l=2π,解得l=2,设母线与底面所成角为θ,则cosθ,∴θ,故答案为:.16.(2020春•和平区校级月考)如图,在正四棱柱ABCD﹣A1B1C1D1中,底面边长为2,直线CC1与平面ACD1所成角的正弦值为,则正四棱柱的高为4.【解答】解:以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,设DD1=a,则A(2,0,0),C(0,2,0),D1(0,0,a),故,设平面ACD1的一个法向量为,则,可取,故,又直线CC1与平面ACD1所成角的正弦值为,∴,解得a=4.故答案为:4.四.解答题(共5小题)17.(2020•长春四模)如图,四棱锥P﹣ABCD中,底面ABCD为梯形,AB∥DC,∠BAD=90°,点E为PB的中点,且CD=2AD=2AB=4,点F在CD上,且.(Ⅰ)求证:EF∥平面P AD;(Ⅱ)若平面P AD⊥平面ABCD,P A=PD且P A⊥PD,求直线P A与平面PBF所成角的正弦值.【解答】解:(Ⅰ)证明:取P A的中点,连接DM,EM,在△P AB中,ME为一条中位线,则,又由题意有,,故,∴四边形DFEM为平行四边形,∴EF∥DM,又EF⊄平面P AD,DM⊂平面P AD,∴EF∥平面P AD;(Ⅱ)取AD中点N,BC中点H,连接PN,NH,由平面P AD⊥平面ABCD,且PN⊥AD,平面P AD∩平面ABCD=AD,可知PN⊥平面ABCD,又AD⊥NH,故以N为原点,NA,NH,NP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则,设平面PBF的一个法向量为,则,可取,又,故,∴直线P A与平面PBF所成角的正弦值为.18.(2020•沙坪坝区校级模拟)如图,四棱台ABCD﹣A1B1C1D1的底面是矩形,平面ABCD⊥平面ABB1A1,AB=2A1B1=2,AA1=2,.(1)求证:DC⊥AA1;(2)若二面角B﹣CC1﹣D的二面角的余弦值为,求AD的长.【解答】解:(1)取AB中点E,连接B1EAE=A1B1,且AE∥A1B1,所以四边形AEB1A1为平行四边形,所以B1E=AA1=2,BE=1,所以,则BE⊥B1E,所以AA1⊥AB,又平面ABCD⊥平面ABB1A1,所以AA1⊥平面ABCD,所以DC⊥AA1;(2)由(1)知AA1⊥AD,设AD=2a(a>0),建系如图,则A(0,0,0),B(0,0,2),C(2a,0,2),D(2a,0,0),C1(a,2,1),故,设平面CC1D的法向量,则,可取,设平面BCC1的法向量,则,可取,所以,由二面角B﹣CC1﹣D的二面角的余弦值为,得,解得a=2,所以AD=4.19.(2019秋•清远期末)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=45°,PD⊥平面ABCD,AP⊥BD.(1)证明:BC⊥平面PDB,(2)若AB,PB与平面APD所成角为45°,求点B到平面APC的距离.【解答】解:(1)证明:∵PD⊥平面ABCD,BC在平面ABCD内,BD在平面ABCD内,∴PD⊥BC,PD⊥BD,又AP⊥BD,AP∩PD=P,且AP,PD均在平面APD内,∴BD⊥平面APD,又AD在平面APD内,∴BD⊥AD,又底面ABCD为平行四边形,∴BC⊥BD,又PD∩BD=D,且都在平面PBD内,∴BC⊥平面PDB;(2)由(1)知,PB与平面APD所成角即为∠BPD,故∠BPD=45°,又AB,∠DAB=45°,∴,,∴AP2+PC2=AC2,即AP⊥CP,∴,,又V P﹣ABC =V B﹣P AC,∴,即,解得,即点B到平面APC的距离为.20.(2020•安徽模拟)如图1,四边形PBCD是等腰梯形,BC∥PD,PB=BC=CD=2,PD=4,A为PD 的中点,将△ABP沿AB折起,如图2,点M是棱PD上的点.(1)若M为PD的中点,证明:平面PCD⊥平面ABM;(2)若PC,试确定M的位置,使二面角M﹣AB﹣D的余弦值等于.【解答】解:(1)证明:由题意,AD=BC,且AD∥BC,故四边形ABCD是平行四边形,又PB=BC=CD=2,PD=4,∴△PBA是正三角形,四边形ABCD是菱形,取AB的中点E,连接PE,CE,易知△ABC是正三角形,则AB⊥PE,AB⊥EC,又PE∩EC=E,∴AB⊥平面PEC,∴AB⊥PC,取PC的中点N,连接MN,BN,则MN∥CD∥AB,即A,B,N,M四点共面,又PB=BC=2,则BN⊥PC,又AB∩BN=B,∴PC⊥平面ABM,又PC在平面PCD内,∴平面PCD⊥平面ABM;(2)∵,∴PE⊥EC,又AB⊥PE且AB⊥EC,则可以EB,EC,AB所在直线为x轴,y轴,z轴建立空间直角坐标系,则,设,则,易知平面ABD的一个法向量为,设平面MAB的一个法向量为,又,∴,则可取,由题意,,解得λ=2,故DM=2MP.21.(2019秋•扬州期末)如图,直三棱柱ABC﹣A1B1C1中,AB=BC=CA=AA1=2,点O为AB中点,点D为AA1中点.(1)求平面ABC与平面B1CD所成锐二面角的大小;(2)已知点E满足,当异面直线DE与CB1所成角最小时,求实数λ的值.【解答】解:在直三棱柱ABC﹣A1B1C1中,AB=BC=CA,取A1B1的中点O1,连接OO1,则OO1∥AA1,AB⊥OC,又直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,而AB,OC⊂平面ABC,故AA1⊥OC,AA1⊥AB,所以OO1⊥OC,OO1⊥AB,以{OA,OO1,OC}为正交基底,建立如图所示的空间直角坐标系O﹣xyz,则,所以,(1)∵AA1⊥平面ABC,∴平面ABC的一个法向量为,设平面B1CD的一个法向量为,则,故可取,∴,∴平面ABC与平面B1CD所成锐二面角为;(2)∵,∴,则,设异面直线DE与CB1所成角为θ,则,令t=λ+1∈[1,2],则,当时,cosθ取得最大值,∵y=cosθ在上递减,∴θ取得最小值,此时.。

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)

高中数学《空间向量与立体几何》练习题(含答案解析)一、单选题1.在空间直角坐标系Oxyz 中,与点()1,2,1-关于平面xOz 对称的点为( )A .()1,2,1--B .()1,2,1-C .()1,2,1---D .()1,2,1--2.在空间直角坐标系内,平面α经过三点(1,0,2),(0,1,0),(2,1,1)A B C -,向量(1,,)n λμ=是平面α的一个法向量,则λμ+=( )A .7-B .5-C .5D .73.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是( ).A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-4.如图,O A B '''△是水平放置的OAB 的直观图,6A O ''=,2''=B O ,则OAB 的面积是( )A .6B .12C .D .5.平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-,则平面α与平面β的关系是( )A .平行B .重合C .平行或重合D .垂直6.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( ) A .492π B .49π C .812π D .81π7.O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,则下列说法正确的是( ) A .OA 、OB 、OC 共线B .OA 、OB 共线C .OB 、OC 共线D .O 、A 、B 、C 四点共面8.在正方体1111ABCD A B C D -中,E 为线段11A B 的中点,则异面直线1D E 与1BC 所成角的余弦值为( )A B C D9.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 10.在正方体1111ABCD A B C D -中,P ,Q 分别为AB ,CD 的中点,则( )A .1AB ⊥平面11A BCB .异面直线1AB 与11AC 所成的角为30° C .平面11ABD ∥平面1BC Q D .平面1B CD ⊥平面1B DP二、填空题11.已知角α和角β的两边分别平行且一组边方向相同,另一组边的方向相反,若α=45°,则β=________. 12.若直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,且直线l ⊥平面α,则实数x 的值是______.13.词语“堑堵”、“阳马”、“鳖臑”等出现自中国数学名著《九章算术・商功》,是古代人对一些特殊锥体的称呼.在《九章算术・商功》中,把四个面都是直角三角形的四面体称为“鳖臑”.现有如图所示的“鳖臑”四面体P ABC ,其中PA ⊥平面ABC ,2PA AC ==,BC =则四面体P ABC 的外接球的表面积为______.14.设空间向量,,i j k 是一组单位正交基底,若空间向量a 满足对任意的,,x y a xi y j --的最小值是2,则3a k +的最小值是_________.三、解答题15.如图,在三棱柱111ABC A B C 中,点D 是AB 的中点.(1)求证:1AC △平面1CDB .(2)若1AA ⊥平面ABC ,AC BC =,求证:CD ⊥平面11ABB A .16.如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH △平面BCD ;(2)BD △平面EFGH .17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,AC 与BD 交于点O ,E 为PB 的中点.(1)求证:EO平面PDC ;(2)求证:平面PAC ⊥平面PBD .18.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.参考答案与解析1.A【分析】根据空间直角坐标系的对称点坐标特点直接求解即可.【详解】解:因为点()1,2,1-,则其关于平面xOz 对称的点为()1,2,1--.故选:A.2.D【解析】求出(1,1,2)AB =--,(2,0,1)BC =-,利用与(1,,)n λμ=数量积为0,求解即可.【详解】(1,1,2)AB =--,(2,0,1)BC =-120n AB λμ⋅=-+-=20n BC μ⋅=-+=可得2μ=,5λ=,7λμ+=故选:D3.B【分析】利用空间向量的坐标运算求得B 的坐标.【详解】设O 为空间坐标原点,()()()3,1,02,5,35,4,3OB OA AB =+=-+-=-.故选:B4.B【分析】由直观图和原图的之间的关系,和直观图画法规则,还原OAB 是一个直角三角形,其中直角边6,4OA OB ==,直接求解其面积即可.【详解】解:由直观图画法规则,可得OAB 是一个直角三角形,其中直角边6,4OA OB ==, △11641222OAB S OA OB =⋅=⨯⨯=. 故选:B .5.C【分析】由题设知6m n =-,根据空间向量共线定理,即可判断平面α与平面β的位置关系. 【详解】平面α的一个法向量是1(2n =,1-,1)3,平面β的一个法向量是(3m =-,6,2)-, ∴6m n =-,∴平面α与平面β的关系是平行或重合.故选:C .6.D 【分析】由题意可得该圆柱底面圆的半径为92,圆柱的高为9,从而可求出其侧面积 【详解】由题意得,该圆柱底面圆的半径为92,圆柱的高为9, 所以该圆柱的侧面积为929812ππ⨯⨯=. 故选:D7.D【解析】根据向量OA 、OB 、OC 不能构成空间的一个基底知向量共面,即可得出结论.【详解】因为O 、A 、B 、C 为空间四点,且向量OA 、OB 、OC 不能构成空间的一个基底,所以OA 、OB 、OC 共面,所以O 、A 、B 、C 四点共面,故选:D8.B【分析】连接1AD ,AE ,得到11//AD BC ,把异面直线1D E 与1BC 所成角转化为直线1D E 与1AD 所成角,取1AD 的中点F ,在直角1D EF 中,即可求解.【详解】在正方体1111ABCD A B C D -中,连接1AD ,AE ,可得11//AD BC ,所以异面直线1D E 与1BC 所成角即为直线1D E 与1AD 所成角,即1AD E ∠为异面直线1D E 与1BC 所成角,不妨设12AA =,则1AD =1D E AE =取1AD 的中点F ,因为1D E AE =,所以1EF AD ⊥,在直角1D EF中,可得111cos D F AD E D E ∠==. 故选:B.9.C【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d =【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d =.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.10.D【分析】A 项反证法可得;B 项由平移法计算异面直线所成角;C 项由面面平行的判断和性质可得结果;D 项建立空间直角坐标系可得结果.【详解】对于选项A ,假设1AB ⊥面11A BC ,则111AB AC ⊥,这与已知1AB 与11A C 不垂直相矛盾,所以假设不成立.故选项A 错误; 对于选项B ,连接1DC ,1DA ,因为11AB DC ∥,所以11DC A ∠为异面直线1AB 与11A C 所成的角或补角,又因为△11AC D 为等边三角形,所以1160DC A ∠=︒,故选项B 错误;对于选项C ,因为11B D BD ∥,11AD BC ∥,由面面平行的判定定理可得平面11AB D ∥平面1BDC ,而平面1BQC 与平面1BDC 相交,所以平面11AB D 与平面1BC Q 也相交,故选项C 错误;对于选项D ,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,设正方体的棱长为1,则()0,0,0D ,()11,1,1B ,()0,1,0C ,11,,02P ⎛⎫ ⎪⎝⎭,可得()11,1,1DB =,()0,1,0DC =,11,,02DP ⎛⎫= ⎪⎝⎭,设平面1B CD 的法向量为()1,,n x y z =, 则11100n DB x y z n DC y ⎧⋅=++=⎪⎨⋅==⎪⎩,可取1x =,则0y =,1z =-,即()11,0,1n =-, 设平面1B DP 的法向量为()2,,b c n a =,则2120102n DB a b c n DP a b ⎧⋅=++=⎪⎨⋅=+=⎪⎩, 可取1a =,则2b =-,1c =,可得平面1B DP 的一个法向量为()21,2,1n =-,由121010n n ⋅=+-=,所以12n n ⊥,即平面1B CD ⊥平面1B DP ,故选项D 正确. 故选:D.11.135°【分析】首先根据题意将图画出,然后根据α=45°,AB △CD ,可得180BCD α︒∠=-,进而得出结论.【详解】解:如图,由题意知α=45°,AB △CD ,180135BCD α︒︒∴∠=-=,即135β︒=.故答案为:135°.【点睛】本题考查了平行线的性质,结合图会使问题变得简单,属于基础题.12.-1【分析】利用法向量的定义和向量共线的定理即可.【详解】直线l 的方向向量(),1,2m x =-,平面α的法向量()2,2,4n =--,直线l ⊥平面α, 必有//m n ,即向量m 与向量n 共线,m n λ∴= ,△11222x -==--,解得=1x -; 故答案为:-1.13.16π 【分析】确定外接球球心求得球半径后可得表面积.【详解】由于PA ⊥平面ABC ,因此PA 与底面上的直线,,AC AB BC 都垂直,从而AC 与AB 不可能垂直,否则PBC 是锐角三角形,由于<AC BC ,因此有AC BC ⊥, 而PA 与AC 是平面PAC 内两相交直线,则BC ⊥平面PAC ,PC ⊂平面PAC ,所以BC PC ⊥, 所以PB 的中点O 到,,,P A B C 四个点的距离相等,即为四面体P ABC 的外接球球心.2222222222216PB PA AB PA AC BC =+=++=++=,4PB =, 所以所求表面积为224()42162PB S πππ=⨯=⨯=. 故答案为:16π.14.1【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a 坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k 方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i =,()0,1,0j =,()0,0,1k = 设(),,a r s t = 则(a xi y j r x --=-当,r x s y ==时a xi y j --的最小值是2,2t ∴=±取(),,2a x y = 则()3,,5a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是5.取(),,2a x y =- 则()3,,1a k x y += 23a k x ∴+=+又因为,x y 是任意值,所以3a k +的最小值是1.故答案为:1.15.(1)证明见解析;(2)证明见解析.【分析】(1)连接1BC ,交1B C 于点E ,连接ED ,用中位线证明1ED AC ∥即可;(2)证明CD △AB ,CD △1AA 即可.【详解】(1)连接1BC ,交1B C 于点E ,连接.ED△111ABC A B C 是三棱柱,△四边形11BCC B 为平行四边形,△E 是1BC 的中点.△点D 是AB 的中点,△ED 是1ABC 的中位线,△1ED AC ∥,又ED ⊂平面1CDB ,1AC ⊄平面1CDB ,△1AC △平面1CDB .(2)△1AA ⊥平面ABC ,AB ⊂平面ABC ,△1AA AB ⊥,△AC BC =,AD BD =,△CD AB ⊥,△1AA AB A =,1,AA AB ⊂平面11ABB A ,△CD ⊥平面11ABB A .16.(1)见解析(2)见解析【分析】(1)推导出EH △BD ,由此能证明EH △平面BCD ;(2)由BD △EH ,由此能证明BD △平面EFGH .【详解】(1)△EH 为△ABD 的中位线,△EH △BD .△EH △平面BCD ,BD △平面BCD ,△EH △平面BCD ;(2)△FG 为△CBD 的中位线,△FG △BD ,△FG △EH ,△E 、F 、G 、H 四点共面,△BD △EH ,BD △平面EFGH ,EH △平面EFGH ,△BD △平面EFGH .【点睛】本题考查线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想,是中档题.17.(1)证明见解析(2)证明见解析【详解】(1)证明:△四边形ABCD 为正方形,△O 为BD 的中点,△E 为PB 的中点,△OE PD ∥,又△OE ⊄平面,PDC PD ⊂平面PDC ,△OE 平面PDC ;(2)证明:△四边形ABCD 为正方形,△AC BD ⊥,△PD ⊥平面ABCD ,且AC ⊂平面ABCD ,所以PD AC ⊥,又△,PD BD ⊂平面PBD ,且PD BD D ⋂=,△AC ⊥平面PBD ,又△AC ⊂平面PAC ,△平面PAC ⊥平面PDB .18.(1)证明见解析; 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥,因为OA ⊂平面ABD ,平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD .因为CD ⊂平面BCD ,所以OA CD ⊥.(2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=, 设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--. 又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD 112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG ∠为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =.由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCD BOC V S O S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒,记二面角E BC D --为θ.据题意,得45θ=︒.对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.△使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.△ 将△△两式平方后相加,可得223cos 2sin 14αα+=, 由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=, 根据三角形相似知,点G 为OD 的三等分点,即可得43BG =,结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD - 【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.。

(完整版)空间向量和立体几何典型例题

(完整版)空间向量和立体几何典型例题
∵PC 平面PCD,
∴PC⊥AB.
(Ⅱ)∵AC=BC,AP=BP,
∴△APC≌△BPC.
又PC⊥AC,
∴PC⊥BC.
又∠ACB=90°,即AC⊥BC,
且AC∩PC=C,
∴AB=BP,
∴BE⊥AP.
∵EC是BE在平面PAC内的射影,
∴CE⊥AP.
∴∠BEC是二面角B-AP-C的平面角.
在△BCE中,∠BCE=90°,BC=2,BE= ,
空间向量与立体几何典型例题
一、选择题:
1.(2008全国Ⅰ卷理)已知三棱柱 的侧棱与底面边长都相等, 在底面 内的射影为 的中心,则 与底面 所成角的正弦值等于(C)
A. B. C. D.
1.解:C.由题意知三棱锥 为正四面体,设棱长为 ,则 ,棱柱的高 (即点 到底面 的距离),故 与底面 所成角的正弦值为 .
(Ⅱ)连结BO,在直角梯形ABCD中、BC∥AD,AD=2AB=2BC,
有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,
所以OB∥DC.
由(Ⅰ)知,PO⊥OB,∠PBO为锐角,
所以∠PBO是异面直线PB与CD所成的角.
因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,
所以OB= ,
, ,
, .
是二面角 的平面角.
, , ,

二面角 的大小为 .
(Ⅲ) ,
在平面 内的射影为正 的中心 ,且 的长为点 到平面 的距离.
如(Ⅱ)建立空间直角坐标系 .

点 的坐标为 . .
点 到平面 的距离为 .
5.(2008福建文)如图,在四棱锥中,侧面PAD⊥底面ABCD,侧棱PA=PD= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥CD,AD=2AB=2BC=2,O为AD中点。(1)求证:PO⊥平面ABCD;

第二章空间向量与立体几何中线面角问题

第二章空间向量与立体几何中线面角问题

第二章空间向量与立体几何中线面角问题一、解答题1.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=︒,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ⊥平面BDP ;(2)若6BD =,且二面角A BD C --为120︒,求直线AD 与平面BCD 所成角的正弦值.2.如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值.3.如图所示,已知点P 在正方体ABCD-A′B′C′D′的对角线BD′上,∠PDA=60°.(1)求DP 与CC′所成角的大小.(2)求DP 与平面AA′D′D 所成角的大小.4.如图,四棱锥S ABCD -中,ABS 是正三角形,四边形ABCD 是菱形,点E 是BS 的中点.(I )求证:SD // 平面ACE ;(II )若平面ABS ⊥平面ABCD ,120ABC ∠=︒, 求直线AC 与平面ADS 所成角的正弦值.5.如图,直棱柱111ABC A B C -的底面△ABC 中,1CA CB == ,90ACB ∠=︒ ,棱12AA =,如图,以C 为原点,分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系.(1)求平面11A B C 的法向量;(2)求直线AC 与平面11A B C 夹角的正弦值.6.如图,四棱锥P ABCD -中,PAB ∆为正三角形,ABCD 为正方形,平面PAB ⊥平面ABCD ,E 、F 分别为AC 、BP 中点.(1)证明://EF 平面PCD ;(2)求直线BP 与平面PAC 所成角的正弦值.7.在直三棱柱ABC ﹣A 1B 1C 1中,AB ⊥AC ,AB=AC=2,A 1A=4,点D 是BC 的中点;(I )求异面直线A 1B ,AC 1所成角的余弦值;(II )求直线AB 1与平面C 1AD 所成角的正弦值.8.如图1,45ACB ∠=,3BC =,过动点A 作AD BC ⊥,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使90BDC ∠=(如图2所示).(1)当BD 的长为多少时,三棱锥A BCD -的体积最大;(2)当三棱锥A BCD -的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.9.已知长方体1111ABCD A B C D -中,2AD AB ==,11AA =,E 为11D C 的中点. (1)证明1//BD 平面1B EC ;(2)求直线1AD 与平面1B EC 所成角的正弦值.10.如图,在四棱锥E ABCD -中,底面ABCD 为菱形,BE ⊥平面ABCD ,G 为AC 与BD 的交点.(1)证明:平面AEC ⊥平面BED ;(2)若60BAD ∠=︒,AE EC ⊥,求直线EG 与平面EDC 所成角的正弦值.参考答案1.(1)见解析(2)22 【分析】 (1)由ABC 是等边三角形,90BAD BCD ∠=∠=︒,得AD CD =.再证明PD AC ⊥,PB AC ⊥,从而和证明AC ⊥平面PBD ,故平面ACD ⊥平面BDP 得证. (2)作CE BD ⊥,垂足为E 连接AE .由Rt Rt ABD CBD ⊆,证得,AE BD ⊥,AE CE =结合二面角A BD C --为120︒,可得2AB =,23AE =,6ED =.建立空间直角坐标系,求出点的坐标则60,,03D ⎛⎫ ⎪ ⎪⎝⎭,3,0,13A ⎛⎫- ⎪ ⎪⎝⎭,向量36,,133AD ⎛⎫=- ⎪ ⎪⎝⎭,即平面BCD 的一个法向量(0,0,1)m =,运用公式cos ,m AD m AD m AD ⋅〈〉=和sin cos ,m AD θ=〈〉,即可得出直线AD与平面BCD 所成角的正弦值.【详解】 解:(1)证明:因为ABC 是等边三角形,90BAD BCD ∠=∠=︒,所以Rt Rt ABD CBD ≅,可得AD CD =.因为点P 是AC 的中点,则PD AC ⊥,PB AC ⊥,因为PD PB P =,PD ⊂平面PBD ,PB ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDP .(2)如图,作CE BD ⊥,垂足为E 连接AE .因为Rt Rt ABD CBD ⊆,所以,AE BD ⊥,AE CE =AEC ∠为二面角A-BD-C 的平面角.由已知二面角A BD C --为120︒,知120AEC ∠=︒.在等腰三角形AEC 中,由余弦定理可得AC =.因为ABC 是等边三角形,则AC AB =,所以AB =.在Rt △ABD 中,有1122AE BD AB AD ⋅=⋅,得BD =,因为BD =所以AD =. 又222BD AB AD =+,所以2AB =.则AE =,ED = 以E 为坐标原点,以向量,EC ED 的方向分别为x 轴,y 轴的正方向,以过点E 垂直于平面BCD 的直线为z 轴,建立空间直角坐标系E xyz -,则D ⎛⎫ ⎪ ⎪⎝⎭,A ⎛⎫ ⎪ ⎪⎝⎭,向量31AD ⎛⎫=- ⎪ ⎪⎝⎭,平面BCD 的一个法向量为(0,0,1)m =, 设直线AD 与平面BCD 所成的角为θ,则cos ,2m ADm AD m AD ⋅〈〉===,2sin |cos ,|2m AD θ=〈〉=所以直线AD 与平面BCD 所成角的正弦值为2. 【点睛】本题考查面面垂直的证明和线面所成角的大小,考查空间想象力和是数形结合的能力,属于基础题.2.(1)见解析(2 【分析】 要证线面平行,先证线线平行建系,利用法向量求解。

专题29 空间向量与立体几何(解答题)(新高考地区专用)(解析版)

专题29 空间向量与立体几何(解答题)(新高考地区专用)(解析版)

专题29 空间向量与立体几何(解答题)1.如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PC AC ⊥,BC AC ⊥,2AC PC ==,4CB =,M 是PA 的中点.(1)求证:PA ⊥平面MBC ;(2)设点N 是PB 的中点,求二面角N MC B --的余弦值.【试题来源】陕西省咸阳市2020-2021学年高三上学期高考模拟检测(一)(理)【答案】(1)证明见解析;(2)3. 【解析】(1)平面PAC ⊥平面ABC ,平面PAC平面ABC =AC ,BC ⊂平面ABC ,BC AC ⊥,所以BC ⊥平面PAC ,因为PA ⊂平面PAC ,所以BC PA ⊥,因为AC PC =,M 是PA 的中点,所以CM PA ⊥, 因为CMBC C =,,CM BC ⊂平面MBC ,所以PA ⊥平面MBC .(2)因为平面PAC ⊥平面ABC ,平面PAC平面ABC =AC ,PC ⊂平面PAC ,PC AC ⊥,所以PC ⊥平面ABC ,因为BC ⊂平面ABC ,所以PC BC ⊥,以C 为原点,CA ,CB ,CP 为x ,y ,z 轴正方向,建立如图所示的空间直角坐标系,(2,0,0)A ,(0,4,0)B ,(0,0,0)C ,(0,0,2)P ,(1,0,1)M ,(0,2,1)N ,则(1,0,1)CM =,(0,2,1)CN =,(2,0,2)PA =-,由(1)知(2,0,2)PA =-是平面MBC 的一个法向量,设(,,)n x y z =是平面MNC 的法向量,则有00CM n CN n ⎧⋅=⎨⋅=⎩,即020x z y z +=⎧⎨+=⎩,令1y =,则2z =-,2x =,所以(2,1,2)n =-,设二面角N MC B --所成角为θ,由图可得θ为锐角,则2cos cos ,||||PA n PA n PA n θ⋅⨯=<>===【名师点睛】解题的关键是熟练掌握面面垂直的性质定理,线面垂直的判定和性质定理,并灵活应用,处理二面角或点到平面距离时,常用向量法求解,建立适当的坐标系,求得所需点的坐标及向量坐标,求得法向量坐标,代入夹角或距离公式,即可求得答案. 2.在四棱锥P ABCD -中,PAB △为直角三角形,90APB ∠=︒且12PA AB CD ==,四边形ABCD 为直角梯形,//AB CD 且DAB ∠为直角,E 为AB 的中点,F 为PE 的四等分点且14EF EP =,M 为AC 中点且MF PE ⊥.(1)证明:AD ⊥平面ABP ;(2)设二面角A PC E --的大小为α,求α的取值范围. 【试题来源】山东省德州市2020-2021学年高三上学期期末 【答案】(1)证明见解析;(2),32ππα【解析】(1)取PE 的中点N ,连接AN ,DN ,CE ,如图所示:因为12AE AB =,12AP AB =,所以AP AE =,AN PE ⊥.因为四边形ABCD 为直角梯形,且90DAB ∠=︒,12CD AB =, 所以四边形AECD 为正方形,即M 为DE 的中点. 因为14EF EP =,N 为PE 的中点,所以F 为EN 的中点.所以//MF DN . 因为MF PE ⊥,所以DN PE ⊥.所以PE DN PE ANPE DN AN N ⊥⎧⎪⊥⇒⊥⎨⎪⋂=⎩平面ADN . 因为DA ⊂平面ADN ,所以PE DA ⊥.所以DA AB DA PEDA PE AB E ⊥⎧⎪⊥⇒⊥⎨⎪⋂=⎩平面ABP . (2)以A 为原点,AB ,AD 分别为y ,z 轴,垂直AB 的直线为x 轴,建立空间直角坐标系,如图所示:设AD a =,1PA CD ==,2AB =,则()0,0,0A,1,02P ⎫⎪⎪⎝⎭,()0,1,0E ,()0,1,C a . 31,02AP ⎛⎫= ⎪ ⎪⎝⎭,()0,1,AC a =,1,02PE ⎛⎫=- ⎪ ⎪⎝⎭,()0,0,CE a =-. 设平面PAC 的法向量()111,,n x y z =,则1111310220AP n x yAC n y az ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令1y =,解得11x =,1z =,故1,3,n⎛=- ⎝⎭. 设平面PEC 的法向量()222,,m x y z =,则222310220PE mx y CE m az ⎧⋅=-+=⎪⎨⎪⋅=-=⎩,令2y =21x =,20z =,故()1,3,0m =.由图知,二面角A PC E --的平面角α为锐角,所以11cos 0,2α-⎛⎫==⎪⎝⎭.故,32ππα.3.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD BC ∥,112BC AD ==且CD =E 为AD 的中点,F 是棱PA 的中点,2PA =,PE ⊥底面ABCD .AD CD ⊥(1)证明://BF平面PCD ; (2)求二面角P BD F --的正弦值;(3)在线段PC (不含端点)上是否存在一点M ,使得直线BM 和平面BDF 所成角的正弦值为13?若存在,求出此时PM 的长;若不存在,说明理由. 【试题来源】天津市滨海七校2020-2021学年高三上学期期末联考 【答案】(1)证明见解析;(2(3)存在,7PM = 【解析】(1)由题意得//BC DE ,=BC DE ,90ADC ∠=︒,所以四边形BCDE 为矩形, 又PE ⊥面ABCD ,如图建立空间直角坐标系E xyz -,则()0,0,0E ,()1,0,0A,()B ,()1,0,0D -,(P ,()C -,1,0,22F ⎛ ⎝⎭,设平面PCD的法向量为(),,m x y z=,()0,DC =,(DP =则00DC m DP m ⎧⋅=⎨⋅=⎩,则0x ==⎪⎩,则0y =,不妨设x =1z =,可得()3,0,1m =-,又1,22BF ⎛⎫= ⎪ ⎪⎝⎭,可得0BF m ⋅=,因为直线BF ⊄平面BCD ,所以//BF 平面BCD .(2)设平面PBD 的法向量为()1111,,x n y z =,()1,DB =,(0,BP =,则1100DB n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即111100x ⎧+=⎪⎨+=⎪⎩,不妨设x =()13,1,1n =--,设平面BDF 的法向量为()2222,,n xy z =,32DF ⎛= ⎝⎭,则2200DB n DF n ⎧⋅=⎪⎨⋅=⎪⎩,即222203022x x z ⎧+=⎪⎨+=⎪⎩,不妨设2x =,可得()2n =-,因此有121212cos ,65n n n n n n ⋅==-⋅,(注:结果正负取决于法向量方向) 于是21212465sin ,1cos ,n n n n =-=,所以二面角P BD F --.(3)设((),PM PC λλλ==-=-,()0,1λ∈(),BM BP PM λ=+=-,由(2)可知平面BDF 的法向量为()23,1,3n =-,2223cos ,BM n BM n BM n⋅===⋅,有23410λλ-+=,解得1λ=(舍)或13λ=, 可得1,333PM ⎛=-- ⎝⎭,所以73PM =. 4.在四棱锥P ABCD -中,PA ⊥平面ABCD ,PA =//DC AB ,90DAB ∠=︒,3AB =,2AD CD ==,M 是棱PD 的中点.(1)求异面直线DP 与BC 所成的角的余弦值; (2)求AM 与平面PBC 所成的角的大小;(3)在棱PB 上是否存在点Q ,使得平面QAD 与平面ABCD 所成的锐二面角的大小为60°?若存在,求出AQ 的长;若不存在,说明理由.【试题来源】天津市南开中学2020-2021学年高三上学期第四次月考 【答案】(1;(2)45︒;(3)125. 【解析】如图,以,,AD AB AP 所在直线分别为,,x y z 轴建立如图所示空间直角坐标系,则(()()()()(,0,0,0,3,0,0,2,2,0,0,2,0,P A B C D M ,(1)(0,DP =-,()1,2,0BC =-,所以cos,DP BC==,即异面直线DP与BC(2)(AM=,(3,0,PB=-,()1,2,0BC=-设平面PBC的法向量(),,m x y z=,则mPBm BC⎧⋅=⎨⋅=⎩,3020xx y⎧-=⎪⎨-+=⎪⎩,所以可取(m=,设AM与平面PBC所成的角为θ,则sin cos,AM mθ===,所以AM与平面PBC所成的角为45︒;(3)平面ABCD的法向量可取()10,0,1n=,设(()3,0,3,0,PQ PBλλλ==-=-,则()3Qλ,所以()3AQλ=,()0,2,0AD =,设平面QAD的法向量为()2222,,n x y z=,则22nAQn AD⎧⋅=⎪⎨⋅=⎪⎩,()2223020x zyλ⎧+=⎪⎨=⎪⎩,可取()223,0,3nλ=-,因为平面QAD与平面ABCD所成的锐二面角的大小为60°.所以121cos,2n n=,12=,解得25λ=或2λ=-(舍)所以6,0,55AQ⎛=⎝⎭,所以61255AQ⎛==5.如图,在正四面体A BCD-中,点E,F分别是,ABBC的中点,点G,H分别在,CD AD 上,且14DH AD=,14DG CD=.(1)求证:直线,EH FG 必相交于一点,且这个交点在直线BD 上; (2)求直线AB 与平面EFGH 所成角的正弦值.【试题来源】陕西省榆林市2020-2021学年高三上学期第一次高考模拟测试(理) 【答案】(1)证明见解析;(2. 【解析】(1)因为//,//EF AC GH AC ,11=,=24EF AC GH AC ,所以//GH EF 且12GH EF =,故E ,F ,G ,H 四点共面,且直线,EH FG 必相交于一点,设=EH FG M ,因为,∈M EH EH平面ABD ,所以M ∈平面ABD ,同理:M ∈平面BCD ,而平面ABD ⋂平面BCD BD =,故M ∈平面BCD ,即直线,EH FG 必相交于一点,且这个交点在直线BD 上; (2)取BD 的中点O ,则,⊥⊥BD OA BD OC ,所以BD ⊥平面AOC ,不妨设OD =,则BD AC ==12AO CO ==, 所以1441441921cos 212123+-∠==⨯⨯AOC ,以O 为坐标原点建立如图所示的空间直角坐标系,则(0,(12,0,0),(6,--A B C F G ,故=BA ,(=-FG ,(8,0,=-AC ,(4,0,=-EF ,设平面EFGH 的法向量为(,,)n x y z =,由00n EF n FG ⎧⋅=⎨⋅=⎩可得50y x ⎧+=⎪⎨-=⎪⎩,令x =,则(52,=n ,则182cos ,3||||92⋅<>===⨯BA n BA n BA n ,故直线AB 与平面EFGH . 6.如图,已知四边形ABCD 为菱形,对角线AC 与BD 相交于O ,60BAD ∠=︒,平面ADEF平面BCEF =直线EF ,FO ⊥平面ABCD ,22BC CE DE EF ====(1)求证://EF DA ;(2)求二面角A EF B --的余弦值.【试题来源】江西省五市九校协作体2021届高三第一次联考 【答案】(1)证明见解析;(2)35. 【解析】(1)因为四边形ABCD 为菱形,所以//AD BC ,AD ⊄平面BCEF ,BC ⊂平面BCEF ,//AD ∴平面BCEF ,因为平面ADEF平面BCEF =直线,EF AD ⊂平面ADEF ,所以//EF AD ;(2)因为四边形ABCD 为菱形,所以AC BD ⊥,因为OF ⊥平面ABCD ,所以以O 为坐标原点、OA ,OB ,OF 为x ,y ,z 轴建立空间直角坐标系,取CD 中点M ,连EM ,OM ,60BAD ︒∠=,21BC OA OC OB OD =∴====,2BC CD CE DE CDE ====∴为正三角形,EM =11//,=,//,=22OM BC OM BC EF BC EF BC,//,=//,=EF OM EF OM OF EM OF EM∴∴,从而1(0,1,0),((0,1,0),(22A B C D E---,设平面ADEF一个法向量为(,,)m x y z=,则m DAm DE⎧⋅=⎨⋅=⎩,即12yx y⎧+=⎪⎨+=⎪⎩,令11,(1,x y z m=∴===-,设平面BCEF一个法向量为(,,)n x y z=,则n BCn EC⎧⋅=⎨⋅=⎩,即122yx y⎧-=⎪⎨-+-=⎪⎩,令11,(1,3,1)x y z n=∴==-=--,3cos,5|||,|m nm nm n⋅∴<>==,因此二面角A EF B--的余弦值为35.7.如图,在四棱锥P ABCD-中,90BAD∠=,//AD BC,PA AD⊥,PA AB⊥,122PA AB BC AD====.(1)求证://BC平面PAD;(2)求平面PAB与平面PCD所成锐二面角的余弦值.【试题来源】北京房山区2021届高三上学期数学期末试题【答案】(1)证明见解析;(2【解析】(1)解法1.因为//BC AD,BC⊄平面PAD,AD⊂平面PAD,所以//BC平面PAD,解法2.因为PA AD⊥,PA AB⊥,AD AB⊥,所以以A为坐标原点,,,AB AD AP所在直线分别为x轴、y轴、z轴,建立如图所示空间直角坐标系A xyz-,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C ,平面PAD 的法向量为(1,0,0)t , (0,2,0)BC = ,因为 0120000t BC ⋅=⨯+⨯+⨯= ,BC ⊄平面PAD ,所以//BC 平面PAD ; (2)因为PA AD ⊥,PA AB ⊥AD AB ⊥,所以以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C所以平面PAB 的法向量为(0,1,0)n = , 设平面PCD 的法向量为(,,)m x y z =, (2,2,2)PC =-,(0,4,2)PD =- ,所以2220042020x y z x y m PC m PC y z z y m PD m PD ⎧⎧+-==⎧⎧⊥⋅=⇒⇒⇒⎨⎨⎨⎨-==⊥⋅=⎩⎩⎩⎩,令1(1,1,2)y m ==得 ,cos ,1n mn m n m ⋅<>===⨯,设平面PAB 与平面PCD 所成角为θθ,为锐角, 所以cos θ=. 8.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,3BAD π∠=,E 是线段AD 的中点,连结BE .(1)求证:BE PA ⊥;(2)求二面角A PD C --的余弦值;(3)在线段PB 上是否存在点F ,使得//EF 平面PCD ?若存在,求出PF PB 的值;若不存在,说明理由.【试题来源】北京市朝阳区2021届高三上学期期末数学质量检测试题【答案】(1)证明见解析;(2)7-;(3)存在;12PF PB =. 【解析】(1)因为四边形ABCD 为菱形,所以AB AD =.因为3BAD π∠=,E 为AD 的中点,所以BE AD ⊥. 因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,所以BE ⊥平面PAD . 因为PA ⊂平面PAD ,所以BE PA ⊥.(2)连结PE .因为PA PD =,E 为AD 的中点,所以PE AD ⊥.由(1)可知BE ⊥平面PAD ,所以BE AD ⊥,PE BE ⊥.设2AD a =,则PE a =.如图,建立空间直角坐标系E xyz -.所以(,0,0),,0),(2,0),(,0,0),(0,0,)A a B C a D a P a --.所以),0(D C a =-,(,0,)D a P a =.因为BE ⊥平面PAD ,所以(0,,0)EB =是平面PAD 的一个法向量.设平面PCD 的法向量为(,,)x y z =n ,则00n DC n DP ⎧⋅=⎨⋅=⎩,即00ax ax az ⎧-+=⎪⎨+=⎪⎩,所以,.x x z ⎧=⎪⎨=-⎪⎩令3x =,则1y =,z =(3,1,n =.所以cos ,||||7n EB n EB n EB ⋅===.由题知,二面角A PD C --为钝角,所以其余弦值为- (3)当点F 是线段PB 的中点时,//EF 平面PCD .理由如下: 因为点E ∈/平面PCD ,所以在线段PB 上存在点F 使得//EF 平面PCD 等价于0EF ⋅=n .假设线段PB 上存在点F 使得//EF 平面PCD .设([0,1])PF PBλλ=∈,则PF PB λ=.所以(0,0,),),)EF EP PF EP PB a a a a a λλλ=+=+=+-=-.由)0EF a a a λ⋅=-=n ,得12λ=. 所以当点F 是线段PB 的中点时,//EF 平面PCD ,且12PF PB =. 9.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,4PD =,底面ABCD 是边长为2的正方形,E ,F 分别为PB ,PC 的中点.(1)求证:平面ADE ⊥平面PCD ;(2)求直线BF 与平面ADE 所成角的正弦值.【试题来源】北京市东城区2021届高三上学期期末考试【答案】(1)证明见解析;(2)15. 【解析】(1)因为PD ⊥平面ABCD ,所以PD AD ⊥.因为底面ABCD 是正方形,所以AD CD ⊥.因为PD CD D ⋂=,所以AD ⊥平面PCD .因为AD ⊂平面ADE ,所以平面ADE ⊥平面PCD .(2)因为PD ⊥底面ABCD ,所以PD AD ⊥,PD CD ⊥.因为底面ABCD 是正方形,所以AD CD ⊥.如图建立空间直角坐标系D xyz -.因为4PD =,底面ABCD 为边长为2的正方形,所以()0,0,4P ,()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,0,0D ,()1,1,2E ,()0,1,2F . 则()2,0,0DA =,()1,1,2DE =,()2,1,2BF =--.设平面ADE 的法向量(),,m x y z =,由00m DA m DE ⎧⋅=⎨⋅=⎩,可得2020x x y z =⎧⎨++=⎩. 令1z =-,则0x =,2y =.所以()0,2,1m =-.设直线BF 与平面ADE 所成角为θ,则,sincos ,9BF mBF m BF m θ====.所以直线BF 与平面ADE . 【名师点睛】本题考查了面面垂直的判定,核心是要求面面垂直,先考虑线面垂直;同时也考查了线面角的计算方法,核心是要求正弦值,先求余弦值.10.如图,已知11ABB A 是圆柱1OO 的轴截面,O 、1O 分别是两底面的圆心,C 是弧AB 上的一点,30ABC ∠=,圆柱的体积和侧面积均为4π.(1)求证:平面1ACA ⊥平面1BCB ;(2)求二面角11B A B C --的大小.【试题来源】江西省吉安市2021届高三大联考数学(理)(3-2)试题【答案】(1)证明见解析 ;(2)60 .【解析】(1)因为1AA 是圆柱的母线,所以1AA ⊥平面ABC ,因为BC ⊂平面ABC , 所以1AA BC ⊥,又C 是弧AB 上的一点,且AB 是圆O 的直径,所以AC BC ⊥,因为1AA AC A =,所以BC ⊥平面1ACA ,又BC ⊂平面1BCB ,所以平面1ACA ⊥平面1BCB ;(2)设圆柱的底面半径为r ,母线长为l ,因为圆柱的体积和侧面积均为4π,所以2244rl r l ππππ=⎧⎨=⎩,解得,2r ,1l =,即4AB =,11AA =,因为30ABC ∠=,所以2AC =,BC =设圆柱过C 点的母线为CD ,以C 为原点,CA ,CB ,CD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -,如图所示;则()0,0,0C ,()B ,()12,0,1A ,()1B ;所以()12,0,1CA =,()10,CB =,()12,BA =-,()10,0,1BB = 设平面11CA B 的法向量为(),,n x y z =,由1120000x z n CA n CB z ⎧+=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩,取z =x =1y =-,所以平面11CA B的一个法向量为(3,n =--, 设平面11BA B 的法向量为(),,m a b c=,由1102000m BA a c m BB c ⎧⎧⋅=-+=⎪⎪⇒⎨⎨⋅==⎪⎪⎩⎩, 取1b =,则a =0c ,所以平面11BA B 的一个法向量为()3,1,0m =, 所以1cos ,23n mm n n m ⋅===-+⋅, 由图中可看出二面角11B A B C --是锐角,故二面角11B A B C --的值为60.【名师点睛】证明面面垂直的方法:(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可; (2)利用性质://,αββγαγ⊥⇒⊥(客观题常用);(3)面面垂直的定义(不常用); (4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.11.如图1,正方形ABCD ,边长为a,,E F 分别为,AD CD 中点,现将正方形沿对角线AC 折起,折起过程中D 点位置记为T ,如图2.(1)求证:EF TB ⊥;(2)当60TAB ︒∠=时,求平面ABC 与平面BEF 所成二面角的余弦值.【试题来源】安徽省黄山市2020-2021学年高三上学期第一次质量检测(理)【答案】(1)证明见解析;(2. 【解析】(1)取AC 中点O ,连,,OT OB BT ,因为ABCD 为正方形,所以,AC OT AC OB ⊥⊥,又OT OB O ⋂=,所以AC ⊥平面OBT ,而TB ⊂平面OBT ,所以AC TB ⊥. 又,E F 分别为,AD CD 中点,所以//EF AC ,所以EF TB ⊥;(2)因为60TAB ︒∠=,所以TAB △为等边三角形,TB a =,又2OT OB a ==,所以222TB OB OT =+,即OT OB ⊥. 如图建立空间直角坐标系O xyz -,则,0,0,0,,B E F ⎫⎛⎛⎪ ⎝⎭⎝⎭⎝⎭,220,,0,,,2244EF a EB a ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭,平面ABC 法向量(0,0,1)m =设平面BEF 法向量(,,1)x n y =,由00n EF n EB ⎧⋅=⎨⋅=⎩,00244y ay =⎧+-=⎩,012y x =⎧⎪⎨=⎪⎩,1,0,1,cos ,2||||11mn n m n m n ⋅⎛⎫=<>=== ⎪⋅⎝⎭⋅, 记平面ABC 与平面BEF 所成二面角为θ,则θ为锐角,所以cos 5θ=即平面ABC 与平面BEF . 12.如图所示,四棱柱1111ABCD A B C D -的底面是菱形,侧棱垂直于底面,点E ,F 分别在棱1AA ,1CC 上,且满足113AE AA =,113CF CC =,平面BEF 与平面ABC 的交线为l .(1)证明:直线l ⊥平面1BDD ;(2)已知2EF =,14BD =,设BF 与平面1BDD 所成的角为θ,求sin θ的取值范围.【试题来源】海南省2021届高三年级第二次模拟考试【答案】(1)证明见解析;(2)35⎫⎪⎪⎝⎭.【解析】(1)如图,连接AC ,与BD 交于点O .由条件可知//AE CF ,且AE CF =,所以//AC EF ,因为EF ⊂平面BEF ,所以//AC 平面BEF .因为平面BEF 平面ABC l =,所以//AC l . 因为四棱柱1111ABCD A B C D -的底面是菱形,且侧棱垂直于底面,所以AC BD ⊥,1AC BB ⊥,又1BD BB B ⋂=,所以AC ⊥平面1BDD ,所以l ⊥平面1BDD .(2)如图所示,以O 为坐标原点,分别以OB ,OC 的方向为x ,y 轴的正方向建立空间直角坐标系.设2BD a =,因为1BD BD <,所以02a <<.则OB a =,1DD ==所以(,0,0)B a ,(0,1,0)C,F ⎛ ⎝. 由(1)可知(0,1,0)OC =是平面1BDD的一个法向量,而BF a ⎛=- ⎝, 所以sin cos ,OC BF OC BF OC BF θ⋅=<>===当02a <<35<<,即3sin 5θ⎫∈⎪⎪⎝⎭.【名师点睛】求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.13.在三棱柱111ABC A B C -中,1AB AC ==,1AA =AB AC ⊥,1B C ⊥平面ABC ,E 是1B C 的中点.(1)求证:平面1AB C ⊥平面11ABB A ;(2)求直线AE 与平面11AAC C 所成角的正弦值.【试题来源】浙江省宁波市2020-2021学年高三上学期期末【答案】(1)证明见解析;(2【解析】(1)由1B C ⊥平面ABC ,AB平面ABC ,得1AB B C ⊥, 又AB AC ⊥,1CB AC C =,故AB ⊥平面1AB C , AB 平面11ABB A ,故平面11ABB A ⊥平面1AB C .(2)以C 为原点,CA 为x 轴,1CB 为z 轴,建立如图所示空间直角坐标系, 则()0,0,0C ,()1,0,0A ,()1,1,0B,又BC =11BB AA == 故11CB =,()10,0,1B ,10,0,2E ⎛⎫ ⎪⎝⎭,()1,0,0CA =, ()111,1,1AA BB ==--,11,0,2AE ⎛⎫=- ⎪⎝⎭,设平面11AAC C 的一个法向量为(),,n x y z =,则100n CA n AA ⎧⋅=⎪⎨⋅=⎪⎩,即00x x y z =⎧⎨--+=⎩,令1y =,则1z =, ()0,1,1n =, 设直线AE 与平面11AAC C 所成的角为θ,故1sin 102nAEn AE θ⋅===,即直线AE 与平面11AAC C14.如图,在平面四边形PABC 中,PA AC ⊥,AB BC ⊥,PA AB ==,2AC =,现把PAC △沿AC 折起,使P 在平面ABC 上的射影为O ,连接OA 、OB ,且OB//AC .(1)证明:OB ⊥平面PAO ;(2)求二面角O PB C --的余弦值.【试题来源】安徽省六安市示范高中2020-2021学年高三上学期教学质量检测(理)【答案】(1)证明见解析;(2) 【解析】(1)PO ⊥平面ABC ,AC ⊂平面ABC ,PO AC ∴⊥,又PA AC ⊥,PAPO P =,所以AC ⊥平面PAO , //OB AC ,所以OB ⊥平面PAO ;(2)在Rt ABC 中,AB =2AC =,则1BC ==,30BAC ∴∠=,在Rt OAB 中,903060OAB ∠=-=,所以12OA AB ==,32OB =,Rt PAO 中,PA =AO =32OP ∴==, 以点O 为坐标原点,OB 、OA 、OP 所在直线分别为x 、y 、z 轴建立空间直角坐标系O xyz -,则0,,02A ⎛⎫ ⎪ ⎪⎝⎭、,02C ⎛⎫ ⎪ ⎪⎝⎭、3,0,02B ⎛⎫ ⎪⎝⎭、30,0,2P ⎛⎫ ⎪⎝⎭,所以33,0,22PB ⎛⎫=- ⎪⎝⎭,32PC ⎛⎫=- ⎪ ⎪⎝⎭,由(1)可知()0,1,0m =为平面POB 的一个法向量,设平面平PBC 的法向量为(),,n x y z =,则有330223202x z x y z ⎧-=⎪⎪⎨⎪-=⎪⎩y x z x ⎧=⎪⇒⎨⎪=⎩,取x =(3,n =-,cos ,717m n m n m n ⋅===-⋅⨯, 由图可知,二面角O PB C --为钝角,所以,二面角O PB C --的余弦值为7-. 15.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,//,90BC AD ADC ∠=︒,11,2BC CD AD E ===为线段AD 的中点,过BE 的平面与线段,PD PC 分别交于点,G F .(1)求证:GF ⊥平面PAD ;(2)若PA PD ==G为PD 的中点,求平面PAB 与平面BEGF所成锐二面角的余弦值.【试题来源】安徽省名校2020-2021学年高三上学期期末联考(理)【答案】(1)证明见解析;(2.【解析】证明:(1)因为12BC AD =,且E 为线段AD 的中点,所以BC DE =, 因为//BC AD ,所以四边形BCDE 为平行四边形,所以//BE CD ,因为CD ⊂平面,PCD BE ⊂/平面PCD ,所以//BE 平面PCD ,又平面BEGF ⋂平面PCD GF =,所以//BE GF ,又BE AD ⊥,且平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =, 所以BE ⊥平面PAD ,所以GF ⊥平面PAD ;(2)因为,PA PD E =为线段AD 的中点,所以PE AD ⊥,‘’因为平面PAD ⊥平面ABCD ,所以PE ⊥平面ABCD ,以E 为坐标原点,EA 的方向为x 轴正方向建立如图所示的空间直角坐标系E xyz -;则11(0,0,1),(1,0,0),(0,1,0),(0,0,0),(1,0,0),,0,22P A B E D G ⎛⎫--⎪⎝⎭, 则11(1,0,1),(0,1,1),(0,1,0),(1,0,1),,0,22PA PB BE DP EG ⎛⎫=-=-=-==- ⎪⎝⎭, 设平面PAB 的法向量为()111,,m x y z =,则0{0PA m PB m ⋅=⋅=,,,即11110,0x z y z -=⎧⎨-=⎩, 不妨令11x =,可得(1,1,1)n =为平面BEGF 的一个法向量,设平面BEGF 的法向量为()222,,n x y z =,则0{0BE n EG n ⋅=⋅=,,,即222011022y x z =⎧⎪⎨-+=⎪⎩,,不妨令21x =,可得(1,0,1)n =为平面BEGF 的一个法向量,设平面PAB 与平面BEGF 所成的锐二面角为α,于是有2cos |cos ,|32m n α=〈〉==; 所以平面PAB 与平面BEGF .16.如图所示,在四棱锥S ABCD -中,底面ABCD 是正方形,对角线AC 与BD 交于点F ,侧面SBC 是边长为2的等边三角形,点E 在棱BS 上.(1)若//SD 平面AEC ,求SE EB的值; (2)若平面SBC ⊥平面ABCD ,求二面角B AS C --的余弦值.【试题来源】江苏省G4(苏州中学、常州中学、盐城中学、扬州中学)2020-2021学年高三上学期期末联考【答案】(1)1;(2. 【解析】(1)连结EF ,因为//SD 平面AEC ,SD ⊂平面BSD ,平面BSD ⋂平面AEC EF =,所以//SD EF .因为底面ABCD 是正方形,F 为AC 中点,所以EF 是SD 的中位线,则1SE EB=. (2)取BC 的中点为O ,AD 的中点为M ,连结MO ,则MO BC ⊥, 因为平面SBC ⊥平面ABCD ,平面SBC平面ABCD BC =,OM ⊂平面ABCD , 所以OM ⊥平面SBC .又OS BC ⊥,所以O 为坐标原点.以{},,OS OC OM 为正交基底建立空间直角坐标系O xyz -.则()0,1,2A -,()010B -,,,()0,1,0C,)S,1,022E ⎛⎫- ⎪ ⎪⎝⎭,从而()SC =-,()0,2,2AC =-,()0,0,2AB =-,()3,1,2AS =-. 设平面ASC 的法向量为(),,m x y z =, 则0,0.m SC m AC ⎧⋅=⎪⎨⋅=⎪⎩,即0,0.y y z ⎧+=⎪⎨-=⎪⎩取1x =,则y =z = 所以平面ASC的一个法向量为(1,3,m =.设平面ASB 的法向量为(),,n x y z =, 则0,0.n AB n AS ⎧⋅=⎪⎨⋅=⎪⎩,即20,20.z y z -=⎧⎪+-=取y =1x =-,0z =. 所以平面ASB 的一个法向量为()1,3,0n =-.所以7cos ,7m n m n m n ⋅〈〉==. 因为二面角B AS C --的平面角为锐角,所以二面角B AS C --的余弦值为7. 【名师点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设,m n 分别为平面α,β的法向量,则二面角θ与,m n <>互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.17.在三棱锥P ABC -中,底面ABC 为正三角形,平面PBC ⊥平面,1,ABC PB PC D ==为AP 上一点,2,AD DP O =为三角形ABC 的中心.(1)求证:AC ⊥平面OBD ;(2)若直线PA 与平面ABC 所成的角为45︒,求二面角A BD O --的余弦值.【试题来源】山东省威海市2020-2021学年高三上学期期末【答案】(1)证明见解析;(2)5. 【解析】(1)证明:连接AO 并延长BC 交于点E ,则E 为BC 中点,连接PE .如图所示:因为О为正三角形ABC 的中心,所以2,AO OE =又2AD DP =,所以//,DO PE 因为PB PC =,E 为BC 中点,所以,PE BC ⊥ 又平面PBC ⊥平面ABC ,平面PBC 平面ABC BC =,所以PE ⊥平面,ABC 所以DO ⊥平面,ABC AC ⊂平面PBC ,所以,DO AC ⊥又,AC BO DO BO O ⊥⋂=,所以AC ⊥平面OBD .(2)由PE ⊥平面ABC 知,所以45PAE ∠=︒ ,所以,PE AE =所以,ABE PBE ≌ 所以1AB PB BC AC ====,由(1)知,,,EA EB EP 两两互相垂直,所以分别以,,EA EB EP 的方向为,,x y z 轴正方向,建立如图所示空间直角坐标系,则1,0,,0,0,0,,22263A B P D ⎛⎫⎛⎫⎛⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,10,,02C ⎛⎫- ⎪⎝⎭所以31,,0,2231,,623AB BD ⎛⎫-⎛= ⎪ ⎪⎝⎭=-⎝⎭, 设平面ABD 的法向量为(),,n x y z =, 则302302x y nBD z y n AB x ⎧⋅=-=⎪⎪⎨⎪⋅=-+=⎪⎩,令1,x =可得1y z ==,则()1,3,1n =. 由(1)知AC ⊥平面,DBO 故1,02AC ⎛⎫=-- ⎪ ⎪⎝⎭为平面DBO 的法向量, 所以2cos ,5nAC n AC n AC -⋅===-,由图可知二面角A BD O --的为锐二面角,所以二面角A BDO --的余弦值为5. 18.如图,在几何体ABCDEF 中,四边形ABCD 为等腰梯形,且22AB CD ==,60ABC ∠=︒,四边形ACFE 为矩形,且FB =,M ,N 分别为EF ,AB 的中点.(1)求证://MN 平面FCB;(2)若直线AF 与平面FCB 所成的角为60°,求平面MAB 与平面MAC 所成锐二面角的余弦值.【试题来源】山西省运城市2021届高三上学期期末(理)【答案】(1)证明见解析;(2.【解析】(1)取BC 的中点Q ,连接NQ ,FQ ,则1//2NQ AC ,且12NQ AC =, 又1//2MF AC ,且12MF AC = ,所以//MF NQ 且MF NQ =, 所以四边形MNQF 为平行四边形,所以//MN FQ ,因为FQ ⊂平面FCB ,MN ⊄平面FCB ,所以//MN 平面FCB ;(2)由四边形ABCD 为等腰梯形,且22AB CD ==,60ABC ∠=︒,可得1BC =,AC =90ACB ∠=︒,所以AC BC ⊥.因为四边形ACFE 为矩形,所以AC CF ⊥,所以AC ⊥平面FCB ,所以AFC ∠为直线AF 与平面FCB 所成的角,即60AFC ∠=︒,所以1FC =.因为FB =,所以222FB FC CB =+,所以FC BC ⊥.则可建立如图所示的空间直角坐标系C xyz -,3(3,0,0),(0,1,0),,0,12A B M ⎛⎫ ⎪⎝⎭,所以3,0,1,(3,1,0)2MA AB ⎛⎫=-=- ⎪⎝⎭,设(,,)m x y z =为平面MAB 的法向量,则00MA m AB m ⎧⋅=⎨⋅=⎩,即30230x z x y ⎧-=⎪⎨⎪-+=⎩,取23x =,则(23,6,3)m =为平面MAB 的一个法向量,又(0,1,0)n =为平面MAC的一个法向量, 所以657257cos 571||m n mn m n ⋅〈〉====⨯∣∣, 故平面MAB 与平面MAC 所成锐二面角的余弦值为5719. 19.如图,该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,其中正方形ABCD 的边长为4,H 是线段EF 上(不含端点)的动点,36==FC EB .(1)若H 为EF 的中点,证明://GH 平面ABCD ;(2)若14=EH EF ,求直线CH 与平面ACG 所成角的正弦值. 【试题来源】河南省驻马店市2020-2021学年高三上学期期末考试(理) 【答案】(1)证明见解析;(26. 【解析】(1)证明:取BC 的中点M ,连接HM ,DM .因为该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,所以截面AEFG 是平行四边形,则4=-=DG CF EB .因为36==FC EB ,所以1(26)42=⨯+=HM ,且DG//HM ,所以四边形DGHM 是平行四边形,所以GH //DM .因为DM ⊂平面ABCD ,GH ⊄平面ABCD ,所以//GH 平面ABCD .(2)解:如图,以D 为原点,分别以DA ,DC ,DG 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系D xyz -,则(4,0,0)A ,(0,4,0)C ,(0,0,4)G ,(3,4,3)H ,(4,4,0)=-AC ,(4,0,4)=-AG ,(3,0,3)=CH .设平面ACG 的法向量为(,,)n x y z =,则440440AC n x y AG n x z ⎧⋅=-+=⎨⋅=-+=⎩,令1x =,得(1,1,1)n =.因为cos ,3||||32⋅〈〉===⨯CH n C n n CH H ,所以直线CH 与平面ACG 所成角的正弦值为3.【名师点睛】本题考查了立体几何中的线面平行的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面关系的相互转化,通过严密推理证明线线平行从而得线面平行,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.如图,已知四边形ABCD 和BCEG 均为直角梯形,//AD BC ,//CE BG ,且2BCD BCE π∠=∠=,120ECD ∠=︒.22BC CD CE AD BG ====.(1)求证://AG 平面BDE ;(2)求二面角E BD C --的余弦值.【试题来源】安徽省蚌埠市2020-2021学年高三上学期第二次教学质量检查(理)【答案】(1)证明见解析;(2 【解析】(1)证明:在平面BCEG 中,过G 作GN CE ⊥于N ,交BE 于M ,连DM , 由题意知,MG MN =,////MN BC DA 且12MN AD BC ==, 因为//MG AD ,MG AD =,故四边形ADMG 为平行四边形,所以//AG DM , 又DM ⊂平面BDE ,AG ⊂/平面BDE ,故//AG 平面BDE .(2)由题意知BC ⊥平面ECD ,在平面ECD 内过C 点作CF CD ⊥交DE 于F , 以C 为原点,CD ,CB ,CF 的方向为x ,y ,z 轴的正方向建立空间直角坐标系,不妨设1AD =,则22BC CD CE BG ====.且()0,0,0C ,()2,0,0D ,()0,2,0B ,(E -,设平面EBD 的法向量(),,n x y z =,则由0,0,DE n BD n ⎧⋅=⎨⋅=⎩得30,220,x x y ⎧-=⎪⎨-=⎪⎩ 取1y =,得(1,1,3n =,易知平面BCD 的一个法向量为()0,0,1m =,3cos ,51m nm n m n ⋅==⋅=⋅E BD C --. 21.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,M 为PC 的中点.(1)求证://AP 平面BDM ;(2)若PB PC ==CD PC ⊥,求二面角C DM B --的余弦值.【试题来源】河南省湘豫名校2020-2021学年高三上学期1月月考(理)【答案】(1)证明见解析;(2. 【解析】(1)连接AC 交BD 于E ,连接EM ,则E 为AC 中点,所以EM 为APC △的中位线,所以//EM AP ,因为EM ⊂平面BDM ,AP ⊄平面BDM ,所以//AP 平面BDM .(2)在PBC 中,因为2224PB PC BC +==,所以PB PC ⊥,取BC 中点O ,AD 中点F ,连接PO ,OF ,则PO BC ⊥,1PO =,因为BC CD ⊥,CD PC ⊥,BC 、PC ⊂平面PBC ,BC PC C ⋂=,所以CD ⊥平面PBC ,因为PO ⊂平面PBC ,所以CD PO ⊥,因为PO BC ⊥,BC CD C ⋂=,BC 、CD ⊂平面ABCD ,所以PO ⊥平面ABCD ,因为OF ⊂平面ABCD ,所以PO OF ⊥,所以PO ,OF ,OB 两两垂直,如图所示,以O 为原点,OF ,OB ,OP 分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(2,1,0)D -,(0,0,1)P ,(0,1,0)B ,(0,1,0)C -,所以110,,22M ⎛⎫- ⎪⎝⎭,可得112,,22DM ⎛⎫=- ⎪⎝⎭,(2,2,0)BD =-,(2,0,0)CD =.设平面BDM 的法向量为()111,,m x y z =, 则0 0m BD m DM ⎧⋅=⎨⋅=⎩,即11111220112022x y x y z -=⎧⎪⎨-++=⎪⎩,取(1,1,3)m =, 设平面CDM 的法向量为()222,,n x y z =,则00n CD n DM ⎧⋅=⎨⋅=⎩,即222220112022x x y z =⎧⎪⎨-++=⎪⎩,取(0,1,1)n =-,所以222cos ,11||||112m n m nm n ⋅〈〉===⋅⨯, 所以二面角C DM B --的余弦值为11.22.如图所示,矩形ABCD 和梯形BEFC 所在平面互相垂直, //BE CF ,BCF CEF ∠=∠=90°,AD =EF =(1)求证:EF ⊥平面DCE(2)当AB 的长为何值时,二面角A EF C --的大小为60°. 【试题来源】山东省菏泽市2020-2021学年高三上学期期末【答案】(1)证明见解析;(2)60°.【解析】(1)因为平面ABCD ⊥平面BEFC ,平面ABCD 平面BEFC BC =,CD BC ⊥,CD ⊂平面ABCD ,所以CD ⊥平面BEFC ,EF ⊂平面BEFC ,从而CD EF ⊥. 因为EF CE ⊥,CD CE C =,,CD CE ⊂平面CDE ,所以EF ⊥平面CDE .(2)如图所示,以点C 为坐标原点,以CB 、CF 和CD 所在直线分别为x 轴、y 轴和z 轴建立空间直角坐标系.过点E 作EG CF ⊥于点G .在Rt EFG中,EG AD ==EF =1FG =.因为CE EF ⊥,则90EFC ECF BCE ∠=︒-∠=∠,所以Rt EFG Rt ECB △△,EG GF EF BE BC EC==,所以2,BE CE == 所以2CG =,所以3CF =.设AB a ,则()0,0,0C,)A a,)E ,()0,3,0F .()0,2,AE a =-,()EF =-,()2,2,0CE =, 设平面AEF 的法向量(),,n x y z =.则00n AE n EF ⎧⋅=⎨⋅=⎩,即200y az y -=⎧⎪⎨+=⎪⎩, 令2z=,得,2n a ⎫=⎪⎭.因为CD ⊥平面EFC ,()0,0,CD a =,所以1cos ,2n CD ==,解得a =所以当AB =A EF C --的大小为60°.【名师点睛】本题考查空间向量法求二面角.求空间角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论; (2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出平面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补).23.如图,四棱锥E ABCD -中,底面ABCD 为直角梯形,其中AB BC ⊥,//CD AB ,面ABE ⊥面ABCD ,且224AB AE BE BC CD =====,点M 在棱AE 上.(1)证明:当2MA EM =时,直线//CE 平面BDM ;(2)当AE ⊥平面MBC 时,求二面角E BD M --的余弦值.【试题来源】内蒙古赤峰市2021届高三模拟考试(理)【答案】(1)证明见解析;(2. 【解析】(1)连结BD 与AC 交于点N ,连结MN ,//AB CD ,24AB CD ==, CND ANB ∴△∽△,12CD CN AB AN ∴==, 12EM MA =,EM CN MA AN∴=,MN //EC ∴, 又MN ⊂面BDM ,CE ⊂面BDM ,//CE ∴平面BDM .(2)AE 平面MBC ,AE BM ∴⊥,M ∴是AE 的中点,取AB 的中点为O , OE ∴⊥平面ABCD ,以OD ,OA ,OE 所在的直线为x ,y ,z 轴建立空间直角坐标系O xyz -,则(0,2,0)B-,E ,(2,0,0)D ,(0,2,0)A ,M ,设平面EBD 的法向量为()1111,,x n y z=,则1111112200020x y n BD n BE y ⎧+=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩, 令11z =,则1y=1x =1(3,3,1)n ∴=-,设平面BDM 的法向量为()2222,,n x y z =,则2222222200030x y n BD n BM y ⎧+=⎧⋅=⎪⎪⇒⎨⎨⋅==⎪⎪⎩⎩,令2z 21y =-,21x =,1(1,13)n ∴=-, 1212123105cos ,||n n n n n n ⋅∴<>===⋅ ∴二面角E BD M --的余弦值为35. 24.已知正方体1111ABCD A B C D -,棱长为2,M 为棱CD 的中点,N 为面对角线1BC 的中点,如图.(1)求证:ND AN ⊥;(2)求平面1AMD 与平面11AAC C 所成锐二面角的余弦值.【试题来源】安徽省池州市2020-2021学年高三上学期期末(理)【答案】(1)证明见解析;(2 【解析】(1)取BC 的中点分别为F ,连接NF ,DF ,因为N ,F 分别为1BC ,BC 的中点,1111ABCD A B C D -是正方体,易得NF ⊥平面ABCD ,所以NF AM ⊥;因为FC MD =,AD DC =,FCD MDA ∠=∠,所以FCD MDA ≌△△,所以CFD DMA ∠=∠,所以90FDC DMA ∠+∠=︒,所以FD AM ⊥,因为NF FD F =,NF ⊂平面NFD ,FD ⊂平面NFD ,所以AM ⊥平面NFD , 又DN ⊂平面NFD ,所以ND AM ⊥;(2)以A 为原点,分别以AB 、AD 、1AA 方向为x 轴、y 轴、z 轴正方向,建立如下图所示空间直角坐标系:连接BD ,1C D ,在正方体1111ABCD A B C D -中,易知1BD C D =,且N 为1BC 中点,所以1DN BC ⊥.又11//BC AD ,所以1AD DN ⊥. 因为1AD AM A =,1AD ⊂平面1AMD ,AM ⊂平面1AMD ,所以ND ⊥平面1AMD ,故ND 为平面1AMD 的一个法向量;由1111ABCD A B C D -是正方体,得BD ⊥平面11AAC C ,故BD 为平面11AAC C 的一个法向量,因为()2,0,0B ,()0,2,0D ,()2,1,1N , 所以()2,1,1ND =--,()2,2,0BD =-, 所以(cos ,ND BDND BD ND BD -⋅<>===⋅则平面1AMD 与平面11AAC C25.如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,AD CD ⊥,AB ∥CD ,122AB AD CD ===,点M 在线段EC 上.(1)当点M 为EC 中点时,求证:BM ∥平面ADEF ;(2)当平面BDM 与平面ABFM 在线段EC 上的位置.【试题来源】宁夏固原市第五中学2021届高三年级期末考试(理)【答案】(1)证明见解析;(2)点M 为EC 中点.【解析】(1)以直线DA 、DC 、DE 分别为x 轴、y 轴、z 轴建立空间直角坐标系,则(2,0,0)A ,(2,2,0)B ,(0,4,0)C ,(0,0,2)E ,所以(0,2,1)M .所以(2,0,1)BM =-, 又(0,4,0)DC =是平面ADEF 的一个法向量.因为0BM DC ⋅=即BM DC ⊥,BM ⊄平面ADEF ,所以BM ∥平面ADEF ;(2)设(,,)M x y z ,则(,,2)EM x y z =-,又(0,4,2)EC =-,设()01EM EC λλ=≤≤,则0,4,22x y z λλ===-,即(0,4,22)M λλ-.设111(,,)n x y z =是平面BDM 的一个法向量,则11112204(22)0DB n x y DM n y z λλ⎧⋅=+=⎪⎨⋅=+-=⎪⎩,取11x =得11y =-,此时显然1λ=时不符合,则121z λλ=-,即2(1,1,)1n λλ=--, 又由题设,(2,0,0)DA =是平面ABF 的一个法向量,所以cos ,622DA n DA n DA n ⋅===⋅,解得12λ=,即点M 为EC 中点. 【名师点睛】利用法向量求解空间面面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.26.如图所示,在多面体ABCDEF 中,//AB CD ,AB BC ⊥,22AB BC CD ==,四边形ADEF 为矩形,平面ADEF ⊥平面ABCD ,AF AB λ=.(1)证明://DF 平面BCE ;(2)若二面角C BE F --λ的值. 【试题来源】江西宜春市2021届高三上学期数学(理)期末试题【答案】(1)证明见解析;(2)1.【解析】(1)取AB 的中点为M ,连接FM CM DM ,,,因为//AM CD 且AM CD =,四边形AMCD 为平行四边形,所以//AD MC 且AD MC =,因为四边形ADEF 为矩形,所以//FE MC 且=FEMC ,所以四边形EFMC 是平行四边形,所以//FM EC ,且EC ⊂平面BEC ,FM ⊄平面BEC ,。

习题课(一) 空间向量与立体几何

习题课(一)  空间向量与立体几何

习题课(一) 空间向量与立体几何一、选择题1.若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,1),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)解析:选D 若l ∥α,则a ·n =0,只有选项D 中a ·n =0.2.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1),在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为( )A .(-2,2,0)B .(2,-2,0) C.⎝⎛⎭⎫-12,12,0 D.⎝⎛⎭⎫12,-12,0 解析:选C 由OA ―→=(-1,1,0),且点H 在直线OA 上,可设H (-λ,λ,0),则BH ―→=(-λ,λ-1,-1).又BH ⊥OA ,∴BH ―→·OA ―→=0,即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12, ∴H ⎝⎛⎭⎫-12,12,0. 3.已知A (1,0,0),B (0,-1,1),OA ―→+λOB ―→与OB ―→的夹角为120°,则λ的值为( ) A .±66B .66C .-66D .±6解析:选C OA ―→+λOB ―→=(1,-λ,λ),cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,所以λ=-66. 4.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )56C .55D .22解析:选C 法一:如图,分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.由题意,得A (1,0,0),D (0,0,0),D 1(0,0,3),B 1(1,1,3),∴AD 1―→=(-1,0,3),DB 1―→=(1,1,3),∴AD 1―→·DB 1―→=-1×1+0×1+(3)2=2,|AD 1―→|=2,|DB 1―→|=5,∴cos 〈AD 1―→,DB 1―→〉=AD 1―→·DB 1―→|AD 1―→|·|DB 1―→|=225=55.法二:如图,在长方体ABCD -A 1B 1C 1D 1的一侧补上一个相同的长方体EFBA -E 1F 1B 1A 1.连接B 1F ,由长方体性质可知,B 1F ∥AD 1,所以∠DB 1F 为异面直线AD 1与DB 1所成的角或其补角.连接DF ,由题意,得DF =12+(1+1)2=5,FB 1=12+(3)2=2,DB 1=12+12+(3)2= 5.在△DFB 1中,由余弦定理,得DF 2=FB 21+DB 21-2FB 1·DB 1·cos ∠DB 1F , 即5=4+5-2×2×5×cos ∠DB 1F , ∴cos ∠DB 1F =55. 5.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面ABC 是等腰直角三角形,∠ACB =90°,侧棱AA 1=2,D ,E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G .则A 1B 与平面ABD 所成角的正弦值为( )A .23B .7327解析:选A 以C 为坐标原点,CA 所在的直线为x 轴,CB 所在的直线为y 轴,CC 1所在的直线为z 轴建立空间直角坐标系,如图所示.设CA =CB =a ,则A (a,0,0),B (0,a,0),A 1(a,0,2), D (0,0,1),∴E ⎝⎛⎭⎫a 2,a 2,1,G ⎝⎛⎭⎫a 3,a 3,13, GE ―→=⎝⎛⎭⎫a 6,a 6,23,BD ―→=(0,-a,1). ∵点E 在平面ABD 上的射影是△ABD 的重心G , ∴GE ―→⊥平面ABD ,∴GE ―→·BD ―→=0,解得a =2. ∴GE ―→=⎝⎛⎭⎫13,13,23,BA 1―→=(2,-2,2), ∵GE ―→⊥平面ABD ,∴GE ―→为平面ABD 的一个法向量. 又cos 〈GE ―→,BA 1―→〉=GE ―→·BA 1―→|GE ―→||BA 1―→|=4363×23=23, ∴A 1B 与平面ABD 所成角的正弦值为23. 6.如图,在四棱锥P -ABCD 中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP =MC .则点M 在正方形ABCD 内的轨迹为( )解析:选A 如图,以D 为原点,DA ,DC 所在的直线分别为x ,y 轴建立如图所示的空间直角坐标系.设正方形ABCD 的边长为a ,M (x ,y,0),则0≤x ≤a,0≤y ≤a ,P ⎝⎛⎭⎫a 2,0,3a 2,C (0,a,0),则|MC ―→|=x 2+(a -y )2,|MP ―→|=⎝⎛⎭⎫a 2-x 2+y 2+⎝⎛⎭⎫3a 22.由|MP ―→|=|MC ―→|,得x =2y ,所以点M 在正方形ABCD 内的轨迹为一条线段y =12x (0≤x ≤a ),故选A.二、填空题7.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1)满足条件(c -a )·2b =-2,则x =________. 解析:∵a =(1,1,x ),b =(1,2,1),c =(1,1,1), ∴c -a =(0,0,1-x ),2b =(2,4,2). ∴(c -a )·2b =2(1-x )=-2,∴x =2. 答案:28.正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值等于_______. 解析:如图,连接BD 交AC 于O ,连接D 1O ,由于BB 1∥DD 1,∴DD 1与平面ACD 1所成的角就是BB 1与平面ACD 1所成的角.易知∠DD 1O 即为所求.设正方体的棱长为1,则DD 1=1,DO =22,D 1O =62, ∴cos ∠DD 1O =DD 1D 1O =26=63.∴BB 1与平面ACD 1所成角的余弦值为63. 答案:639.在三棱柱ABC -A 1B 1C 1中,底面是棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值等于________.解析:如图所示,建立空间直角坐标系,易求得点D ⎝⎛⎭⎫32,12,1,平面AA 1C 1C 的一个法向量是n =(1,0,0),所以cos 〈n ,AD ―→〉=322=64,即sin α=64.答案:64三、解答题10.如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点.求直线AD 和平面ABC 1夹角的正弦值.解:如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2), D⎝⎛⎭⎫32,-12,2.易知AB ―→=(3,1,0),AC 1―→=(0,2,2), AD ―→=⎝⎛⎭⎫32,12,2.设平面ABC 1的一个法向量为n =(x ,y ,z ), 则有⎩⎪⎨⎪⎧n ·AB ―→=3x +y =0,n ·AC 1―→=2y +2z =0,解得x =-33y ,z =-2y . 故可取n =(1,-3,6).所以cos 〈n ,AD ―→〉=n ·AD ―→|n ||AD ―→|=2310×3=105. 即直线AD 和平面ABC 1夹角的正弦值为105. 11.如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ∥CD ,AD =CD =1,∠BAD =120°,∠ACB =90°.(1)求证:BC ⊥平面PAC ; (2)若二面角D -PC -A 的余弦值为55,求点A 到平面PBC 的距离.解:(1)证明:∵PA ⊥底面ABCD ,BC ⊂平面ABCD , ∴PA ⊥BC ,∵∠ACB =90°,∴BC ⊥AC ,又PA ∩AC =A , ∴BC ⊥平面PAC .(2)设AP =h ,取CD 的中点E ,则AE ⊥CD ,∴AE ⊥AB .又PA ⊥底面ABCD ,∴PA ⊥AE ,PA ⊥AB ,故建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,h ),C⎝⎛⎭⎫32,12,0,D⎝⎛⎭⎫32,-12,0,B (0,2,0),PC ―→=⎝⎛⎭⎫32,12,-h ,DC ―→=(0,1,0),设平面PDC 的法向量n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·PC ―→=0,n 1·DC ―→=0,即⎩⎪⎨⎪⎧32x 1+12y 1-hz 1=0,y 1=0,取x 1=h ,∴n 1=⎝⎛⎭⎫h ,0,32. 由(1)知平面PAC 的一个法向量为BC ―→=⎝⎛⎭⎫32,-32,0,∴|cos 〈n 1,BC ―→〉|=32h h 2+34×3=55, 解得h =3,同理可求得平面PBC 的一个法向量n 2=(3,3,2), 所以,点A 到平面PBC 的距离为 d =|AP ―→·n 2||n 2|=234=32.12.如图,在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1-BD -B 1的平面角的余弦值.解:(1)证明:设E 为BC 的中点,由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE . 因为AB =AC ,所以AE ⊥BC . 故AE ⊥平面A 1BC .由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE =B 1B , 从而DE ∥A 1A 且DE =A 1A ,所以A 1AED 为平行四边形.故A 1D ∥AE . 又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC .(2)以CB 的中点E 为原点,分别以射线EA ,EB 为x 轴,y 轴的正半轴,建立空间直角坐标系E -xyz ,如图所示.由题意知各点坐标如下:A 1(0,0,14),B (0,2,0),D (-2,0,14),B 1(-2,2,14).因此A 1B ―→=(0,2,-14),BD ―→=(-2,-2,14),DB 1―→=(0,2,0). 设平面A 1BD 的法向量为m =(x 1,y 1,z 1),平面B 1BD 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧m ·A 1B ―→=0,m ·BD ―→=0,即⎩⎪⎨⎪⎧2y 1-14z 1=0,-2x 1-2y 1+14z 1=0,可取m =(0,7,1).由⎩⎪⎨⎪⎧n ·DB 1―→=0,n ·BD ―→=0,即⎩⎪⎨⎪⎧2y 2=0,-2x 2-2y 2+14z 2=0.可取n =(7,0,1).于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=18.由题意可知,所求二面角的平面角是钝角,故二面角A 1-BD -B 1的平面角的余弦值为-18.。

第一章 空间向量与立体几何章末检测(解析版)

第一章 空间向量与立体几何章末检测(解析版)
, 平面 ,而 平面 ,
平面 平面 .
,平面 平面 ,且交线为AC,
平面 , 直线MB,MC, 两两垂直.
以点M为坐标原点,分别以MB,MC, 所在直线为坐标轴建立空间直角坐标系,
则 , , , 1, ,
, , .
设平面 的一个法向量为 ,
令 ,得 ,
点C到平面 的距离 .
A.存在点P,使得I1=I2B.存在点P,使得I1=I3
C.对任意的点P,有I1>I2D.对任意的点P,有I2>I3
【解答】解:如图所示建立如图所示的空间直角坐标系,以B1A1为x轴,B1C1为y轴,B1B为z轴,B1为坐标原点,由题意则B(0,0,2),A(4,0,2),D(4,3,2),C1(0,3,0),设P(x,y,z),
第1章 空间向量与立体几何
一、单选题
1.点P(1,2,3)关于xOy平面的对称点的坐标为( )
A.(-1,2,3)B.(1,-2,-3)
C.(-1,-2,-3)D.(1,2,-3)
【答案】D
【解析】点P(1,2,3)关于xOy平面的对称点的坐标为 .
故选D.
2.若两条不重合直线 和 的方向向量分别为 , ,则 和 的位置关系是( )
A.平行B.相交C.垂直D.不确定
【答案】A
【解析】因为两条不重合直线 和 的方向向量分别为 , ,
所以 ,即 与 共线,
所以两条不重合直线 和 的位置关系是平行,
故选A
3.如图, , 分别是四面体 的边 , 的中点, 是 的中点,设 , , ,用 , , 表示 ,则
A. B.
C. D.
【分析】如图所示,连接 .由 , 分别是四面体 的边 , 的中点, 是 的中点,利用三角形法则、平行四边形法则即可得出.

高二数学空间向量与立体几何试题答案及解析

高二数学空间向量与立体几何试题答案及解析

高二数学空间向量与立体几何试题答案及解析1.在正三棱柱ABC—A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为()A.60°B.90°C.105°D.75°【答案】B【解析】用立体几何方法。

作BC中点D,连AD, D,易得AD垂直于BC,AD垂直于平面BC, D为A在平面BC上的射影,易证D垂直于B,所以A垂直于B,A与B所成角为90度,故选B。

【考点】本题主要考查正三棱柱的几何性质及异面直线所成角的求法。

点评:根据题目特点,可灵活采用不同方法,这里运用几何方法,使问题得解,体现解题的灵活性。

2.正四棱锥的高,底边长,则异面直线和之间的距离()A.B.C.D.【答案】C【解析】建立如图所示的直角坐标系,则,,,,.,.令向量,且,则,,,,.异面直线和之间的距离为:.【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。

点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.3.已知是各条棱长均等于的正三棱柱,是侧棱的中点.点到平面的距离()A.B.C.D.【答案】A【解析】为正方形,,又平面平面,面,是平面的一个法向量,设点到平面的距离为,则===.【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。

点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.4.在三棱锥P-ABC中,AB⊥BC,AB=BC=PA,点O、D分别是AC、PC的中点,OP⊥底面ABC,则直线OD与平面PBC所成角的正弦值()A. B. C. D.【答案】D【解析】题目中给出了建立空间直角坐标系的条件。

以O为原点,射线OP为非负z轴,建立空间直角坐标系(如图),利用向量知识可计算得到直线OD与平面PBC所成角的正弦值为,故选D。

【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。

点评:通过建立空间直角坐标系,将立体几何问题转化成空间向量问题.5.已知棱长为1的正方体ABCD-A1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成角的正弦值.【答案】【解析】解:如图建立空间直角坐标系,=(0,1,0),=(-1,0,1),=(0,,1)设平面ABC1D1的法向量为=(x,y,z),由可解得=(1,0,1)设直线AE与平面ABC1D1所成的角为θ,则,【考点】本题主要考查空间向量的应用,综合考查向量的基础知识。

空间向量和立体几何练习题及答案

空间向量和立体几何练习题及答案

1.如图,在四棱锥P- ABCD中,底面ABCD为正方形,平■面PADL平面ABCR 点M 在线段PB上,PD//平面MAC, PA=PD*, AB=4.(1)求证:M为PB的中点;(2)求二面角B- PD- A的大小;(3)求直线MC与平面BDP所成角的正弦值.【分析】(1)设ACA BD=0,则O为BD的中点,连接OM,利用线面平行的性质证明OM // PD,再由平行线截线段成比例可得M为PB的中点;(2)取AD中点G,可得PGLAD,再由面面垂直的性质可得PGL平面ABCD则PGLAD,连接OG, WJ PGLOG,再证明OGLAD.以G为坐标原点,分别以GD G。

GP 所在直线为x、v、z轴距离空间直角坐标系,求出平■面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B-PD- A的大小;(3)求出百i的坐标,由百i与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.【解答】(1)证明:如图,设ACA BD=O,ABCD为正方形,二O为BD的中点,连接OM,.• PD//平面MAC, PD?平面PBD,平面PBDA 平面AMC=OM,••• PD// OM,则豆鸟,即M为PB的中点;BD BP(2)解:取AD中点G,.• PA=PD • . PGL AD,•.•平■面PAM平面ABCD 且平■面PADA平面ABCD=AD••• PGL平面ABCD WJ PGLAD,连接OG, WJ PGL OG,由G是AD的中点,O是AC的中点,可得OG// DC, WJ OGLAD.以G为坐标原点,分别以GCk GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD旅,AB=4,得 D (2, 0, 0), A ( - 2, 0, 0), P (0, 0,姬),C (2,4, 0), B (-2, 4, 0), M (- 1, 2,竺),而二(-幻 0,血),瓦二(-4, 4, 0)-取平■面PAD 的一个法向量为三二(0,1, Q ). cox 二,n > =「一 "n Mini 2X1 2.二面角B- PD- A 的大小为60°; (3)解:E-3・-2・丰),平面BDP 的一个法向量为叙1, 1,血).直线 MC 与平■面 BDP 所成角的正弦值为| cos <衣,盘〉【点评】本题考查线面角与面面角的求法,训练了利用空间向量求空间角,届中 档题.2. 如图,在三棱锥 P-ABC 中,PH 底面ABC, ZBAC=90.点D, E, N 分别为 棱PA PC BC 的中点,M 是线段AD 的中点,PA=AC=4 AB=2.(I )求证:MN //平面BDE;(皿)求二面角C-EM - N 的正弦值;设平■面PBD 的一个法向量为 *化 y,工),m*DP=0 "曰 卜,侍 则由仁罚 Lm*DB=0 口育气取gg —仞 mF - 11(用)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为圭,求线段AH的长.【分析】(I)取AB中点F,连接MF、NF,由已知可证MF//平■面BDE NF//平面BDE 得到平■面MFN //平■面BD巳WJ MN //平■面BDE(n)由PH底面ABC, ZBAC=90.可以A为原点,分别以AB AC、AP所在直线为x、v、z轴建立空间直角坐标系.求出平■面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C-EM- N的余弦值,进一步求得正弦值;(用)设AH=t,则H (0, 0, t),求出前、瓦的坐标,结合直线NH与直线BE 所成角的余弦值为夺列式求得线段AH的长.【解答】(I )证明:取AB中点F,连接MF、NF,.• M 为AD 中点,二MF// BD,.• BD?平面BDE, MF?平面BDE •,- MF // 平面BDE.• N 为BC中点,. . NF// AC,乂D、E分别为AP、PC的中点,二DE// AC, WJ NF// DE.. DE?平面BDE, NF?平面BDE,二NF//平面BDE.乂MFA NF=F.平面MFN//平面BDE, WJ MN//平面BDE(U)解:PH底面ABC, Z BAC=90..••以A为原点,分另U以AB、AG AP所在直线为x、v、z轴建立空间直角坐标系. PA=AC=4 AB=2,••• A (0, 0, 0), B (2, 0, 0), C (0, 4, 0), M (0, 0, 1), N (1, 2, 0), E (0, 2, 2),则福二(L 2, -1),无=(0, 2, 1),设平■面MEN 的一个法向量为y,如击 m*NN=O z 0 x+2y-z=0 w ^_Q .曰-,、 由, ___ ,侍、 A ,取z =2,侍旷(4, -L 2)・ lm-ME=O Uy+z=O由图可得平■面CME 的一个法向量为冒二(1, °, 0).cos <.••二面角C- EM - N 的余弦值为华I,则正弦值为寸亟;21 21(m )解:设 AH=t,则 H (。

空间向量与立体几何(四)答案

空间向量与立体几何(四)答案

空间向量与立体几何(四)解析1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面的夹角为( ) A .60° B .120° C .60°或120° D .90° 答案 A解析 |cos 〈m ,n 〉|=|m ·n ||m ||n |=|-1|2·2=12,即〈m ,n 〉=60°.∴两平面所成角为60°. 2.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,E 为线段AA 1的中点,F 为线段C 1D 1上靠近D 1的三等分点,则异面直线A 1B 与EF 所成角的余弦值为( ) A.114 B.214 C.314 D.17 答案 B解析 如图,建立空间直角坐标系,则A 1(3,0,0),B (3,3,3), E ⎝⎛⎭⎫3,0,32,F (0,1,0),所以A 1B —→=(0,3,3),EF →=⎝⎛⎭⎫-3,1,-32, 所以|cos 〈A 1B —→,EF →〉|=⎪⎪⎪⎪⎪⎪⎪⎪A 1B —→·EF →||A 1B —→·|EF →|=⎪⎪⎪⎪⎪⎪3-9232×72=214. 3.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点M 为棱CC 1的中点,则直线B 1M 与平面A 1D 1M 所成角的正弦值是( ) A.215 B.25C.35 D.45答案 B解析 建立如图所示的空间直角坐标系,则A 1(1,0,1),D 1(0,0,1), M ⎝⎛⎭⎫0,1,12,B 1(1,1,1),A 1D 1—→=(-1,0,0),D 1M —→=⎝⎛⎭⎫0,1,-12, MB 1→=⎝⎛⎭⎫1,0,12,设平面A 1D 1M 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧ A 1D 1—→·m =0,D 1M —→·m =0⇒⎩⎪⎨⎪⎧-x =0,y -12z =0,令y =1可得z =2,所以m =(0,1,2),设直线B 1M 与平面A 1D 1M 所成角为θ,sin θ=|m ·MB 1→||m |·|MB 1→|=15×52=25.4.在三棱锥P -ABC 中,PC ⊥底面ABC ,∠BAC =90°,AB =AC =4,∠PBC =45°,则点C 到平面P AB 的距离是( ) A.463 B.263 C.433 D.423答案 A解析 方法一 建立如图所示的空间直角坐标系, 则A (0,0,0),B (4,0,0),C (0,4,0),P (0,4,42), ∴AP →=(0,4,42),AB →=(4,0,0),PC →=(0,0,-42). 设平面P AB 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AP →=0,m ·AB →=0,即⎩⎨⎧4y +42z =0,4x =0,令y =2,则z =-1,∴m =(0,2,-1),∴点C 到平面P AB 的距离为|PC →·m ||m |=463.方法二 ∵PC ⊥底面ABC ,∴PC ⊥AB ,又AB ⊥AC ,且PC ∩AC =C ,PC ,AC ⊂平面P AC , ∴AB ⊥平面P AC ,∴AB ⊥P A ,∵AC =AB =4,∴BC =42,∴PC =42,PB =8, 在Rt △P AB 中,P A =82-42=43,令点C 到平面P AB 的距离为d ,∵V P -ABC =V C -P AB , ∴13×12×4×4×42=13×12×4×43×d ,∴d =463. 5.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成的角的正弦值为( )A.33535B.277C.33D.24答案 A解析 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), 所以DC 1→=(0,3,1),D 1E —→=(1,1,-1),D 1C —→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E —→=0,n ·D 1C —→=0,即⎩⎪⎨⎪⎧ x +y -z =0,3y -z =0,即⎩⎪⎨⎪⎧x =2y ,z =3y ,取y =1,得n =(2,1,3).因为cos 〈DC 1→,n 〉=DC 1→·n |DC 1→|·|n |=(0,3,1)·(2,1,3)10×14=33535,所以DC 1与平面D 1EC 所成的角的正弦值为33535.6.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的角的余弦值为( )A.12B.23C.33D.22 答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0),∴A 1D —→=(0,1,-1),A 1E —→=⎝⎛⎭⎫1,0,-12. 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),∴⎩⎪⎨⎪⎧ A 1D —→·n 1=0,A 1E —→·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,解得⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2);∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23,即平面A 1ED 与平面ABCD 所成的角的余弦值为23.7.设A (2,3,1),B (4,1,2),C (6,3,7),D (-5,-4,8),则点D 到平面ABC 的距离为________. 答案491717解析 设平面ABC 的法向量为n =(x ,y ,z ).∴n ·AB →=0,n ·AC →=0,∴⎩⎪⎨⎪⎧(x ,y ,z )·(2,-2,1)=0,(x ,y ,z )·(4,0,6)=0,即⎩⎪⎨⎪⎧2x -2y +z =0,4x +6z =0,∴⎩⎪⎨⎪⎧x =-32z ,y =-z .令z =-2,则n =(3,2,-2).又∵AD →=(-7,-7,7),∴点D 到平面ABC 的距离为d =|AD →·n ||n |=|3×(-7)+2×(-7)-2×7|32+22+(-2)2=4917=491717.8.已知四棱锥P -ABCD 的底面ABCD 是边长为2的正方形,P A =PD =5,平面ABCD ⊥平面P AD ,M 是PC 的中点,O 是AD 的中点,则直线BM 与平面PCO 所成角的正弦值是___________. 答案88585解析 以O 为原点,OA 为x 轴,过O 作AB 的平行线为y 轴,OP 为z 轴, 建立空间直角坐标系,则B (1,2,0),P (0,0,2),C (-1,2,0),M ⎝⎛⎭⎫-12,1,1,O (0,0,0), OP →=(0,0,2),OC →=(-1,2,0),BM →=⎝⎛⎭⎫-32,-1,1, 设平面PCO 的法向量m =(x ,y ,z ),⎩⎪⎨⎪⎧m ·OP →=2z =0,m ·OC →=-x +2y =0,可得m =(2,1,0),设直线BM 与平面PCO 所成角为θ,则sin θ=|cos 〈m ,BM →〉|=|m ·BM →||m ||BM →|=45×174=88585. 9.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是BC 的中点,F 是DD 1的中点. (1)求证:CF ∥平面A 1DE ;(2)求平面A 1DE 与平面A 1DA 夹角的余弦值.(1)证明 分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系, 则 A 1(2,0,2),E (1,2,0),D (0,0,0),C (0,2,0),F (0,0,1),则DA 1→=(2,0,2),DE →=(1,2,0),CF →=(0,-2,1),设平面A 1DE 的法向量n =(a ,b ,c ), 则⎩⎪⎨⎪⎧n ·DA 1→=2a +2c =0,n ·DE →=a +2b =0,取n =(-2,1,2),∴CF →·n =(0,-2,1)·(-2,1,2)=0,又CF ⊄平面A 1DE ,∴CF ∥平面A 1DE . (2)解 DC →=(0,2,0)是平面A 1DA 的法向量, ∴cos 〈n ,DC →〉=(-2,1,2)·(0,2,0)(-2)2+12+22·0+22+0=13,即平面A 1DE 与平面A 1DA 夹角的余弦值为13.10.如图,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =12AE =2,O ,M 分别为CE ,AB 的中点.(1)求异面直线AB 与CE 所成角的大小; (2)求直线CD 与平面ODM 所成角的正弦值. 解 (1)∵DB ⊥BA ,平面ABDE ⊥平面ABC ,平面ABDE ∩平面ABC =AB ,DB ⊂平面ABDE ,∴DB ⊥平面ABC . ∵BD ∥AE ,∴EA ⊥平面ABC .如图所示,以C 为坐标原点,分别以CA ,CB 所在直线为x ,y 轴,以过点C 且与EA 平行的直线为z 轴,建立空间直角坐标系.∵AC =BC =4,∴C (0,0,0),A (4,0,0),B (0,4,0),E (4,0,4),∴AB →=(-4,4,0),CE →=(4,0,4).∴cos 〈AB →,CE →〉=-1642×42=-12,∴异面直线AB 与CE 所成角的大小为π3.(2)由(1)知O (2,0,2),D (0,4,2),M (2,2,0), ∴CD →=(0,4,2),OD →=(-2,4,0),MD →=(-2,2,2). 设平面ODM 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ⊥OD →,n ⊥MD →,可得⎩⎪⎨⎪⎧-2x +4y =0,-2x +2y +2z =0,令x =2,则y =1,z =1,∴n =(2,1,1).设直线CD 与平面ODM 所成的角为θ,则sin θ=|cos 〈n ,CD →〉|=⎪⎪⎪⎪⎪⎪n ·CD →|n ||CD →|=3010,∴直线CD 与平面ODM 所成角的正弦值为3010. 11.如图所示,在正方体ABCD -A 1B 1C 1D 1中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线B 1C 与EF 所成角最小时,其余弦值为( ) A .0 B.12 C.105D.1116答案 C解析 以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 在正方体ABCD -A 1B 1C 1D 1中,点E 为线段AB 的中点,设正方体棱长为2, 则D (0,0,0),E (2,1,0),B 1(2,2,2),C (0,2,0),B 1C —→=(-2,0,-2),设F (m,0,0)(0≤m ≤2),EF →=(m -2,-1,0),设异面直线B 1C 与EF 的夹角为θ,则cos θ=|EF →·B 1C —→||EF →|·|B 1C —→|=|-2×(m -2)|22·(m -2)2+1=12·1(m -2)2+1,异面直线B 1C 与EF 所成角最小时,则cos θ最大,即m =0时,cos θ=12·14+1=210=105.12.如图,正三棱柱ABC -A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为________. 答案 35解析 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB , 分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系 则B 1(0,3,2),F (1,0,1),E ⎝⎛⎭⎫12,32,0,G (0,0,2),B 1F —→=(1,-3,-1),EF →=⎝⎛⎭⎫12,-32,1,GF →=(1,0,-1).设平面GEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ EF →·n =0,GF →·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =(1,3,1)为平面GEF 的一个法向量,所以|cos 〈n ,B 1F —→〉|=|1-3-1|5×5=35,所以B 1F 与平面GEF 所成角的正弦值为35.13.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为2,直线CC 1与平面ACD 1所成角的正弦值为13,则正四棱柱的高为________.答案 4解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设DD 1=a ,则A (2,0,0),C (0,2,0),D 1(0,0,a ), 故AC →=(-2,2,0),AD 1→=(-2,0,a ),CC 1→=(0,0,a ), 设平面ACD 1的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=-2x +2y =0,n ·AD →1=-2x +az =0,可取n =⎝⎛⎭⎫1,1,2a , 故cos 〈n ,CC 1→〉=n ·CC →1|n ||CC 1→|=2a ·4a 2+2=22a 2+4, 又直线CC 1与平面ACD 1所成角的正弦值为13,∴22a 2+4=13,解得a =4.14.设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记D 1PD 1B =λ.当∠APC为锐角时,λ的取值范围是________. 答案 ⎣⎡⎭⎫0,13 解析 建立如图所示的空间直角坐标系,则A (1,0,0),C (0,1,0),B (1,1,0),D 1(0,0,1),由D 1PD 1B=λ得P (λ,λ,1-λ),则P A →=(1-λ,-λ,λ-1),PC →=(-λ,1-λ,λ-1),因为∠APC 为锐角, 所以P A →·PC →=(1-λ,-λ,λ-1)·(-λ,1-λ,λ-1)=(λ-1)(3λ-1)>0,解得λ<13或λ>1,又因为动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,所以λ的取值范围为0≤λ<13.15.如图,在正方体ABCD -A 1B 1C 1D 1中,E 为线段AA 1上的一个动点,F 为线段B 1C 1上的一个动点,则平面EFB 与底面ABCD 所成的角的余弦值的取值范围是( ) A.⎣⎡⎦⎤0,22 B.⎣⎡⎦⎤33,22 C.⎣⎡⎦⎤0,33 D.⎣⎡⎦⎤0,55 答案 A解析 设平面EFB 与底面ABCD 所成的角为θ,如图所示,建立空间直角坐标系,设正方体的棱长为1,AE =m ,FC 1=n ,则D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1),E (1,0,m ),F (n,1,1).BE →=(0,-1,m ),BF →=(n -1,0,1), 设平面EFB 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-y +mz =0,(n -1)x +z =0, 取x =-1,则平面EFB 的法向量为(-1,m (n -1),n -1),而底面ABCD 的一个法向量为(0,0,1),则cos θ=|n -1|1+m 2(n -1)2+(n -1)2,结合选项,当n =1时,cos θ=0,当n ≠1时,cos θ=11(1-n )2+m 2+1∈⎝⎛⎦⎤0,22,故cos θ∈⎣⎡⎦⎤0,22. 16.如图,已知在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动. (1)求证:D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E 使得AD 1与平面D 1EC 所成的角为π6?若存在,求出AE 的长,若不存在,说明理由.(1)证明 ∵AE ⊥平面AA 1D 1D ,A 1D ⊂平面AA 1D 1D ,∴AE ⊥A 1D . ∵在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,∴A 1D ⊥AD 1.∵AE ∩AD 1=A ,∴A 1D ⊥平面AED 1. ∵D 1E ⊂平面AED 1,∴D 1E ⊥A 1D .(2)解 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设棱AB 上存在点E (1,t,0)(0≤t ≤2),使得AD 1与平面D 1EC 所成的角为π6,A (1,0,0),D 1(0,0,1),C (0,2,0),AD 1→=(-1,0,1),CD 1→=(0,-2,1),CE →=(1,t -2,0), 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CD 1→=-2y +z =0,n ·CE →=x +(t -2)y =0,取y =1,得n =(2-t,1,2),∴sin π6=|AD 1→·n ||AD 1→||n |=|t -2+2|2×(t -2)2+5,整理,得t 2+4t -9=0, 解得t =13-2或t =-2-13(舍去),∴在棱AB 上存在点E 使得AD 1与平面D 1EC 所成的角为π6,此时AE =13-2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量与立体几何解答题答案
空间向量与立体几何解答题精选
1 已知四棱锥 的底面为直角梯形, , 底面 ,且 , , 是 的中点
(Ⅰ)证明:面 面 ;
(Ⅱ)求 与 所成的角;
(Ⅲ)求面 与面 所成二面角的大小
证明:以 为坐标原点 长为单位长度,如图建立空间直角坐标系,则各点坐标为
(Ⅰ)证明:因
由题设知 ,且 与 是平面 内的两条相交直线,由此得 面 又 在面 上,故面 ⊥面
(Ⅱ)解:因
(Ⅲ)解:在 上取一点 ,则存在 使
要使

所求二面角的平面角
2 如图,在四棱锥 中,底面 是正方形,侧面 是正三角形,
平面 底面
(Ⅰ)证明: 平面 ;
(Ⅱ)求面 与面 所成的二面角的大小
证明:以 为坐标原点,建立如图所示的坐标图系
(Ⅰ)证明:不防设作 ,
则 , ,
由 得 ,又 ,因而 与平面 内两条相交直线 , 都垂直 ∴ 平面

∵ 为平行四边形,
(II)设 为平面 的法向量,
的夹角为 ,则
∴ 到平面 的距离为
5 如图,在长方体 ,中, ,点 在棱 上移动 (1)证明: ;
(2)当 为 的中点时,求点 到面 的距离;
(3) 等于何值时,二面角 的大小为
解:以 为坐标原点,直线 分别为 轴,建立空间直角坐标系,设 ,则
(1)
(Ⅱ)解:设 为 中点,则 ,

因此, 是所求二面角的平面角,
解得所求二面角的大小为
3 如图,在四棱锥 中,底面 为矩形,
侧棱 底面 , , , ,
为 的中点
(Ⅰ)求直线 与 所成角的余弦值;
(Ⅱ)在侧面 内找一点 ,使 面 ,
并求出点 到 和 的距离
解:(Ⅰ)建立如图所示的空间直角坐标系,
则 的坐标为 、
、 、 、
、 ,
从而
设 的夹角为 ,则
∴ 与 所成角的余弦值为
(Ⅱ)由于 点在侧面 内,故可设 点坐标为 ,则
,由 面 可得,

即 点的坐标为 ,从而 点到 和 的距离分别为
4 如图所示的多面体是由底面为 的长方体被截面 所截面而得到的,其中
(Ⅰ)求 的长;
(Ⅱ)求点 到平面 的距离
解:(I)建立如图所示的空间直角坐标系,则 ,
(2)因为 为 的中点,则 ,从பைடு நூலகம் ,
相关文档
最新文档