佩雷尔曼关于庞加莱猜想的论文0303109
庞加莱猜想
庞加莱猜想必定同胚于n维球面。
”后来,这个猜想被推广至三维以上空间,被称为“高维庞加莱猜想”。
如果你认为这个说法太抽象的话,我们不妨做这样一个想象:的一个讨论班上,当时是斯坦福大学数学系教授的丘成桐见到了汉密尔顿。
“那时候,汉密尔顿刚刚在做Ricci 流,别人都不晓得,跟我说起。
我觉得这个东西不太容易做。
没想到,1980年,他就做出了第一个重要的结果。
”丘成桐说,“于是我跟他讲,可以用这个结果来证明庞加莱猜想,以及三维空间的大问题。
”交道。
据说,有记者想给他拍照,被他大声制止;而对像《自然》《科学》这样声名显赫杂志的采访,他也不屑一顾。
尽管克雷数学研究所没有透露佩雷尔曼是否同意接受这个大奖,但俄罗斯媒体纷纷称,佩雷尔曼对“千禧年数学大奖”和100万美元的奖金丝毫没有兴趣。
证明,我会很高兴。
我从来没有想成为庞加莱猜想的唯一破解者。
”田刚在MIT收到了佩雷尔曼的电子邮件,立即意识到其重要性。
他开始阅读并同他的同事们讨论这篇文章。
重新做了一遍。
”至于丘成桐,佩雷尔曼说,“我不能说我被侵犯了。
还有人做得比这更糟。
当然,许多数学家多少是诚实的,可他们几乎都是和事佬。
他们容忍那些不诚实的人。
”获得菲尔兹奖的前景迫使他同他的职业彻底决裂。
“只要我不出名,我还有选择的余地,”佩雷尔曼解释说,“或者做一些丑事,”-----对于数学界缺乏正义感大惊小怪-----“或者不这样做而被当作宠物。
现在,我变得非常有名了,我不能再做宠物而不说话。
这就是为什么我要退出。
”当被问及,他拒绝了菲尔兹奖,退出了数学界,是否意味着他排除了影响数学界的任何可能性时,他生气地回答“我不是搞政治的。
”佩雷尔曼不愿回答他是否也会拒绝克莱研究所的百万美元奖金的问题。
“在颁发奖金之前我不作决定,”他说。
Gromov说他能理解佩雷尔曼的逻辑。
“你要做伟大的工作就必须有一颗纯洁的心。
你只能想数学。
其他一切都属于人类的弱点。
”尽管人们会把他拒绝接受菲尔兹奖视为一种傲慢,Gromov说,他的原则值得钦佩。
2019年放下得失心高一作文
他住在一个棚舍里,隔壁是一个贫民窟,里面聚居着一大群光棍。自从佩雷尔曼归隐后,不断有年轻妩媚的女粉丝慕名而来。平静的生活被打破了,他哀苦连 连。而光棍们却看红了眼,个个垂涎欲滴。对于这么一个新邻居,他们纳闷了:佩雷尔曼看上去比咱们还邋遢,顶多也就乞丐级别的。但为什么会有那么多漂亮女郎 甘愿投怀送抱?他们对此感到不可思议。
放下得失心高一
20xx年,法国数学家庞加莱提出一个猜想:任何一个封闭的三维空间,只要它里面所有的封闭曲线都可以收缩成一点,这个空间就一定是三维圆球。这就是“数学界七大难题”之一的“庞加莱猜想”。此题曾令无数数学家望而却步。
为征服这个数学领域的高峰,20xx年,美国麻省克雷数学研究所专门设立了一个奖项,悬赏100万美元,寻求破解此题的答案。“谁解开了‘庞加莱猜 想’,谁就能名利双收!”面对如此诱惑,全球数学家趋之若鹜。但一个多世纪以来,尽管无数人为之想破了脑袋,但此题一直悬而未解。
20xx年,一个名叫格里高里佩雷尔曼的人解开了“庞加莱猜想”。佩雷尔曼是俄罗斯一位名不见经传的数学研究员。成名后,许多人让他谈谈破解“庞加莱猜想”的经验、思路以及对成功的认识。但性格古怪的佩雷尔曼不但拒绝了媒体的采访,而且对百万奖金充满了不屑。他丢下一句“我无需什么来证明我的成就”后,就告别尘世喧嚣,隐居在圣彼得堡乡下。佩雷尔曼的功成身退,不能不说是数学界乃至整个人类社会的一大遗憾。
数学奇才佩雷尔曼——伟大的工作需要一颗纯洁的心
数学奇才佩雷尔曼——伟大的工作需要一颗纯洁的心美国克雷数学研究所2010年3月18日对外公布,悬赏10年、奖金100万美元的千禧年数学大奖终于有了第一位获奖人。
44岁的俄罗斯天才数学家格里高利·佩雷尔曼因为破解庞加莱猜想而荣获此项殊荣。
虽然庞加莱猜想有了答案,但千禧年数学大奖很可能找不到这位神秘的获奖人。
早在2006年,国际数学家大会决定将40岁以下数学家的“诺贝尔奖”——菲尔兹奖授予佩雷尔曼,而他拒绝出席领奖。
今获“千禧年数学大奖”3月18日,位于美国马萨诸塞州的克雷数学研究所宣布,数学家佩雷尔曼由于解开了困扰了全球数学界近100年的著名的“庞加莱猜想”,已经被该研究所授予奖金高达100万美元的“千禧年数学大奖”。
2000年,美国克雷数学研究所宣布为世界“七大数学难题”悬赏700万美元,每一道难题价值100万美元,而“庞加莱猜想”正是其中之一。
无数数学家为此费尽心血,但最后大多选择了放弃。
然而2002年和2003年,俄罗斯司捷克洛夫数学研究所的数学家佩雷尔曼却在网络上发表了三篇论文,成功破解了“庞加莱猜想”。
据悉,克雷数学研究所原本要求获奖者必须在权威数学期刊上发表论文,但性格怪异的佩雷尔曼只在网络发表论文,始终不向权威期刊投稿。
克雷数学研究所在7年之后,最终将破解“庞加莱猜想”的“千禧年数学大奖”颁给了佩雷尔曼。
目前与母亲过着与世隔绝的生活尽管克雷数学研究所没有透露佩雷尔曼是否同意接受这个大奖,但俄罗斯媒体纷纷称,佩雷尔曼对“千禧年数学大奖”和100万美元的奖金丝毫没有兴趣。
因为,佩雷尔曼不仅是一名卓越的数学家,同时也是一名与世隔绝、谜一样的“隐士”。
佩雷尔曼7年前成功破解“庞加莱猜想”后,不仅辞掉了在司捷克洛夫数学研究所的职位,还拒绝了美国普林斯顿大学、斯坦福大学主动提供的职位。
据俄罗斯媒体称,如今他在圣彼得堡市的一座公寓中和老母亲生活在一起,过着与世隔绝的生活。
国际数学家联盟主席John Ball曾秘密拜访佩雷尔曼,他的唯一目的是说服佩雷尔曼接受将在8月份国际数学家大会上颁发的菲尔兹奖。
庞加莱猜想前言
庞加莱猜想-前言Wir m\"ussen wissen! Wir werden wissen!(我们必须知道!我们必将知道!)—— David Hilbert两年前科学版举行过一次版聚,我报告了低维拓扑里面的一些问题和进展,其中有一半篇幅是关于Poincar\'e 猜想。
版聚后,flyleaf 要求大家回去后把自己所讲的内容发在版上。
当时我甚至已经开始写了一两段,但后来又搁置了。
主要是因为自己对于低维拓扑还是一个门外汉,写出来的东西难免有疏漏之处,不敢妄下笔。
两年过去,我对低维拓扑这门学科的了解比原先多了,说话的底气也就比原先足了。
另外,由于Clay 研究所的百万巨赏,近年来Poincar\'e 猜想频频在媒体上曝光;而且Perelman 最近的工作使数学家们有理由相信我们已经充分接近于这一猜想的最后解决。
所以大概会有很多人对Poincar\'e 猜想的来龙去脉感兴趣,我也好借机一偿两年来的宿愿。
现代科学的高速发展使各学科之间的鸿沟加大,不同学科之间难以互相理解,所以非数学专业的读者在阅读本文时可能会遇到一些困难。
但限于篇幅和文章的形式,我也不可能对很多东西详细解释。
一些最基本的拓扑概念如“流形”,我将在本文的附录中解释。
还有一些“同调群”、“基本群”之类的名词,读者见到时大可不去理会它们的确切含义。
我将尽量避免使用这一类的专业术语。
作者并非拓扑方面的专家,对下面要说的很多内容都是道听途说,只知其然而不知其所以然;作者更不善于写作,写出来的东东总会枯燥无味,难登大雅之堂。
凡此种种,还请读者诸君海涵。
问题的由来Consid\'erons maintenant une vari\'et\'e [ferm\'ee] $V$ \`a trois dimensions ... Est-il possible que le groupe fondamental de $V$ ser\'eduise \`a la substitution identique, et que pourtant $V$ ne soit pas simplement connexe?—— Henri Poincar\'e在拓扑学家的眼里,篮球、排球和乒乓球并没有什么不同,它们都同胚于三维空间中的球面S^2. (我们把n+1维欧氏空间中到原点距离为1的点的集合记作S^n,称为n维球面(sphere)。
庞加莱猜想
庞加莱猜想【摘要】庞加莱是法国著名数学家,他提出的“庞加莱猜想”引起极大轰动,后人为证明此猜想而不懈努力,经过一个世纪的钻研,终于对此猜想给出完整证明。
本文就是通过对庞加莱猜想及后人对此做的努力做出叙述,以此让大家体会数学家们的事业热情和博大胸怀。
【关键词】庞加莱猜想、代数拓扑学、证明、萨密尔、瑟斯顿、米歇尔、汉密尔顿、佩雷尔曼、朱熹平、曹怀东、伟大贡献、宽阔胸怀、钻研精神、敬佩庞加莱是法国数学家,被称为是19世纪最后四分之一和20世纪初期的数学界的领袖人物,是对数学和它的应用具有全面了解、能够雄观全局的最后一位大师。
他的研究和贡献涉及数学的各个分支,例如函数论、代数拓扑学、阿贝尔函数和代数几何学、数论、代数学、微分方程、数学基础、非欧几何、渐近级数、概率论等当代数学不少研究课题,都溯源于他的工作。
在他留下的巨大科学遗产中,有一个属于代数拓扑学中带有基本意义的命题,这就是困扰了数学家整整一个世纪的“庞加莱猜想”。
1904 年,庞加莱提出有关空间几何结构的猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩成一点,那么这个空间一定是一个三维的圆球。
这就是著名的“庞加莱猜想”庞加莱是在1904年发表的一组论文中提出这一猜想的:“单连通的三维闭流形同胚于三维球面。
”它后来被推广为:“任何与n维球面同伦的n维闭流形必定同胚于n维球面。
”粗浅的比喻为:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。
另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。
我们说,苹果表面是“单连通的”,而轮胎面不是。
大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。
这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
庞加莱猜想和空间相对论
空间相对论与庞加莱猜想胡良深圳市宏源清防伪材料有限公司摘要:庞加莱猜想把一个封闭的三维空间连续收缩到一个点,是把宏观与微观世界都包括在一起了,必然引来与海森堡的不确定性原理的等价性. 当宇宙客观参数趋于正无穷大时,实际上是处于一种稳定的相态(具有对称性);当宇宙客观参数趋于负无穷大时,实际上是处于另一种稳定的相态(具有对称性); 当宇宙客观参数是常数时,实际上是二种稳定相态之间的平衡(对称性破缺).关键词:空间,相对论, 庞加莱猜想,物质1前言庞加莱猜想的含义是,任何一单连通的、封闭的三维流形与三维球面同胚.简单来说:每一个没有破洞的封闭三维物体,都拓扑等价于三维的球面.例如:如果伸缩围绕一个苹果表面的橡皮带,那么可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点;另一方面来看,想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它不离开表面而又收缩到一点的.苹果表面是单连通的,而轮胎面不是.进一步推广为高维庞加莱猜想,任何与n维球面同伦的n维封闭流形必定同胚于n维球面. 庞加莱猜想可构成三条定理,1、庞加莱猜想正定理:在一个三维空间中,假如每一条封闭的曲线都能收缩成一点,那么这个空间一定是一个三维的圆球.2、庞加莱猜想逆定理:如果一个点连续扩散成一个“闭弦”,它再连续收缩成一点,称为“曲点”.那么在一个三维空间中,假如每一条封闭的曲线都能收缩成类似一点,其中只要有一点是曲点,那么这个空间就不一定是一个三维的圆球,而可能是一个三维的环面.3、庞加莱猜想外定理:“点内空间”是三维空心圆球外表面同时收缩成一点的情况,或三维空心圆球外表面每一条封闭的曲线都收缩成一点的情况.即它不是指在一个三维空间中,假如每一条封闭的曲线都能收缩成一点的三维圆球,而且指三维空心圆球收缩成一个庞加莱猜想点的空间几何图相.史提芬·斯梅尔证明了五维以上的庞加莱猜想.麦克·傅利曼证明了四维猜想. 理查德·汉密尔顿引入了瑞奇流概念,并证明了几种特殊情况下的庞加莱猜想.最后,格里戈里·佩雷尔曼证明了几何化猜想,证明所用的方法深刻揭示了数学中两个不相关领域间的联系.两维空间只有三种可能的形状,像纸张一样的平面,像球体一样的封闭体,像马鞍和喇叭一样反向均衡的曲面.瑟斯顿猜测,用八种不同的形状就可构成任何的一类三维空间;几何化猜想是一个有关三维空间几何化的更强大更普遍的猜想,认为任何空间都可还原为少数几个基本的图形.佩雷尔曼证明了所有的奇异点可变化为球形或管状形,一旦瑞奇流开始,这些变化是有时限的.这意味着拓扑学家可按自己的意愿切割空间,并让瑞奇流持续到最终,从而揭示了空间的拓扑学球形本质.2.弦论与庞加莱猜想弦论实际是庞加莱猜想球面在三维空间收缩与扩张的对称性,在一维空间发生的对称性自发破缺.自然的规律中,对称性发挥着重要的作用.物理和数学中的矢量以及时空的周期性等概念都是对称性的认识.相对论把时空统一,并进一步扩展到四维时空的各种运动;量子力学及其场论,以波函数表达物体的运动态.近代物理已按照变分法,推导出各种对称性相应的守恒定律.相应的对称性,都在相应的变换下,存在相应的守恒量;否则,不具对称性,在相应的变换下,不存在相应的守恒量.而“破缺对称”与“自发破缺对称机制”是量子力学及场论的发展和实际的观测.弦论需要背景空间,圈量子引力没有背景空间.弦论需要背景空间,表明弦论是从物质能量形态时空等多元性向微观作几何化一体的探索.圈量子引力没有背景空间,是沿着广义相对论开辟的几何化方向;广义相对论遵循拓扑学没有破裂,空间是整体性的.由于整体拓扑性的球面,存在奇点,所以广义相对论在空间收缩为一点的时候就失效.拓扑性的环面,不存在奇点,圈量子引力以类圈客体作为前提,用自旋网络解决这些悖论.3、质量的属性和光速极限质量实质上是粒子的手性.光子没有静止质量的,以此作参考系,由于光子的速度是有极限的,所以光子的手性是守恒的.反之,由于一个球粒子的运动不能超过光子,对这个球粒子的自旋观察,它的手性会自发破缺,所以粒子的手性不守恒是质量的起源.手性守恒是一种对称性,但背景空间即使是对称性的,也能使球粒子的对称性发生自发破缺.弦论中的闭弦,对应庞加莱猜想逆定理的环面,如果将庞加莱猜想逆定理的环面操作,取为局域对称,即类似可以减少到1维或2维,那么弦论的闭弦可自动显现出管线弦和套管弦来.拓扑学中,球面与环面不同伦的.弦论需要背景空间;圈量子引力说的不需要背景空间.类似用正数到零到负数的直线坐标表示,多宇宙都属于类似从“点内”到“点外”,或者说从“点外”到“点内”.“点外”再无外宇宙,“点外”有再多的外宇宙,也是在点外.“点内”再无内宇宙,“点内”有再多的内宇宙,也是在点内.用正数到零到负数的直线坐标表示看待宇宙大爆炸,类似直线坐标的零到负数或负数到零.庞加莱猜想的外定理存在“点内空间”,类似存在空心圆球.宇宙大爆炸就相当于空心圆球内表面翻转为外表面.空心圆球内表面翻转为外表面可以不撕裂,也可以撕裂.宇宙大爆炸是一种时空撕裂,撕裂的实体具一定有速度.宇宙大爆炸是最大的撕裂,如果对应光速,光速当然就有极限.时钟被分置在“点内”和“点外”.在空心圆球之外或空心圆球之内,一切能用正数到零到负数的直线坐标表示的时间或速度,都可能是循环的.4.庞加莱猜想的本质庞加莱猜想的学术描述是:一个封闭的三维空间,若其上的每条闭曲线都可以连续收缩到一个点,那么从拓扑结构上看,这个空间就是一个球面.例如,如果这个汽球只是一个长形(或者球形)的,那是可以做到的.但是,如果这个汽球是一个救生圈的形状,那就不行.庞加莱猜想引出两个能量和物质的图像,类似球体(简称类点体)和类似圈体(简称类圈体). 庞加莱猜想把一个封闭的三维空间连续收缩到一个点,是把宏观与微观世界都包括在一起了,必然引来与海森堡的不确定性原理的等价性.而庞加莱猜想实际是用确定性表达的,闭曲线是一个被分割的图案,它指一种“间断”;“连续”收缩指它的行为不间断.两者趋近于无穷小,能成立,就等价于三维球面.这就是说,无穷小量间断乘无穷小量连续等于球面.无穷小量能量(对应点外空间)乘无穷小量时间(对应点内空间)等于普朗克常数;庞加莱猜想与不确定性原理具有等价性,庞加莱猜想完备了从宏观到微观分立物体(或量子)的形象,球与环兼备,既能够扩散,也能够收缩.5、庞加莱猜想的内禀意义通过庞加莱猜想,对物质的质量和匹配能量的势阱与隧道效应进行分析,可化解微观中的波动性与粒子性之争.庞加莱猜想与不确定性原理的联系,揭示了庞加莱猜想点的收缩与扩散是一种超宇宙超时空的内禀性,庞加莱猜想收缩与扩散的振荡与统计几率发生的联系.物质波是具有连续性的,但只有定态分立性.庞加莱猜想点的收缩与扩散是一种超宇宙、超时空的内禀性,只是说它包含一个维数.原因是,收缩与扩散只是一种平动,它没有包括自旋.平动、自旋都是一种运动,还有不运动.不运动包含一个维数,等价于平动,这正是庞加莱猜想的本质.因为一根线如果不动,是一维,它沿着一维方向的收缩或扩散,可以占据整个空间,是一维;即使这一根线作平动,形成一片膜(平面),占据的是两维,仍是一维的,原因是它们与自旋相比,它们的连续性不能巩固它们占据的维度,从庞加莱猜想的内禀性考虑,就仍然是一维.不动、平动与自旋的维度本质差异,来自庞加莱猜想的内禀性.球面的自旋能够占据两个维数,是因为球面的自旋分面旋和体旋.面旋能占据一个维度,体旋能占据另一个维度.庞加莱猜想的连续收缩点等价于球面,自旋的内禀性是基本粒子的本质属性,这就使不动、平动、自旋与球面在微观世界里对立统一了.庞加莱猜想的逆定理等价于环面.而环面与球面自旋是不同的,环面多出了一个线旋,它占据了一个维度,这个维度可通向额外的维度,从而引发更多的额外维度.6.空间相对论的创新6.1宇宙定理X1 + Y1 = Z1 (1)X1:表示宇宙正向参数,趋于正无穷大.Y1:表示宇宙负向参数,趋于负无穷大.Z1:表示宇宙客观参数.Z1有三种可能:1 :正无穷大,2:负无穷大,3:常数.X2 + Y2 = Z2 (2)X2:表示宇宙正向参数,趋于正无穷大.Y2:表示宇宙负向参数,趋于负无穷大.Z2:表示宇宙客观参数.Z2有三种可能:1:正无穷大,2:负无穷大,3:常数.X3 + Y3 = Z3 (3)X3:表示宇宙正向参数,趋于正无穷大.Y3:表示宇宙负向参数,趋于负无穷大.Z3:表示宇宙客观参数.Z3有三种可能:1:正无穷大,2:负无穷大,3:常数.......依此循环,以致无穷.当宇宙客观参数趋于正无穷大时,实际上是处于一种稳定的相态(具有对称性);当宇宙客观参数趋于负无穷大时,实际上是处于另一种稳定的相态(具有对称性); 当宇宙客观参数是常数时,实际上是二种稳定相态之间的平衡(对称性破缺).6.2三维背景空间空间相对论根据三维空间是宇宙常数的客观事实,将三维空间作为背景空间.同时,分析各种维度空间属性,依据各种量子化的维度空间在三维空间的相互运动相互影响,来考察物理学的客观规律.量子化的高维空间在低维空间运动,体现了束缚性;量子化的低维空间在高维空间运动体现了扩散性; 量子化的维度空间在同样维空间的运动体现了平衡性.6.3破缺的本质根据宇宙定理,当宇宙客观参数是常数时,实际上是二种稳定相态之间的平衡(对称性破缺).例如,水及水蒸气在各个不同空间方向上都是一样的(具有球对称性).将水慢慢冷却,当温度降到冰点的时候水会结成冰,而冰中的水分子是具有择优取向性的.这时,它的对称性就变低了.可以理解为在水结成冰的过程中发生了对称性破缺.对称性及对称性自发破缺揭示了大自然隐藏着的内在秩序.6.4流形空间量子化的一维空间具有三种类型,第一种:圈(具有对称性); 第二种:直线(具有对称性); 第三种:曲线(对称性破缺).量子化的二维空间具有三种类型,第一种:球面(具有对称性); 第二种:平面(具有对称性); 第三种:曲面(对称性破缺).量子化的三维空间具有三种类型,第一种:球体(具有对称性); 第二种:扩散型球体(具有对称性); 第三种:平衡型流形态(对称性破缺).根据宇宙定理:如果用X来表达宇宙,X有三种属性:1:趋于无穷大.2:趋于无穷小.3:常数. 宇宙定理: X1.X2=Y ......(4). X1:表示宇宙宏观参数,趋于无穷大.X2:表示宇宙微观参数,趋于无穷小.Y:表示宇宙客观参数.Y有三种可能:一:无穷大,二:无穷小,三:常数.宇宙定理:Y1.Y2=Z ......(5). Y1:表示宇宙宏观参数,趋于无穷大.Y2:表示宇宙微观参数,趋于无穷小.Z:表示宇宙客观参数.Z有三种可能:一:无穷大,二:无穷小,三:常数.宇宙定理:Z1.Z2=H ......(6). Z1:表示宇宙宏观参数,趋于无穷大.Z2:表示宇宙微观参数,趋于无穷小.H:表示宇宙客观参数.H有三种可能:一:无穷大,二:无穷小,三:常数. ......依此循环,以致无穷.可见,当宇宙客观参数趋于无穷大时,实际上是处于一种稳定的相态(具有对称性);当宇宙客观参数趋于无穷小时,实际上是处于另一种稳定的相态(具有对称性); 当宇宙客观参数是常数时,实际上是二种稳定相态之间的平衡(对称性破缺).6.5空间相对论的本质宇宙具有的结构是: 宇宙的维度空间是点维度空间至无穷大维度空间,点维空间, 1维空间, 2维空间, 3维空间,……,N维空间,……,依此类推,以至无穷.物质是各种量子化的维度空间的相互运动.三维空间是宇宙常数,人类宇宙的背景空间是三维空间.可以说, 物质是各种量子化的维度空间在三维空间中的相互运动. 维度高于三维空间(量子化的)的空间,在三维空间运动,体现了束缚性,这也是基本粒子质量的起源; 维度低于三维空间(量子化的)的空间,在三维空间运动,体现了扩散性; 维度等于三维空间(量子化的)的空间,在三维空间运动,体现了同向性. 宇宙是空间各种属性的集合,空间各种属性的集合就是宇宙.空间具有静止属性及运动属性.“维度空间”体现了空间的静止属性(相当于二进制的零).“时间”体现了空间的运动属性.或者说,“速度”体现了空间的运动属性(相当于二进制的壹). 宇宙的基本量纲是长度(L),及时间(T).宇宙的所有属性都是长度(L)及时间(T)的集合.宇宙的所有属性可用表达式dim A = L^(α)*T^(β)其中:A是任一物理量,L是长度,通常用“米”.T是时间,通常用“秒” .α和β是量纲指数.6.6空间流形与粒子属性流形有很多种类,最简单的就是拓扑流形。
撬动世界的数学隐士:格里高利·佩雷尔曼
撬动世界的数学隐士:格里高利·佩雷尔曼本文作者:瀚海蓝月图片来自维基百科,拍摄自1993年。
这是一位传奇的数学家,他破解了数学界的七大数学猜想之一的“庞加莱猜想”,却不在正规学术杂志上发表论文,而是把证明论文公开在了网上;在数学诺贝尔奖“菲尔兹奖”面前他玩起了消失,结果西班牙国王只好对着照片发奖……无数媒体、记者对他实施了“狩猎行动”,却只有一次成功……他守着老娘,靠微薄的收入度日,却拒绝接受上百万美元的奖金,他,就是数学界的隐士,格里高利·佩雷尔曼。
学霸的奇人历程由于格里高利·佩雷尔曼(英文名Grigory Perelman,俄文名Григорий Перельман)几乎不接受媒体采访,也很少与人接触,所以,目前对其所知比较少,一些媒体和传记报道也有矛盾之处,我尽量选择那些官方的、以及可以核查的信息介绍给大家。
1966年6月13日,佩雷尔曼出生于原苏联列宁格勒市,也就是今天的俄罗斯圣彼得堡市的一个犹太家庭,来到了这个与他格格不入的世界。
他的父亲,是著名的丛书《趣味物理》的作者,雅科夫·佩雷尔曼(Yakov Perelman,Яков Перельман);他的母亲则是一位数学家,正是母亲的引导使他走上了数学的道路,同样在后来成为数学家的还有他的妹妹。
佩雷尔曼在4岁的时候就走上了他的学霸之路,那时起,他就对数学有了浓厚的兴趣,在别的孩子都在追逐打闹的年代,这个娃已经像当年的爱因斯坦一样,与这个世界有点格格不入了……但其身世已经决定了他即使在未来与主流学界泾渭分明,也绝不是一个“民间科学家”出身,而且长期以来,他一直是个学霸。
从其考入列宁格勒第239中学开始,他已经可以称得上是个数学家了,他沉默寡言,彬彬有礼,而且循规蹈矩,几乎没有朋友,如果想与他交朋友,首先要能够听明白他要和你讨论什么,这个对其他学生而言已经相当有难度了,因为数学已经成为了他的生活方式。
百年未解的谜题:庞加莱猜想
百年未解的谜题:庞加莱猜想《三联生活周刊》2006年8月17日《百年未解的谜题:庞加莱猜想》十几年来,没有哪一届国际数学家大会,能像8月22日将在西班牙马德里召开的2006年国际数学家大会(ICM2006)这样引人注目。
早在几个月前,ICM2006的网站上,就贴出了这样的消息:“一个有100年历史的数学难题的证明,将在本届大会上宣布。
”尽管做出欲说还休的姿态,但看一眼会议的日程表——8月22日17:15至18:15,里查德·汉密尔顿(Richard Hamilton),题目:庞加莱猜想。
答案,已经无需再言。
一位数学史家曾经如此形容1854年出生的亨利·庞加莱(Henri Poincare):“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。
”庞加莱作为数学家的伟大,并不完全在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。
庞加莱猜想,就是其中的一个。
1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。
提出这个猜想后,庞加莱一度认为,自己已经证明了它。
但没过多久,证明中的错误就被暴露了出来。
于是,拓扑学家们开始了证明它的努力。
20世纪30年代以前,庞加莱猜想的研究只有零星几项。
但突然,英国数学家怀特黑德(Whitehead)对这个问题产生了浓厚兴趣。
他一度声称自己完成了证明,但不久就撤回了论文。
失之桑榆、收之东隅的是,在这个过程中,他发现了三维流形的一些有趣的特例,而这些特例,现在被统称为怀特黑德流形。
50年代到60年代之间,又有一些著名的数学家宣称自己解决了庞加莱猜想,著名的宾(R.Bing)、哈肯(Haken)、莫伊泽(Moise)和帕帕奇拉克普罗斯(Papa-kyriakopoulos)均在其中。
帕帕奇拉克普罗斯是1964年的维布伦奖得主,一名希腊数学家。
攻克庞加莱猜想的数学隐士——佩雷尔曼
攻克庞加莱猜想的数学隐士——佩雷尔曼2002年11月在数学预印本网站上,佩雷尔曼贴出了仅仅只有三页非常简洁的论文,目标直指百年数学难题庞加莱猜想(实际上,他描述的是更一般的瑟斯顿几何化猜想,庞加莱猜想是它的一个特例)。
这个消息不胫而走,随即引发了数学界的轩然大波,更多的人认为这是一个“恶作剧”,就像曾经有很多人宣称自己证明了哥特巴赫猜想一样。
但四个月后,佩雷尔曼又上传了一份更加详细的论文,补充了很多证明的细节,并以邮件的形式和少数数学界内他信得过的人讨论交流。
第二年,佩雷尔曼再上传了一篇论文,给出了更多相关细节。
这三篇论文的正确与否直接关系着一个百年数学难题的命运。
实际上,佩雷尔曼为公众所知,更多的原因在于他拒绝了数学最高奖菲尔兹奖与千禧百万美元数学大奖,至于他到底做了哪些贡献,是一个什么样的数学家,一般人还是不太了解。
在他发布论文以后,了解佩雷尔曼的人都对其正确性持乐观态度,因为在此之前,他已经是一位卓有成就,天赋异禀且严谨谦虚的数学家,如果没有把握,他是不会轻易发布这样的论文。
那么,佩雷尔曼到底是一位什么样的数学家?与庞加莱猜想又有怎样的渊源?佩雷尔曼佩雷尔曼(全名为Grigori Yakovlevich Perelman ,俄语为: Григо́рийЯ́ковлевичПерельма́н),1966年6月13日出生于圣彼得堡(也即苏联时期的列宁格勒),是著名的俄罗斯籍犹太裔数学家,他的父亲是电路工程师而母亲则为当地小学数学教师。
佩雷尔曼从小就对玩乐没什么兴趣,宁愿呆在家看书或者下棋。
母亲发现他的数学天才之后,送他去了一个数学培训班,之后又让他去了以数学和物理见长的239中学。
仅仅三个月之后,佩雷尔曼代表苏联在国际中学生数学奥林匹克上获得满分金牌,而且据传,佩雷尔曼还在另一个更难的几何竞赛中拿下赛史上第一个满分。
在同时代的人中,佩雷尔曼的数学天才几乎找不出对手。
佩雷尔曼这样非凡的天才立即引来了美国顶级名校耶鲁大学的极大兴趣,并以巨额奖学金吸引他来就学,但佩雷尔曼毫不犹豫地拒绝了。
数学毕业论文庞加莱以及庞加莱猜想
庞加莱以及庞加莱猜想庞加莱以及庞加莱猜想摘要: 本文首先介绍了109世纪法国数学家庞加莱的生平,接着对"庞加莱猜想"的背景及解决过程进行了较为详细的介绍.最后从数学家们在整个庞加莱猜想的证明过程中所做出的努力说明了从事科学研究所必须具备的学术素养和精神品质.关键词:庞加莱;庞加莱猜想;庞加莱猜想证明过程的人文意义.Poincaré and Poincaré Conjecture Abstact : This paper introduces the 19th-century French mathematician Poincarés whole life, and then the background of the " Poincaré Conjecture" and the process of settling are also interpretted in details. Lastly, from the efforts that mathematicians made in proving the Poincaré Conjecture,suggest the importance of the academic qualities and mental quality in scientificresearch.Keywords : Poincaré; the Poincaré Conjecture; humanistic significance of proving the Poinca ré Conjecture.目录中英文摘要 (11)引言……………………………………………………………………………22庞加莱其人…………………………………………………………………32.1 生平……………………………………………………………………32.2 多产的数学天才………………………………………………………42.3 科学探险者……………………………………………………………63 庞加莱猜想…………………………………………………………………63.1 什么是『庞加莱猜想』? ...................................................63.2 百年证明之路..................................................................83.3 看见曙光--「Racci Flow瑞奇流」..........................................103.4 突破瓶颈.....................................................................113.5 世纪猜想变定理 (124)科学的本意…………………………………………………………………13致谢词....................................................................................15参考文献 (1)6【包括:毕业论文、开题报告、任务书】【说明:论文中有些数学符号是编辑器编辑而成,网页上无法显示或者显示格式错误,给您带来不便请谅解。
佩雷尔曼关于庞加莱猜想的论文0307245
a rXiv:mat h .DG /37245v117J ul23Finite extinction time for the solutions to the Ricci flow on certain three-manifolds Grisha Perelman ∗May 21,2006In our previous paper we constructed complete solutions to the Ricci flow with surgery for arbitrary initial riemannian metric on a (closed,oriented)three-manifold [P,6.1],and used the behavior of such solutions to classify three-manifolds into three types [P,8.2].In particular,the first type consisted of those manifolds,whose prime factors are diffeomorphic copies of spherical space forms and S 2×S 1;they were characterized by the property that they admit metrics,that give rise to solutions to the Ricci flow with surgery,which become extinct in finite time.While this classification was sufficient to answer topological ques-tions,an analytical question of significant independent interest remained open,namely,whether the solution becomes extinct in finite time for every initial metric on a manifold of this type.In this note we prove that this is indeed the case.Our argument (in con-junction with [P,§1-5])also gives a direct proof of the so called ”elliptization conjecture”.It turns out that it does not require any substantially new ideas:we use only a version of the least area disk argument from [H,§11]and a regu-larization of the curve shortening flow from [A-G].1Finite time extinction 1.1Theorem.Let M be a closed oriented three-manifold,whose prime decom-position contains no aspherical factors.Then for any initial metric on M thesolution to the Ricci flow with surgery becomes extinct in finite time.Proof for irreducible M .Let ΛM denote the space of all contractible loops in C 1(S 1→M ).Given a riemannian metric g on M and c ∈ΛM,define A (c,g )to be the infimum of the areas of all lipschitz maps from D 2to M,whose restriction to ∂D 2=S 1is c.For a family Γ⊂ΛM let A (Γ,g )be the supremum of A (c,g )over all c ∈Γ.Finally,for a nontrivial homotopy class α∈π∗(ΛM,M )let A (α,g )be the infimum of A (Γ,g )over all Γ∈α.Since M is not aspherical,it follows from a classical (and elementary)result of Serre that such a nontrivial homotopy class exists.1.2Lemma.(cf.[H,§11])If g t is a smooth solution to the Ricciflow,then for anyαthe rate of change of the function A t=A(α,g t)satisfies the estimatedR t min A t2(in the sense of the lim sup of the forward difference quotients),where R t min denotes the minimum of the scalar curvature of the metric g t.A rigorous proof of this lemma will be given in§3,but the idea is simple and can be explained here.Let us assume that at time t the value A t is attained by the familyΓ,such that the loops c∈Γwhere A(c,g t)is close to A t are embedded and sufficiently smooth.For each such c consider the minimal disk D c with boundary c and with area A(c,g t).Now let the metric evolve by the Ricciflow and let the curves c evolve by the curve shorteningflow(which moves every point of the curve in the direction of its curvature vector at this point) with the same time parameter.Then the rate of change of the area of D c can be computed as(−Tr(Ric T))+ c(−k g)D cwhere Ric T is the Ricci tensor of M restricted to the tangent plane of D c,and k g is the geodesic curvature of c with respect to D c(cf.[A-G,Lemma3.2]).In three dimensions thefirst integrand equals−1R−K)+ c(−k g)= D c(−12the conclusion of the lemma above holds for the solutions to the Ricciflow with surgery as well.Now recall that the evolution equation for the scalar curvatured3R2+2|Ric◦|2implies the estimate R t min≥−3t+const.It follows thatˆA t=A tdtˆA t≤−2πdt c t(x)=H t(x),where x is the parameter on S1,and H t is the curvaturevectorfield of c t with respect to g t.It is known[G-H]that for any smoothly immersed initial curve c the solution c t exists on some time interval[t0,t′1),each c t for t>t0is an analytic immersed curve,and either t′1=t1,or the curvature k t=g t(H t,H t)1Denote by X t the tangent vectorfield to c t,and let S t=g t(X t,X t)−1g(X,X)=−2Ric(X,X)−2g(X,X)k2,(1)dtwhich implies[H,S]=(k2+Ric(S,S))S(2) Now we can computedk≤k′′+k3+const·(k+1)(4)dtNow it follows from(1)and(4)that the length L and the total curvature Θ= kds satisfy dΘ≤ const·(k+1)ds(6)dtIn particular,both quantities can grow at most exponentially in t(they would be non-increasing in aflat manifold).2.2In general the curvature of c t may concentrate near certain points,cre-ating singularities.However,if we know that this does not happen at some time t∗,then we can estimate the curvature and higher derivatives at times shortly thereafter.More precisely,there exist constantsǫ,C1,C2,...(which may depend on the curvatures of the ambient space and their derivatives,but are independent of c t),such that if at time t∗for some r>0the length of c t is at least r and the total curvature of each arc of length r does not exceedǫ,then for every t∈(t∗,t∗+ǫr2)the curvature k and higher derivatives satisfy the estimates k2=g(H,H)≤C0(t−t∗)−1,g(∇S H,∇S H)≤C1(t−t∗)−2,... This can be proved by adapting the arguments of Ecker and Huisken[E-Hu]; see also[A-G,§4].2.3Now suppose that our manifold(M,g t)is a metric product(¯M,¯g t)×S1λ, where the second factor is the circle of constant lengthλ;let U denote the unit tangent vectorfield to this factor.Then u=g(S,U)satisfies the evolution equationdAssume that u was strictly positive everywhere at time t0(in this case the curve is called a ramp).Then it will remain positive and bounded away from zero as long as the solution exists.Now combining(4)and(7)we can estimate the right hand side of the evolution equation for the ratio kµt≤(2n−1)|Rm t|µt,(8)dtwhere|Rm t|denotes a bound on the absolute value of sectional curvatures of g t.Indeed,the curves c t1and c t2,being ramps,are embedded and without substantial loss of generality we may assume them to be disjoint.In this case the results of Morrey[M]and Hildebrandt[Hi]yield an analytic minimal annulus A, immersed,except at mostfinitely many branch points,with prescribed boundary and with areaµ.The rate of change of the area of A can be computed as(−Tr(Ric T))+ ∂A(−k g)≤ A(−Tr(Ric T)+K)A≤ A(−Tr(Ric T)+Rm T)≤(2n−1)|Rm|µ,where thefirst inequality comes from the Gauss-Bonnet theorem,with possible contribution of the branch points,and the second one is due to the fact that a minimal surface has nonpositive extrinsic curvature with respect to any normal vector.2.5The estimate(8)implies thatµt can grow at most exponentially;in particular,if c t1and c t2were very close at time t0,then they would be close for all t∈[t0,t1]in the sense of minimal annulus area.In general this does not imply that the lengths of the curves are also close.However,an elementary argument shows that ifǫ>0is small then,given any r>0,one canfind¯µ, depending only on r and on upper bound for sectional curvatures of the ambient space,such that if the length of c t1is at least r,each arc of c t1with length r has total curvature at mostǫ,andµt≤¯µ,then L(c t2)≥(1−100ǫ)L(c t1).3Proof of lemma1.23.1In this section we prove the following statementLet M be a closed three-manifold,and let(M,g t)be a smooth solution to the Ricciflow on afinite time interval[t0,t1].Suppose thatΓ⊂ΛM is a compact family.Then for anyξ>0one can construct a continuous deformationΓt,t∈[t0,t1],Γt0=Γ,such that for each curve c∈Γeither the value A(c t1,g t1)is bounded from above byξplus the value at t=t1of the solution to the ODE5d2R t min w(t)with the initial data w(t0)=A(c t0,g t0),orL(c t1)≤ξ;moreover,if c was a constant map,then all c t are constant maps.It is clear that our statement implies lemma1.2,because a family consisting of very short loops can not represent a nontrivial relative homotopy class.3.2As afirst step of the proof of the statement we can replaceΓby a family,which consists of piecewise geodesic loops with some largefixed number of vertices and with each segment reparametrized in some standard way to make the parametrizations of the whole curves twice continuously differentiable.Now consider the manifold Mλ=M×S1λ,0<λ<1,and for each c∈Γconsider the smooth embedded closed curve cλsuch that p1cλ(x)=c(x)and p2cλ(x)=λx modλ,where p1and p2are projections of Mλto thefirst and second factor respectively,and x is the parameter of the curve c on the standard circle of length ing2.3we can construct a solution c tλ,t∈[t0,t1]to the curve shorteningflow with initial data cλ.The required deformation will be obtained asΓt=p1Γtλ(whereΓtλdenotes the family consisting of c tλ)for certain sufficiently smallλ>0.We’ll verify that an appropriateλcan be found for each individual curve c,or for anyfinite number of them,and then show that if ourλworks for all elements of aµ-net inΓ,for sufficiently smallµ>0, then it works for all elements ofΓ.3.3In the following estimates we shall denote by C large constants that may depend on metrics g t,familyΓandξ,but are independent ofλ,µand a particular curve c.Thefirst step in3.2implies that the lengths and total curvatures of cλare uniformly bounded,so by2.1the same is true for all c tλ.It follows that the area swept by c tλ,t∈[t′,t′′]⊂[t0,t1]is bounded above by C(t′′−t′),and therefore we have the estimates A(p1c tλ,g t)≤C,A(p1c t′′λ,g t′′)−A(p1c t′λ,g t′)≤C(t′′−t′).3.4It follows from(5)that t1t0 k2dsdt≤C for any c tλ.Fix some large constant B,to be chosen later.Then there is a subset I B(cλ)⊂[t0,t1]of measure at least t1−t0−CB−1where k2ds≤B,hence kds≤ǫon any arc of length≤ǫ2B−1.Assuming that c tλare at least that long,we can apply2.2 and construct another subset J B(cλ)⊂[t0,t1]of measure at least t1−t0−CB−1, consisting offinitely many intervals of measure at least C−1B−2each,such that for any t∈J B(cλ)we have pointwise estimates on c tλfor curvature and higher derivatives,of the form k≤CB,...Nowfix c,B,and consider any sequence ofλ→0.Assume again that the lengths of c tλare bounded below byǫ2B−1,at least for t∈[t0,t2],where t2= t1−B−1.Then an elementary argument shows that we canfind a subsequence Λc and a subset J B(c)⊂[t0,t2]of measure at least t1−t0−CB−1,consisting offinitely many intervals,such that J B(c)⊂J B(cλ)for allλ∈Λc.It follows that on every interval of J B(c)the curve shorteningflows c tλsmoothly converge (asλ→0in some subsequence ofΛc)to a curve shorteningflow in M.Let w c(t)be the solution of the ODE d2R t min w c(t)withinitial data w c(t0)=A(c,g t0).Then for sufficiently smallλ∈Λc we have A(p1c tλ,g t)≤w c(t)+1disk argument as in 1.2,and this implies the corresponding estimate for p 1c t λif λ∈Λc is small enough,whereas for the intervals of the complement of J B (c )we can use the estimate in 3.3.On the other hand,if our assumption on the lower bound for lengths does not hold,then it follows from (5)that L (c t 2λ)≤CB−1≤12ξor L (ˆc t 2λ)≤12ξand µ≤C −1ξ,then A (p 1c t1λ,g t 1)≤w c (t 1)+ξ.Onthe other hand,if L (ˆc t2λ)≤14ξfor all t ∈[t 2,t 1];on the other hand,using (5)we can find a t ∈[t 2,t 1],such that k 2ds ≤CB for c t λ;hence,applying 2.5,we get L (ˆc t λ)>22ξ.The proof of the statement3.1is complete.References[A-G]S.Altschuler,M.Grayson Shortening space curves and flow through singularities.Jour.Diff.Geom.35(1992),283-298.[B]S.Bando Real analyticity of solutions of Hamilton’s equation.Math.Zeit.195(1987),93-97.[E-Hu]K.Ecker,G.Huisken Interior estimates for hypersurfaces moving by mean curvature.Invent.Math.105(1991),547-569.[G-H]M.Gage,R.S.Hamilton The heat equation shrinking convex plane curves.Jour.Diff.Geom.23(1986),69-96.[H]R.S.Hamilton Non-singular solutions of the Ricci flow on mun.Anal.Geom.7(1999),695-729.[Hi]S.Hildebrandt Boundary behavior of minimal surfaces.Arch.Rat.Mech.Anal.35(1969),47-82.[M]C.B.Morrey The problem of Plateau on a riemannian manifold.Ann.Math.49(1948),807-851.[P]G.Perelman Ricci flow with surgery on three-manifolds.arXiv:math.DG/0303109v17。
写在尘埃落定时(庞加莱猜想的故事)
写在尘埃落定时──证明世纪难题Poincaré (庞加莱) 猜想的俄国数学家佩尔曼拒绝菲尔兹奖任平生2006年8月22日西班牙马德里世界数学大会,由西班牙国王颁奖,菲尔兹奖花落四家。
这一届的菲尔兹奖颇戏剧性:一如众人期待的那样,证明世纪难题Poincare猜想的俄国数学家佩尔曼拒绝菲尔兹奖,这在菲尔兹奖历史上还是第一次。
世界数学大会主席BALL 在仪式上说,“我对佩尔曼博士拒绝菲尔兹奖深表遗憾。
”菲尔兹奖是数学界的最高奖项,在四年一度的世界数学大会上颁发,是数学家们梦寐以求的最高荣誉。
设立菲尔兹奖的一个初衷是即表彰过去的成就又鼓励将来的研究,故规定只有40岁以下者才能得奖,使得获奖的难度更大。
象上个世纪末证明世纪难题费马大定理的Wiles,由于过了40大限,世界数学大会还专门为他设了特别奖。
抽象的数学象这一次这样吸引公众的眼球,尤其的是中国公众的眼球还不多见。
原因是在此之前丘成桐对北大学术腐败的指责和白热化论战,以及6月丘成桐宣布曹怀东朱熹平完成Poincare猜想的完整证明,为猜想的证明“封顶”。
加上一些中国权威数学家出来说中国人在Poincare猜想的贡献约有30%,而佩尔曼只有25%。
从现在权威媒体的报道,情形同丘先生的版本有点不一样。
世界各大媒体都开始报道此事,但以纽约客杂志给出的故事最为详细。
该文把丘成桐写成反角,说丘成桐出来抢功是搅局,而他对北大学术腐败的指责源于他对北大田刚的嫉妒。
其实,数学界的共识是把最高奖赏给予最后决定性一击的作者。
比如此次把最高荣誉给予佩尔曼,是因为他把通往目的地最后一座桥的蓝图绘好了,而在此只前众人只能站在河边看。
蓝图是有缺陷,但都不是致命的,都可以改好。
曹朱也是大家,可能也为蓝图的完备出了力,但毕竟是按佩尔曼指引的方向做出来的,况且文章发表也有一些仓促。
纽越客文章作者不愧是写《The Beautiful Mind》(美丽心灵)的高手,虽然真实性有待查证,但十几页的故事确实引人入胜,有兴趣者不妨一读。
庞加莱猜想
庞加莱猜想百科名片庞加莱猜想电脑三维模型庞加莱猜想是法国数学家庞加莱提出的一个猜想,是克雷数学研究所悬赏的世界七大数学难题(七个千年大奖问题)之一。
2006年被确认由俄罗斯数学家格里戈里·佩雷尔曼最终证明,但将解题方法公布到网上之后,佩雷尔曼便拒绝接受马德里国际数学联合会声望颇高的菲尔兹奖。
目录[隐藏]令人头疼的世纪难题艰难的证明之路早期的证明柳暗花明的突破最后的决战破解与争议破解解题者佩雷尔曼庞加莱猜想的意义其他难题的解决情况令人头疼的世纪难题艰难的证明之路早期的证明柳暗花明的突破最后的决战破解与争议破解解题者佩雷尔曼庞加莱猜想的意义其他难题的解决情况[编辑本段]令人头疼的世纪难题前言:如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。
另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。
我们说,苹果表面是“单连通的”,而轮胎面不是。
大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。
这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
一位数学史家曾经如此形容1854年出生的亨利·庞加莱(Henri Poincare):“有些人仿佛生下来就是为了证明天才的存在似的,每次看到亨利,我就会听见这个恼人的声音在我耳边响起。
”庞加莱作为数学家的伟大,并不完全在于他解决了多少问题,而在于他曾经提出过许多具有开创意义、奠基性的大问题。
庞加莱猜想,就是其中的一个。
1904年,庞加莱在一篇论文中提出了一个看似很简单的拓扑学的猜想:在一个三维空间中,假如每一条封闭的曲线都能收缩到一点,那么这个空间一定是一个三维的圆球。
但1905年发现提法中有错误,并对之进行了修改,被推广为:“任何与n维球面同伦的n维封闭流形必定同胚于n维球面。
陶哲轩评述佩雷尔曼的庞加莱猜想证明
1This hypothesis is in fact quite natural, because the arguments also show conversely that finite time extinction for Ricci flow is only possible when the fundamental group is a free product of finite groups and infinite simple groups. For the purposes of proving just the Poincar´e conjecture, though, it is possible to work entirely in the category of simply connected manifolds throughout, although this only simplifies the argument at one small point (in the proof of finite time extinction). We thank John Morgan for clarifying this point.
百年拓扑难题的解决
百年拓扑难题的解决对于数学家来说,格里格里·佩雷尔曼对于庞加莱猜想的证明称得上是近十多年来最重大的突破。
但也花了他们几年的时间确认这次是真的。
2006年,在佩雷尔曼发出他三篇论文中的第一篇近四年后,这个领域的专家才达成共识:佩雷尔曼解决了这个最重大的问题。
不幸的是,随之而来的一场争议和极戏剧性的风暴几乎淹没了这项伟大工作本身。
佩雷尔曼的证明从根本上改变了两个不同的数学分支。
首先,他解决的问题是困扰了百年的拓扑学这门研究抽象形状的学科的核心问题。
而且大多数数学家相信这个问题将导致更加广泛的一个结果----几何化猜想的证明:特别重要的,一个类似“周期表”的使三维空间研究更加清晰的结果,就象门捷列夫在化学中做的那样。
不仅给拓扑学带来新结果,佩雷尔曼也为几何学带来了新技术。
他确立了几何演化方程的中心地位,丰富了将难于处理的空间转化为易于处理的空间的方式技术。
之前对于此类方程的研究经常滑向导致方程失去意义的“奇点”。
佩雷尔曼清除了这个障碍。
“这是数学家第一次能够理解奇点的结构和如此复杂系统的演化,”哈佛大学教授丘成桐今年夏天在北京的一次报告中这样说,“发展出来的方法……会给多种自然系统的研究带来曙光,比如(流体动力学的)那维尔-斯托克斯方程和(广义相对论的)爱因斯坦方程。
”难以驾驭的空间亨利·庞加莱一般被认为拓扑学的创立者,第一个把拓扑学从分析学(由微积分发展而来的数学分支)和几何学分立出来的数学家。
拓扑学常被描述成“橡皮泥几何学”,因为它研究表面在任意拉伸下的特性,而撕裂和粘合是不允许的。
我们的身体还有大多数我们与其打交道的熟悉的物体都是三维的。
但是它们的表面却是二维的。
在拓扑学中,无界的二维表面(那些卷曲的闭合的,就象我们的皮肤)只有一个显著特征:表面上的孔。
无孔的二维表面是二维球面;一个孔的二维表面是环面;以此类推。
一个球面不能变成环面,反之亦然。
具有二维表面的三维物体仅仅是个开始。
庞加莱猜想难题poincare
THE POINCAR´E CONJECTUREJOHN MILNOR1.IntroductionThe topology of two-dimensional manifolds or surfaces was well understood in the19th century.In fact there is a simple list of all possible smooth compact orientable surfaces.Any such surface has a well-defined genus g≥0,which can be described intuitively as the number of holes;and two such surfaces can be put into a smooth one-to-one correspondence with each other if and only if they have the same genus.1The corresponding question in higher dimensions is much moreFigure1.Sketches of smooth surfaces of genus0,1,and2.difficult.Henri Poincar´e was perhaps thefirst to try to make a similar study of three-dimensional manifolds.The most basic example of such a manifold is the three-dimensional unit sphere,that is,the locus of all points(x,y,z,w)in four-dimensional Euclidean space which have distance exactly1from the origin: x2+y2+z2+w2=1.He noted that a distinguishing feature of the two-dimensional sphere is that every simple closed curve in the sphere can be deformed continuously to a point without leaving the sphere.In1904,he asked a corresponding question in dimension3.In more modern language,it can be phrased as follows:2 Question.If a compact three-dimensional manifold M3has the property that every simple closed curve within the manifold can be deformed continuously to a point, does it follow that M3is homeomorphic to the sphere S3?He commented,with considerable foresight,“Mais cette question nous entraˆıne-rait trop loin”.Since then,the hypothesis that every simply connected closed 3-manifold is homeomorphic to the3-sphere has been known as the Poincar´e Con-jecture.It has inspired topologists ever since,and attempts to prove it have led to many advances in our understanding of the topology of manifolds.1For definitions and other background material,see,for example,[21]or[29],as well as[48].2See[36,pages498and370].To Poincar´e,manifolds were always smooth or polyhedral,so that his term“homeomorphism”referred to a smooth or piecewise linear homeomorphism.12JOHN MILNOR2.Early MisstepsFrom thefirst,the apparently simple nature of this statement has led mathe-maticians to overreach.Four years earlier,in1900,Poincar´e himself had been the first to err,stating a false theorem that can be phrased as follows.False Theorem.Every compact polyhedral manifold with the homology of an n-dimensional sphere is actually homeomorphic to the n-dimensional sphere.But his1904paper provided a beautiful counterexample to this claim,based on the concept of fundamental group,which he had introduced earlier(see[36, pp.189–192and193–288]).This example can be described geometrically as fol-lows.Consider all possible regular icosahedra inscribed in the two-dimensional unit sphere.In order to specify one particular icosahedron in this family,we must provide three parameters.For example,two parameters are needed to specify a single vertex on the sphere,and then another parameter to specify the direction to a neighboring vertex.Thus each such icosahedron can be considered as a single “point”in the three-dimensional manifold M3consisting of all such icosahedra.3 This manifold meets Poincar´e’s preliminary criterion:By the methods of homology theory,it cannot be distinguished from the three-dimensional sphere.However,he could prove that it is not a sphere by constructing a simple closed curve that cannot be deformed to a point within M3.The construction is not difficult:Choose some representative icosahedron and consider its images under rotation about one vertex through angles0≤θ≤2π/5.This defines a simple closed curve in M3that cannot be deformed to a point.Figure2.The Whitehead linkThe next important false theorem was by Henry Whitehead in1934[52].As part of a purported proof of the Poincar´e Conjecture,he claimed the sharper state-ment that every open three-dimensional manifold that is contractible(that can be continuously deformed to a point)is homeomorphic to Euclidean space.Following in Poincar´e’s footsteps,he then substantially increased our understanding of the topology of manifolds by discovering a counterexample to his own theorem.His counterexample can be briefly described as follows.Start with two disjoint solidtori T0and T1in the3-sphere that are embedded as shown in Figure2,so that each one individually is unknotted,but so that the two are linked together withlinking number zero.Since T1is unknotted,its complement T1=S3 interior( T1)3In more technical language,this M3can be defined as the coset space SO(3)/I60where SO(3) is the group of all rotations of Euclidean3-space and where I60is the subgroup consisting of the60 rotations that carry a standard icosahedron to itself.The fundamental groupπ1(M3),consisting of all homotopy classes of loops from a point to itself within M3,is a perfect group of order120.THE POINCAR ´E CONJECTURE 3is another unknotted solid torus that contains T 0.Choose a homeomorphism h of the 3-sphere that maps T 0onto this larger solid torus T 1.Then we can inductively construct solid toriT 0⊂T 1⊂T 2⊂···in S 3by setting T j +1=h (T j ).The union M 3= T j of this increasing sequence isthe required Whitehead counterexample,a contractible manifold that is not home-omorphic to Euclidean space.To see that π1(M 3)=0,note that every closed loop in T 0can be shrunk to a point (after perhaps crossing through itself)within the larger solid torus T 1.But every closed loop in M 3must be contained in some T j ,and hence can be shrunk to a point within T j +1⊂M 3.On the other hand,M 3is not homeomorphic to Euclidean 3-space since,if K ⊂M 3is any compact subset large enough to contain T 0,one can prove that the difference set M 3 K is not simply connected.Since this time,many false proofs of the Poincar´e Conjecture have been proposed,some of them relying on errors that are rather subtle and difficult to detect.For a delightful presentation of some of the pitfalls of three-dimensional topology,see [4].3.Higher DimensionsThe late 1950s and early 1960s saw an avalanche of progress with the discovery that higher-dimensional manifolds are actually easier to work with than three-dimensional ones.One reason for this is the following:The fundamental group plays an important role in all dimensions even when it is trivial,and relations between generators of the fundamental group correspond to two-dimensional disks,mapped into the manifold.In dimension 5or greater,such disks can be put into general position so that they are disjoint from each other,with no self-intersections,but in dimension 3or 4it may not be possible to avoid intersections,leading to serious difficulties.Stephen Smale announced a proof of the Poincar´e Conjecture in high dimensions in 1960[41].He was quickly followed by John Stallings,who used a completely different method [43],and by Andrew Wallace,who had been working along lines quite similar to those of Smale [51].Let me first describe the Stallings result,which has a weaker hypothesis and easier proof,but also a weaker conclusion.He assumed that the dimension is seven or more,but Christopher Zeeman later extended his argument to dimensions 5and 6[54].Stallings–Zeeman Theorem.If M n is a finite simplicial complex of dimension n ≥5that has the homotopy type 4of the sphere S n and is locally piecewise linearly homeomorphic to the Euclidean space R n ,then M n is homeomorphic to S n under a homeomorphism that is piecewise linear except at a single point.In other words,the complement M n (point )is piecewise linearly homeomorphic to R n .The method of proof consists of pushing all of the difficulties offtoward a single point;hence there can be no control near that point.4In order to check that a manifold M n has the same homotopy type as the sphere S n ,we must check not only that it is simply connected,π1(M n )=0,but also that it has the same homology as the sphere.The example of the product S 2×S 2shows that it is not enough to assume that π1(M n )=0when n >3.4JOHN MILNORThe Smale proof,and the closely related proof given shortly afterward by Wal-lace,depended rather on differentiable methods,building a manifold up inductively, starting with an n-dimensional ball,by successively adding handles.Here a k-handle can be added to a manifold M n with boundary byfirst attaching a k-dimensional cell,using an attaching homeomorphism from the(k−1)-dimensional boundary sphere into the boundary of M n,and then thickening and smoothing corners so as to obtain a larger manifold with boundary.The proof is carried out by rearranging and canceling such handles.(Compare the presentation in[24].)Figure3.A three-dimensional ball with a1-handle attachedSmale Theorem.If M n is a differentiable homotopy sphere of dimension n≥5, then M n is homeomorphic to S n.In fact,M n is diffeomorphic to a manifold obtained by gluing together the boundaries of two closed n-balls under a suitable diffeomorphism.This was also proved by Wallace,at least for n≥6.(It should be noted that thefive-dimensional case is particularly difficult.)The much more difficult four-dimensional case had to wait twenty years,for the work of Michael Freedman[8].Here the differentiable methods used by Smale and Wallace and the piecewise linear methods used by Stallings and Zeeman do not work at all.Freedman used wildly non-differentiable methods,not only to prove the four-dimensional Poincar´e Conjecture for topological manifolds,but also to give a complete classification of all closed simply connected topological4-manifolds.The integral cohomology group H2of such a manifold is free abelian.Freedman needed just two invariants:The cup productβ:H2⊗H2→H4∼=Z is a symmetric bilinear form with determinant±1,while the Kirby–Siebenmann invariantκis an integer mod2that vanishes if and only if the product manifold M4×R can be given a differentiable structure.Freedman Theorem.Two closed simply connected4-manifolds are homeomor-phic if and only if they have the same bilinear formβand the same Kirby–Sieben-mann invariantκ.Anyβcan be realized by such a manifold.Ifβ(x⊗x)is odd for some x∈H2,then either value ofκcan be realized also.However,ifβ(x⊗x) is always even,thenκis determined byβ,being congruent to one eighth of the signature ofβ.THE POINCAR´E CONJECTURE5 In particular,if M4is a homotopy sphere,then H2=0andκ=0,so M4 is homeomorphic to S4.It should be noted that the piecewise linear or differen-tiable theories in dimension4are much more difficult.It is not known whether every smooth homotopy4-sphere is diffeomorphic to S4;it is not known which4-manifolds withκ=0actually possess differentiable structures;and it is not known when this structure is essentially unique.The major results on these questions are due to Simon Donaldson[7].As one indication of the complications,Freedman showed,using Donaldson’s work,that R4admits uncountably many inequivalent differentiable structures.(Compare[12].)In dimension3,the discrepancies between topological,piecewise linear,and dif-ferentiable theories disappear(see[18],[28],and[26]).However,difficulties with the fundamental group become severe.4.The Thurston Geometrization ConjectureIn the two-dimensional case,each smooth compact surface can be given a beauti-ful geometrical structure,as a round sphere in the genus zero case,as aflat torus in the genus1case,and as a surface of constant negative curvature when the genus is2 or more.A far-reaching conjecture by William Thurston in1983claims that some-thing similar is true in dimension3[46].This conjecture asserts that every compact orientable three-dimensional manifold can be cut up along2-spheres and tori so as to decompose into essentially unique pieces,each of which has a simple geometri-cal structure.There are eight possible three-dimensional geometries in Thurston’s program.Six of these are now well understood,5and there has been a great deal of progress with the geometry of constant negative curvature.6The eighth geometry, however,corresponding to constant positive curvature,remains largely untouched. For this geometry,we have the following extension of the Poincar´e Conjecture. Thurston Elliptization Conjecture.Every closed3-manifold withfinite funda-mental group has a metric of constant positive curvature and hence is homeomorphic to a quotient S3/Γ,whereΓ⊂SO(4)is afinite group of rotations that acts freely on S3.The Poincar´e Conjecture corresponds to the special case where the groupΓ∼=π1(M3)is trivial.The possible subgroupsΓ⊂SO(4)were classified long ago by [19](compare[23]),but this conjecture remains wide open.5.Approaches through Differential Geometryand Differential Equations7In recent years there have been several attacks on the geometrization problem (and hence on the Poincar´e Conjecture)based on a study of the geometry of the infinite dimensional space consisting of all Riemannian metrics on a given smooth three-dimensional manifold.5See,for example,[13],[3],[38,39,40],[49],[9],and[6].6See[44],[27],[47],[22],and[30].The pioneering papers by[14]and[50]provided the basis for much of this work.7Added in20046JOHN MILNORBy definition,the length of a path γon a Riemannian manifold is computed,in terms of the metric tensor g ij ,as the integral γds = γ g ij dx i dx j .From the first and second derivatives of this metric tensor,one can compute the Ricci curvature tensor R ij ,and the scalar curvature R .(As an example,for the flat Euclidean space one gets R ij =R =0,while for a round three-dimensional sphere of radius r ,one gets Ricci curvature R ij =2g ij /r 2and scalar curvature R =6/r 2.)One approach by Michael Anderson,based on ideas of Hidehiko Yamabe [53],studies the total scalar curvature M 3R dV as a functional on the space of all smooth unit volume Riemannian metrics.The critical points of this functional are the metrics of constant curvature (see [1]).A different approach,initiated by Richard Hamilton studies the Ricci flow [15,16,17],that is,the solutions to the differential equationdg ij dt=−2R ij .In other words,the metric is required to change with time so that distances de-crease in directions of positive curvature.This is essentially a parabolic differential equationa and behaves much like the heat equation studied by physicists:If we heat one end of a cold rod,then the heat will gradually flow throughout the rod until it attains an even temperature.Similarly,a naive hope for 3-manifolds with finite fundamental group might have been that,under the Ricci flow,positive curvature would tend to spread out until,in the limit (after rescaling to constant size),the manifold would attain constant curvature.If we start with a 3-manifold of posi-tive Ricci curvature,Hamilton was able to carry out this program and construct a metric of constant curvature,thus solving a very special case of the Elliptization Conjecture.However,in the general case,there are very serious difficulties,since this flow may tend toward singularities.8I want to thank many mathematicians who helped me with this report.May 2000,revised June 2004References[1]M.T.Anderson,Scalar curvature,metric degenerations and the static vacuum Einstein equa-tions on 3-manifolds ,Geom.Funct.Anal.9(1999),855–963and 11(2001)273–381.See also:Scalar curvature and the existence of geometric structures on 3-manifolds ,J.reine angew.Math.553(2002),125–182and 563(2003),115–195.[2]M.T.Anderson,Geometrization of 3-manifolds via the Ricci flow ,Notices AMS 51(2004),184–193.[3]L.Auslander and F.E.A.Johnson,On a conjecture of C.T.C.Wall ,J.Lond.Math.Soc.14(1976),331–332.[4]R.H.Bing,Some aspects of the topology of 3-manifolds related to the Poincar´e conjecture ,in Lectures on Modern Mathematics II (T.L.Saaty,ed.),Wiley,New York,1964.[5]J.Birman,Poincar´e ’s conjecture and the homeotopy group of a closed,orientable 2-manifold ,J.Austral.Math.Soc.17(1974),214–221.8Grisha Perelman,in St.Petersburg,has posted three preprints on which go a long way toward resolving these difficulties,and in fact claim to prove the full geometrization conjecture[32,33,34].These preprints have generated a great deal of interest.(Compare [2]and [25],as well as the website /research/ricciflow/perelman.html organized by B.Kleiner and J.Lott.)However,full details have not appeared.THE POINCAR´E CONJECTURE7 [6] A.Casson and D.Jungreis,Convergence groups and Seifertfibered3-manifolds,Invent.Math.118(1994),441–456.[7]S.K.Donaldson,Self-dual connections and the topology of smooth4-manifolds,Bull.Amer.Math.Soc.8(1983),81–83.[8]M.H.Freedman,The topology of four-dimensional manifolds,J.Diff.Geom.17(1982),357–453.[9] D.Gabai,Convergence groups are Fuchsian groups,Ann.Math.136(1992),447–510.[10] D.Gabai,Valentin Poenaru’s program for the Poincar´e conjecture,in Geometry,topology,&physics,Conf.Proc.Lecture Notes Geom.Topology,VI,Internat.Press,Cambridge,MA, 1995,139–166.[11] D.Gillman and D.Rolfsen,The Zeeman conjecture for standard spines is equivalent to thePoincar´e conjecture,Topology22(1983),315–323.[12]R.Gompf,An exotic menagerie,J.Differential Geom.37(1993)199–223.[13] C.Gordon and W.Heil,Cyclic normal subgroups of fundamental groups of3-manifolds,Topology14(1975),305–309.[14]W.Haken,¨Uber das Hom¨o omorphieproblem der3-Mannigfaltigkeiten I,Math.Z.80(1962),89–120.[15]R.S.Hamilton,Three-manifolds with positive Ricci curvature,J.Differential Geom.17(1982),255–306.[16]R.S.Hamilton,The formation of singularities in the Ricciflow,in Surveys in differentialgeometry,Vol.II(Cambridge,MA,1993),Internat.Press,Cambridge,MA,1995,7–136. [17]R.S.Hamilton,Non-singular solutions of the Ricciflow on three-manifolds Comm.Anal.Geom.7(1999),695–729.[18]M.Hirsch,Obstruction theories for smoothing manifolds and maps,Bull.Amer.Math.Soc.69(1963),352-356.[19]H.Hopf,Zum Clifford–Kleinschen Raumproblem,Math.Ann.95(1925-26)313-319.[20]W.Jakobsche,The Bing-Borsuk conjecture is stronger than the Poincar´e conjecture,Fund.Math.106(1980),127–134.[21]W.S.Massey,Algebraic Topology:An Introduction,Harcourt Brace,New York,1967;Springer,New York1977;or A Basic Course in Algebraic Topology,Springer,New York, 1991.[22] C.McMullen,Riemann surfaces and geometrization of3-manifolds,Bull.Amer.Math.Soc.27(1992),207–216.[23]nor,Groups which act on S n withoutfixed points,Amer.J.Math.79(1957),623–630.[24]nor(with L.Siebenmann and J.Sondow),Lectures on the h-Cobordism Theorem,Princeton Math.Notes,Princeton University Press,Princeton,1965.[25]nor,Towards the Poincar´e conjecture and the classification of3-manifolds,NoticesAMS50(2003),1226–1233.[26] E.E.Moise,Geometric Topology in Dimensions2and3,Springer,New York,1977.[27]J.Morgan,On Thurston’s uniformization theorem for three-dimensional manifolds,in TheSmith Conjecture(H.Bass and J.Morgan,eds.),Pure and Appl.Math.112,Academic Press, New York,1984,37–125.[28]J.Munkres,Obstructions to the smoothing of piecewise-differentiable homeomorphisms,Ann.Math.72(1960),521–554.[29]J.Munkres,Topology:A First Course,Prentice–Hall,Englewood Cliffs,NJ,1975.[30]J.-P.Otal,The hyperbolization theorem forfibered3-manifolds,translated from the1996French original by Leslie D.Kay,SMF/AMS Texts and Monographs7,American Mathemat-ical Society,Providence,RI;Soci´e t´e Mathatique de France,Paris,2001.[31] C.Papakyriakopoulos,A reduction of the Poincar´e conjecture to group theoretic conjectures,Ann.Math.77(1963),250–305.[32]G.Perelman,The entropy formula for the Ricciflow and its geometric applications,arXiv:math.DG/0211159v1,11Nov2002.[33]G.Perelman,Ricciflow with surgery on three-manifolds,arXiv:math.DG/0303109,10Mar2003.[34]G.Perelman,Finite extinction time for the solutions to the Ricciflow on certain three-manifolds,arXiv:math.DG/0307245,17Jul2003.8JOHN MILNOR[35]V.Po´e naru,A program for the Poincar´e conjecture and some of its ramifications,in Topicsin low-dimensional topology(University Park,PA,1996),World Sci.Publishing,River Edge, NJ,1999,65–88.[36]H.Poincar´e,Œuvres,Tome VI,Gauthier–Villars,Paris,1953.[37] C.Rourke,Algorithms to disprove the Poincar´e conjecture,Turkish J.Math.21(1997),99–110.[38]P.Scott,A new proof of the annulus and torus theorems,Amer.J.Math.102(1980),241–277.[39]P.Scott,There are no fake Seifertfibre spaces with infiniteπ1,Ann.Math.117(1983),35–70.[40]P.Scott,The geometries of3-manifolds,Bull.Lond.Math.Soc.15(1983),401–487.[41]S.Smale,Generalized Poincar´e’s conjecture in dimensions greater than four,Ann.Math.74(1961),391–406.(See also:Bull.Amer.Math.Soc.66(1960),373–375.)[42]S.Smale,The story of the higher dimensional Poincar´e conjecture(What actually happenedon the beaches of Rio),Math.Intelligencer12,no.2(1990),44–51.[43]J.Stallings,Polyhedral homotopy spheres,Bull.Amer.Math.Soc.66(1960),485–488.[44] D.Sullivan,Travaux de Thurston sur les groupes quasi-fuchsiens et sur les vari´e t´e s hyper-boliques de dimension3fibr´e es sur le cercle,S´e m.Bourbaki554,Lecture Notes Math.842, Springer,New York,1981.[45]T.L.Thickstun,Open acyclic3-manifolds,a loop theorem and the Poincar´e conjecture,Bull.Amer.Math.Soc.(N.S.)4(1981),192–194.[46]W.P.Thurston,Three dimensional manifolds,Kleinian groups and hyperbolic geometry,inThe Mathematical heritage of Henri Poincar´e,Proc.Symp.Pure Math.39(1983),Part1.(Also in Bull.Amer.Math.Soc.6(1982),357–381.)[47]W.P.Thurston,Hyperbolic structures on3-manifolds,I,deformation of acyclic manifolds,Ann.Math.124(1986),203–246[48]W.P.Thurston,Three-Dimensional Geometry and Topology,Vol.1,ed.by Silvio Levy,Princeton Mathematical Series35,Princeton University Press,Princeton,1997.[49]P.Tukia,Homeomorphic conjugates of Fuchsian groups,J.Reine Angew.Math.391(1988),1–54.[50] F.Waldhausen,On irreducible3-manifolds which are sufficiently large,Ann.Math.87(1968),56–88.[51] A.Wallace,Modifications and cobounding manifolds,II,J.Math.Mech10(1961),773–809.[52]J.H.C.Whitehead,Mathematical Works,Volume II,Pergamon Press,New York,1962.(Seepages21-50.)[53]H.Yamabe,On a deformation of Riemannian structures on compact manifolds,Osaka Math.J.12(1960),21–37.[54] E.C.Zeeman,The Poincar´e conjecture for n≥5,in Topology of3-Manifolds and RelatedTopics Prentice–Hall,Englewood Cliffs,NJ,1962,198–204.(See also Bull.Amer.Math.Soc.67(1961),270.)(Note:For a representative collection of attacks on the Poincar´e Conjecture,see [31],[5],[20],[45],[11],[10],[37],and[35].)。
初中语文文摘(历史)佩雷尔曼安贫乐道的杰出数学家
佩雷尔曼:安贫乐道的杰出数学家2010年3月18日,美国克雷数学研究所郑重宣布:由于格里戈里·佩雷尔曼成功破解困扰人类近百年的著名难题“庞加莱猜想”,他将荣获奖金高达100万美元的“千禧年数学大奖”。
佩雷尔曼于1966年6月13日出生于苏联圣彼得堡的一个犹太家庭,父亲是电子工程师,母亲是小学数学教师。
平凡的父母不能给他提供优越的物质生活条件,却给了他聪明而好学的头脑。
对佩雷尔曼来说,童年在4岁时就结束了。
当同龄人尽情玩乐的时候,对数字感兴趣的他却在埋头啃着小学数学课本。
“他是个怪孩子,对小孩子的疯闹一点兴趣都没有。
其他孩子都在踢足球,可他不是钻到书本里,就是和父亲下象棋或玩填字游戏。
”6岁时,佩雷尔曼进入母亲任教的小学学习。
当他已经能轻松自如地在脑子里进行三位数的加减乘除时,同学们刚刚学会二位数以内的笔算。
他的小学有个传统,好学生要帮助差学生。
老师把成绩最差的一个同学分给了他。
也就是半年时间,他硬是把那个男孩子从“二分生”变成了“五分生”。
1982年,佩雷尔曼进入圣彼得堡第239中学学习,这是一所颇具数学和物理教学特色的学校。
入学才三个月,他就参加国际数学奥林匹克竞赛,并获得了金奖。
当时,这个16岁的少年天才得到了有史以来的最高分——满分42分,这个成绩至今都没被别人超越。
获奖一个月后,这个数学神童就接到了美国一所大学的邀请,为他提供丰厚的奖学金。
美国人当时就明白:这个天才有着不可估量的未来。
然而,他却谢绝了赴美深造的邀请。
中学毕业后,佩雷尔曼免试进入圣彼得堡大学数学系学习。
大学二年级时,他选择了数学中最复杂的研究方向——微分几何学。
回想起大学时代的他,同学们一致这样形容:他像外星人一样聪明,对所学的专业都很精通;在学习上,他很乐意帮助大家。
一个叫格奥尔金那维奇的同学回忆说:“他只按他喜欢的方式生活。
他对自己的外表漫不经心,经常拎着一个装满书的破袋子。
穿着一件磨出洞的衣服,头发长长的也不去剪。
享受校园生活每一天
享受校园生活每一天第一篇:享受校园生活每一天享受校园生活每一天四二班杨采珍有人说:学习是一件极其无聊的事情,更别说校园生活的枯燥乏味了,可我却觉得在实验小学的校园里学习是一件多么快乐的事情,校园生活更是多姿多彩的。
早晨,红彤彤的太阳从东方升起,明媚的阳光照耀在我们美丽的校园,我心情愉快地来到学校。
在校门口,清脆地说声“校长早,老师早,同学早”,我便伴着欢快的校园晨曲走进我的教室。
坐在洒满晨光的教室,我安置好书本,长长地吸一口气,开始一天的学习生活。
课堂上,我聚精会神,抱臂坐端,腰板挺直,双脚放平,深深地被老师精彩不断的讲解吸引着。
我也尽情地展现我的才能,用洪亮的声音大胆地说出自己独到的见解,牢记我要领悟的知识与要点。
为了让鸟儿也为我喝彩,为了让花儿也为之倾心,为了让那一片片在空中飞舞的落叶上满载着赞赏与希望的寄语……我时刻努力着!大课间,静寂的校园里立刻喧闹起来,到处充满了欢声笑语,大家的活动内容可多啦:有的在玩沙包,有的在跳绳,有的在踢毽子,还有的在打乒乓球……真让人眼花缭乱。
我喜欢课间,喜欢那可以让我们自由发挥的十分钟。
作业完成后,学校还为我们安排了丰富多彩的兴趣班:有美术班、音乐班、手风琴班、语言表演班……瞧!放学后,操场上的篮球队、足球队和武术队的同学们正在进行激烈的对抗比赛,吸引了不少同学驻足观看。
放学了,我微笑着走在合欢路上,撒下一天最快乐的时光。
当我离开校园的那一刻,再回过头看我走过的路,心中有恋恋不舍的感情,有不虚度年华的自豪,有对明天和未来美好的憧憬……辅导老师:王艳花第二篇:学会享受每一天学会享受每一天人生很短暂。
岁月如流水匆匆而过,在你不知不觉间悄悄流逝。
梦醒来已是明天。
我们活在疲累里,挣扎在风雨里,叹息着,哭泣着人生路的艰辛。
却不知道,我们也正在享受着人生给以你的快乐。
当我们哭泣的时候可否想到过曾经的欢笑?因为我们流过泪,所以了解了伤痛是人生必须经历的磨练。
于是我们可以不再畏惧人生路上的风雨艰难,正因为有泪水擦亮了你的双目,让你更能看透尘世的迷茫。
全国普通高等学校招生2021年高考复习语文模拟试卷(二)
当前,在经历商业大潮和电子化冲击之后,大多数传统文学期刊的读者年龄偏大,并且有不断流 失的趋势。时代在发展,文学的读者也在代代更新﹣﹣如何吸引更广泛、更年轻的读者,成为众多传 统期刊的又一探索重任。
新的社交媒体和互动平台,一方面在传播渠道上实现了内容输出者与读者的及时沟通,另一方面 在媒体形态上契合了目前多数年轻人的习惯。重要的不是他们在哪里读,重要的是,他们在读什么。 也许过不了多久,越来越多的文学期刊将以全新的面目焕发出青春蓬勃的活力。
酒香不怕巷子深?数字技术的发展和互联网的普及已彻底改变了这种传统观念。当今时代,人们 获取资讯和娱乐消遣的方式五花八门,尤其是智能终端的普及,让许多曾经迷恋纸本阅读的人毫不犹 豫地转向屏幕阅读。限于这种阅读背景,目前,各大文学期刊都在通过各种方式努力探索与新媒体的 有效合作,寻求并拓展文学期刊新的发行与传播途径。如《当代》、《人民文学》、《收获》、《十月》等 传统期刊,都在实践着各自的新媒体建设蓝图,几乎都开通了官方微博和微信公众号。这其中,有的 完成了电子付费阅读系统,有的拓展了网络销售渠道,有的创办了手机客户端,等等。越来越多首发 在文学期刊上的好文章,也会及时出现在微博、微信公众号与各类手机应用中,实现了更有效、更广 泛的传播。
D.传统期刊进行新媒体建设,其本质还是以文学作品为载体,其最终目的是让读者阅读作品自身所 承载的内容,完成其作为媒体的社会属性。
(2)下列理解和分析,不符合原文意思的一项是
A.传统期刊需进行新媒体建设,新媒体手段包括互联网、手机、数字报刊杂志等,相比于以往的纸 质媒体,它的传播具有更高效、广泛的特点。
D.佩雷尔曼对公共场面和财富的厌恶虽然令许多人迷惑不解,但同时也给一些人带来了启示和反 思。
(2)下列对材料有关内容的分析和慨括,最恰当的两项是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Proof. A gradient shrinking soliton gij(t), −∞ < t < 0, satisfies the equation
A parabolic neighborhood P (x, t, ǫ−1r, r2) is called a strong ǫ-neck, if, after scaling with factor r−2, it is ǫ-close to the evolving standard neck, which at each
arXiv:math.DG/030310 surgery on three-manifolds
Grisha Perelman∗
August 21, 2006
This is a technical paper, which is a continuation of [I]. Here we verify most of the assertions, made in [I, §13]; the exceptions are (1) the statement that a 3-manifold which collapses with local lower bound for sectional curvature is a graph manifold - this is deferred to a separate paper, as the proof has nothing to do with the Ricci flow, and (2) the claim about the lower bound for the volumes of the maximal horns and the smoothness of the solution from some time on, which turned out to be unjustified, and, on the other hand, irrelevant for the other conclusions.
1
time t′ ∈ [−1, 0] has length 2ǫ−1 and scalar curvature (1 − t′)−1. A metric on S2 × I, such that each point is contained in some ǫ-neck, is
called an ǫ-tube, or an ǫ-horn, or a double ǫ-horn, if the scalar curvature stays bounded on both ends, stays bounded on one end and tends to infinity on the other, and tends to infinity on both ends, respectively.
1 Ancient solutions with bounded entropy
1.1 In this section we review some of the results, proved or quoted in [I,§11], correcting a few inaccuracies. We consider smooth solutions gij(t) to the Ricci flow on oriented 3-manifold M , defined for −∞ < t ≤ 0, such that for each t the metric gij (t) is a complete non-flat metric of bounded nonnegative sectional curvature, κ-noncollapsed on all scales for some fixed κ > 0; such solutions will be called ancient κ-solutions for short. By Theorem I.11.7, the set of all such solutions with fixed κ is compact modulo scaling, that is from any sequence of such solutions (M α, giαj(t)) and points (xα, 0) with R(xα, 0) = 1, we can extract a smoothly (pointed) convergent subsequence, and the limit (M, gij(t)) belongs to the same class of solutions. (The assumption in I.11.7. that M α be noncompact was clearly redundant, as it was not used in the proof. Note also that M need not have the same topology as M α.) Moreover, according to Proposition I.11.2, the scalings of any ancient κ-solution gij(t) with factors (−t)−1 about appropriate points converge along a subsequence of t → −∞ to a non-flat gradient shrinking soliton, which will be called an asymptotic soliton of the ancient solution. If the sectional curvature of this asymptotic soliton is not strictly positive, then by Hamilton’s strong maximum principle it admits local metric splitting, and it is easy to see that in this case the soliton is either the round infinite cylinder, or its Z2 quotient, containing one-sided projective plane. If the curvature is strictly positive and the soliton is compact, then it has to be a metric quotient of the round 3-sphere, by [H 1]. The noncompact case is ruled out below.
Notation and terminology
B(x, t, r) denotes the open metric ball of radius r, with respect to the metric at time t, centered at x.
P (x, t, r, △t) denotes a parabolic neighborhood, that is the set of all points (x′, t′) with x′ ∈ B(x, t, r) and t′ ∈ [t, t + △t] or t′ ∈ [t + △t, t], depending on the sign of △t.
We denote by ǫ a fixed small positive constant. In contrast, δ denotes a positive quantity, which is supposed to be as small as needed in each particular argument.
1.2 Lemma. There is no (complete oriented 3-dimensional) noncompact κ-noncollapsed gradient shrinking soliton with bounded positive sectional curvature.