微波波导参数
微波技术第3章1矩形波导
可见前五个导模是 TE10、TE20、TE01、 TE11、TM11。
35
则TE10模 TE20模 TE01模 TE11和TM11模 TE21和TM21模 TE12和TM12模
• 当f0 = 10GHz时,λc=3cm
fcTE10=6.562GHz fcTE20=13.123GHz fcTE01=14.764GHz fcTE11=16.156GHz fcTE21=19.753GHz fcTE12=30.248GHz
传播。
编辑ppt
13
TE20模场结构
TE10 TE20
编辑ppt
14
(2)TE01模与TE0n模
其场分量为
Ex
j n
b H mn sin n b y e
jz
Hy
j n
b
ny
H mn sin b e
jz
Hz
ny H mn cos b e
jz
Ey Ez H x 0
TE01模只有Ex、Hy和Hz三个场分量,它们与x无关,故 沿a边场无变化;
波分布或TM11模场;如 图。
注:TE11与TM11是简并模,这种简并称为模式简并; 同理,TEmn与TMmn (m>0, n>0) 是简并模。
编辑ppt
19
3.管壁电流 Js nˆHtan
主模:TE10模工作下
波导底面 y = 0 ; nˆ yˆ
JSy 0 y ˆ [x ˆHx zˆHz] x ˆHz zˆHx
ZTM
Eu Hv
2
1
k
c
编辑ppt
31
(5)TE10模矩形波导的传输功 率
P Re 1 E H * ds 2S
实验三--微波波导波长与频率的测量
实验三--微波波导波长与频率的测量实验三微波波导波长与频率的测量、分析和计算一、实验目的(1)熟悉微波测量线的使用;(2)学会测量微波波导波长和信号源频率;(3)分析和计算波导波长及微波频率。
二、实验原理测量线的基本测量原理是基于无耗均匀传输线理论,当终端负载与测量线匹配时测量线内是行波;当终端负载为短路或开路时,传输线上为纯驻波,能量全部反射。
根据驻波分布的特性,在波导系统终端短路时,传输系统中会形成纯驻波分布状态,在这种情况下,两个驻波波节点之间的距离即为波导波长的1/2 ,所以只要测量出两个驻波波节点之间的距离,就可以得到信号源工作频率所对应的波导波长。
方法一:通过测量线上的驻波比,然后换算出反射系数模值,再利用驻波最小点位置d min 便可得到反射系数的幅角以及微波信号特性、网络特性等。
根据这一原理,在测得一组驻波最小点位置d1,d2,d3,d4… 后,由于相邻波节点的距离是波导波长的1/2,这样便可通过下式算出波导波长。
⎥⎦⎤⎢⎣⎡-+-+-+-=0min 10min 20min 30min 423421d d d d d d d d g λ(3-1)方法二:交叉读数法测量波导波长,如图 3-1 所示。
图 3-1 交叉读数法测量波节点位置为了使测量波导波长的精度较高(接近实际的波导波长),采用交叉读数法测量波导波长。
在测试系统调整良好状态下,通过测定一个驻波波节点两侧相等的电流指示值 I 0 (可选取最大值的 20%)所对应的两个位置 d 1、d 2,则取 d 1、d 2 之和的平均值,得到对应驻波波节点的位置 d min1 。
用同样的方法测定另一个相邻波节点的位置 d min2 ,如图 3-1 所示,则 d min1 、 d mi n2 与系统中波导波长之间的关系为:)(21);(21432min 211min d d d d d d +=+= (3-2)1min 2min 2d d g -=λ(3-3)在波导中,还可利用下面公式计算波导波长: ()a g 2100λλλ-= (3-4) 式中,λ0为真空中自由空间的波长。
微波波导型号与详细参数
外截面尺寸(mm) 基本壁厚 内圆角最大 (mm) 直径R1 1.5 1.5 1.5 1.5 1.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.8 0.8 0.8 0.8 0.8 0.8 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.2 0.15 0.15 0.15 0.038 6 5 5 3.18 3.18 3.18 3.18 2.03 2.03 2.03 2.03 2.03 1.625 1.625 1.625 1.625 1.625 1.27 1.27 1.015 1.015 1.015 1.015 1.015 1.015 1.015 1.015 1.015 1.015 0.76 0.76 基本宽度 A 待定 待定 待定 待定 待定 待定 待定 169.16 133.6 113.28 90.42 76.2 61.42 50.8 43.64 38.1 31.75 25.4 21.59 17.83 14.99 17.7 10.67 9.14 7.72 6.81 5.79 5.13 4.57 3.556 3.175 基本高度 宽和高的偏 外圆角直径R2 差(±) 最小值 最大值 B 待定 待定 待定 待定 待定 待定 待定 86.61 68.83 58.67 47.24 39.1 32.33 25.4 23.44 19.05 15.88 12.7 12.06 9.93 8.51 6.35 6.35 5.59 4.88 4.42 3.91 3.58 3.3 2.54 2.35 待定 待定 待定 待定 待定 待定 待定 0.2 0.2 0.2 0.17 0.14 0.12 0.1 0.08 0.08 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.025 0.025 待定 待定 待定 待定 待定 待定 待定 1 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.65 0.65 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 待定 待定 待定 待定 待定 待定 待定 1.5 1.5 1.5 1.5 1.5 1.3 1.3 1.3 1.3 1.3 1.15 1.15 1 1 1 1 1 1 1 1 1 1 0.8 0.8
实验三微波波导波长与频率的测量
实验三微波波导波长与频率的测量摘要:本实验通过使用微波频率计和波导滑动短路板等设备,测量了微波波导的波长与频率之间的关系。
实验结果表明,微波波导的波长与频率呈线性关系,可以通过一定的测量方法确定微波波导的波长。
1.引言微波波导是一种广泛应用于微波通信和微波器件中的传输线路。
波导的基本特点是信号可以在其中以电磁波的形式传输,并且波导参数可以影响波导的传输性能。
其中,波导的波长和频率是两个重要的参数。
测量波导的波长和频率可以有效地评估波导的传输性能和应用范围。
2.实验原理微波波导内的电磁波的波长与频率之间存在一定的关系。
一般而言,波导的波长lambda可以通过以下公式计算得出:lambda = c/f其中,c为光速,f为波导的频率。
在实际测量中,可以通过使用微波频率计和波导滑动短路板来测量波导的频率和波长。
微波频率计可以根据输入的信号频率,直接测量得到波导的频率。
而波导滑动短路板则可以控制波导中的波长,通过移动短路板的位置,可以观察到引起的驻波现象。
当波导中存在驻波时,滑动短路板所移动的距离正好等于半个波长。
3.实验步骤3.1连接实验设备:将微波频率计与波导滑动短路板连接起来,确保连接正确并稳定。
3.2设置微波频率计:根据实验要求,设置微波频率计的工作频率范围,并将其调整到合适的工作状态。
3.3移动滑动短路板:在波导的一端,将滑动短路板移动到适当的位置,观察到波导中的驻波现象。
3.4测量驻波位置:通过滑动短路板的移动距离,准确测量驻波的位置,并记录下来。
3.5 计算波导的波长:根据实验数据,计算出波导的波长,使用公式lambda = 2 * d,其中d为驻波位置和波导起点之间的距离。
4.实验结果与分析通过实验测量得到的驻波位置数据,可以计算得到波导的波长。
将波导的波长与实际频率计测得的频率数据进行对比,可以观察到波导的波长与频率之间的线性关系。
实验结果表明,波导的波长与频率之间存在着确定的关系。
5.结论本实验通过测量微波波导的波长和频率,得出了波长与频率之间的线性关系。
恒达微波波导魔T功率分配器 合成器说明书
1.6功率分配器/合成器【产品简介】恒达微波提供一系列高性能的波导魔T 、功分器、合成器产品。
在魔T 的H 臂或E 臂接上负载,则可制成魔T 功率分配器或合成器。
波导魔T 具有如下特点:平衡臂两端对称;从E 臂输入的信号会在平衡臂两端等幅反相输出,H 臂隔离;从H 臂输入的信号会在平衡臂两端等幅同相输出,E 臂隔离;从平衡臂任一端输入的信号在E 臂和H 口等分输出,而对应平衡臂另一端隔离。
因此魔T 具有的对口隔离、邻口3dB 耦合及完全匹配的特点,使之在微波领域获得了广泛应用,尤其用在单脉冲雷达和差比较器、雷达收发开关、功率分配/合成、混频器及移相器等场合。
【型号描述】波导魔T ,波导管型号BJ100,材料为铝(材料为铜时缺省)。
产品类型:波导魔TH D - 100 W M T A波导管型号:B J 100恒达微波材料:铝【产品类型】类型代码含义类型代码含义WET 波导ET 接头WHT 波导HT 接头WMTPC 波导同相功率合成器WMTPD 波导同相功率分配器WMT 波导魔TWSWC 波导90°功率分配器/合成器(窄边耦合);I\U\XY\YU 型WTWC波导90°功率分配器/合成器(宽边耦合);I\U\XY\YU 型1.6.1波导ET 接头、波导HT 接头这两种器件在微波系统中常用作功率分配/合成元件。
波导ET 接头可以将E 口输入的信号在平衡臂两端等幅反相输出,反之,在平衡臂两端等幅反相输入信号则在E 口合成输出;波导HT 接头可以将H 口输入的信号在平衡臂等幅同相输出,反之,在平衡臂两端等幅同相输入信号则在H 口合成输出,但是ET 、HT 接头是不匹配的器件,只对其E 口或是H 口进行单端口匹配。
1.6.1.1波导ET 接头【标准产品数据表】产品型号频率范围(GHz)工作带宽对称性(dB)E口驻波比插损(dB)法兰材料涂覆HD-3WET0.32-0.49≤15%±0.25≤1.15≤0.2FDP铝氧化HD-4WET0.35-0.53≤15%±0.25≤1.15≤0.2FDP铝氧化HD-5WET0.41-0.62≤15%±0.25≤1.15≤0.2FDP铝氧化HD-6WET0.49-0.75≤15%±0.25≤1.15≤0.2FDP铝氧化HD-8WET0.64-0.98≤15%±0.25≤1.15≤0.2FDP铝氧化HD-9WET0.75-1.15≤15%±0.25≤1.15≤0.2FDP铝氧化HD-12WET0.96-1.46≤15%±0.25≤1.15≤0.2FDP铝氧化HD-14WET 1.13-1.73≤15%±0.25≤1.15≤0.2FDP铝氧化HD-18WET 1.45-2.20≤15%±0.25≤1.15≤0.2FDP铝氧化HD-22WET 1.72-2.61≤15%±0.25≤1.15≤0.2FDP铝氧化HD-26WET 2.17-3.30≤15%±0.25≤1.15≤0.2FDP铝氧化HD-32WET 2.60-3.95≤15%±0.25≤1.15≤0.2FDP铝氧化HD-40WET 3.22-4.90≤15%±0.25≤1.15≤0.2FDP铝氧化HD-48WET 3.94-5.99≤15%±0.35≤1.20≤0.2FDP铝氧化HD-58WET 4.64-7.05≤15%±0.35≤1.20≤0.2FDP铝氧化HD-70WET 5.38-8.17≤15%±0.35≤1.20≤0.3FDP铜镀银HD-84WET 6.57-9.99≤15%±0.35≤1.20≤0.3FBP铜镀银HD-100WET8.20-12.40≤15%±0.35≤1.20≤0.3FBP铜镀银HD-120WET9.84-15.0≤15%±0.35≤1.20≤0.3FBP铜镀银HD-140WET11.9-18.0≤15%±0.40≤1.25≤0.3FBP铜镀银HD-180WET14.5-22.0≤15%±0.40≤1.25≤0.4FBP铜镀银HD-220WET17.6-26.7≤15%±0.40≤1.25≤0.4FBP铜镀银HD-260WET21.7-33.0≤15%±0.40≤1.25≤0.4FBP铜镀银HD-320WET26.5-40.0≤15%±0.40≤1.25≤0.4FBP铜镀银HD-400WET32.9-50.1≤10%±0.50≤1.35≤0.5FUGP铜镀金HD-500WET39.2-59.6≤10%±0.50≤1.35≤0.5FUGP铜镀金HD-620WET49.8-75.8≤10%±0.50≤1.35≤0.5FUGP铜镀金HD-740WET60.5-91.9≤10%±0.50≤1.35≤0.5FUGP铜镀金HD-900WET73.8-112≤10%±0.50≤1.35≤0.5FUGP铜镀金1.6.1.2波导HT 接头【标准产品数据表】产品型号频率范围(GHz)工作带宽对称性(dB)H 口驻波比插损(dB)法兰材料涂覆HD-3WHT 0.32-0.49≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-4WHT 0.35-0.53≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-5WHT 0.41-0.62≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-6WHT 0.49-0.75≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-8WHT 0.64-0.98≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-9WHT 0.75-1.15≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-12WHT 0.96-1.46≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-14WHT 1.13-1.73≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-18WHT 1.45-2.20≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-22WHT 1.72-2.61≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-26WHT 2.17-3.30≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-32WHT 2.60-3.95≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-40WHT 3.22-4.90≤15%±0.25≤1.15≤0.2FDP 铝氧化HD-48WHT 3.94-5.99≤15%±0.35≤1.20≤0.2FDP 铝氧化HD-58WHT 4.64-7.05≤15%±0.35≤1.20≤0.2FDP 铝氧化HD-70WHT 5.38-8.17≤15%±0.35≤1.20≤0.3FDP 铜镀银HD-84WHT 6.57-9.99≤15%±0.35≤1.20≤0.3FBP 铜镀银HD-100WHT 8.20-12.40≤15%±0.35≤1.20≤0.3FBP 铜镀银HD-120WHT 9.84-15.0≤15%±0.35≤1.20≤0.3FBP 铜镀银HD-140WHT 11.9-18.0≤15%±0.40≤1.20≤0.3FBP 铜镀银HD-180WHT 14.5-22.0≤15%±0.40≤1.25≤0.4FBP 铜镀银HD-220WHT 17.6-26.7≤15%±0.40≤1.25≤0.4FBP 铜镀银HD-260WHT 21.7-33.0≤15%±0.40≤1.25≤0.4FBP 铜镀银HD-320WHT 26.5-40.0≤15%±0.40≤1.25≤0.4FBP 铜镀银HD-400WHT32.9-50.1≤10%±0.50≤1.35≤0.5FUGP铜镀金产品型号频率范围(GHz)工作带宽对称性(dB)H 口驻波比插损(dB)法兰材料涂覆HD-500WHT 39.2-59.6≤10%±0.50≤1.35≤0.5FUGP 铜镀金HD-620WHT 49.8-75.8≤10%±0.50≤1.35≤0.5FUGP 铜镀金HD-740WHT 60.5-91.9≤10%±0.50≤1.35≤0.5FUGP 铜镀金HD-900WHT73.8-112≤10%±0.50≤1.35≤0.5FUGP铜镀金1.6.2波导魔T【标准产品数据表】产品型号频率范围(GHz)工作带宽驻波比隔离度(E-H )(dB)对称性(dB)法兰材料涂覆H 口E 口HD-3WMT 0.32-0.49≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-4WMT 0.35-0.53≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-5WMT 0.41-0.62≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-6WMT 0.49-0.75≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-8WMT 0.64-0.98≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-9WMT 0.75-1.15≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-12WMT 0.96-1.46≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-14WMT 1.13-1.73≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-18WMT 1.45-2.20≤20%≤1.20≤1.50≥35≤0.25FDP 铝氧化HD-22WMT 1.72-2.61≤20%≤1.20≤1.50≥35≤0.4FDP 铝氧化HD-26WMT 2.17-3.30≤20%≤1.20≤1.50≥35≤0.4FDP 铝氧化HD-32WMT 2.60-3.95≤20%≤1.20≤1.50≥35≤0.4FDP 铝氧化HD-40WMT 3.22-4.90≤20%≤1.20≤1.50≥35≤0.4FDP 铝氧化HD-48WMT 3.94-5.99≤20%≤1.20≤1.50≥35≤0.4FDP 铝氧化HD-58WMT 4.64-7.05≤20%≤1.20≤1.50≥35≤0.4FDP 铝氧化HD-70WMT 5.38-8.17≤20%≤1.20≤1.50≥35≤0.4FDP 铜镀银HD-84WMT 6.57-9.99≤20%≤1.20≤1.50≥35≤0.4FBP 铜镀银HD-100WMT 8.20-12.4≤20%≤1.20≤1.50≥35≤0.4FBP 铜镀银HD-120WMT 9.84-15.0≤20%≤1.20≤1.50≥35≤0.4FBP铜镀银产品型号频率范围(GHz)工作带宽驻波比隔离度(E-H )(dB)对称性(dB)法兰材料涂覆H 口E 口HD-140WMT 11.9-18.0≤20%≤1.20≤1.50≥35≤0.4FBP 铜镀银HD-180WMT 14.5-22.0≤20%≤1.20≤1.50≥35≤0.4FBP 铜镀银HD-220WMT 17.6-26.7≤20%≤1.20≤1.50≥30≤0.4FBP 铜镀银HD-260WMT 21.7-33.0≤20%≤1.20≤1.50≥30≤0.4FBP 铜镀银HD-320WMT 26.5-40.0≤20%≤1.20≤1.50≥30≤0.4FBP 铜镀银HD-400WMT 32.9-50.1≤20%≤1.20≤1.50≥30≤0.5FUGP 铜镀金HD-500WMT 39.2-59.6≤20%≤1.20≤1.50≥30≤0.5FUGP 铜镀金HD-620WMT 49.8-75.8≤20%≤1.20≤1.50≥30≤0.5FUGP 铜镀金HD-740WMT 60.5-91.9≤20%≤1.20≤1.50≥30≤0.5FUGP 铜镀金HD-900WMT73.8-112≤20%≤1.20≤1.50≥30≤0.5FUGP铜镀金1.6.3波导同相功率分配器/合成器根据波导魔T 所特有的对口隔离、邻口3dB 耦合及完全匹配的特点,可在在波导魔T 的E 臂内置负载,制成波导同相功率分配器/合成器。
共面波导计算
共面波导计算
共面波导(Coplanar waveguide, CPW)是一种常用的传输微波和射频信号的结构,它由一个中心导体和两个平行的地面导体组成,中心导体与地面导体之间有一定的间隙。
以下是一些常见的共面波导参数计算:
1.特性阻抗(Characteristic Impedance):特性阻抗是共面波
导中传输的电磁波的阻抗。
可以使用如下公式计算:Z0 =
sqrt(L/C) 其中,L为单位长度的电感,C为单位长度的电容。
2.传播常数(Propagation Constant):传播常数描述了电磁
波在共面波导中传播的速度和衰减。
可以使用如下公式计
算:Propagation Constant = sqrt((R+jωL)(G+jωC)) 其中,j为
虚数单位,R为单位长度的电阻,G为单位长度的电导,
ω为角频率。
3.模式特征阻抗(Mode Characteristic Impedance):共面波
导可以支持多种模式的传输,每一种模式具有不同的特性
阻抗。
模式特征阻抗可以通过实验或仿真来计算或测量。
4.群速度(Group Velocity):群速度是指信号在共面波导中
传播的速度。
可以使用下述公式计算:Group Velocity =
dω/dk 其中,ω为角频率,k为波矢量。
需要注意的是,对于复杂的共面波导结构或材料,计算可能需要使用数值模拟方法,如有限元分析或电磁场仿真软件。
微波基本参数的测量
微波基本参数的测量引言一 实验目的1 熟悉和掌握微波测试系统中各种常用设备的结构原理及使用方法;2 掌握微波系统中频率、驻波比、功率等基本参数的测量方法;3 按要求测出测量线中的驻波分布;二 实验原理微波系统中最基本的参数有频率、驻波比、功率等。
要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。
(1) 导行波的概念:由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。
导行波的电场E 或磁 场H 都是x 、y 、z 三个方向的函数。
导行波可分成以下三种类型: (A) 横电磁波(TEM 波):TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即:0=Z E ,0=Z H 。
电场E 和磁场H ,都是纯横向的。
TEM 波沿传输方向的分量为零。
所以,这种波是无法在波导中传播的。
(B) 横电波(TE 波):TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。
亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。
(C) 横磁波(TM 波):TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。
亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。
TE 波和TM 波均为“色散波”。
矩形波导中,既能传输mm TE 波,又能传输mm TM 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。
(2) 色散波的特点:由于TE 波及TM 波与TEM 波的性质不同。
色散波就有其自身的特点: (a) 临界波长cλ :矩形波导中传播的色散波,都有一定的“临界波长”。
只有当自由空间的波长λ小于临界波长λc 时,电磁波才能在矩形波导中得到传播。
mm TE 波或mm TM 波的临界波长公式为:22)()(2bn a m c +=λ (1)(b)波导波长gλ和相速V 、群速Vc :色散波在波导中的波长用gλ表示。
恒达微波波导旋转关节产品手册说明书
1.5波导旋转关节【产品简介】旋转关节,主要用于雷达馈线系统中固定部分和旋转部分的连接,按结构形式可分为I 型、L 型和U 型等,按组成通道可分为单路,双路和多路旋转关节,产品频率范围覆盖2.6-40GHz 。
【型号描述】波导大功率旋转关节,波导管型号BJ100,结构形式为L 型,法兰类型为:FBP/FBM (两端都为FBP 时缺省),材料为铝(材料为铜时缺省)。
波导管型号:B J 100产品类型: 波导大功率旋转关节恒达微波H D - 100 W H P R J L P M A材料:A 铝材C 铜材单路L 型端口1/2法兰类型: P:平法兰 M:密封法兰 E:扼流法兰【产品类型】类型代码含义类型代码含义WRJ 波导旋转关节DRWRJ 双脊波导旋转关节WHPRJ 大功率波导旋转关节DRWHPRJ 大功率双脊波导旋转关节WRJ I T极化旋转关节CWRJ圆波导旋转关节1.5.1单路波导旋转关节【产品类型】型号代号含义结构图驻波起伏(WOW )插损起伏(WOW )旋转寿命(万转)I 单路I 型≤0.05≤0.05dB 300L 单路L 型≤0.05≤0.05dB 300U 单路U 型≤0.05≤0.05dB 3001.5.1.1I 型波导旋转关节【标准产品数据表】产品型号频率范围(GHz)工作带宽驻波比插损(dB )平均功率(W)峰值功率(KW)法兰材料涂覆HD-32WRJ I 2.60-3.95≤15%≤1.20≤0.25600600FDP 铝氧化HD-40WRJ I 3.22-4.90≤15%≤1.20≤0.25600600FDP 铝氧化HD-48WRJ I 3.94-5.99≤15%≤1.20≤0.25600600FDP 铝氧化HD-58WRJ I 4.64-7.05≤15%≤1.20≤0.25500150FDP 铝氧化HD-70WRJ I 5.38-8.17≤15%≤1.20≤0.25500150FDP 铝氧化HD-84WRJ I 6.57-9.99≤15%≤1.20≤0.3400150FBP 铜镀银HD-100WRJ I 8.20-12.5≤15%≤1.20≤0.3400150FBP 铜镀银HD-120WRJ I 9.84-15.0≤15%≤1.20≤0.320010FBP 铜镀银HD-140WRJ I 11.9-18.0≤15%≤1.20≤0.31004FBP 铜镀银HD-180WRJ I 14.5-22.0≤15%≤1.20≤0.31003FBP 铜镀银HD-220WRJI I 17.6-26.7≤15%≤1.25≤0.5500.5FBP 铜镀银HD-260WRJ I 21.7-33.0≤15%≤1.25≤0.5300.3FBP 铜镀银HD-320WRJ I26.5-40.0≤15%≤1.25≤0.5300.3FBP铜镀银1.5.1.2L 型旋转关节【标准产品数据表】产品型号频率范围(GHz)工作带宽驻波比插损(dB )平均功率(W)峰值功率(KW)法兰材料涂覆HD-32WRJL 2.60-3.95≤15%≤1.20≤0.25600600FDP 铝氧化HD-40WRJL 3.22-4.90≤15%≤1.20≤0.25600600FDP 铝氧化HD-48WRJL3.94-5.99≤15%≤1.20≤0.25600600FDP铝氧化产品型号频率范围(GHz)工作带宽驻波比插损(dB )平均功率(W)峰值功率(KW)法兰材料涂覆HD-58WRJL 4.64-7.05≤15%≤1.20≤0.25500150FDP 铝氧化HD-70WRJL 5.38-8.17≤15%≤1.20≤0.25500150FDP 铝氧化HD-84WRJL 6.57-9.99≤15%≤1.20≤0.3400150FBP 铜镀银HD-100WRJL 8.20-12.5≤15%≤1.20≤0.3400150FBP 铜镀银HD-120WRJL 9.84-15.0≤15%≤1.20≤0.320010FBP 铜镀银HD-140WRJL 11.9-18.0≤15%≤1.20≤0.31004FBP 铜镀银HD-180WRJL 14.5-22.0≤15%≤1.25≤0.31003FBP 铜镀银HD-220WRJL 17.6-26.7≤15%≤1.25≤0.5500.5FBP 铜镀银HD-260WRJL 21.7-33.0≤15%≤1.25≤0.5300.3FBP 铜镀银HD-320WRJL26.5-40.0≤15%≤1.25≤0.5300.3FBP铜镀银1.5.1.3U 型旋转关节【标准产品数据表】产品型号频率范围(GHz)工作带宽驻波比插损(dB )平均功率(W)峰值功率(KW)法兰材料涂覆HD-32WRJU 2.60-3.95≤15%≤1.20≤0.25600600FDP 铝氧化HD-40WRJU 3.22-4.90≤15%≤1.20≤0.25600600FDP 铝氧化HD-48WRJU 3.94-5.99≤15%≤1.20≤0.25600600FDP 铝氧化HD-58WRJU 4.64-7.05≤15%≤1.20≤0.25500150FDP 铝氧化HD-70WRJU 5.38-8.17≤15%≤1.20≤0.25500150FDP 铝氧化HD-84WRJU 6.57-9.99≤15%≤1.20≤0.3400150FBP 铜镀银HD-100WRJU 8.20-12.5≤15%≤1.20≤0.3400150FBP 铜镀银HD-120WRJU 9.84-15.0≤15%≤1.20≤0.320010FBP 铜镀银HD-140WRJU 11.9-18.0≤15%≤1.20≤0.31004FBP 铜镀银HD-180WRJU 14.5-22.0≤15%≤1.25≤0.31003FBP 铜镀银HD-220WRJU 17.6-26.7≤15%≤1.25≤0.5500.5FBP 铜镀银HD-260WRJU 21.7-33.0≤15%≤1.25≤0.5300.3FBP 铜镀银HD-320WRJU26.5-40.0≤15%≤1.25≤0.5300.3FBP铜镀银1.5.1.4大功率波导旋转关节【标准产品数据表】产品型号频率范围(GHz)工作带宽驻波比插损(dB )平均功率(W)法兰材料涂覆HD-32WHPRJUTM01 2.60-3.95≤5%≤1.15≤0.203000W FDP 铝镀银HD-40WHPRJUTM01 3.22-4.90≤5%≤1.15≤0.203000W FDP 铝镀银HD-48WHPRJUTM01 3.94-5.99≤5%≤1.15≤0.203000W FDP 铝镀银HD-58WHPRJUTM01 4.64-7.05≤5%≤1.15≤0.203000W FDP 铝镀银HD-70WHPRJUTM01 5.38-8.17≤5%≤1.15≤0.202000W FDP 铝镀银HD-84WHPRJUTM016.57-9.99≤5%≤1.20≤0.202000W FBP 铜镀银HD-100WHPRJUTM018.20-12.5≤5%≤1.20≤0.202000W FBP 铜镀银HD-120WHPRJUTM019.84-15.0≤5%≤1.20≤0.201000W FBP 铜镀银HD-140WHPRJUTM0111.9-18.0≤5%≤1.25≤0.202000W FBP 铜镀银HD-180WHPRJUTM0114.5-22.0≤5%≤1.25≤0.25500W FBP 铜镀银HD-220WHPRJUTM0117.6-26.7≤5%≤1.25≤0.25500W FBP 铜镀银HD-260WHPRJUTM0121.7-33.0≤5%≤1.25≤0.25300W FBP 铜镀银HD-320WHPRJUTM0126.5-40.0≤5%≤1.25≤0.25300WFBP铜镀银1.5.1.590°极化旋转关节【标准产品数据表】产品型号频率范围(GHz)驻波比插损(dB )平均功率(W)法兰材料涂覆HD-70WRJ I T 5.38-8.17≤1.25≤0.3200W FDP 铜镀银HD-84WRJ I T6.57-9.99≤1.25≤0.3100WFBP铜镀银产品型号频率范围(GHz)驻波比插损(dB )平均功率(W)法兰材料涂覆HD-100WRJ I T 8.20-12.5≤1.25≤0.3100W FBP 铜镀银HD-120WRJ I T 9.84-15.0≤1.25≤0.3100W FBP 铜镀银HD-140WRJ I T 11.9-18.0≤1.25≤0.3100W FBP 铜镀银HD-180WRJ I T 14.5-22.0≤1.25≤0.350W FBP 铜镀银HD-220WRJ I T 17.6-26.7≤1.4≤0.350W FBP 铜镀银HD-260WRJ I T 21.7-33.0≤1.5≤0.350W FBP 铜镀银HD-320WRJ I T26.5-40.0≤1.5≤0.350WFBP铜镀银1.5.1.6圆波导旋转关节圆波导旋转关节主要用于圆波导系统中固定部分和旋转部分的连接,主要结构形式为I 型。
实验5微波的传输特性和基本参数测量
实验五微波的传输特性和基本测量0 前言在微波测量技术中,微波测量的主要内容是频率、驻波比、功率等基本参数。
在微波工程设计中,多数情况下由于边界条件的复杂性,理论分析往往只能获得近似解,最终要通过微波测量来解决,因此,掌握微波测量技术对今后实际科研工作是非常有用的。
1 实验目的(1)初步了解微波测量系统,了解微波器件的使用和特性。
(2)了解微波测量技术,微波的传输特性。
(3)熟悉测量微波的基本参数:频率、驻波比。
(4)了解微波波导波长以及自由空间波长之间的关系。
2 原理2.1 频率的测定由于波长与频率满足关系λ=c/f,因此波长的测量和频率的测量是等效的。
在分米波和厘米波波段,频率的测量常采用谐振腔式波长计,而谐振腔波长计又可分两种:即是传输型谐振腔波长计和吸收型谐振腔波长计。
传输型谐振腔有两个耦合元件,一个将能量从微波系统输入谐振腔,另一个将能量从谐振腔输出到指示器。
当谐振腔调谐于待测频率时,能量传输最大,指示器的读数也最大。
吸收式波长计的谐振腔只有一个输入端与能量传输线路衔接,调谐是从能量传输线路接收端指示器读数的降低看出。
本实验所用的是吸收式波长计:如图(5—1)所示。
此波长计由传输波导与圆柱形谐振腔构成。
连接处利用长方形孔作磁耦合,螺旋测微计(读数结构)在旋转时与腔内活塞同步。
利用波长表可以测量微波信号源的频率。
当构成波长计的空腔与传输的电磁波失谐时,它既不吸收微波功率,也基本不影响电磁波的传输。
这种当谐振腔内活塞移动到一定位置,腔的体积正好使腔谐振于待测信号的频率,就有一部分电磁波耦合到腔内并损耗在腔壁上,从而使通过波导的信号减弱,即旋转波长表的测微头,当波长表与被测频率谐振时,将出现吸收峰。
反映在检波指示器上是一跌落点,此时读出波长表测微头的读数,再从波长表频率对照表上查出对应的频率。
如图(5—2)为不同谐振腔波长计的谐振曲线。
图5—1 吸收式波长计图5—2 谐振腔波长计谐振曲线(a)为传输型谐振腔波长计谐振曲线 (b)为吸收型谐振腔波长计谐振曲线2.2 波导波长以及驻波比的测量:关于驻波比,定义为波导中驻波极大值点与驻波极小值点的电场之比。
标准波导尺寸
标准波导尺寸波导是一种用于传输电磁波的管状结构,常用于微波和毫米波领域。
波导的尺寸对于其传输性能起着至关重要的作用。
在设计和制造波导时,必须严格遵循标准波导尺寸,以确保其性能和稳定性。
本文将介绍标准波导尺寸的相关内容,帮助读者更好地了解和应用波导技术。
波导的尺寸主要包括波导的截面尺寸、长度和材料等方面。
首先,波导的截面尺寸是指波导横截面的尺寸参数,包括宽度、高度和形状等。
这些参数直接影响波导的传输特性,如截止频率、传输损耗等。
因此,在设计波导时,必须根据具体的工作频率和传输要求来确定合适的截面尺寸。
其次,波导的长度也是一个重要的尺寸参数。
波导的长度不仅影响其传输特性,还直接关系到其在实际应用中的布局和安装。
在确定波导的长度时,需要考虑传输波长、场模式和功率损耗等因素,以保证波导的性能达到预期要求。
此外,波导的材料也对其性能产生重要影响。
不同材料的介电常数、磁导率和导电性能等参数不同,会直接影响波导的传输特性和损耗情况。
因此,在选择波导材料时,需要综合考虑工作频率、环境条件和成本等因素,以找到最合适的材料。
总的来说,标准波导尺寸是根据波导的工作频率、传输要求和实际应用环境等因素来确定的。
合理的波导尺寸设计能够有效地提高波导的传输性能和稳定性,减小传输损耗,提高系统的整体效率。
因此,在波导的设计和制造过程中,必须严格遵循标准波导尺寸,确保波导的性能达到预期要求。
总之,标准波导尺寸对于波导的设计和制造至关重要。
合理的波导尺寸设计能够提高波导的传输性能和稳定性,减小传输损耗,提高系统的整体效率。
因此,设计和制造波导时,必须严格遵循标准波导尺寸,确保波导的性能达到预期要求。
标准波导尺寸
标准波导尺寸波导是一种用于传输电磁波的金属管道,常用于微波和毫米波通信系统中。
在设计和制造波导时,波导尺寸的选择至关重要,因为它直接影响着波导的性能和工作频率范围。
本文将介绍标准波导尺寸的选择原则和常见的尺寸规格,以帮助工程师们更好地设计和应用波导。
首先,波导的尺寸选择应考虑到工作频率。
波导的截面尺寸和形状会影响其在不同频率下的传输特性,因此在选择波导尺寸时,需要确保其能够满足所需的工作频率范围。
一般来说,较低频率的波导需要更大的尺寸,而较高频率的波导则可以采用更小的尺寸。
工程师们可以根据具体的工作频率要求,参考标准的波导尺寸规格表来进行选择。
其次,波导的尺寸选择还应考虑到功率传输和损耗。
波导的尺寸会影响其内部电磁场的分布,进而影响功率传输的效率和损耗情况。
一般来说,较大尺寸的波导可以承载更高的功率,但也会带来更大的传输损耗。
因此,在选择波导尺寸时,需要权衡考虑功率传输和损耗之间的关系,以确保波导在实际应用中能够稳定可靠地工作。
此外,波导的尺寸选择还应考虑到制造成本和安装空间。
较大尺寸的波导通常会增加制造成本和安装空间的要求,而较小尺寸的波导则可以减少这些成本和要求。
因此,在选择波导尺寸时,需要综合考虑工程项目的预算和实际安装环境,以找到最合适的尺寸方案。
在实际应用中,常见的标准波导尺寸包括矩形波导、圆形波导和椭圆波导等。
这些波导的尺寸规格已经在国际标准化组织和行业标准中得到了明确定义,工程师们可以直接参考这些标准规格来选择合适的波导尺寸。
此外,也可以通过仿真软件和实验测试来验证所选波导尺寸的性能和可靠性。
总之,波导尺寸的选择是波导设计中的关键步骤,需要综合考虑工作频率、功率传输、制造成本和安装空间等因素。
工程师们可以通过参考标准规格表和进行仿真测试来选择合适的波导尺寸,以确保波导在实际应用中能够达到预期的性能和效果。
微波频率及波导波长的测量
开放项目讲义微波频率及波导波长的测量1.微波的性质微波技术是近代发展起来的一门尖端科学技术, 它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用, 在科学研究中也是一种重要的观测手段, 微波的研究方法和测试设备都与无线电波的不同。
从图1可以看出, 微波的频率范围是处于光波和广播电视所采用的无线电波之间, 因此它兼有两者的性质, 却又区别于两者。
与无线电波相比, 微波有下述几个主要特点图1 电磁波的分类(1). 波长短(1m —1mm): 具有直线传播的特性, 利用这个特点, 就能在微波波段制成方向性极好的天线系统, 也可以收到地面和宇宙空间各种物体反射回来的微弱信号, 从而确定物体的方位和距离, 为雷达定位、导航等领域提供了广阔的应用。
(2). 频率高: 微波的电磁振荡周期(10-9一10-12s)很短, 已经和电子管中电子在电极间的飞越时间(约10-9s)可以比拟, 甚至还小, 因此普通电子管不能再用作微波器件(振荡器、放大器和检波器)中, 而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。
另外, 微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级, 在导体中传播时趋肤效应和辐射变得十分严重, 一般无线电元件如电阻, 电容, 电感等元件都不再适用, 也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。
(3). 微波在研究方法上不像无线电那样去研究电路中的电压和电流, 而是研究微波系统中的电磁场, 以波长、功率、驻波系数等作为基本测量参量。
(4). 量子特性:在微波波段, 电磁波每个量子的能量范围大约是10-6~10-3eV, 而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。
人们利用这一特点来研究分子和原子的结构, 发展了微波波谱学和量子电子学等尖端学科, 并研制了低噪音的量子放大器和准确的分子钟, 原子钟。
50欧姆阻抗的共面波导结构(cwpg)参数
一、引言50欧姆阻抗的共面波导结构(cwpg)是一种常见的微波传输线结构,广泛应用于无线通信、雷达系统等领域。
它具有低损耗、高速度和良好的抗干扰能力等优点,因此备受工程技术人员的青睐。
本文将对50欧姆阻抗的共面波导结构的参数进行详细介绍,包括其特点、设计原理、优化方法等内容,旨在为相关领域的研究人员提供理论指导和实际应用参考。
二、50欧姆阻抗的共面波导结构的特点1. 与传统微带线相比,50欧姆阻抗的共面波导结构具有更低的损耗和更高的功率处理能力。
2. 该结构中的电磁场主要分布在金属板的两侧,在高频微波传输中显示出更好的稳定性和抗干扰能力。
3. 由于其结构简单、制作工艺成熟,50欧姆阻抗的共面波导结构在工程应用中具有较高的可靠性和稳定性。
三、50欧姆阻抗的共面波导结构的参数1. 传输特性参数1.1 电压驻波比(VSWR)50欧姆阻抗的共面波导结构的电压驻波比是衡量其匹配性能的重要指标,一般要求在设计工作频率范围内小于1.5,以保证较好的信号传输质量。
1.2 传输损耗传输损耗是指信号在传输过程中耗散的能量占总能量的比例。
50欧姆阻抗的共面波导结构的传输损耗要低于传统微带线,一般要求在工作频率下小于0.1dB/cm。
1.3 群速度群速度是指信号在传输线中传输的速度,50欧姆阻抗的共面波导结构的群速度要保持稳定,以确保信号的同步性和精准性。
2. 制造工艺参数2.1 金属板材料50欧姆阻抗的共面波导结构一般采用高导电性的金属材料,如铜、铝等,以保证电磁场的良好传输和抗干扰能力。
2.2 绝缘介质绝缘介质的选择对结构的参数有重要影响,在50欧姆阻抗的共面波导结构中,常用的绝缘介质材料包括PTFE、FR4等,其介电常数和介电损耗要求较高。
3. 结构优化参数3.1 宽度和间距50欧姆阻抗的共面波导结构的宽度和金属板之间的间距对其传输特性有很大影响,需要通过优化设计来实现在工作频率下的50欧姆阻抗匹配。
3.2 端口设计结构的端口设计包括输入输出端口的匹配和接头设计,直接影响了结构的传输性能和稳定性。
标准波导尺寸
标准波导尺寸波导是一种用于传输电磁波的导管,常用于微波和毫米波频段的通信系统中。
在设计和制造波导时,准确的尺寸是非常重要的,因为尺寸的准确性直接影响着波导的性能和效率。
本文将介绍标准波导尺寸的相关知识,希望能为波导的设计和制造提供一些参考。
首先,波导的尺寸取决于工作频率。
在设计波导时,我们首先需要确定工作频率范围,然后根据工作频率来选择合适的波导尺寸。
一般来说,波导的尺寸会随着工作频率的增加而减小,因此在高频段使用的波导尺寸会比低频段的要小。
其次,波导的尺寸还与其工作模式有关。
常见的波导工作模式包括TE模式和TM模式,它们分别对应于横向电场和纵向磁场的传播。
不同的工作模式会对波导的尺寸提出不同的要求,因此在设计波导时需要充分考虑工作模式的影响。
此外,波导的尺寸还受到材料的影响。
波导通常由金属材料制成,而不同的金属材料具有不同的导电性能和磁性能,这会对波导的尺寸和形状提出一定的要求。
因此在选择波导材料时,需要充分考虑其对波导尺寸的影响。
在实际应用中,为了简化设计和制造过程,人们通常会采用一些标准波导尺寸。
这些标准尺寸是根据常见的工作频率和工作模式进行优化和统一的,可以在一定程度上满足大多数应用的需求。
因此在实际设计和制造中,可以优先考虑采用这些标准尺寸,以减少成本和提高效率。
总之,波导的尺寸是影响其性能和效率的重要因素。
在设计和制造波导时,需要充分考虑工作频率、工作模式和材料等因素对波导尺寸的影响,并优先考虑采用标准尺寸以简化设计和制造过程。
希望本文能为波导的设计和制造提供一些参考,使波导在应用中发挥最佳的性能和效率。
微波工作波长和波导波长测量
Z λg
二 实验方法
可用吸收谐振的方法测量微波发射频率,然 后再计算工作波长λ。圆柱形腔体经耦合孔 与波导相通,改变腔体的固有频率,当与微 波的频率相同时。腔体就共振吸收微波能量, 传播的微波能量就会减小,从而测到微波频 率。
用驻波的方法测量波导波长。在波导中形成 驻波,用测量线测量驻波中的电场,可求得 λg 。
这种波的发射机构是反射式速调管中的电子束经 受速度调制后所发射的电磁波。
波导波长λg则是工作电磁波在波导中两侧壁来回反 射,形成电磁场场强沿波导传播方向的周期性分布,
这种周期就对应于波导波长λg 。λ与λg可用下面公式
计算:
g
2
1
c
ห้องสมุดไป่ตู้
微波在波导两侧全反射沿Z方向传播
Z 微波在波导中全反射使电磁场沿Z方向出现 周期性分布,对应的长度称为波导波长λg
?????????cg21微波在波导两侧全反射沿z方向传播z微波在波导中全反射使电磁场沿z方向出现周期性分布对应的长度称为波导波长ggz可用吸收谐振的方法测量微波发射频率然后再计算工作波长
微波工作波长和波导 波长测量
一、实验原理:
工作波长λ是微波源发射的电磁波在波导中传播 的波长,它是连续的等幅波。在自由空间或波导中 传播工作波长是相同的。
标准波导尺寸
标准波导尺寸波导是一种用于传输电磁波的导向结构,广泛应用于通信、雷达、微波炉等领域。
波导的尺寸对其性能有着重要影响,因此了解标准波导尺寸对于工程设计和应用具有重要意义。
波导的尺寸包括宽度、高度、长度等参数,不同类型的波导有着不同的标准尺寸。
以下将介绍一些常见波导的标准尺寸及其应用。
矩形波导是最常见的一种波导类型,其标准尺寸通常由宽度和高度两个参数来描述。
常见的标准尺寸包括WR-90(10.16mm ×4.32mm)、WR-75(9.53mm × 3.81mm)、WR-62(15.75mm ×7.87mm)等。
不同尺寸的矩形波导适用于不同频段的传输,例如WR-90适用于X波段,WR-75适用于Ku波段。
圆形波导是另一种常见的波导类型,其标准尺寸由直径来描述。
常见的标准尺寸包括R100(100mm)、R120(120mm)、R150(150mm)等。
圆形波导通常用于低频段的传输,具有较好的电磁屏蔽性能和传输稳定性。
除了矩形和圆形波导,还有许多其他类型的波导,如双Ridged波导、同轴波导等,它们都有着各自的标准尺寸和特性。
在选择波导时,需要根据具体的应用需求来确定合适的尺寸和类型。
在工程设计中,正确选择和使用标准波导尺寸对于确保系统性能和稳定性至关重要。
通过合理匹配波导尺寸和频段,可以最大限度地减小传输损耗,提高系统的传输效率和可靠性。
总之,了解和掌握标准波导尺寸对于工程设计和应用具有重要意义。
不同类型的波导有着不同的标准尺寸,正确选择和使用标准波导尺寸可以最大限度地提高系统的性能和稳定性。
希望本文对于读者对标准波导尺寸有所帮助。
以上就是关于标准波导尺寸的相关内容,希望对大家有所帮助。
如果您对此有任何疑问或者需要进一步了解的话,请随时与我们联系。
标准波导尺寸对照表
标准波导尺寸对照表导语:波导是一种用于传输微波信号的结构,常用于无线通信系统和雷达设备中。
波导的尺寸是非常重要的,它直接关系到波导的工作特性和性能。
下面是一份标准波导尺寸对照表,以便工程师在设计波导时参考使用。
1.WR-22:-内径:0.220英寸-外径:0.492英寸-波导宽度:0.109英寸2.WR-42:-内径:0.420英寸-外径:0.870英寸-波导宽度:0.315英寸3.WR-62:-内径:0.620英寸-外径:1.495英寸-波导宽度:0.560英寸4.WR-90:-内径:0.900英寸-外径:1.950英寸-波导宽度:0.750英寸5.WR-137:-内径:1.370英寸-外径:3.380英寸-波导宽度:1.100英寸6.WR-187:-内径:1.870英寸-外径:4.620英寸-波导宽度:1.540英寸7.WR-284:-内径:2.840英寸-外径:6.910英寸-波导宽度:2.220英寸8.WR-430:-内径:4.300英寸-外径:9.840英寸-波导宽度:3.840英寸需要注意的是,以上尺寸为常见的波导尺寸之一,实际上还有很多其他不同尺寸的波导可供选择,具体选择哪种尺寸,取决于使用情况和特定应用需求。
在选择波导尺寸时,工程师应该考虑以下几个因素:1.频率范围:不同尺寸的波导适用于不同的频率范围。
因此,工程师需要选择与所需频率范围相匹配的尺寸,以确保传输良好的信号质量。
2.功率要求:波导的尺寸与其所能承受的功率有关。
对于高功率应用,需要选择足够大的波导尺寸,以防止功率损耗和过热。
3.空间限制:波导的尺寸也受到空间限制的影响,尤其是在安装和布线时。
因此,工程师需要在适用的尺寸范围内进行选择,以满足具体的空间要求。
4.材料选择:波导的尺寸也与其材料有关。
常见的波导材料包括铜,铝,不锈钢等。
不同的材料具有不同的导电特性和热传导性能,因此也会影响到波导的尺寸选择。
总结:。
微波基本参数的测量—原理
微波基本参数的测量一、实验目的1、了解各种微波器件;2、了解微波工作状态及传输特性;3、了解微波传输线场型特性;4、熟悉驻波、衰减、波长(频率)和功率的测量;5、学会测量微波介质材料的介电常数和损耗角正切值。
二、实验原理微波系统中最基本的参数有频率、驻波比、功率等。
要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。
1、导行波的概念:由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。
导行波的电场E 或磁场H 都是x 、y 、z 三个方向的函数。
导行波可分成以下三种类型: (A) 横电磁波(TEM 波):TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即: 0=Z E ,0=Z H 。
电场E 和磁场H ,都是纯横向的。
TEM 波沿传输方向的分量为零。
所以,这种波是无法在波导中传播的。
(B) 横电波(TE 波):TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。
亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。
(C) 横磁波(TM 波):TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。
亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。
TE 波和TM 波均为“色散波”。
矩形波导中,既能传输mm T E 波,又能传输mm T M 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。
2、波导管:波导管是引导微波电磁波能量沿一定方向传播的微波传输系统,有同轴线波导管和微带等,波导的功率容量大,损耗小。
常见的波导管有矩形波导和圆波导,本实验用矩形波导。
矩形波导的宽边定为x 方向,内尺寸用a 表示。
窄边定为y 方向,内尺寸用b 表示。
10TE 波以圆频率ω自波导管开口沿着z 方向传播。
在忽略损耗,且管内充满均匀介质(空气)下,波导管内电磁场的各分量可由麦克斯韦方程组以及边界条件得到:()sin()j t z o y x E je ωβωμππα-=-, ()sin()j t z o x xH j e ωβμαππα-=()cos()j t z z x H e ωβπα-=, x y z E E E ==,2gπβλ=其中,位相常数g λ=,波导波长cf λ=。
微波基本参数的测量
实验六微波基本参数的测量实验目的1.了解微波传输线的传输特性;2.熟悉波导测量线的使用;3.学会驻波、衰减、波长、波导波长等基本参数的测量。
实验原理由于微波的工作频率很高(300MHz-300GHz),用普通导线已无法克服传输微波时引起的辐射与趋附效应,所以微波有其专用的传输线,常见的微波传输线有同轴线、波导、微带线;其中尤以波导传输线最为常见它是矩形或圆形的金属管,管的两端装有法兰盘,以便于互相连接。
波导具有传输功率大,衰减小的优点。
微波在波导中以电磁波的形式向前传输。
一、矩形波导的电磁波微波能量的传输是应用波导,它是无内导体的空心金属管。
通常其横截面形状为圆形和矩形。
金属管实质上起屏蔽作用。
强迫微波在波导内沿轴向前进,向负载传输电磁能量。
由电磁场的基本特性可知,电力线与磁力线永远交链,并且在导体表面上磁力线总是与导体表面平行,而电力线必与导体表面垂直。
因此,在无限长波导内满足条件的可能传输微波只有两种形式:一类电磁场波型是沿传播方向(Z方向)无电场分量,即E Z = 0,电场只存在波导的横截面上,称横电波,也称为TE波;另一类则是沿传播方向无磁场分量,即E Z = 0,磁力线在截面上闭合,称横磁波,也称TM波。
TE波或TM波在波导中的形成(称为激励)和微波的激励方法及频率都有关系。
我们以实际应用上最重要的矩形波导内的TE波为例说明之。
今在矩形波导的宽边中央开一小孔并插进一电偶极子(或探针),它通常是微波振荡器向波导传递能量的同轴线内导体的延续部分。
显然探针相当于一个小天线,它能向四周辐射电磁波,由于波导管壁对微波的反射作用,在波导内便形成杂乱的波形,若其中存在这样的一个平面波,它从某一方向入射到波导的窄壁,并在两窄壁上往复反射,形“之”字形沿Z轴前进,如果波导的尺寸和入射方向恰当,正好使入射波和反射波的合成波在金属表面处形成电场的波节,而在波导的宽边中央形成电场驻波的波腹,正好满足电磁场的边界条件,这样的合成波就是TE波,它可在这个波导中激励和传输。